1
|
Tanbakuchi M, Routier L, Saadatmehr B, Safaie J, Kongolo G, Ghostine G, Wallois F, Moghimi S. Automatic detection and characterization of maturational neurobiomarkers identified as nested oscillations in premature newborns using high-density electroencephalography. Comput Biol Med 2025; 185:109477. [PMID: 39642699 DOI: 10.1016/j.compbiomed.2024.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Neural development leads to the evolution of electroencephalographic (EEG) characteristics during the third trimester of gestation. Theta activity in coalescence with slow waves (TA-SW) and delta brushes (DB) are key clinical neurobiomarkers in the evaluation of neurodevelopment in infants prior to full-term gestation. Both neurobiomarkers exhibit nested oscillations, a key feature of intrinsic spontaneous oscillatory activity, allowing the investigation of neural interaction development in the underlying circuits. In the present study, we propose an automatic approach for the detection and characterization of neurobiomarkers that (1) leverages high-density EEG (HD-EEG), (2) incorporates temporal dynamics and spatial distributions, and (3) evaluates the characteristics of nested oscillations. This method evaluates both slow and rapid neural activity, along with their cross-frequency coupling. Our results are in good agreement with those of clinical experts, achieving ROC performances and overall accuracies of 91 %/84 % and 83 %/75 % for TA-SW/DB events, respectively. Following detection and validation, we characterized and compared these two neurobiomarkers. Correlation-based spatial clustering showed that DB patterns were more symmetric and diffuse, whereas TA-SW patterns were more localized in the right and left temporal areas. Comparisons revealed (1) greater variability in spatial patterns for DB than for TA-SW, and that (2) while slow-wave coupling to fast oscillations showed similar characteristics for both neurobiomarkers, differences emerged in the amplitude and descending slope of the underlying slow waves. These findings suggested potential differences in the mechanisms underlying their generation, particularly in the modulation of slow oscillations. This approach represents a promising avenue for the quantitative evaluation of EEG signatures pertinent to early neural development in premature neonates.
Collapse
Affiliation(s)
- Mahdi Tanbakuchi
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Laura Routier
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Inserm (UMR1105), Groupe de Recherches sur LlAnalyse Multimodale de la Fonction Cérébrale, Explorations Fonctionnelles du Système Nerveux Pédiatriques, Centre Hospitalier Universitaire d'Amiens, 80054 Amiens, France
| | - Bahar Saadatmehr
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Javad Safaie
- Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Guy Kongolo
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Ghida Ghostine
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France
| | - Fabrice Wallois
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France; Inserm (UMR1105), Groupe de Recherches sur LlAnalyse Multimodale de la Fonction Cérébrale, Explorations Fonctionnelles du Système Nerveux Pédiatriques, Centre Hospitalier Universitaire d'Amiens, 80054 Amiens, France
| | - Sahar Moghimi
- Inserm (UMR1105), Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, Université de Picardie, 80054 Amiens, France.
| |
Collapse
|
2
|
Gao J, Pan L, Li P, Liu J, Yang Z, Yang S, Han B, Liu P, Wang C, Chen L, Qu G, Jiang G. Airborne Staphylococcus aureus Exposure Induces Depression-like Behaviors in Mice via Abnormal Neural Oscillation and Mitochondrial Dysfunction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1133-1144. [PMID: 39772570 DOI: 10.1021/acs.est.4c09497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Airborne Staphylococcus aureus exists widely in the natural environment and is closely related to human health. Growing evidence indicates that environmental air pollution elevates the risk of depressive disorders. However, the potential role of airborne S. aureus in the development of depression remains unclear. This study aims to elucidate the neurotoxic effects and potential mechanisms associated with depression caused by airborne S. aureus. Mice were randomly divided into four groups, and the experimental groups with environmental S. aureus were at 4.89 × 102, 8.89 × 105, and 1.27 × 108 CFU/m3 during four consecutive weeks. Airborne S. aureus exposure contributed to depression-like behaviors in mice, especially in the high-concentration group. The electroencephalography signal analysis identified uncoupling of theta and gamma bands and a shift of the beta rhythm toward delta oscillation in the medial prefrontal cortex of mice. Neuropathological analysis showed uplifted neuroinflammation and elevated levels of oxidative stress in the brain. Neuroinflammation and oxidative stress resulted in mitochondrial dysfunction, which could lead to apoptosis. Together, this study provides a strong basis for understanding the adverse outcomes of airborne S. aureus on mental health disorders.
Collapse
Affiliation(s)
- Jie Gao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Pan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Pengxiang Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Jing Liu
- School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shushuai Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Bin Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ping Liu
- Chongqing Medical University, College of Laboratory Medicine, Chongqing 400016, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Liu P, Xu J, Chen Y, Xu Q, Zhang W, Hu B, Li A, Zhu Q. Electrophysiological Signatures in Global Cerebral Ischemia: Neuroprotection Via Chemogenetic Inhibition of CA1 Pyramidal Neurons in Rats. J Am Heart Assoc 2024; 13:e036146. [PMID: 39673154 DOI: 10.1161/jaha.124.036146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Although there has been limited research into the perturbation of electrophysiological activity in the brain after ischemia, the activity signatures during ischemia and reperfusion remain to be fully elucidated. We aim to comprehensively describe these electrophysiological signatures and interrogate their correlation with ischemic damage during global cerebral ischemia and reperfusion. METHODS AND RESULTS We used the 4-vessel occlusion method of inducing global cerebral ischemia in rats. We used in vivo electrophysiological techniques to simultaneously record single units, scalp electroencephalogram, and local field potentials in awake animals. Neuronal damage and astrocyte reactivation were examined by immunofluorescence, immunoblotting, and quantitative real-time reverse-transcription polymerase chain reaction under chemogenetic inhibition of glutamatergic neurons. Electroencephalogram/local field potentials power and phase-amplitude coupling of the theta and low-gamma bands were reduced during ischemia and the acute phase of reperfusion. The firing rate of single units was enhanced by ischemia-reperfusion, and the phase relationship between the local field potentials theta band and neuronal firing was altered. Precise inhibition of hippocampus CA1 pyramidal neuron hyperactivity by chemogenetics rescued the firing dysfunction, ischemic neuronal damage, and A1 astrocyte activation. CONCLUSIONS Our results provide a comprehensive description of the characteristics of electrophysiological activity that accompany ischemia-reperfusion and highlight the significance of this activity in ischemic damage.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Jiang Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yilan Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Qi Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Wei Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| |
Collapse
|
4
|
Song RX, Ma XY, Zhou TT, Yu ZF, Wang J, Li BD, Jing YM, Wang H, Fu Y, Lv RZ, Jia SY, Li XM, Zhang LM. Excessive hydrogen sulfide-induced activation of NMDA receptors in the colon participates in anxiety- and compulsive-like behaviors in a rodent model of hemorrhagic shock and resuscitation. Int Immunopharmacol 2024; 142:113255. [PMID: 39332088 DOI: 10.1016/j.intimp.2024.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Hemorrhagic shock and resuscitation (HSR) cause inflammatory responses in the gastrointestinal tract and is associated with substantial morbidity and mortality rates. Hydrogen sulfide (H2S), a gasotransmitter with pleiotropic activity, exhibits anti-inflammatory benefits at physiological levels. However, deleterious effects are observed when its concentration increases. In this investigation, we employed a mouse model of HSR to examine the effects of an H2S scavenger on the gastrointestinal tract and brain, with emphasis on N-Methyl-d-Aspartate (NMDA) receptor function. METHODS Mice were immediately administered dl-propargylglycine (PAG) intragastrically as an H2S scavenger after HSR exposure. The O-maze and buried beads tests were used to assess compulsive- and anxiety-like behaviors. Pathological changes in the intestine were evaluated at 24 and 30 days after HSR. Subsequently, at 30 days after HSR, we examined electrophysiological and pathological changes in the amygdala. RESULTS Within 24 h of HSR exposure, animals treated with PAG showed significantly lower colonic injury. Additionally, compared to the HSR-treated mice 30 days after HSR, the PAG-treated mice displayed reduced buried beads, increased open-arm time, lower blood levels of Diamine Oxidase (DAO) and considerably improved ZO-1 intensity, a stronger association between the delta rhythm phase and beta activity amplitude, and lower neuroinflammatory response in the amygdala. MK-801, an NMDA receptor inhibitor, significantly reversed H2S-induced intestinal and cerebral injury. CONCLUSION This experimental data suggests that H2S-induced excessive activation of NMDA receptors contributes to anxiety- and compulsive-like behaviors caused by HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Xiao-Yi Ma
- Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Ting-Ting Zhou
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Zhi-Fang Yu
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Han Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yue Fu
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rui-Zhao Lv
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Shi-Yan Jia
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| |
Collapse
|
5
|
Kroupi E, Jh Jones E, Oakley B, Buitelaar J, Charman T, Loth E, Murphy D, Soria-Frisch A. Age-related differences in delta-beta phase-amplitude coupling in autistic individuals. Clin Neurophysiol 2024; 167:74-83. [PMID: 39303390 DOI: 10.1016/j.clinph.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE We aim to investigate the relationship between the core symptoms of autism, anxiety levels, and attention deficit hyperactivity disorder (ADHD) traits, and a non-autism-specific, neurophysiological metric, the Delta-Beta phase-amplitude coupling (PAC), extracted from the resting-state EEG for autistic and non-autistic populations across three different age groups (children, adolescents, and adults). METHODS We analyze the eyes-open resting-state EEG of 371 individuals. We applied a phase de-biasing PAC algorithm expected to result in a more accurate PAC estimate than other PAC methodologies available in the literature. RESULTS In the adult group, we found a significant increase of the delta-beta PAC in the autistic subgroup who met the Autism Diagnostic Observation Schedule-2 (ADOS-2) Autism Diagnostic Interview-Revised (ADR-R) ADOS-2/ADI-R threshold compared to non-autistic individuals. The differences seem age-specific since we found no statistically significant differences in the children and adolescent populations. Moreover, we found a significant positive correlation with the restricted and repetitive behaviours score of the ADOS-2 diagnostic instrument and with ADHD hyperactivity/impulsivity in the entire autistic cohort. CONCLUSIONS The neurophysiological differences we found only in the autistic individuals that meet the thresholds also point out the need for future studies that look for autistic neurodiverse subgroups beyond age. SIGNIFICANCE The delta-beta debiasing PAC (dPAC) may potentially serve as a severity biomarker in the autistic population.
Collapse
Affiliation(s)
- Eleni Kroupi
- Starlab Barcelona SL, Neuroscience BU, Barcelona, Spain.
| | - Emily Jh Jones
- Birkbeck, Centre for Brain & Cognitive Development, London, United Kingdom
| | - Bethany Oakley
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Declan Murphy
- King's College London, Head of Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, London, United Kingdom
| | | |
Collapse
|
6
|
Abubaker M, Al Qasem W, Pilátová K, Ježdík P, Kvašňák E. Theta-gamma-coupling as predictor of working memory performance in young and elderly healthy people. Mol Brain 2024; 17:74. [PMID: 39415245 PMCID: PMC11619296 DOI: 10.1186/s13041-024-01149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
7
|
Haziza S, Chrapkiewicz R, Zhang Y, Kruzhilin V, Li J, Li J, Delamare G, Swanson R, Buzsáki G, Kannan M, Vasan G, Lin MZ, Zeng H, Daigle TL, Schnitzer MJ. Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607428. [PMID: 39185175 PMCID: PMC11343216 DOI: 10.1101/2024.08.15.607428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
Collapse
Affiliation(s)
- Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vasily Kruzhilin
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jane Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Madhuvanthi Kannan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ganesh Vasan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Z Lin
- Departments of Bioengineering & Pediatrics, Stanford University, Stanford CA 94305, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
8
|
Duchet B, Bogacz R. How to design optimal brain stimulation to modulate phase-amplitude coupling? J Neural Eng 2024; 21:10.1088/1741-2552/ad5b1a. [PMID: 38985096 PMCID: PMC7616267 DOI: 10.1088/1741-2552/ad5b1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Objective.Phase-amplitude coupling (PAC), the coupling of the amplitude of a faster brain rhythm to the phase of a slower brain rhythm, plays a significant role in brain activity and has been implicated in various neurological disorders. For example, in Parkinson's disease, PAC between the beta (13-30 Hz) and gamma (30-100 Hz) rhythms in the motor cortex is exaggerated, while in Alzheimer's disease, PAC between the theta (4-8 Hz) and gamma rhythms is diminished. Modulating PAC (i.e. reducing or enhancing PAC) using brain stimulation could therefore open new therapeutic avenues. However, while it has been previously reported that phase-locked stimulation can increase PAC, it is unclear what the optimal stimulation strategy to modulate PAC might be. Here, we provide a theoretical framework to narrow down the experimental optimisation of stimulation aimed at modulating PAC, which would otherwise rely on trial and error.Approach.We make analytical predictions using a Stuart-Landau model, and confirm these predictions in a more realistic model of coupled neural populations.Main results.Our framework specifies the critical Fourier coefficients of the stimulation waveform which should be tuned to optimally modulate PAC. Depending on the characteristics of the amplitude response curve of the fast population, these components may include the slow frequency, the fast frequency, combinations of these, as well as their harmonics. We also show that the optimal balance of energy between these Fourier components depends on the relative strength of the endogenous slow and fast rhythms, and that the alignment of fast components with the fast rhythm should change throughout the slow cycle. Furthermore, we identify the conditions requiring to phase-lock stimulation to the fast and/or slow rhythms.Significance.Together, our theoretical framework lays the foundation for guiding the development of innovative and more effective brain stimulation aimed at modulating PAC for therapeutic benefit.
Collapse
Affiliation(s)
- Benoit Duchet
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United
Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United
Kingdom
| |
Collapse
|
9
|
Salimpour Y, Anderson WS, Dastgheyb R, Liu S, Ming GL, Song H, Maragakis NJ, Habela CW. Phase-amplitude coupling detection and analysis of human 2-dimensional neural cultures in multi-well microelectrode array in vitro. J Neurosci Methods 2024; 407:110127. [PMID: 38615721 PMCID: PMC11351296 DOI: 10.1016/j.jneumeth.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Human induced pluripotent stem cell (hiPSC)- derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro. It is unclear whether cultured neurons can achieve the fundamental network behaviors required to process information in the brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), addresses this question. NEW METHODS We examined whether networks of two-dimensional (2D) cultured hiPSC-derived cortical neurons grown with hiPSC-derived astrocytes on microelectrode array plates recapitulate the CFC that is present in vivo. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used offline spike sorting to analyze the contribution of single neuron spiking to network behavior. RESULTS We found that PAC is present, the degree of PAC is specific to network structure, and it is modulated by external stimulation with bicuculline administration. Modulation of PAC is not driven by single neurons, but by network-level interactions. COMPARISON WITH EXISTING METHODS PAC has been demonstrated in multiple regions of the human cortex as well as in organoids. This is the first report of analysis demonstrating the presence of coupling in 2D cultures. CONCLUSION CFC in the form of PAC analysis explores communication and integration between groups of neurons and dynamical changes across networks. In vitro PAC analysis has the potential to elucidate the underlying mechanisms as well as capture the effects of chemical, electrical, or ultrasound stimulation; providing insight into modulation of neural networks to treat nervous system disorders in vivo.
Collapse
Affiliation(s)
- Yousef Salimpour
- Functional Neurosurgery Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William S Anderson
- Functional Neurosurgery Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Shiyu Liu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore MD, USA
| | - Guo-Li Ming
- 1Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongjun Song
- 1Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Christa W Habela
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore MD, USA.
| |
Collapse
|
10
|
Lodema DY, Ditzel FL, Hut SCA, van Dellen E, Otte WM, Slooter AJC. Single-channel qEEG characteristics distinguish delirium from no delirium, but not postoperative from non-postoperative delirium. Clin Neurophysiol 2024; 161:93-100. [PMID: 38460221 DOI: 10.1016/j.clinph.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE This exploratory study examined quantitative electroencephalography (qEEG) changes in delirium and the use of qEEG features to distinguish postoperative from non-postoperative delirium. METHODS This project was part of the DeltaStudy, a cross-sectional,multicenterstudy in Intensive Care Units (ICUs) and non-ICU wards. Single-channel (Fp2-Pz) four-minutes resting-state EEG was analyzed in 456 patients. After calculating 98 qEEG features per epoch, random forest (RF) classification was used to analyze qEEG changes in delirium and to test whether postoperative and non-postoperative delirium could be distinguished. RESULTS An area under the receiver operatingcharacteristic curve (AUC) of 0.76 (95% Confidence Interval (CI) 0.71-0.80) was found when classifying delirium with a sensitivity of 0.77 and a specificity of 0.63 at the optimal operating point. The classification of postoperative versus non-postoperative delirium resulted in an AUC of 0.50 (95%CI 0.38-0.61). CONCLUSIONS RF classification was able to discriminate delirium from no delirium with reasonable accuracy, while also identifying new delirium qEEG markers like autocorrelation and theta peak frequency. RF classification could not distinguish postoperative from non-postoperative delirium. SIGNIFICANCE Single-channel EEG differentiates between delirium and no delirium with reasonable accuracy. We found no distinct EEG profile for postoperative delirium, which may suggest that delirium is one entity, whether it develops postoperatively or not.
Collapse
Affiliation(s)
- D Y Lodema
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - F L Ditzel
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S C A Hut
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - E van Dellen
- Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - W M Otte
- Department of Pediatric Neurology and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A J C Slooter
- Department of Intensive Care Medicine and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Psychiatry and University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Yang L, Chen X, Yang L, Li M, Shang Z. Phase-Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals (Basel) 2024; 14:439. [PMID: 38338082 PMCID: PMC10854523 DOI: 10.3390/ani14030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase-amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.
Collapse
Affiliation(s)
- Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Xi Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Guo F, Cui Y, Li A, Liu M, Jian Z, Chen K, Yao D, Guo D, Xia Y. Differential patterns of very high-frequency oscillations in two seizure types of the pilocarpine-induced TLE model. Brain Res Bull 2023; 204:110805. [PMID: 37925081 DOI: 10.1016/j.brainresbull.2023.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
AIMS Very high-frequency oscillations (VHFOs, >500 Hz) are considered a highly sensitive biomarker of seizures. We hypothesized that VHFOs may exhibit specificity towards hypersynchronous (HYP) seizures and low-voltage fast (LVF) seizures in temporal lobe epilepsy (TLE). METHODS Local field potentials were recorded from the hippocampal network in TLE mice induced by pilocarpine. Subsequently, we analyzed the VHFO features, including their temporal-frequency characteristics and VHFO/theta coupling, during three states: baseline, preictal, and postictal for both HYP- and LVF-seizure groups. RESULTS Significant changes in most of the VHFO features were observed during the preictal state in both seizure groups. In the postictal state, VHFO features in the HYP-seizure group exhibited inverse alterations and appeared to align with those observed during baseline conditions. However, such phenomena were not observed after TLE seizures in the LVF-seizure group. CONCLUSION Our findings highlight distinct patterns of VHFO feature changes across different states of HYP seizures and LVF seizures. These results suggest that VHFOs could serve as indicative biomarkers for seizure alterations specifically associated with HYP-seizure states.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Airui Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Mingqi Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhaoxin Jian
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
13
|
Contreras A, Djebari S, Temprano-Carazo S, Múnera A, Gruart A, Delgado-Garcia JM, Jiménez-Díaz L, Navarro-López JD. Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade. Neuropharmacology 2023:109668. [PMID: 37474000 DOI: 10.1016/j.neuropharm.2023.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Ana Contreras
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alejandro Múnera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain; Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
14
|
Salimpour Y, Anderson WS, Dastyeb R, Liu S, Ming GL, Song H, Maragakis NJ, Habela CW. Phase-Amplitude Coupling Detection and Analysis of Human 2-Dimensional Neural Cultures in Multi-well Microelectrode Array in Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548227. [PMID: 37502955 PMCID: PMC10369896 DOI: 10.1101/2023.07.08.548227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human induced pluripotent stem cell (hiPSC) - derived neurons offer the possibility of studying human-specific neuronal behaviors in physiologic and pathologic states in vitro . However, it is unclear whether these cultured neurons can achieve the fundamental network behaviors that are required to process information in the human brain. Investigating neuronal oscillations and their interactions, as occurs in cross-frequency coupling (CFC), is potentially a relevant approach. Microelectrode array culture plates provide a controlled framework to study populations of hiPSC-derived cortical neurons (hiPSC-CNs) and their electrical activity. Here, we examined whether networks of two-dimensional cultured hiPSC-CNs recapitulate the CFC that is present in networks in vivo . We analyzed the electrical activity recorded from hiPSC-CNs grown in culture with hiPSC-derived astrocytes. We employed the modulation index method for detecting phase-amplitude coupling (PAC) and used an offline spike sorting method to analyze the contribution of a single neuron's spiking activities to network behavior. Our analysis demonstrates that the degree of PAC is specific to network structure and is modulated by external stimulation, such as bicuculine administration. Additionally, the shift in PAC is not driven by a single neuron's properties but by network-level interactions. CFC analysis in the form of PAC explores communication and integration between groups of nearby neurons and dynamical changes across the entire network. In vitro , it has the potential to capture the effects of chemical agents and electrical or ultrasound stimulation on these interactions and may provide valuable information for the modulation of neural networks to treat nervous system disorders in vivo . Significance Phase amplitude coupling (PAC) analysis demonstrates that the complex interactions that occur between neurons and network oscillations in the human brain, in vivo , are present in 2-dimensional human cultures. This coupling is implicated in normal cognitive function as well as disease states. Its presence in vitro suggests that PAC is a fundamental property of neural networks. These findings offer the possibility of a model to understand the mechanisms and of PAC more completely and ultimately allow us to understand how it can be modulated in vivo to treat neurologic disease.
Collapse
|
15
|
Yeh CH, Zhang C, Shi W, Lo MT, Tinkhauser G, Oswal A. Cross-Frequency Coupling and Intelligent Neuromodulation. CYBORG AND BIONIC SYSTEMS 2023; 4:0034. [PMID: 37266026 PMCID: PMC10231647 DOI: 10.34133/cbsystems.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Cross-frequency coupling (CFC) reflects (nonlinear) interactions between signals of different frequencies. Evidence from both patient and healthy participant studies suggests that CFC plays an essential role in neuronal computation, interregional interaction, and disease pathophysiology. The present review discusses methodological advances and challenges in the computation of CFC with particular emphasis on potential solutions to spurious coupling, inferring intrinsic rhythms in a targeted frequency band, and causal interferences. We specifically focus on the literature exploring CFC in the context of cognition/memory tasks, sleep, and neurological disorders, such as Alzheimer's disease, epilepsy, and Parkinson's disease. Furthermore, we highlight the implication of CFC in the context and for the optimization of invasive and noninvasive neuromodulation and rehabilitation. Mainly, CFC could support advancing the understanding of the neurophysiology of cognition and motor control, serve as a biomarker for disease symptoms, and leverage the optimization of therapeutic interventions, e.g., closed-loop brain stimulation. Despite the evident advantages of CFC as an investigative and translational tool in neuroscience, further methodological improvements are required to facilitate practical and correct use in cyborg and bionic systems in the field.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Chuting Zhang
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Wenbin Shi
- School of Information and Electronics,
Beijing Institute of Technology, Beijing, China
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering,
National Central University, Taoyuan, Taiwan
| | - Gerd Tinkhauser
- Department of Neurology,
Bern University Hospital and University of Bern, Bern, Switzerland
| | - Ashwini Oswal
- MRC Brain Network Dynamics Unit,
University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Zakaria L, Desowska A, Berde CB, Cornelissen L. Electroencephalographic delta and alpha oscillations reveal phase-amplitude coupling in paediatric patients undergoing sevoflurane-based general anaesthesia. Br J Anaesth 2023; 130:595-602. [PMID: 36922266 DOI: 10.1016/j.bja.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Sevoflurane-induced anaesthesia generates frontal alpha oscillations as early as 6 months of age, whereas strong delta oscillations are present at birth. In adults, delta oscillations and alpha oscillations are coupled: the phase of delta waves modulates the amplitude of alpha oscillations in a phenomenon known as phase-amplitude coupling. We hypothesise that delta-alpha phase-amplitude coupling exists in young children and is a feature of sevoflurane-based general anaesthesia distinct from emergence after anaesthesia. METHODS Electroencephalographic data from 31 paediatric patients aged 10 months to 3 yr undergoing elective surgery with sevoflurane-based anaesthesia were analysed retrospectively. Delta-alpha phase-amplitude coupling was evaluated during maintenance of anaesthesia and during emergence. RESULTS Delta-alpha phase-amplitude coupling was observed in the study population. Strength of phase-amplitude coupling, represented by the delta-alpha mean amplitude vector, was greater during general anaesthesia than during emergence (Wilcoxon paired signed-rank test, Z=3.107, P=0.002). Frontal alpha amplitude during anaesthesia was not uniformly distributed across all delta phases. During general anaesthesia, alpha power was restricted to the positive phase of the delta wave (omnibus circular uniformity, general anaesthesia: P<0.001, mean phase: 114º; 99% confidence interval: 90º-139º; emergence: P=0.35, mean phase 181º, 99% confidence interval: 110º-253º). CONCLUSIONS Sevoflurane-based anaesthesia is associated with delta-alpha phase-amplitude coupling in paediatric patients. These findings improve our understanding of cortical dynamics in children undergoing general anaesthesia, which might improve paediatric intraoperative depth of anaesthesia monitoring techniques.
Collapse
Affiliation(s)
- Luai Zakaria
- Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women's Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Adela Desowska
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Charles B Berde
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Laura Cornelissen
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Yuan Y, Wu Q, Wang X, Liu M, Yan J, Ji H. Low-intensity ultrasound stimulation modulates time-frequency patterns of cerebral blood oxygenation and neurovascular coupling of mouse under peripheral sensory stimulation state. Neuroimage 2023; 270:119979. [PMID: 36863547 DOI: 10.1016/j.neuroimage.2023.119979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) not only modulates cerebral hemodynamics, neural activity, and neurovascular coupling characteristics in resting samples but also exerts a significant inhibitory effect on the neural activity in task samples. However, the effect of TUS on cerebral blood oxygenation and neurovascular coupling in task samples remains to be elucidated. To answer this question, we first used forepaw electrical stimulation of the mice to elicit the corresponding cortical excitation, and then stimulated this cortical region using different modes of TUS, and simultaneously recorded the local field potential using electrophysiological acquisition and hemodynamics using optical intrinsic signal imaging. The results indicate that for the mice under peripheral sensory stimulation state, TUS with a duty cycle of 50% can (1) enhance the amplitude of cerebral blood oxygenation signal, (2) reduce the time-frequency characteristics of evoked potential, (3) reduce the strength of neurovascular coupling in time domain, (4) enhance the strength of neurovascular coupling in frequency domain, and (5) reduce the time-frequency cross-coupling of neurovasculature. The results of this study indicate that TUS can modulate the cerebral blood oxygenation and neurovascular coupling in peripheral sensory stimulation state mice under specific parameters. This study opens up a new area of investigation for potential applicability of TUS in brain diseases related to cerebral blood oxygenation and neurovascular coupling.
Collapse
Affiliation(s)
- Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Qianqian Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, China.
| | - Hui Ji
- Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
18
|
Halgren AS, Siegel Z, Golden R, Bazhenov M. Multielectrode Cortical Stimulation Selectively Induces Unidirectional Wave Propagation of Excitatory Neuronal Activity in Biophysical Neural Model. J Neurosci 2023; 43:2482-2496. [PMID: 36849415 PMCID: PMC10082457 DOI: 10.1523/jneurosci.1784-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes traveling waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit mechanisms.SIGNIFICANCE STATEMENT Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuropsychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to predict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore normal brain function and become a powerful therapy for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Alma S Halgren
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Department of Integrative Biology, University of California - Berkeley, Berkeley, California 94720
| | - Zarek Siegel
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Ryan Golden
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Maxim Bazhenov
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| |
Collapse
|
19
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Slaby RJ, Cappa S, Cattaneo Z. Prognostic potential of reading art in brain damage and the possible contribution of non-invasive brain stimulation: Comment on "Can we really 'read' art to see the changing brain? A review and empirical assessment of clinical case reports and published artworks for systematic evidence of quality and style changes linked to damage or neurodegenerative disease" by Matthew Pelowski, Blanca T.M. Spee, et al. Phys Life Rev 2023; 45:25-28. [PMID: 36931122 DOI: 10.1016/j.plrev.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Affiliation(s)
- Ryan Joseph Slaby
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Stefano Cappa
- University Institute for Advanced Studies (IUSS), Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, Pavia, Italy; Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| |
Collapse
|
21
|
Weiss E, Kann M, Wang Q. Neuromodulation of Neural Oscillations in Health and Disease. BIOLOGY 2023; 12:371. [PMID: 36979063 PMCID: PMC10045166 DOI: 10.3390/biology12030371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Using EEG and local field potentials (LFPs) as an index of large-scale neural activities, research has been able to associate neural oscillations in different frequency bands with markers of cognitive functions, goal-directed behavior, and various neurological disorders. While this gives us a glimpse into how neurons communicate throughout the brain, the causality of these synchronized network activities remains poorly understood. Moreover, the effect of the major neuromodulatory systems (e.g., noradrenergic, cholinergic, and dopaminergic) on brain oscillations has drawn much attention. More recent studies have suggested that cross-frequency coupling (CFC) is heavily responsible for mediating network-wide communication across subcortical and cortical brain structures, implicating the importance of neurotransmitters in shaping coordinated actions. By bringing to light the role each neuromodulatory system plays in regulating brain-wide neural oscillations, we hope to paint a clearer picture of the pivotal role neural oscillations play in a variety of cognitive functions and neurological disorders, and how neuromodulation techniques can be optimized as a means of controlling neural network dynamics. The aim of this review is to showcase the important role that neuromodulatory systems play in large-scale neural network dynamics, informing future studies to pay close attention to their involvement in specific features of neural oscillations and associated behaviors.
Collapse
Affiliation(s)
| | | | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA
| |
Collapse
|
22
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
23
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
24
|
Yuan W, Zhi W, Ma L, Hu X, Wang Q, Zou Y, Wang L. Neural Oscillation Disorder in the Hippocampal CA1 Region of Different Alzheimer's Disease Mice. Curr Alzheimer Res 2023; 20:350-359. [PMID: 37559542 PMCID: PMC10661967 DOI: 10.2174/1567205020666230808122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a well-known neurodegenerative disease that gradually induces neural network dysfunction and progressive memory deficits. Neural network activity is represented by rhythmic oscillations that influence local field potentials (LFPs). However, changes in hippocampal neural rhythmic oscillations in the early stage of AD remain largely unexplored. OBJECTIVE This study investigated neural rhythmic oscillations in 3-month-old APP/PS1 and 5x- FAD mice to assess early neural connectivity in AD. METHODS LFPs were recorded from the hippocampal CA1 region with implanted microelectrode arrays while the mice were in the awake resting stage. Welch fast Fourier transforms, continuous wavelet transforms, and phase-amplitude coupling analyses were used to compute the power density of different frequency bands and phase-amplitude modulation indices in the LFPs. RESULTS Our results showed impaired theta, low gamma, and high gamma frequency band power in APP/PS1 and 5xFAD mice during the awake resting stage. AD mice also showed decreased delta, alpha, and beta frequency band power. Impaired theta-low gamma and theta-high gamma phaseamplitude coupling were observed in 5xFAD mice. CONCLUSION This study revealed neural network activity differences in oscillation power and cross-frequency coupling in the early stage of AD, providing a new perspective for developing biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Weiming Yuan
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Qian Wang
- Department of Medical Imaging, Chinese PAP Beijing Corps Hospital, Beijing 100600, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
25
|
Saadatmehr B, Edalati M, Routier L, Mahmoudzadeh M, Safaie J, Kongolo G, Ghostine G, Wallois F, Moghimi S. Evolution of cross-frequency coupling between endogenous oscillations over the temporal cortex in very premature neonates. Cereb Cortex 2022; 33:278-289. [PMID: 35235654 PMCID: PMC10103643 DOI: 10.1093/cercor/bhac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/17/2023] Open
Abstract
Temporal theta activity in coalescence with slow-wave (TTA-SW) is one of the first neurobiomarkers of the neurodevelopment of perisylvian networks in the electroencephalography (EEG). Dynamic changes in the microstructure and activity within neural networks are reflected in the EEG. Slow oscillation slope can reflect synaptic strength, and cross-frequency coupling (CFC), associated with several putative functions in adults, can reflect neural communication. Here, we investigated the evolution of CFC, in terms of SW theta phase-amplitude coupling (PAC), during the course of very early development between 25 and 32 weeks of gestational age in 23 premature neonates. We used high-resolution EEG and dipole models as spatial filters to extract the source waveforms corresponding to TTA-SW. We also carried out nonlinear phase-dependent correlation measurements to examine whether the characteristics of the SW slopes are associated with TTA-SW coupling. We show that neurodevelopment leads to temporal accumulation of the SW theta PAC toward the trough of SW. Steepness of the negative going slope of SW determined the degree of this coupling. Systematic modulation of SW-TTA CFC during development is a signature of the complex development of local cortico-cortical perisylvian networks and distant thalamo-cortical neural circuits driving this nested activity over the perisylvian networks.
Collapse
Affiliation(s)
- Bahar Saadatmehr
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
| | - Mohammadreza Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France
| | - Laura Routier
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Mahdi Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Javad Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Guy Kongolo
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, NICU, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Ghida Ghostine
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, NICU, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Fabrice Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| | - Sahar Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Avenue Laennec, 80036 Amiens Cedex, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Avenue Laennec, 80054 Amiens Cedex, France
| |
Collapse
|
26
|
Sato Y, Schmitt O, Ip Z, Rabiller G, Omodaka S, Tominaga T, Yazdan-Shahmorad A, Liu J. Pathological changes of brain oscillations following ischemic stroke. J Cereb Blood Flow Metab 2022; 42:1753-1776. [PMID: 35754347 PMCID: PMC9536122 DOI: 10.1177/0271678x221105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Brain oscillations recorded in the extracellular space are among the most important aspects of neurophysiology data reflecting the activity and function of neurons in a population or a network. The signal strength and patterns of brain oscillations can be powerful biomarkers used for disease detection and prediction of the recovery of function. Electrophysiological signals can also serve as an index for many cutting-edge technologies aiming to interface between the nervous system and neuroprosthetic devices and to monitor the efficacy of boosting neural activity. In this review, we provided an overview of the basic knowledge regarding local field potential, electro- or magneto- encephalography signals, and their biological relevance, followed by a summary of the findings reported in various clinical and experimental stroke studies. We reviewed evidence of stroke-induced changes in hippocampal oscillations and disruption of communication between brain networks as potential mechanisms underlying post-stroke cognitive dysfunction. We also discussed the promise of brain stimulation in promoting post stroke functional recovery via restoring neural activity and enhancing brain plasticity.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver Schmitt
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Zachary Ip
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| | - Shunsuke Omodaka
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA, USA
| |
Collapse
|
27
|
Farrokhi A, Tafakori S, Daliri MR. Dynamic theta-modulated high frequency oscillations in rat medial prefrontal cortex during spatial working memory task. Physiol Behav 2022; 254:113912. [PMID: 35835179 DOI: 10.1016/j.physbeh.2022.113912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Interaction of oscillatory rhythms at different frequencies is considered to provide a neuronal mechanism for information processing and transmission. These interactions have been suggested to have a vital role in cognitive functions such as working memory and decision-making. Here, we investigated the medial prefrontal cortex (mPFC), which is known to have a critical role in successful execution of spatial working memory tasks. We recorded local field potential oscillations from mPFC while rats performed a delayed-non-match-to-place (DNMTP) task. In the DNMTP task, the rat needed to decide actively about the pathway based on the information remembered in the first phase of each trial. Our analysis revealed a dynamic phase-amplitude coupling (PAC) between theta and high frequency oscillations (HFOs). This dynamic coupling emerged near the turning point and diminished afterward. Further, theta activity during the delay period, which is thought of as the maintenance phase, in the absence of the coupling, can predict task completion time. We previously reported diminished rat performance in the DNMTP task in response to electromagnetic radiation. Here, we report an increase in the theta rhythm during delay activity besides diminishing the coupling after electromagnetic radiation. These findings suggest that the different roles of the mPFC in working memory could be supported by separate mechanisms: Theta activity during the delay period for information maintenance and theta-HFOs phase-amplitude coupling relating to the decision-making procedure.
Collapse
Affiliation(s)
- Ashkan Farrokhi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Shiva Tafakori
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran.
| |
Collapse
|
28
|
Bayraktaroğlu Z, Aktürk T, Yener G, de Graaf TA, Hanoğlu L, Yıldırım E, Hünerli Gündüz D, Kıyı İ, Sack AT, Babiloni C, Güntekin B. Abnormal Cross Frequency Coupling of Brain Electroencephalographic Oscillations Related to Visual Oddball Task in Parkinson's Disease with Mild Cognitive Impairment. Clin EEG Neurosci 2022:15500594221128713. [PMID: 36177504 DOI: 10.1177/15500594221128713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a movement disorder caused by degeneration in dopaminergic neurons. During the disease course, most of PD patients develop mild cognitive impairment (PDMCI) and dementia, especially affecting frontal executive functions. In this study, we tested the hypothesis that PDMCI patients may be characterized by abnormal neurophysiological oscillatory mechanisms coupling frontal and posterior cortical areas during cognitive information processing. To test this hypothesis, event-related EEG oscillations (EROs) during counting visual target (rare) stimuli in an oddball task were recorded in healthy controls (HC; N = 51), cognitively unimpaired PD patients (N = 48), and PDMCI patients (N = 53). Hilbert transform served to estimate instantaneous phase and amplitude of EROs from delta to gamma frequency bands, while modulation index computed ERO phase-amplitude coupling (PAC) at electrode pairs. As compared to the HC and PD groups, the PDMCI group was characterized by (1) more posterior topography of the delta-theta PAC and (2) reversed delta-low frequency alpha PAC direction, ie, posterior-to-anterior rather than anterior-to-posterior. These results suggest that during cognitive demands, PDMCI patients are characterized by abnormal neurophysiological oscillatory mechanisms mainly led by delta frequencies underpinning functional connectivity from frontal to parietal cortical areas.
Collapse
Affiliation(s)
- Zübeyir Bayraktaroğlu
- International School of Medicine, Department of Physiology, 218502Istanbul Medipol University, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), functional Imaging and Cognitive Affective Neuroscience Research Laboratory (fINCAN), 218502Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Vocational School, Program of Electroneurophysiology, 218502Istanbul Medipol University, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Clinical Electrophysiology, Neuroimaging and Neuromodulation Laboratory, 218502Istanbul Medipol University, Istanbul, Turkey.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Section Brain Stimulation and Cognition, 5211Maastricht University, Maastricht, Netherlands
| | - Görsev Yener
- Dokuz Eylul University Health Campus, 605730Izmir Biomedicine and Genome Center, Izmir, Turkey.,Faculty of Medicine, 52973Izmir University of Economics, Izmir, Turkey
| | - Tom A de Graaf
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Section Brain Stimulation and Cognition, 5211Maastricht University, Maastricht, Netherlands
| | - Lütfü Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), functional Imaging and Cognitive Affective Neuroscience Research Laboratory (fINCAN), 218502Istanbul Medipol University, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Clinical Electrophysiology, Neuroimaging and Neuromodulation Laboratory, 218502Istanbul Medipol University, Istanbul, Turkey.,School of Medicine, Department of Neurology, 218502Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Vocational School, Program of Electroneurophysiology, 218502Istanbul Medipol University, Istanbul, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), Clinical Electrophysiology, Neuroimaging and Neuromodulation Laboratory, 218502Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli Gündüz
- Institute of Health Sciences, Department of Neurosciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - İlayda Kıyı
- Institute of Health Sciences, Department of Neurosciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Alexander T Sack
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Section Brain Stimulation and Cognition, 5211Maastricht University, Maastricht, Netherlands
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele of Cassino, Cassino, Italy
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Clinical Electrophysiology, Neuroimaging and Neuromodulation Laboratory, 218502Istanbul Medipol University, Istanbul, Turkey.,School of Medicine, Department of Biophysics, 218502Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
29
|
Cross-frequency coupling in psychiatric disorders: A systematic review. Neurosci Biobehav Rev 2022; 138:104690. [PMID: 35569580 DOI: 10.1016/j.neubiorev.2022.104690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
Abstract
Cross-frequency coupling (CFC), an electrophysiologically derived measure of oscillatory coupling in the brain, is believed to play a critical role in neuronal computation, learning and communication. It has received much recent attention in the study of both health and disease. We searched for literature that studied CFC during resting state and task-related activities during electroencephalography and magnetoencephalography in psychiatric disorders. Thirty-eight studies were identified, which included attention-deficit hyperactivity disorder, Alzheimer's dementia, autism spectrum disorder, bipolar disorder, depression, obsessive compulsive disorder, social anxiety disorder and schizophrenia. The systematic review was registered with PROSPERO (ID#CRD42021224188). The current review indicates measurable differences exist between CFC in disease states vs. healthy controls. There was variance in CFC at different regions of the brain within the same psychiatric disorders, perhaps this could be explained by the mechanisms and functionality of CFC. There was heterogeneity in methodologies used, which may lead to spurious CFC analyses. Going forward, standardized methodologies need to be established and utilized in further research to understand the neuropathophysiology associated with psychiatric disorders.
Collapse
|
30
|
Malik A, Eldaly ABM, Chen K, Chan LLH. Neuronal Oscillatory Signatures in the Developing Mouse Visual Cortex After Short-Term Monocular Deprivation. Cereb Cortex 2022; 32:2657-2667. [DOI: 10.1093/cercor/bhab372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Development and maturation in cortical networks depend on neuronal activity. For stabilization and pruning of connections, synchronized oscillations play a crucial role. A fundamental mechanism that enables coordinated activity during brain functioning is formed of synchronized neuronal oscillations in low- (delta and theta) and high- (gamma) frequency bands. The relationship between neural synchrony, cognition, and the perceptual process has been widely studied, but any possible role of neural synchrony in amblyopia has been less explored. We hypothesized that monocular deprivation (MD) during early postnatal life would lead to changes in neuronal activity that would be demonstrated by changes in phase-amplitude coupling (PAC) and altered power in specific oscillatory frequency. Our results demonstrate that functional connectivity in the visual cortex is altered by MD during adolescence. The amplitude of high-frequency oscillations is modulated by the phase of low-frequency oscillations. Demonstration of enhanced delta–gamma and theta–gamma PAC indicates that our results are relevant for a broad range of nested oscillatory markers. These markers are inherent to neuronal processing and are consistent with the hypothesized increase in the intrinsic coupling that arises from neural oscillatory phase alignment. Our results reveal distinct frequency bands exhibit altered power and coherence variations modulated by experience-driven plasticity.
Collapse
Affiliation(s)
- Anju Malik
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
| | - Abdelrahman B M Eldaly
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
- Electrical Engineering Department , Faculty of Engineering, Minia University, Minia 61517, Egypt
| | - Ke Chen
- Sichuan Provincial People’s Hospital , School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Leanne Lai-Hang Chan
- Department of Electrical Engineering , City University of Hong Kong, Hong Kong SAR 999077, China
- Center for Biosystems , Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
31
|
Yakovenko IA, Petrenko NE, Cheremushkin EA, Dorokhov VB. Dynamics of EEG Rhythm Interaction Preceding the Awakening Moment with Subsequent Restoration of Activity after Brief Falling Asleep Episodes. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Gong R, Mühlberg C, Wegscheider M, Fricke C, Rumpf JJ, Knösche TR, Classen J. Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson's disease. J Neurophysiol 2022; 127:1606-1621. [PMID: 35544757 PMCID: PMC9190732 DOI: 10.1152/jn.00541.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bradykinesia is a cardinal motor symptom in Parkinson’s disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between β (13–30 Hz) and broadband γ (50–150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related β-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia. NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson’s disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.
Collapse
Affiliation(s)
- Ruxue Gong
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.,Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas R Knösche
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
33
|
Fujita Y, Yanagisawa T, Fukuma R, Ura N, Oshino S, Kishima H. Abnormal phase-amplitude coupling characterizes the interictal state in epilepsy. J Neural Eng 2022; 19. [PMID: 35385832 DOI: 10.1088/1741-2552/ac64c4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Diagnosing epilepsy still requires visual interpretation of electroencephalography and magnetoencephalography (MEG) by specialists, which prevents quantification and standardization of diagnosis. Previous studies proposed automated diagnosis by combining various features from electroencephalography and MEG, such as relative power (Power) and functional connectivity. However, the usefulness of interictal phase-amplitude coupling (PAC) in diagnosing epilepsy is still unknown. We hypothesized that resting-state PAC would be different for patients with epilepsy in the interictal state and for healthy participants such that it would improve discrimination between the groups. METHODS We obtained resting-state MEG and magnetic resonance imaging in 90 patients with epilepsy during their preoperative evaluation and in 90 healthy participants. We used the cortical currents estimated from MEG and magnetic resonance imaging to calculate Power in the δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (13-30 Hz), low γ (35-55 Hz), and high γ (65-90 Hz) bands and functional connectivity in the θ band. PAC was evaluated using the synchronization index (SI) for eight frequency band pairs: the phases of δ, θ, α, and β and the amplitudes of low and high γ. First, we compared the mean SI values for the patients with epilepsy and the healthy participants. Then, using features such as PAC, Power, functional connectivity, and features extracted by deep learning individually or combined, we tested whether PAC improves discrimination accuracy for the two groups. RESULTS The mean SI values were significantly different for the patients with epilepsy and the healthy participants. The SI value difference was highest for θ/low γ in the temporal lobe. Discrimination accuracy was the highest, at 90%, using the combination of PAC and deep learning. SIGNIFICANCE Abnormal PAC characterized the patients with epilepsy in the interictal state compared with the healthy participants, potentially improving the discrimination of epilepsy.
Collapse
Affiliation(s)
- Yuya Fujita
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Takufumi Yanagisawa
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Ryohei Fukuma
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Natsuko Ura
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Faculty of Medicine Graduate School of Medicine, 2-2 Yamadaoka, suita, Osaka, Japan, Osaka University Graduate School of Medicine, Dept of Neurosurgery, Osaka, Osaka, 5670871, JAPAN
| | - Haruhiko Kishima
- Department of neurosurgery, Osaka University, 2-2, Yamadaoka, Suita, Suita, Osaka, 5650871, JAPAN
| |
Collapse
|
34
|
Sasi S, Sen Bhattacharya B. In silico Effects of Synaptic Connections in the Visual Thalamocortical Pathway. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:856412. [PMID: 35450154 PMCID: PMC9016146 DOI: 10.3389/fmedt.2022.856412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
We have studied brain connectivity using a biologically inspired in silico model of the visual pathway consisting of the lateral geniculate nucleus (LGN) of the thalamus, and layers 4 and 6 of the primary visual cortex. The connectivity parameters in the model are informed by the existing anatomical parameters from mammals and rodents. In the base state, the LGN and layer 6 populations in the model oscillate with dominant alpha frequency, while the layer 4 oscillates in the theta band. By changing intra-cortical hyperparameters, specifically inhibition from layer 6 to layer 4, we demonstrate a transition to alpha mode for all the populations. Furthermore, by increasing the feedforward connectivities in the thalamo-cortico-thalamic loop, we could transition into the beta band for all the populations. On looking closely, we observed that the origin of this beta band is in the layer 6 (infragranular layers); lesioning the thalamic feedback from layer 6 removed the beta from the LGN and the layer 4. This agrees with existing physiological studies where it is shown that beta rhythm is generated in the infragranular layers. Lastly, we present a case study to demonstrate a neurological condition in the model. By changing connectivities in the network, we could simulate the condition of significant (P < 0.001) decrease in beta band power and a simultaneous increase in the theta band power, similar to that observed in Schizophrenia patients. Overall, we have shown that the connectivity changes in a simple visual thalamocortical in silico model can simulate state changes in the brain corresponding to both health and disease conditions.
Collapse
|
35
|
Behavior of olfactory-related frontal lobe oscillations in Alzheimer's disease and MCI: A pilot study. Int J Psychophysiol 2022; 175:43-53. [PMID: 35217110 DOI: 10.1016/j.ijpsycho.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Slow-gamma (35-45 Hz) phase synchronization and the coupling between slow-gamma and low-frequency theta oscillations (4-8 Hz) are closely related to memory retrieval and cognitive functions. In this pilot study, we assess the Phase Amplitude Coupling (PAC) between theta and slow-gamma oscillatory bands and the quality of synchronization in slow-gamma oscillations using Phase Locking Value (PLV) on EEG data from healthy individuals and patients diagnosed with amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD) during an oddball olfactory task. Our study indicates noticeable differences between the PLV and PAC values corresponding to olfactory stimulation in the three groups of participants. These differences can help explain the underlying processes involved in these cognitive disorders and the differences between aMCI and AD patients in performing cognitive tasks. Our study also proposes a diagnosis method for aMCI through comparing the brain's response characteristics during olfactory stimulation and rest. Early diagnosis of aMCI can potentially lead to its timely treatment and prevention from progression to AD.
Collapse
|
36
|
Agadagba SK, Eldaly ABM, Chan LLH. Transcorneal Electrical Stimulation Induces Long-Lasting Enhancement of Brain Functional and Directional Connectivity in Retinal Degeneration Mice. Front Cell Neurosci 2022; 16:785199. [PMID: 35197826 PMCID: PMC8860236 DOI: 10.3389/fncel.2022.785199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
To investigate neuromodulation of functional and directional connectivity features in both visual and non-visual brain cortices after short-term and long-term retinal electrical stimulation in retinal degeneration mice. We performed spontaneous electrocorticography (ECoG) in retinal degeneration (rd) mice following prolonged transcorneal electrical stimulation (pTES) at varying currents (400, 500 and 600 μA) and different time points (transient or day 1 post-stimulation, 1-week post-stimulation and 2-weeks post-stimulation). We also set up a sham control group of rd mice which did not receive any electrical stimulation. Subsequently we analyzed alterations in cross-frequency coupling (CFC), coherence and directional connectivity of the primary visual cortex and the prefrontal cortex. It was observed that the sham control group did not display any significant changes in brain connectivity across all stages of electrical stimulation. For the stimulated groups, we observed that transient electrical stimulation of the retina did not significantly alter brain coherence and connectivity. However, for 1-week post-stimulation, we identified enhanced increase in theta-gamma CFC. Meanwhile, enhanced coherence and directional connectivity appeared predominantly in theta, alpha and beta oscillations. These alterations occurred in both visual and non-visual brain regions and were dependent on the current amplitude of stimulation. Interestingly, 2-weeks post-stimulation demonstrated long-lasting enhancement in network coherence and connectivity patterns at the level of cross-oscillatory interaction, functional connectivity and directional inter-regional communication between the primary visual cortex and prefrontal cortex. Application of electrical stimulation to the retina evidently neuromodulates brain coherence and connectivity of visual and non-visual cortices in retinal degeneration mice and the observed alterations are largely maintained. pTES holds strong possibility of modulating higher cortical functions including pathways of cognition, awareness, emotion and memory.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Abdelrahman B. M. Eldaly
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Leanne Lai Hang Chan,
| |
Collapse
|
37
|
Saul MA, He X, Black S, Charles F. A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Front Psychol 2022; 12:568921. [PMID: 35095625 PMCID: PMC8796854 DOI: 10.3389/fpsyg.2021.568921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Social anxiety disorder has been widely recognised as one of the most commonly diagnosed mental disorders. Individuals with social anxiety disorder experience difficulties during social interactions that are essential in the regular functioning of daily routines; perpetually motivating research into the aetiology, maintenance and treatment methods. Traditionally, social and clinical neuroscience studies incorporated protocols testing one participant at a time. However, it has been recently suggested that such protocols are unable to directly assess social interaction performance, which can be revealed by testing multiple individuals simultaneously. The principle of two-person neuroscience highlights the interpersonal aspect of social interactions that observes behaviour and brain activity from both (or all) constituents of the interaction, rather than analysing on an individual level or an individual observation of a social situation. Therefore, two-person neuroscience could be a promising direction for assessment and intervention of the social anxiety disorder. In this paper, we propose a novel paradigm which integrates two-person neuroscience in a neurofeedback protocol. Neurofeedback and interbrain synchrony, a branch of two-person neuroscience, are discussed in their own capacities for their relationship with social anxiety disorder and relevance to the paradigm. The newly proposed paradigm sets out to assess the social interaction performance using interbrain synchrony between interacting individuals, and to employ a multi-user neurofeedback protocol for intervention of the social anxiety.
Collapse
Affiliation(s)
- Marcia A. Saul
- Faculty of Media and Communication, Centre for Digital Entertainment, Bournemouth University, Poole, United Kingdom
| | - Xun He
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- *Correspondence: Xun He
| | - Stuart Black
- Applied Neuroscience Solutions Ltd., Frimley Green, United Kingdom
| | - Fred Charles
- Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- Fred Charles
| |
Collapse
|
38
|
Wang Z, Cao Q, Bai W, Zheng X, Liu T. Decreased Phase-Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats. Front Behav Neurosci 2022; 15:799556. [PMID: 34975430 PMCID: PMC8716490 DOI: 10.3389/fnbeh.2021.799556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase-amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel in vivo recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4-12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70-120 Hz) in the BLA. Compared to the control group, this theta-gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.
Collapse
Affiliation(s)
- Zihe Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Salimpour Y, Mills KA, Hwang BY, Anderson WS. Phase- targeted stimulation modulates phase-amplitude coupling in the motor cortex of the human brain. Brain Stimul 2021; 15:152-163. [PMID: 34856396 DOI: 10.1016/j.brs.2021.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/10/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Phase-amplitude coupling (PAC) in which the amplitude of a faster field potential oscillation is coupled to the phase of a slower rhythm, is one of the most well-studied interactions between oscillations at different frequency bands. In a healthy brain, PAC accompanies cognitive functions such as learning and memory, and changes in PAC have been associated with neurological diseases including Parkinson's disease (PD), schizophrenia, obsessive-compulsive disorder, Alzheimer's disease, and epilepsy. OBJECTIVE /Hypothesis: In PD, normalization of PAC in the motor cortex has been reported in the context of effective treatments such as dopamine replacement therapy and deep brain stimulation (DBS), but the possibility of normalizing PAC through intervention at the cortex has not been shown in humans. Phase-targeted stimulation (PDS) has a strong potential to modulate PAC levels and potentially normalize it. METHODS We applied stimulation pulses triggered by specific phases of the beta oscillations, the low frequency oscillations that define phase of gamma amplitude in beta-gamma PAC, to the motor cortex of seven PD patients at rest during DBS lead placement surgery We measured the effect on PAC modulation in the motor cortex relative to stimulation-free periods. RESULTS We describe a system for phase-targeted stimulation locked to specific phases of a continuously updated slow local field potential oscillation (in this case, beta band oscillations) prediction. Stimulation locked to the phase of the peak of beta oscillations increased beta-gamma coupling both during and after stimulation in the motor cortex, and the opposite phase (trough) stimulation reduced the magnitude of coupling after stimulation. CONCLUSION These results demonstrate the capacity of cortical phase-targeted stimulation to modulate PAC without evoking motor activation, which could allow applications in the treatment of neurological disorders associated with abnormal PAC, such as PD.
Collapse
Affiliation(s)
- Yousef Salimpour
- Functional Neurosurgery Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Kelly A Mills
- Neuromodulation and Advanced Therapies Clinic, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Y Hwang
- Functional Neurosurgery Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Functional Neurosurgery Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Abubaker M, Al Qasem W, Kvašňák E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front Psychol 2021; 12:756661. [PMID: 34744934 PMCID: PMC8566716 DOI: 10.3389/fpsyg.2021.756661] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
41
|
Malik A, Eldaly ABM, Lai-Hang Chan L. Phase-amplitude modulation during critical period plasticity in mouse visual cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:96-99. [PMID: 34891248 DOI: 10.1109/embc46164.2021.9629593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much of our understanding of experience-dependent plasticity originates from the level of single cells and synapses through the well-established techniques of whole-cell recording and calcium imaging. The study of cortical plasticity of neural oscillatory networks remains largely unexplored. Cross-frequency coupling has become an emerging tool to study the underlying mechanisms for synchronization and interaction between local and global processes of cortical networks. The phase of low-frequency oscillations modulates the amplitude of high-frequency oscillations through a phase-amplitude coupling. Recent studies found that gamma-band oscillations associate with critical period plasticity. The existence of such mechanisms in ocular dominance plasticity is yet to be fully demonstrated. In this study, in-vivo electrophysiological methods for recording local field potentials in the primary visual cortex (V1) of anesthetized mice are employed. Our results reveal the mechanisms of neuronal oscillatory activities for the experience-dependent plasticity of developing visual cortical circuits.
Collapse
|
42
|
Ghinda DC, Salimpour Y, Crone NE, Kang J, Anderson WS. Dynamical Analysis of Seizure in Epileptic Brain: a Dynamic Phase-Amplitude Coupling Estimation Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5970-5973. [PMID: 34892478 DOI: 10.1109/embc46164.2021.9629778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cross-frequency coupling in general and phase-amplitude coupling (PAC) as a particular form of it, provides an opportunity to investigate the complex interactions between neural oscillations in the human brain and neurological disorders such as epilepsy. Using PAC detection methods on temporal sliding windows, we developed a map of dynamic PAC evolution to investigate the spatiotemporal changes occurring during ictal transitions in a patient with intractable mesial temporal lobe epilepsy. The map is built by computing the modulation index between the amplitude of high frequency oscillations and the phase of lower frequency rhythms from the intracranial stereoelectroencephalography recordings during seizure. Our preliminary results show early abnormal PAC changes occurring in the preictal state prior to the occurrence of clinical or visible electrographic seizure onset, and suggest that dynamic PAC measures may serve as a potential clinical technique for analyzing seizure dynamics.Clinical Relevance-Application of a dynamic temporal PAC map as a new tool may provide novel insights into the neurophysiology of epileptic seizure activity and its spatio-temporal dynamics.
Collapse
|
43
|
Li Z, Bai X, Hu R, Li X. Measuring Phase-Amplitude Coupling Based on the Jensen-Shannon Divergence and Correlation Matrix. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1375-1385. [PMID: 34236967 DOI: 10.1109/tnsre.2021.3095510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phase-amplitude coupling (PAC) measures the relationship between the phase of low-frequency oscillations (LFO) and the amplitude of high-frequency oscillations (HFO). It plays an important functional role in neural information processing and cognition. Thus, we propose a novel method based on the Jensen-Shannon (JS) divergence and correlation matrix. The method takes the amplitude distributions of the HFO located in the corresponding phase bins of the LFO as multichannel inputs to construct a correlation matrix, where the elements are calculated based on the JS divergence between pairs of amplitude distributions. Then, the omega complexity extracted from the correlation matrix is used to estimate the PAC strength. The simulation results demonstrate that the proposed method can effectively reflect the PAC strength and slightly vary with the data length. Moreover, it outperforms five frequently used algorithms in the performance against additive white Gaussian noise and spike noise and the ability of detecting PAC in wide frequency ranges. To validate our proposed method with real data, it was applied to analyze the local field potential recorded from the dorsomedial striatum in a male Sprague-Dawley rat. It can replicate previous results obtained with other PAC metrics. In conclusion, these results suggest that our proposed method is a powerful tool for measuring the PAC between neural oscillations.
Collapse
|
44
|
Edalati M, Mahmoudzadeh M, Safaie J, Wallois F, Moghimi S. Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations. Psychophysiology 2021; 58:e13909. [PMID: 34310719 PMCID: PMC9285090 DOI: 10.1111/psyp.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Rhythm processing involves building expectations according to the hierarchical temporal structure of auditory events. Although rhythm processing has been addressed in the context of predictive coding, the properties of the oscillatory response in different cortical areas are still not clear. We explored the oscillatory properties of the neural response to rhythmic incongruence and the cross-frequency coupling between multiple frequencies to further investigate the mechanisms underlying rhythm perception. We designed an experiment to investigate the neural response to rhythmic deviations in which the tone either arrived earlier than expected or the tone in the same metrical position was omitted. These two manipulations modulate the rhythmic structure differently, with the former creating a larger violation of the general structure of the musical stimulus than the latter. Both deviations resulted in an MMN response, whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants due to the early occurrence of a tone, but not omission deviants, seemed to elicit a late high gamma response (60-80 Hz) at the end of the P3a over the left frontal region, which, interestingly, correlated with the P3a amplitude over the same region and was also nested in theta oscillations. The timing of the elicited high-frequency gamma oscillations related to rhythmic deviation suggests that it might be related to the update of the predictive neural model, corresponding to the temporal structure of the events in higher-level cortical areas.
Collapse
Affiliation(s)
- M Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - J Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - S Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| |
Collapse
|
45
|
The Oscillatory Profile Induced by the Anxiogenic Drug FG-7142 in the Amygdala-Hippocampal Network Is Reversed by Infralimbic Deep Brain Stimulation: Relevance for Mood Disorders. Biomedicines 2021; 9:biomedicines9070783. [PMID: 34356846 PMCID: PMC8301458 DOI: 10.3390/biomedicines9070783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Anxiety and depression exhibit high comorbidity and share the alteration of the amygdala–hippocampal–prefrontal network, playing different roles in the ventral and dorsal hippocampi. Deep brain stimulation of the infralimbic cortex in rodents or the human equivalent—the subgenual cingulate cortex—constitutes a fast antidepressant treatment. The aim of this work was: (1) to describe the oscillatory profile in a rodent model of anxiety, and (2) to deepen the therapeutic basis of infralimbic deep brain stimulation in mood disorders. First, the anxiogenic drug FG-7142 was administered to anaesthetized rats to characterize neural oscillations within the amygdala and the dorsoventral axis of the hippocampus. Next, deep brain stimulation was applied. FG-7142 administration drastically reduced the slow waves, increasing delta, low theta, and beta oscillations in the network. Moreover, FG-7142 altered communication in these bands in selective subnetworks. Deep brain stimulation of the infralimbic cortex reversed most of these FG-7142 effects. Cross-frequency coupling was also inversely modified by FG-7142 and by deep brain stimulation. Our study demonstrates that the hyperactivated amygdala–hippocampal network associated with the anxiogenic drug exhibits an oscillatory fingerprint. The study contributes to comprehending the neurobiological basis of anxiety and the effects of infralimbic deep brain stimulation.
Collapse
|
46
|
Chan HL, Low I, Chen LF, Chen YS, Chu IT, Hsieh JC. A novel beamformer-based imaging of phase-amplitude coupling (BIPAC) unveiling the inter-regional connectivity of emotional prosody processing in women with primary dysmenorrhea. J Neural Eng 2021; 18. [PMID: 33691295 DOI: 10.1088/1741-2552/abed83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022]
Abstract
Objective. Neural communication or the interactions of brain regions play a key role in the formation of functional neural networks. A type of neural communication can be measured in the form of phase-amplitude coupling (PAC), which is the coupling between the phase of low-frequency oscillations and the amplitude of high-frequency oscillations. This paper presents a beamformer-based imaging method, beamformer-based imaging of PAC (BIPAC), to quantify the strength of PAC between a seed region and other brain regions.Approach. A dipole is used to model the ensemble of neural activity within a group of nearby neurons and represents a mixture of multiple source components of cortical activity. From ensemble activity at each brain location, the source component with the strongest coupling to the seed activity is extracted, while unrelated components are suppressed to enhance the sensitivity of coupled-source estimation.Main results. In evaluations using simulation data sets, BIPAC proved advantageous with regard to estimation accuracy in source localization, orientation, and coupling strength. BIPAC was also applied to the analysis of magnetoencephalographic signals recorded from women with primary dysmenorrhea in an implicit emotional prosody experiment. In response to negative emotional prosody, auditory areas revealed strong PAC with the ventral auditory stream and occipitoparietal areas in the theta-gamma and alpha-gamma bands, which may respectively indicate the recruitment of auditory sensory memory and attention reorientation. Moreover, patients with more severe pain experience appeared to have stronger coupling between auditory areas and temporoparietal regions.Significance. Our findings indicate that the implicit processing of emotional prosody is altered by menstrual pain experience. The proposed BIPAC is feasible and applicable to imaging inter-regional connectivity based on cross-frequency coupling estimates. The experimental results also demonstrate that BIPAC is capable of revealing autonomous brain processing and neurodynamics, which are more subtle than active and attended task-driven processing.
Collapse
Affiliation(s)
- Hui-Ling Chan
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Intan Low
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ian-Ting Chu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Mariscal MG, Levin AR, Gabard-Durnam LJ, Xie W, Tager-Flusberg H, Nelson CA. EEG Phase-Amplitude Coupling Strength and Phase Preference: Association with Age over the First Three Years after Birth. eNeuro 2021; 8:ENEURO.0264-20.2021. [PMID: 34049989 PMCID: PMC8225408 DOI: 10.1523/eneuro.0264-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023] Open
Abstract
Phase-amplitude coupling (PAC), the coupling of the phase of slower electrophysiological oscillations with the amplitude of faster oscillations, is thought to facilitate dynamic integration of neural activity in the brain. Although the brain undergoes dramatic change and development during the first few years of life, how PAC changes through this developmental period has not been extensively studied. Here, we examined PAC through electroencephalography (EEG) data collected during an awake, eyes-open EEG collection paradigm in 98 children between the ages of three months and three years. We employed non-parametric clustering methods to identify areas of significant PAC across a range of frequency pairs and electrode locations, and examined how PAC strength and phase preference develops in these areas. We found that PAC, primarily between the α-β and γ frequencies, was positively correlated with age from early infancy to early childhood (p = 2.035 × 10-6). Additionally, we found γ over anterior electrodes coupled with the rising phase of the α-β waveform, while γ over posterior electrodes coupled with the falling phase of the α-β waveform; this regionalized phase preference became more prominent with age. This opposing trend may reflect each region's specialization toward feedback or feedforward processing, respectively, suggesting opportunities for back translation in future studies.
Collapse
Affiliation(s)
- Michael G Mariscal
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Laurel J Gabard-Durnam
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
| | - Wanze Xie
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
| | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215
- Harvard Graduate School of Education, Cambridge, MA 02138
| |
Collapse
|
48
|
Sun D, Kermani M, Hudson M, He X, Unnithan RR, French C. Effects of antipsychotic drugs and potassium channel modulators on spectral properties of local field potentials in mouse hippocampus and pre-frontal cortex. Neuropharmacology 2021; 191:108572. [PMID: 33901515 DOI: 10.1016/j.neuropharm.2021.108572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 01/14/2023]
Abstract
Local field potentials (LFPs) recorded intracranially display a range of location-specific oscillatory spectra which have been related to cognitive processes. Although the mechanisms producing LFPs are not completely understood, it is likely that voltage-gated ion channels which produce action potentials and patterned discharges play a significant role. It is also known that antipsychotic drugs (APDs) affect LFP spectra and a direct inhibitory effect on voltage-gated potassium channels has been reported. Additionally, voltage-gated potassium channels have been implicated in the pathophysiology of schizophrenia, a disorder for which APDs are primary therapies. In this study we sought to: i) better characterise the effects of two APDs on LFPs spectra and connectivity measures and ii) examine the effects of potassium channel modulators on LFPs and potential overlap of effects with APDs. Intracranial electrodes were implanted in hippocampus (HIP) and pre-frontal cortex (PFC) of C57BL/6J mice; power spectra, coherence and phase-amplitude cross-frequency coupling were measured. Drugs tested were APDs haloperidol and clozapine as well as voltage-gated potassium channel modulators (KVMs) 4-aminopyridine (4-AP), tetraethylammonium, retigabine and E-4031. Both APDs and KVMs significantly reduced gamma power except 4-AP, which conversely increased gamma power. Clozapine and retigabine additionally reduced gamma coherence between HIP and PFC, while 4-AP demonstrated the opposite effect. Phase-amplitude coupling between theta and gamma oscillations in HIP was significantly reduced by the administration of haloperidol and retigabine. These results provide previously undescribed effects of APDs on LFP properties and demonstrate novel modulation of LFP characteristics by KVMs that intriguingly overlap with the APD effects.
Collapse
Affiliation(s)
- Dechuan Sun
- Department of Medicine, The University of Melbourne, Victoria, Australia; Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, Australia
| | - Mojtaba Kermani
- School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Matthew Hudson
- Department of Neuroscience, Monash University, Victoria, Australia
| | - Xin He
- Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria, Australia
| | | | - Chris French
- Department of Medicine, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Mansourian M, Khademi S, Marateb HR. A Comprehensive Review of Computer-Aided Diagnosis of Major Mental and Neurological Disorders and Suicide: A Biostatistical Perspective on Data Mining. Diagnostics (Basel) 2021; 11:393. [PMID: 33669114 PMCID: PMC7996506 DOI: 10.3390/diagnostics11030393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The World Health Organization (WHO) suggests that mental disorders, neurological disorders, and suicide are growing causes of morbidity. Depressive disorders, schizophrenia, bipolar disorder, Alzheimer's disease, and other dementias account for 1.84%, 0.60%, 0.33%, and 1.00% of total Disability Adjusted Life Years (DALYs). Furthermore, suicide, the 15th leading cause of death worldwide, could be linked to mental disorders. More than 68 computer-aided diagnosis (CAD) methods published in peer-reviewed journals from 2016 to 2021 were analyzed, among which 75% were published in the year 2018 or later. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was adopted to select the relevant studies. In addition to the gold standard, the sample size, neuroimaging techniques or biomarkers, validation frameworks, the classifiers, and the performance indices were analyzed. We further discussed how various performance indices are essential based on the biostatistical and data mining perspective. Moreover, critical information related to the Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines was analyzed. We discussed how balancing the dataset and not using external validation could hinder the generalization of the CAD methods. We provided the list of the critical issues to consider in such studies.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Sadaf Khademi
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan 8174-67344, Iran;
| | - Hamid Reza Marateb
- Biomedical Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan 8174-67344, Iran;
| |
Collapse
|
50
|
Powell D, Haddad SA, Gorur-Shandilya S, Marder E. Coupling between fast and slow oscillator circuits in Cancer borealis is temperature-compensated. eLife 2021; 10:60454. [PMID: 33538245 PMCID: PMC7889077 DOI: 10.7554/elife.60454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.
Collapse
Affiliation(s)
- Daniel Powell
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Sara A Haddad
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | | | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|