1
|
Nygaard A, Zachariassen LG, Larsen KS, Kristensen AS, Loland CJ. Fluorescent non-canonical amino acid provides insight into the human serotonin transporter. Nat Commun 2024; 15:9267. [PMID: 39463388 PMCID: PMC11514162 DOI: 10.1038/s41467-024-53584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The serotonin transporter (SERT), responsible for the reuptake of released serotonin, serves as a major target for antidepressants and psychostimulants. Nevertheless, refining the mechanistic models for SERT remains challenging. Here, we expand the molecular understanding of the binding of ions, substrates, and inhibitors to SERT by incorporating the fluorescent non-canonical amino acid Anap through genetic code expansion. We elucidate steady-state changes in conformational dynamics of purified SERT with Anap inserted at intracellular- or extracellular sites. This uncovers the competitive mechanisms underlying cation binding and assigns distinct binding- and allosteric coupling patterns for several inhibitors and substrates. Finally, we track in real-time conformational transitions in response to the interaction with Na+ or serotonin. In this work, we present a methodological platform reporting on SERT conformational dynamics, which together with other approaches will deepen our insights into the molecular mechanisms of SERT.
Collapse
Affiliation(s)
- Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine S Larsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ahmad AVD, Khan SW, Ali SA, Yasar Q. Integrated network pharmacology analysis and experimental validation to investigate the mechanism of Flavan-3-ols and aromatic resins in depression. Metab Brain Dis 2024; 39:763-782. [PMID: 38809384 DOI: 10.1007/s11011-024-01356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
The present investigation delved into the pharmacological mechanisms underlying the management of depression through Flavan-3-ols and Aromatic Resins, employing in silico and in vivo methodologies. Network pharmacology was utilized to identify targets associated with the antidepressant activity of Flavan-3-ols and Aromatic Resins. Protein-protein interaction and KEGG analyses were conducted to enrich and explore key pathways. Molecular docking and simulation studies were executed to assess the targets. The antidepressant effects were studied using the Forced Swim Test and Tail Suspension Test on both unstressed mice and those subjected to the chronic unpredictable mild stress (CUMS) paradigm. The Compound-Target network analysis revealed a substantial impact of the components on numerous targets, with 332 nodes and 491 edges. Protein-protein interaction analysis indicated significant interactions with targets implicated in depression. KEGG analysis highlighted major pathways, including neuroactive ligand-receptor interaction, dopaminergic synapse, and long-term depression. Docking studies on EGCG demonstrated binding energies of -7.2 kcal/mol for serotonin 1 A (5-HT1A), -7.9 kcal/mol for D2, and - 9.6 kcal/mol for MOA-A. Molecular dynamics simulation indicated minute fluctuation, hence suggesting stable complexes formed between small molecules and proteins. The combination of Flavan-3-ols and Aromatic Resins significantly increased mobility time (p < 0.05) in the Forced Swim Test and Tail Suspension Test, while significantly decreasing immobility time and time freezing (p < 0.05) in both unstressed and CUMS mice. This study demonstrated the antidepressant characteristics of Flavan-3-ols and Aromatic Resins, underscoring the need for further research to develop a novel antidepressant medication.
Collapse
Affiliation(s)
| | - Subur W Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India.
| | - Syed Ayaz Ali
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| | - Qazi Yasar
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| |
Collapse
|
3
|
Stupart O, Robbins TW, Dalley JW. "The wrong tools for the right job": a critical meta-analysis of traditional tests to assess behavioural impacts of maternal separation. Psychopharmacology (Berl) 2023; 240:2239-2256. [PMID: 36418564 PMCID: PMC10593619 DOI: 10.1007/s00213-022-06275-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022]
Abstract
RATIONALE Unconditioned tasks in rodents have been the mainstay of behavioural assessment for decades, but their validity and sensitivity to detect the behavioural consequences of early life stress (ELS) remains contentious and highly variable. OBJECTIVES In the present study, we carried out a meta-analysis to investigate whether persistent behavioural effects, as assessed using unconditioned procedures in rats, are a reliable consequence of early repeated maternal separation, a commonly used procedure in rodents to study ELS. METHODS A literature search identified 100 studies involving maternally separated rats and the following unconditioned procedures: the elevated plus maze (EPM); open field test (OFT); sucrose preference test (SPT) and forced swim task (FST). Studies were included for analysis if the separation of offspring from the dam was at least 60 min every day during the pre-weaning period prior to the start of adolescence. RESULTS Our findings show that unconditioned tasks are generally poor at consistently demonstrating differences between control and separated groups with pooled effect sizes that were either small or non-existent (EPM: Hedge's g = - 0.35, p = 0.01, OFT: Hedge's g = - 0.32, p = 0.05, SPT: Hedge's g = - 0.33, p = 0.21, FST: Hedge's g = 0.99, p = 0.0001). Despite considerable procedural variability between studies, heterogeneity statistics were low; indicating the lack of standardization in the maternal separation protocol was the not the cause of these inconsistent effects. CONCLUSIONS Our findings indicate that in general, unconditioned tests of depression and anxiety are not sufficient to reveal the full behavioural repertoire of maternal separation stress should not be relied upon in isolation. We argue that more objective tasks that sensitively detect specific cognitive processes are better suited for translational research on stress-related disorders such as depression.
Collapse
Affiliation(s)
- Olivia Stupart
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Cambridge, CB2 OSZ, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK.
| |
Collapse
|
4
|
Bleibel L, Dziomba S, Waleron KF, Kowalczyk E, Karbownik MS. Deciphering psychobiotics' mechanism of action: bacterial extracellular vesicles in the spotlight. Front Microbiol 2023; 14:1211447. [PMID: 37396391 PMCID: PMC10309211 DOI: 10.3389/fmicb.2023.1211447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.
Collapse
Affiliation(s)
- Layla Bleibel
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | - Szymon Dziomba
- Department of Toxicology, Medical University of Gdansk, Gdańsk, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, Łódź, Poland
| | | |
Collapse
|
5
|
Fidilio A, Grasso M, Caruso G, Musso N, Begni V, Privitera A, Torrisi SA, Campolongo P, Schiavone S, Tascedda F, Leggio GM, Drago F, Riva MA, Caraci F. Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway. Front Pharmacol 2022; 13:1075746. [DOI: 10.3389/fphar.2022.1075746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND > 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats.
Collapse
|
6
|
Network Pharmacology and Experimental Validation to Investigate the Antidepressant Potential of Atractylodes lancea (Thunb.) DC. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111925. [PMID: 36431060 PMCID: PMC9696776 DOI: 10.3390/life12111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Atractylodes lancea (Thunb.) DC. (AL) has been indicated in traditional prescriptions for the treatment of depression. However, the mechanism of action of AL in the treatment of depression is still unclear. This study aimed to investigate the antidepressant potential of AL using network pharmacology, molecular docking, and animal experiments. The active components of AL were retrieved from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and the depression-related targets were screened through the DisGeNET database. Overlapping targets of AL and depression were selected and analyzed. Ten active compounds of AL showed anti-depressant potential, including stigmasterol, 3β-acetoxyatractylone, wogonin, β-sitosterol, selina-4(14),7(11)-dien-8-one, atractylenolide I, atractylenolide II, atractylenolide III, patchoulene, and cyperene. These compounds target 28 potential antidepressant genes/proteins. Gene Ontology (GO) enrichment analysis revealed that the potential targets might directly influence neural cells and regulate neuroinflammation and neurotransmitter-related processes. The potential Kyoto Encyclopedia Genes and Genomes (KEGG) pathways for the antidepressant effects of AL include neuroactive ligand-receptor interactions, calcium signaling pathways, dopaminergic synapse, interleukin (IL)-17 signaling pathways, and the pathways of neurodegeneration. IL-6, nitric oxide synthase 3 (NOS), solute carrier family 6 member 4 (SLC6A4), estrogen receptor (ESR1), and tumor necrosis factor (TNF) were the most important proteins in the protein-protein interaction network and these proteins showed high binding affinities with the corresponding AL compounds. AL showed an antidepressant effect in mice by decreasing immobility time in the tail suspension test and increasing the total contact number in the social interaction test. This study demonstrated the antidepressant potential of AL, which provides evidence for pursuing further studies to develop a novel antidepressant.
Collapse
|
7
|
Bowman MA, Gomez JA, Mitchell NC, Wells AM, Vitela M, Clarke KM, Horton RE, Koek W, Daws LC. Faster Serotonin Clearance in CA3 Region of Hippocampus and Antidepressant-like Effect of Decynium-22 in Juvenile Mice Are Putatively Linked to Increased Plasma Membrane Monoamine Transporter Function: Implications for Efficacy of Antidepressants in Juveniles. Cells 2022; 11:2454. [PMID: 35954298 PMCID: PMC9368098 DOI: 10.3390/cells11152454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are less efficacious in treating depression in children than in adults. SSRIs block serotonin uptake via the high-affinity, low-capacity serotonin transporter. However, the low-affinity, high-capacity organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT) are emerging as important players in serotonin uptake. We hypothesized that OCT3 and/or PMAT are functionally upregulated in juveniles, thereby buffering SSRIs' ability to enhance serotonergic neurotransmission. Unlike in adult mice, we found the OCT/PMAT blocker, decynium-22, to have standalone antidepressant-like effects in juveniles. Using in vivo high-speed chronoamperometry, we found that juveniles clear serotonin from the CA3 region of the hippocampus ~2-fold faster than adult mice. Cell density did not differ between ages, suggesting that faster serotonin clearance in juveniles is unrelated to faster diffusion through the extracellular matrix. Western blot and immunohistochemistry showed that juvenile mice have modestly greater expression of PMAT than adults, whereas OCT3 expression in the CA3 region of the hippocampus was similar between ages. Together, these data suggest that faster serotonin clearance and antidepressant-like effects of decynium-22 in juvenile mice may be due to functionally upregulated PMAT. Faster serotonin clearance via PMAT in juveniles may contribute to reduced therapeutic efficacy of SSRIs in children relative to adults.
Collapse
Affiliation(s)
- Melodi A. Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jorge A. Gomez
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Nathan C. Mitchell
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Anne M. Wells
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Melissa Vitela
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Kyra M. Clarke
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Wouter Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, MC7756, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
8
|
Maphanga VB, Skalicka-Wozniak K, Budzynska B, Skiba A, Chen W, Agoni C, Enslin GM, Viljoen AM. Mesembryanthemum tortuosum L. alkaloids modify anxiety-like behaviour in a zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115068. [PMID: 35134486 DOI: 10.1016/j.jep.2022.115068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mesembryanthemum tortuosum L. (previously known as Sceletium tortuosum (L.) N.E. Br.) is indigenous to South Africa and traditionally used to alleviate anxiety, stress and depression. Mesembrine and its alkaloid analogues such as mesembrenone, mesembrenol and mesembranol have been identified as the key compounds responsible for the reported effects on the central nervous system. AIM OF THE STUDY To investigate M. tortuosum alkaloids for possible anxiolytic-like effects in the 5-dpf in vivo zebrafish model by assessing thigmotaxis and locomotor activity. MATERIALS AND METHODS Locomotor activity and reverse-thigmotaxis, recognised anxiety-related behaviours in 5-days post fertilization zebrafish larvae, were analysed under simulated stressful conditions of alternating light-dark challenges. Cheminformatics screening and molecular docking were also performed to rationalize the inhibitory activity of the alkaloids on the serotonin reuptake transporter, the accepted primary mechanism of action of selective serotonin reuptake inhibitors. Mesembrine has been reported to have inhibitory effects on serotonin reuptake, with consequential anti-depressant and anxiolytic effects. RESULTS All four alkaloids assessed decreased the anxiety-related behaviour of zebrafish larvae exposed to the light-dark challenge. Significant increases in the percentage of time spent in the central arena during the dark phase were also observed when larvae were exposed to the pure alkaloids (mesembrenone, mesembrenol, mesembrine and mesembrenol) compared to the control. However, mesembrenone and mesembranol demonstrated a greater anxiolytic-like effect than the other alkaloids. In addition to favourable pharmacokinetic and physicochemical properties revealed via in silico predictions, high-affinity interactions characterized the binding of the alkaloids with the serotonin transporter. CONCLUSIONS M. tortuosum alkaloids demonstrated an anxiolytic-like effect in zebrafish larvae providing evidence for its traditional and modern day use as an anxiolytic.
Collapse
Affiliation(s)
- Veronica B Maphanga
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Krystyna Skalicka-Wozniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Barbara Budzynska
- Behavioral Studies Laboratory, Department of Medicinal Chemistry, Medical University of Lublin, 4A Chodzki Street, 20-093, Lublin, Poland
| | - Andriana Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodzki Street, 20-093, Lublin, Poland
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clement Agoni
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill M Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Alvaro M Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, 0001, South Africa.
| |
Collapse
|
9
|
Murphy SE, Capitão LP, Giles SLC, Cowen PJ, Stringaris A, Harmer CJ. The knowns and unknowns of SSRI treatment in young people with depression and anxiety: efficacy, predictors, and mechanisms of action. Lancet Psychiatry 2021; 8:824-835. [PMID: 34419187 DOI: 10.1016/s2215-0366(21)00154-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023]
Abstract
The use of SSRIs for the treatment of depression and anxiety in young people is increasing. However, the effects of SSRIs in adolescence, a time when there are substantial changes in neural, cognitive, and social functioning, are not well understood. Here, we review evidence from clinical trials about the benefits and risks of SSRIs in young people and consider their mechanisms of action, as shown through human experimental work and animal models. We emphasise key outstanding questions about the effects of SSRIs in youth, identified through gaps in the literature and in consultation with young people with lived experience. It is crucial to characterise the mechanisms underpinning risks and benefits of SSRIs in this age group to progress the field, and to narrow the chasm between the widespread use of SSRIs in youth and the science on which this use is based.
Collapse
Affiliation(s)
- Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Liliana P Capitão
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Sophie L C Giles
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Argyris Stringaris
- Section of Clinical and Computational Psychiatry, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
10
|
Sierra-Fonseca JA, Rodriguez M, Themann A, Lira O, Flores-Ramirez FJ, Vargas-Medrano J, Gadad BS, Iñiguez SD. Autophagy Induction and Accumulation of Phosphorylated Tau in the Hippocampus and Prefrontal Cortex of Adult C57BL/6 Mice Subjected to Adolescent Fluoxetine Treatment. J Alzheimers Dis 2021; 83:1691-1702. [PMID: 34420960 DOI: 10.3233/jad-210475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fluoxetine (FLX) represents the antidepressant of choice for the management of pediatric mood-related illnesses. Accumulating preclinical evidence suggests that ontogenic FLX exposure leads to deregulated affect-related phenotypes in adulthood. Mood-related symptomatology constitutes a risk-factor for various neurological disorders, including Alzheimer's disease (AD), making it possible for juvenile FLX history to exacerbate the development of neurodegenerative diseases. OBJECTIVE Because AD is characterized by the pathological accumulation of hyperphosphorylated tau, which can result from impaired function of protein degradation pathways, such as autophagy and the ubiquitin-proteasome system (UPS), we evaluated the long-term effects of adolescent FLX exposure on these pathways, using mice as a model system. METHODS We subjected C57BL/6 adolescent male mice to FLX (20 mg/kg/day) from postnatal day (PD) 35 to PD49. Twenty-one days after the last FLX injection (i.e., adulthood; PD70), mice were euthanized and, using immunoblotting analysis, we evaluated protein markers of autophagy (Beclin-1, LC3-II, p62) and the UPS (K48-pUb), as well as AD-associated forms of phosphorylated tau, within the hippocampus and prefrontal cortex. RESULTS Juvenile FLX pre-exposure mediated long-term changes in the expression of protein markers (increased LC3-II and decreased p62) that is consistent with autophagy activation, particularly in the prefrontal cortex. Furthermore, FLX history induced persistent accumulation of AD-associated variants of tau in both the hippocampus and prefrontal cortexConclusion: Adolescent FLX treatment may have enduring effects in the neuronal protein degradation machinery, which could adversely influence clearance of abnormal proteins, potentially predisposing individuals to developing AD in later life.
Collapse
Affiliation(s)
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | | | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
11
|
Parmar A, Esser K, Barreira L, Miller D, Morinis L, Chong YY, Smith W, Major N, Church P, Cohen E, Orkin J. Acceptance and Commitment Therapy for Children with Special Health Care Needs and Their Parents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158205. [PMID: 34360497 PMCID: PMC8345967 DOI: 10.3390/ijerph18158205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Context: Acceptance and Commitment Therapy (ACT) is an emerging treatment for improving psychological well-being. Objective: To summarize research evaluating the effects of ACT on psychological well-being in children with special health care needs (SHCN) and their parents. Data Sources: An electronic literature search was conducted in PubMed, Web of Science, Ovid/EMBASE and PsycINFO (January 2000–April 2021). Study Selection: Included were studies that assessed ACT in children with SHCN (ages 0–17y) and/or parents of children with SHCN and had a comparator group. Data Extraction: Descriptive data were synthesized and presented in a tabular format, and data on relevant outcomes (e.g., depressive symptoms, stress, avoidance and fusion) were used in the meta-analyses to explore the effectiveness of ACT (administered independently with no other psychological therapy) compared to no treatment. Results: Ten studies were identified (child (7) and parent (3)). In children with SHCN, ACT was more effective than no treatment at helping depressive symptoms (standardized mean difference [SMD] = −4.27, 95% CI: −5.20, −3.34; p < 0.001) and avoidance and fusion (SMD = −1.64, 95% CI: −3.24, −0.03; p = 0.05), but not stress. In parents of children with SHCN, ACT may help psychological inflexibility (SMD = −0.77, 95% CI: −1.07, −0.47; p < 0.01). Limitations: There was considerable statistical heterogeneity in three of the six meta-analyses. Conclusions: There is some evidence that ACT may help with depressive symptoms in children with SHCN and psychological inflexibility in their parents. Research on the efficacy of ACT for a variety of children with SHCN and their parents is especially limited, and future research is needed.
Collapse
Affiliation(s)
- Arpita Parmar
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (K.E.); (L.B.); (E.C.)
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kayla Esser
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (K.E.); (L.B.); (E.C.)
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lesley Barreira
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (K.E.); (L.B.); (E.C.)
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON LS8 4L8, Canada; (D.M.); (W.S.)
| | - Douglas Miller
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON LS8 4L8, Canada; (D.M.); (W.S.)
| | - Leora Morinis
- Institute of Health, Policy, Management & Evaluation, Univeristy of California San Francisco, San Francisco, CA 94143, USA;
| | - Yuen-Yu Chong
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wanda Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON LS8 4L8, Canada; (D.M.); (W.S.)
| | - Nathalie Major
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada;
| | - Paige Church
- Divison of Neonatology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
| | - Eyal Cohen
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (K.E.); (L.B.); (E.C.)
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Institute of Health, Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M6, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P7, Canada
| | - Julia Orkin
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (A.P.); (K.E.); (L.B.); (E.C.)
- Child Health Evaluative Sciences, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1P7, Canada
- Correspondence: ; Tel.: +416-813-7654
| |
Collapse
|
12
|
Waye SC, Dinesh OC, Hasan SN, Conway JD, Raymond R, Nobrega JN, Blundell J, Bambico FR. Antidepressant action of transcranial direct current stimulation in olfactory bulbectomised adolescent rats. J Psychopharmacol 2021; 35:1003-1016. [PMID: 33908307 DOI: 10.1177/02698811211000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.
Collapse
Affiliation(s)
- Shannon C Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Sm Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Joshua D Conway
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada.,Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
13
|
Wang X, Lin Q, Shen M, Lin H, Feng J, Peng L, Huang M, Zhan X, Chen Z, Ma T. Identification of the Ingredients and Mechanisms of Curcumae Radix for Depression Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2021; 16. [DOI: 10.1177/1934578x211016643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Background Curcumae Radix (CR), derived from the dry roots of Curcuma longa L., family Zingiberaceae, is widely used to treat depression. However, the ingredients and mechanisms of CR are still unclear. The purpose of this study was to solve this problem using network pharmacology and molecular docking. Methods The active ingredients of CR were screened through TCMSP, and the depression-related genes were obtained through the Genetic Association, GeneCards, and OMIM databases. Then, DisGeNET score was performed to evaluate the correlation between co-genes and depression. Topological analysis was conducted to screen hub genes and proteins, molecular docking was performed to evaluate the binding ability of the hub protein with active ingredients, and gene ontology (Go) function analysis, gene tissue localization, and KEGG pathway analysis were conducted to explore the function and location of genes, as well as the mechanism of CR for treating depression. Results Eight ingredients of CR were screened based on pharmacokinetic properties, five of which are closely related to depression, including (E)−5-hydroxy-7-(4-hydroxyphenyl)−1-phenyl-1-heptene, (E)−1,7-diphenyl-3-hydroxy-1-hepten-5-one, oxycurcumenol, β-sitosterol, and sitosterol. They interacted with 45 co-genes and co-proteins with a DisGeNET score ≥0.3. AR, NOS2, PTGS2, and TYK2 were pivot genes. EGFR, PTGS2, HSP90AA1, MAPK8, and ESR1 were hub proteins. PTGS2 was found to have good binding potential with oxycurcumenol, (E)−1,7-diphenyl-3-hydroxy-1-hepten-5-one and (E)−5-hydroxy-7-(4-hydroxyphenyl)−1-phenyl-1-heptene. Go functional analysis indicated that co-genes involved complex biological processes, cellular components and molecular functions. PER2, P2RX7, GRM1, TACR1, MAPK8, HCRTR1, EGFR, and TYK2 were highly expressed in the prefrontal cortex. The potential pathways for CR to exert antidepressant effects were calcium, estrogen, PI3K-Akt and ErbB signaling pathways. Conclusions This study revealed the ingredients, effective targets and mechanisms of CR in the treatment of depression, which provides a new perspective for the development of new antidepressants.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qiaoru Lin
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Meiqing Shen
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Haixiong Lin
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Junjie Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lulu Peng
- Wuyi Traditional Chinese Medicine Hospital of Jiangmen, Jiangmen, People’s Republic of China
| | - Minling Huang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoxuan Zhan
- Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ziyin Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Tengfei Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
14
|
Iñiguez SD, Flores-Ramirez FJ, Themann A, Lira O. Adolescent Fluoxetine Exposure Induces Persistent Gene Expression Changes in the Hippocampus of Adult Male C57BL/6 Mice. Mol Neurobiol 2021; 58:1683-1694. [PMID: 33241493 PMCID: PMC7933079 DOI: 10.1007/s12035-020-02221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antidepressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during adolescence (postnatal day [PD] 35-49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway, and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dysregulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life exposure to this antidepressant medication.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Francisco J Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
15
|
Li ZH, Ma PK, Huang YF, Zhang Z, Zheng W, Chen JH, Guo CE, Chen N, Bi XN, Zhang YJ. Jiaotai Pill () Alleviates Insomnia through Regulating Monoamine and Organic Cation Transporters in Rats. Chin J Integr Med 2021; 27:183-191. [PMID: 33420587 DOI: 10.1007/s11655-021-3284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To reveal the effect and mechanism of Jiaotai Pill (, JTP) on insomniac rats. METHODS The insomniac model was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). In behavioral experiments, rats were divided into control, insomniac model, JTP [3.3 g/(kg•d)], and diazepam [4 mg/(kg•d)] groups. The treatment effect of JTP was evaluated by weight measurement (increasement of body weight), open field test (number of crossings) and forced swimming test (immobility time). A high performance liquid chromatography-electrochemical detection (HPLC-ECD) method was built to determine the concentration of monoamine transmitters in hypothalamus and peripheral organs from normal, model, JTP, citalopram [30 mg/(kg•d)], maprotiline [40 mg/(kg•d)] and bupropion [40 mg/(kg•d)] groups. Expressions of serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) were analyzed by quantitative polymerase chain reaction (qPCR) and Western blot in normal, model and JTP groups. A high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) method was established to determine the pharmacokinetics, urine cumulative excretion of metformin in vivo, and tissue slice uptake in vitro, which were applied to assess the activity of organic cation transporters (OCTs) in hypothalamus and peripheral organs. RESULTS Compared with the insomniac model group, the body weight and spontaneous locomotor were increased, and the immobility time was decreased after treatment with JTP (P<0.01). Both serotonin and dopamine contents in hypothalamus and peripheral organs were increased (P<0.01). The norepinephrine content was increased in peripheral organs and decreased in hypothalamus (P<0.05 or P<0.01). At the same time, SERT, DAT, OCT1, OCT2, and OCT3 were down-regulated in hypothalamus and peripheral organs (P<0.05). NET was down-regulated in peripheral organs and up-regulated in hypothalamus (P<0.05 or P<0.01). Moreover, the activity of OCTs in hypothalamus and peripheral organs was inhibited (P<0.05). CONCLUSION JTP alleviates insomnia through regulation of monoaminergic system and OCTs in hypothalamus and peripheral organs.
Collapse
Affiliation(s)
- Zhi-Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng-Kai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | | | - Zhe Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jian-Hua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang-E Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin-Ning Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu-Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
16
|
Thorne BN, Ellenbroek BA, Day DJ. Evaluation of i-Motif Formation in the Serotonin Transporter-Linked Polymorphic Region. Chembiochem 2020; 22:349-353. [PMID: 32840058 DOI: 10.1002/cbic.202000513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/23/2020] [Indexed: 01/30/2023]
Abstract
Neuropsychiatric disorders such as major depressive disorder (MDD) arise from a complex set of genetic and environmental factors. The serotonin transporter (SERT) is a key regulator of synaptic serotonin (5-HT), and its inhibition is an important pharmacological target for treating MDD. The SERT-linked polymorphic region (5-HTTLPR) contains two major variants (short and long) that have been implicated in modulating susceptibility to MDD by altering the level of expression of SERT. Both variants contain C-rich repeats that conform to consensus i-motif folding sequences. i-Motifs are quadruplex DNA structures that have been proposed to have a role in transcription regulation. With spectroscopic techniques, we demonstrate that both alleles are able to form i-motifs at acidic pH, and at neutral pH under conditions of molecular crowding. This highlights the potential for i-motif formation to contribute to transcriptional regulation of the serotonin transporter, with a potential role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bryony N Thorne
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Faculty of Science, Wellington, 6012, New Zealand
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| |
Collapse
|
17
|
Bowman MA, Vitela M, Clarke KM, Koek W, Daws LC. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice. Int J Mol Sci 2020; 21:ijms21207581. [PMID: 33066466 PMCID: PMC7589995 DOI: 10.3390/ijms21207581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder is typically treated with selective serotonin reuptake inhibitors (SSRIs), however, SSRIs take approximately six weeks to produce therapeutic effects, if any. Not surprisingly, there has been great interest in findings that low doses of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produce rapid and long-lasting antidepressant effects. Preclinical studies show that the antidepressant-like effects of ketamine are dependent upon availability of serotonin, and that ketamine increases extracellular serotonin, yet the mechanism by which this occurs is unknown. Here we examined the role of the high-affinity, low-capacity serotonin transporter (SERT), and the plasma membrane monoamine transporter (PMAT), a low-affinity, high-capacity transporter for serotonin, as mechanisms contributing to ketamine’s ability to increase extracellular serotonin and produce antidepressant-like effects. Using high-speed chronoamperometry to measure real-time clearance of serotonin from CA3 region of hippocampus in vivo, we found ketamine robustly inhibited serotonin clearance in wild-type mice, an effect that was lost in mice constitutively lacking SERT or PMAT. As expected, in wild-type mice, ketamine produced antidepressant-like effects in the forced swim test. Mapping onto our neurochemical findings, the antidepressant-like effects of ketamine were lost in mice lacking SERT or PMAT. Future research is needed to understand how constitutive loss of either SERT or PMAT, and compensation that occurs in other systems, is sufficient to void ketamine of its ability to inhibit serotonin clearance and produce antidepressant-like effects. Taken together with existing literature, a critical role for serotonin, and its inhibition of uptake via SERT and PMAT, cannot be ruled out as important contributing factors to ketamine’s antidepressant mechanism of action. Combined with what is already known about ketamine’s action at NMDA receptors, these studies help lead the way to the development of drugs that lack ketamine’s abuse potential but have superior efficacy in treating depression.
Collapse
Affiliation(s)
- Melodi A. Bowman
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Melissa Vitela
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Kyra M. Clarke
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
| | - Wouter Koek
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Department of Psychiatry at University of Texas Health, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Correspondence:
| |
Collapse
|
18
|
Li X, Sun X, Sun J, Zu Y, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Sun C, Guan X, Tang M. Depressive-like state sensitizes 5-HT 1A and 5-HT 1B auto-receptors in the dorsal raphe nucleus sub-system. Behav Brain Res 2020; 389:112618. [PMID: 32360167 DOI: 10.1016/j.bbr.2020.112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jing Sun
- Department of Outpatient, Rocket Force University of Engineering Clinic Affiliated to 986 Hospital of Air Force, Xi'an, 710043, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang, 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
19
|
Effect of Electroacupuncture on Reuptake of Serotonin via miRNA-16 Expression in a Rat Model of Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7124318. [PMID: 31929820 PMCID: PMC6942800 DOI: 10.1155/2019/7124318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The current study aimed to investigate the effects and mechanisms of electroacupuncture (EA) treatment applied to Bai hui (GV20) and Yin tang (GV29) acupoints (1 mA, 2 Hz, continuous wave, 20 minutes) for 28 days in a rat model of chronic unpredictable mild stress (CUMS) on reuptake of serotonin (5-hydroxytryptamine (5-HT)) and miRNA-16 levels in the hippocampus and serum. Rats were housed in individual cages, and CUMS was used to establish a rat model of depression. After EA treatment for 4 weeks, behavioral changes and indices including 5-HT transporter (SERT), 5-HT, and miRNA-16 levels in the hippocampus and serum were examined. The EA treatment significantly improved base levels of sucrose preference and exploratory behavior and significantly decreased SERT protein and mRNA expression in the hippocampus of depressed rats. Significantly increased 5-HT levels were observed, and miRNA-16 levels were significantly decreased in the hippocampus and serum of depressed rats. In conclusion, the antidepressant effects of EA treatment may be affected via inhibition of 5-HT reuptake, upregulation of 5-HT levels, and inhibition of miRNA-16 expression in the hippocampus and serum.
Collapse
|
20
|
Golub MS, Hogrefe CE, Campos LJ, Fox AS. Serotonin Transporter Binding Potentials in Brain of Juvenile Monkeys 1 Year After Discontinuation of a 2-Year Treatment With Fluoxetine. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:948-955. [PMID: 31471184 DOI: 10.1016/j.bpsc.2019.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND The potential long-term effects of childhood fluoxetine therapy on brain serotonin systems were studied using a nonhuman primate model, the rhesus monkey. METHODS Juvenile male rhesus (1-4 years of age, corresponding to 4-11 years of age in children) were treated orally with fluoxetine (2 mg/kg) or vehicle daily for 2 years and removed from treatment during the third year. Each treatment group was assigned an equal number of subjects with low and high transcription polymorphisms of MAOA. One year after discontinuation of treatment, positron emission tomography scans were conducted (n = 8 treated monkeys, n = 8 control monkeys) using [11C]DASB to quantify serotonin transporter in 16 cortical and subcortical regions. RESULTS Fluoxetine-treated monkeys with MAOA low transcription polymorphism had significantly lower [11C]DASB binding potentials than control monkeys. This finding was seen throughout the brain but was strongest in prefrontal and cingulate cortices. The MAOA × fluoxetine interaction was enhanced by binding potentials that were nonsignificantly higher in monkeys with high transcription polymorphism. CONCLUSIONS Juvenile fluoxetine treatment has residual posttreatment effects on brain serotonin transporter that depend on MAOA genotype. MAOA genotype may be important to consider when treating children with fluoxetine.
Collapse
Affiliation(s)
- Mari S Golub
- California National Primate Research Center, University of California, Davis, California.
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Lillian J Campos
- California National Primate Research Center, University of California, Davis, California
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, California; Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|