1
|
Zhu Z, Tang D, Qin L, Qian Z, Zhuang J, Liu Y. Differential modulation of sensorimotor network between temporal interference and high-definition direct current stimulation. J Neural Eng 2025; 22:036035. [PMID: 40354819 DOI: 10.1088/1741-2552/add770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Objective.Temporal interference stimulation's (TISs) efficacy in modulating brain networks remains unexplored. We aimed to evaluate the differential impact of TIS and high-definition transcranial direct current stimulation (HD-tDCS) on resting-state functional connectivity (FC) and the topological properties of brain networks, particularly the sensorimotor network (SMN).Approach.In a randomized, double-blind, crossover study, 40 healthy adults underwent both TIS and HD-tDCS targeting the left primary motor cortex (M1). Resting-state functional magnetic resonance imaging data were collected before, during, and after stimulation. Brain networks were constructed using the Dosenbach atlas and the Yeo seven-network parcellation, with a focus on 29 regions of interests within the SMN. Network analysis included FC calculations using Pearson correlations and graph-theoretical measures of global and local efficiency. A two-way repeated measures analysis of variance was used to assess the effects of stimulation on network connectivity properties.Main results.(1) Both stimulation methods enhanced SMN connectivity, with TIS demonstrating greater efficacy than HD-tDCS (FC increase: 31.25% vs 22.58%). (2) TIS significantly improved SMN global and local efficiencies by 15.44% and 18.85%, respectively, while HD-tDCS increased these measures by 11.97% and 12.5%, respectively (allp< 0.05). (3) While both methods enhanced within-network connections of the SMN, TIS additionally strengthened the connections within the visual network, dorsal attention network (DAN), and frontoparietal network, as well as multiple between-network connections. In contrast, HD-tDCS only improved connections between SMN-DAN and SMN-default mode network.Significance.Both TIS and HD-tDCS enhanced SMN FC, with TIS demonstrating superior efficacy. Under specific parameter configurations, TIS exhibited broader effects, improving both network efficiency and extensive within- and between-network connections, whereas HD-tDCS had a limited impact on the selection of network connections. These findings establish TIS as a potentially more effective neuromodulation technique for enhancing brain network properties compared to HD-tDCS.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Dongsheng Tang
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Lang Qin
- School of Kinesiology, Shenzhen University, Shenzhen, People's Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jie Zhuang
- School of Psychology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Carrasco-Gómez M, García-Colomo A, Cabrera-Álvarez J, del Cerro-León A, Gómez-Ariza CJ, Santos A, Maestú F. Individual alpha frequency tACS reduces static functional connectivity across the default mode network. Front Hum Neurosci 2025; 19:1534321. [PMID: 40438538 PMCID: PMC12116543 DOI: 10.3389/fnhum.2025.1534321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/16/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Research on the influence of transcranial alternating current stimulation over alpha functional connectivity (FC) is scarce, even when it poses as a potential treatment for various diseases. This study aimed to investigate the effects of individual alpha frequency tACS (IAF-tACS) on FC within the default mode network (DMN) in healthy individuals, particularly following the triple network model. Materials and methods 27 healthy participants were recruited, who underwent a 20-min IAF-tACS session over parieto-occipital areas and three magnetoencephalography (MEG) recordings: two pre-stimulation and one post-stimulation. Participants were randomly assigned to either the stimulation or sham group. Both dynamic FC (dFC) and static FC (sFC) were evaluated through the leakage corrected amplitude envelope correlation (AEC-c). Statistical analyses compared both Pre-Post FC ratio between groups through ratio t-tests and intragroup FC changes through repeated measures t-tests, with FDR correction applied to account for multiple comparisons. An additional analysis simulated the influence of the cortical folding on the effect of tACS over FC. Results IAF-tACS significantly decreased sFC in intra- and inter-DMN links in the stimulation group compared to the sham group, with a special influence over antero-posterior links between hubs of the DMN. Negative correlations were found between AEC-c sFC changes and power alterations in posterior DMN areas, suggesting a complex interaction between cortical folding and electric field direction. On the other hand, dFC increased in both sham and stimulation groups, and no between-group differences were found. Conclusion Against our initial hypothesis, IAF-tACS reduced sFC in the DMN, possibly due to phase disparities introduced by cortical gyrification. These findings suggest that tACS might modulate FC in a more complex manner than previously thought, highlighting the need for further research into the personalized application of neuromodulation techniques, as well as its potential therapeutic implications for conditions like Alzheimer's disease.
Collapse
Affiliation(s)
- Martín Carrasco-Gómez
- Department of Electronical Engineering, E.T.S. de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra García-Colomo
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Madrid, Spain
| | - Jesús Cabrera-Álvarez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Madrid, Spain
| | - Alberto del Cerro-León
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Madrid, Spain
| | | | - Andrés Santos
- Department of Electronical Engineering, E.T.S. de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
3
|
Cid-Fernández S, Nieto-Vieites A, Pereiro AX, Díaz F. Transcranial Alternating Current Stimulation and Cognitive Training Enhanced Performance and Theta Activity in Adults With Cognitive Impairment. PSICOTHEMA 2025; 37:1-11. [PMID: 40237781 DOI: 10.70478/psicothema.2025.37.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
BACKGROUND Age-related cognitive decline is rising due to longer life expectancy, necessitating new treatments as current drugs are ineffective and costly. Transcranial alternating current stimulation at the theta frequency (theta-tACS) has shown promise in enhancing cognitive function in both young and elderly adults, but its effectiveness in those with cognitive decline is not well-studied. METHOD This study involved 27 participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia, who underwent multiple sessions combining computerized cognitive training with theta-tACS to assess its efficacy. Participants were randomly assigned to either a real-tACS or sham-tACS group. Before and after treatment, they completed several cognitive tasks, and their behavioral and EEG data were collected. RESULTS Only the real-tACS group improved in the oddball task and exhibited increased event-related EEG amplitude in the theta range. CONCLUSIONS These findings suggest that theta-tACS can improve cognitive performance in individuals with cognitive decline at both behavioral and psychophysiological levels, supporting its potential for alleviating cognitive decline in elderly populations.
Collapse
|
4
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Kasanov D, Dorogina O, Mushtaq F, Pavlov YG. Theta Transcranial Alternating Current Stimulation Is Not Effective in Improving Working Memory Performance. J Cogn Neurosci 2025; 37:641-656. [PMID: 39485911 DOI: 10.1162/jocn_a_02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
There is an extensive body of research showing a significant relationship between frontal midline theta activity in the 4- to 8-Hz range and working memory (WM) performance. Transcranial alternating current stimulation (tACS) is recognized for inducing lasting changes in brain oscillatory activity. Across two experiments, we tested whether WM could be improved through tACS of dorsomedial PFC and ACC, by affecting executive control networks associated with frontal midline theta. In Experiment 1, after either a 20-min verum or sham stimulation applied to Fpz-CPz at 1 mA and 6 Hz, 31 participants performed WM tasks, while EEG was recorded. The tasks required participants to either mentally manipulate memory items or retain them in memory as they were originally presented. No significant effects were observed in behavioral performance, and we found no change in theta activity during rest and task after stimulation. However, alpha activity during retention or manipulation of information in WM was less strongly enhanced during the delay period after verum stimulation as compared with sham. In Experiment 2 (n = 25), tACS was administered during the task in two separate sessions. Here, we changed the order of the stimulation blocks: A 25-min task block was either accompanied first by sham stimulation and then by verum stimulation, or vice versa. Again, we found no improvements in WM through either tACS after-effects or online stimulation. Taken together, our results demonstrate that theta frequency tACS applied at the midline is not an effective method for enhancing WM.
Collapse
Affiliation(s)
| | | | - Faisal Mushtaq
- University of Leeds
- NIHR Leeds Biomedical Research Centre, Leeds, West Yorkshire, United Kingdom
| | | |
Collapse
|
6
|
Pupíková M, Maceira-Elvira P, Harquel S, Šimko P, Popa T, Gajdoš M, Lamoš M, Nencha U, Mitterová K, Šimo A, Hummel FC, Rektorová I. Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement. Heliyon 2024; 10:e37427. [PMID: 39315230 PMCID: PMC11417162 DOI: 10.1016/j.heliyon.2024.e37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Aging populations face significant cognitive challenges, particularly in working memory (WM). Transcranial alternating current stimulation (tACS) offer promising avenues for cognitive enhancement, especially when inspired by brain physiology. This study (NCT04986787) explores the effect of multifocal tACS on WM performance in healthy older adults, focusing on fronto-parietal network modulation. Individualized physiology-inspired tACS applied to the fronto-parietal network was investigated in two blinded cross-over experiments. The first experiment involved monofocal/bifocal theta-tACS to the fronto-parietal network, while in the second experiment cross-frequency theta-gamma interactions between these regions were explored. Participants have done online WM tasks under the stimulation conditions. Network connectivity was assessed via rs-fMRI and multichannel electroencephalography. Prefrontal monofocal theta tACS modestly improved WM accuracy over sham (d = 0.30). Fronto-parietal stimulation enhanced WM task processing speed, with the strongest effects for bifocal in-phase theta tACS (d = 0.41). Cross-frequency stimulations modestly boosted processing speed with or without impairing task accuracy depending on the stimulation protocol. This research adds to the understanding of physiology-inspired brain stimulation for cognitive enhancement in older subjects.
Collapse
Affiliation(s)
- Monika Pupíková
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pablo Maceira-Elvira
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Sylvain Harquel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
| | - Patrik Šimko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Traian Popa
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
| | - Martin Gajdoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Martin Lamoš
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Umberto Nencha
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Adam Šimo
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Friedhelm C. Hummel
- Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Chemin des Mines 9, 1202, CH, Geneva, Switzerland
- Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine and St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
8
|
Ma Y, Jiao F, Batsikadze G, Yavari F, Nitsche MA. The impact of the left inferior frontal gyrus on fear extinction: A transcranial direct current stimulation study. Brain Stimul 2024; 17:816-825. [PMID: 38997105 DOI: 10.1016/j.brs.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/03/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
INTRODUCTION Fear extinction is a fundamental component of exposure-based therapies for anxiety-related disorders. The renewal of fear in a different context after extinction highlights the importance of contextual factors. In this study, we aimed to investigate the causal role of the left inferior frontal gyrus (LiFG) in the context-dependency of fear extinction learning via administration of transcranial direct current stimulation (tDCS) over this area. METHODS 180 healthy subjects were assigned to 9 groups: 3 tDCS conditions (anodal, cathodal, and sham) × 3 context combinations (AAA, ABA, and ABB). The fear conditioning/extinction task was conducted over three consecutive days: acquisition, extinction learning, and extinction recall. tDCS (2 mA, 10min) was administered during the extinction learning phase over the LiFG via a 4-electrode montage. Skin conductance response (SCR) data and self-report assessments were collected. RESULTS During the extinction learning phase, groups with excitability-enhancing anodal tDCS showed a significantly higher fear response to the threat cues compared to cathodal and sham stimulation conditions, irrespective of contextual factors. This effect was stable until the extinction recall phase. Additionally, excitability-reducing cathodal tDCS caused a significant decrease of the response difference between the threat and safety cues during the extinction recall phase. The self-report assessments showed no significant differences between the conditions throughout the experiment. CONCLUSION Independent of the context, excitability enhancement of the LiFG did impair fear extinction, and led to preservation of fear memory. In contrast, excitability reduction of this area enhanced fear extinction retention. These findings imply that the LiFG plays a role in the fear extinction network, which seems to be however context-independent.
Collapse
Affiliation(s)
- Yuanbo Ma
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Fujia Jiao
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany; German Center for Mental Health (DZPG), Bochum, Germany.
| |
Collapse
|
9
|
Biačková N, Adamová A, Klírová M. Transcranial alternating current stimulation in affecting cognitive impairment in psychiatric disorders: a review. Eur Arch Psychiatry Clin Neurosci 2024; 274:803-826. [PMID: 37682331 PMCID: PMC11127835 DOI: 10.1007/s00406-023-01687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
Collapse
Affiliation(s)
- Nina Biačková
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Adamová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Klírová
- Neurostimulation Department, National Institute of Mental Health, Klecany, Czech Republic.
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
11
|
Aderinto N, Olatunji G, Muili A, Kokori E, Edun M, Akinmoju O, Yusuf I, Ojo D. A narrative review of non-invasive brain stimulation techniques in neuropsychiatric disorders: current applications and future directions. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2024; 60:50. [DOI: 10.1186/s41983-024-00824-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/24/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Neuropsychiatric disorders significantly burden individuals and society, necessitating the exploration of innovative treatment approaches. Non-invasive brain stimulation techniques have emerged as promising interventions for these disorders, offering potential therapeutic benefits with minimal side effects. This narrative review provides a comprehensive overview of non-invasive brain stimulation techniques' current applications and future directions in managing neuropsychiatric disorders.
Methods
A thorough search of relevant literature was conducted to identify studies investigating non-invasive brain stimulation techniques in neuropsychiatric disorders. The selected studies were critically reviewed, and their findings were synthesised to provide a comprehensive overview of the current state of knowledge in the field.
Results
The review highlights the current applications of non-invasive brain stimulation techniques in neuropsychiatric disorders, including major depressive disorder, Parkinson's disease, schizophrenia, insomnia, and cognitive impairments. It presents evidence supporting the efficacy of these techniques in modulating brain activity, alleviating symptoms, and enhancing cognitive functions. Furthermore, the review addresses challenges such as interindividual variability, optimal target site selection, and standardisation of protocols. It also discusses potential future directions, including exploring novel target sites, personalised stimulation protocols, integrating with other treatment modalities, and identifying biomarkers for treatment response.
Conclusion
Non-invasive brain stimulation techniques offer promising avenues for managing neuropsychiatric disorders. Further research is necessary to optimise stimulation protocols, establish standardised guidelines, and identify biomarkers for treatment response. The findings underscore the potential of non-invasive brain stimulation techniques as valuable additions to the armamentarium of neuropsychiatric treatments.
Collapse
|
12
|
Baselgia S, Kasten FH, Herrmann CS, Rasch B, Paβmann S. No Benefit in Memory Performance after Nocturnal Memory Reactivation Coupled with Theta-tACS. Clocks Sleep 2024; 6:211-233. [PMID: 38651390 PMCID: PMC11036246 DOI: 10.3390/clockssleep6020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.
Collapse
Affiliation(s)
- Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Florian H. Kasten
- Centre de Recherche Cerveau & Cognition, CNRS & Université Toulouse III Paul Sabatier, 31062 Toulouse, France;
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany;
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Sven Paβmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
13
|
Figueroa-Vargas A, Góngora B, Alonso MF, Ortega A, Soto-Fernández P, Z-Rivera L, Ramírez S, González F, Muñoz Venturelli P, Billeke P. The effect of a cognitive training therapy based on stimulation of brain oscillations in patients with mild cognitive impairment in a Chilean sample: study protocol for a phase IIb, 2 × 3 mixed factorial, double-blind randomised controlled trial. Trials 2024; 25:144. [PMID: 38395980 PMCID: PMC10885461 DOI: 10.1186/s13063-024-07972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The ageing population has increased the prevalence of disabling and high-cost diseases, such as dementia and mild cognitive impairment (MCI). The latter can be considered a prodromal phase of some dementias and a critical stage for interventions to postpone the impairment of functionality. Working memory (WM) is a pivotal cognitive function, representing the fundamental element of executive functions. This project proposes an intervention protocol to enhance WM in these users, combining cognitive training with transcranial electrical stimulation of alternating current (tACS). This technique has been suggested to enhance the neuronal plasticity needed for cognitive processes involving oscillatory patterns. WM stands to benefit significantly from this approach, given its well-defined electrophysiological oscillations. Therefore, tACS could potentially boost WM in patients with neurodegenerative diseases. METHODS This study is a phase IIb randomised, double-blind clinical trial with a 3-month follow-up period. The study participants will be 62 participants diagnosed with MCI, aged over 60, from Valparaíso, Chile. Participants will receive an intervention combining twelve cognitive training sessions with tACS. Participants will receive either tACS or placebo stimulation in eight out of twelve training sessions. Sessions will occur twice weekly over 6 weeks. The primary outcomes will be electroencephalographic measurements through the prefrontal theta oscillatory activity, while the secondary effects will be cognitive assessments of WM. The participants will be evaluated before, immediately after, and 3 months after the end of the intervention. DISCUSSION The outcomes of this trial will add empirical evidence about the benefits and feasibility of an intervention that combines cognitive training with non-invasive brain stimulation. The objective is to contribute tools for optimal cognitive treatment in patients with MCI. To enhance WM capacity, postpone the impairment of functionality, and obtain a better quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT05291208. Registered on 28 February 2022. ISRCTN87597719 retrospectively registered on 15 September 2023.
Collapse
Affiliation(s)
- Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación del Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratorio LaNCE, Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Begoña Góngora
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile.
| | - María Francisca Alonso
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Alonso Ortega
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Soto-Fernández
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Lucía Z-Rivera
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián Ramírez
- Centro de Investigación del Desarrollo en Cognición y Lenguaje (CIDCL), Universidad de Valparaíso, Valparaíso, Chile
| | - Francisca González
- Centro de Estudios Clínicos, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación del Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
14
|
Ociepka M, Chinta SR, Basoń P, Chuderski A. No effects of the theta-frequency transcranial electrical stimulation for recall, attention control, and relation integration in working memory. Front Hum Neurosci 2024; 18:1354671. [PMID: 38439936 PMCID: PMC10910036 DOI: 10.3389/fnhum.2024.1354671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Recent studies have suggested that transcranial alternating current stimulation (tACS), and especially the theta-frequency tACS, can improve human performance on working memory tasks. However, evidence to date is mixed. Moreover, the two WM tasks applied most frequently, namely the n-back and change-detection tasks, might not constitute canonical measures of WM capacity. Method In a relatively large sample of young healthy participants (N = 62), we administered a more canonical WM task that required stimuli recall, as well as we applied two WM tasks tapping into other key WM functions: attention control (the antisaccade task) and relational integration (the graph mapping task). The participants performed these three tasks three times: during the left frontal 5.5-Hz and the left parietal 5.5-Hz tACS session as well as during the sham session, with a random order of sessions. Attentional vigilance and subjective experience were monitored. Results For each task administered, we observed significant gains in accuracy neither for the frontal tACS session nor for the parietal tACS session, as compared to the sham session. By contrast, the scores on each task positively inter-correlated across the three sessions. Discussion The results suggest that canonical measures of WM capacity are strongly stable in time and hardly affected by theta-frequency tACS. Either the tACS effects observed in the n-back and change detection tasks do not generalize onto other WM tasks, or the tACS method has limited effectiveness with regard to WM, and might require further methodological advancements.
Collapse
Affiliation(s)
- Michał Ociepka
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | | - Paweł Basoń
- Department of Cognitive Science, Institute of Philosophy, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
15
|
Mendes AJ, Galdo-Álvarez S, Lema A, Carvalho S, Leite J. Transcranial Direct Current Stimulation Decreases P3 Amplitude and Inherent Delta Activity during a Waiting Impulsivity Paradigm: Crossover Study. Brain Sci 2024; 14:168. [PMID: 38391742 PMCID: PMC10887229 DOI: 10.3390/brainsci14020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The inability to wait for a target before initiating an action (i.e., waiting impulsivity) is one of the main features of addictive behaviors. Current interventions for addiction, such as transcranial Direct Current Stimulation (tDCS), have been suggested to improve this inability. Nonetheless, the effects of tDCS on waiting impulsivity and underlying electrophysiological (EEG) markers are still not clear. Therefore, this study aimed to evaluate the effects of neuromodulation over the right inferior frontal gyrus (rIFG) on the behavior and EEG markers of reward anticipation (i.e., cue and target-P3 and underlying delta/theta power) during a premature responding task. For that, forty healthy subjects participated in two experimental sessions, where they received active and sham tDCS over the rIFG combined with EEG recording during the task. To evaluate transfer effects, participants also performed two control tasks to assess delay discounting and motor inhibition. The active tDCS decreased the cue-P3 and target-P3 amplitudes, as well as delta power during target-P3. While no tDCS effects were found for motor inhibition, active tDCS increased the discounting of future rewards when compared to sham. These findings suggest a tDCS-induced modulation of the P3 component and underlying oscillatory activity during waiting impulsivity and the discounting of future rewards.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4704-553 Braga, Portugal
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Santiago Galdo-Álvarez
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, 1205 Galicia, Spain
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4704-553 Braga, Portugal
| | - Sandra Carvalho
- Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CINTESIS@RISE, Center for Health Technology and Services Research at the Associate Laboratory RISE-Health Research Network, Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
| |
Collapse
|
16
|
Naji F, Sharbafchi MR, Khorvash F, Maracy MR, Ghasemi Mobarak Abadi N. The Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) versus Transcranial Direct-Current Stimulation (tDCS) on Migraine Headaches: A Randomized Clinical Trial. Adv Biomed Res 2024; 13:7. [PMID: 38525392 PMCID: PMC10958735 DOI: 10.4103/abr.abr_142_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 03/26/2024] Open
Abstract
Background Non-pharmacologic prophylactic methods for chronic migraine have been developed, including the promising non-invasive techniques of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). This study aimed to compare the efficacy of rTMS and tDCS on pain intensity, the impact of headaches on daily life, anxiety, and depression in migraine headaches patients. Materials and Methods This randomized clinical trial was conducted on 72 patients with migraine headaches, randomly allocated to the rTMS and tDCS groups. Participants received 3 and 12 sessions of stimulation over the left dorsolateral prefrontal cortex (DLPFC), respectively. Follow-up measurements, including pain intensity, anxiety, depression, and impact on daily life, were performed one month after the last sessions. Analyses were done by IBM SPSS statistics version 26 software. Results Of 72 patients enrolled in the study, 19 were male (8 in the rTMS group and 11 in the tDCS group). There was no significant difference in baseline characteristics between groups. During the follow-up visit, both groups showed a decrease in anxiety levels (P values = 0.005 and 0.015), while only the rTMS group displayed a significant improvement in depression (P value = 0.01). However, no statistically significant difference was found among the groups regarding changes in pain intensity, anxiety, and the impact of headaches on daily life (P values >0.05). Conclusion Our findings suggest that both rTMS and tDCS may be effective in reducing pain intensity and improving the impact of headaches on daily life and anxiety in patients with chronic migraine. However, significant improvement in depression was only observed in the rTMS group patients.
Collapse
Affiliation(s)
- Fatemeh Naji
- Department of Psychiatry, School of Medicine, Nour and Ali-Asghar Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharbafchi
- Department of Psychiatry, School of Medicine, Nour and Ali-Asghar Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Neurosciences Research Center, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad R. Maracy
- Department of Psychiatry, School of Medicine, Nour and Ali-Asghar Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology and Biostatistics, School of Health, Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloofar Ghasemi Mobarak Abadi
- Department of Psychiatry, School of Medicine, Nour and Ali-Asghar Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Epidemiology and Biostatistics, School of Health, Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
18
|
Braun JA, Patel M, Henderson LA, Dawood T, Macefield VG. Electrical stimulation of the ventromedial prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure. Cereb Cortex 2024; 34:bhad422. [PMID: 37950875 DOI: 10.1093/cercor/bhad422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/13/2023] Open
Abstract
We recently showed that transcranial alternating current stimulation of the dorsolateral prefrontal cortex modulates spontaneous bursts of muscle sympathetic nerve activity, heart rate, and blood pressure (Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Comm. 2022:3:2tgac017.). Stimulation was delivered between scalp electrodes placed over the nasion and electroencephalogram (EEG) electrode site F3 (left dorsolateral prefrontal cortex) or F4 (right dorsolateral prefrontal cortex), and therefore the current passed within the anatomical locations underlying the left and right ventromedial prefrontal cortices. Accordingly, we tested the hypothesis that stimulation of the left and right ventromedial prefrontal cortices would also modulate muscle sympathetic nerve activity, although we predicted that this would be weaker than that seen during dorsolateral prefrontal cortex stimulation. We further tested whether stimulation of the right ventromedial prefrontal cortices would cause greater modulation of muscle sympathetic nerve activity, than stimulation of the left ventromedial prefrontal cortices. In 11 individuals, muscle sympathetic nerve activity was recorded via microelectrodes inserted into the right common peroneal nerve, together with continuous blood pressure, electrocardiogram, and respiration. Stimulation was achieved using transcranial alternating current stimulation, +2 to -2 mA, 0.08 Hz, 100 cycles, applied between electrodes placed over the nasion, and EEG electrode site FP1, (left ventromedial prefrontal cortices) or FP2 (right ventromedial prefrontal cortices); for comparison, stimulation was also applied over F4 (right dorsolateral prefrontal cortex). Stimulation of all three cortical sites caused partial entrainment of muscle sympathetic nerve activity to the sinusoidal stimulation, together with modulation of blood pressure and heart rate. We found a significant fall in mean blood pressure of ~6 mmHg (P = 0.039) during stimulation of the left ventromedial prefrontal cortices, as compared with stimulation of the right. We have shown, for the first time, that transcranial alternating current stimulation of the ventromedial prefrontal cortices modulates muscle sympathetic nerve activity and blood pressure in awake humans at rest. However, it is unclear if this modulation occurred through the same brain pathways activated during transcranial alternating current stimulation of the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Joe A Braun
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Mariya Patel
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Sydney, NSW 2006, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Wang CSM, Chen PS, Tsai TY, Hou NT, Tang CH, Chen PL, Huang YC, Cheng KS. Cognitive Effect of Transcranial Direct Current Stimulation on Left Dorsolateral Prefrontal Cortex in Mild Alzheimer's Disease: A Randomized, Double-Blind, Cross-Over Small-Scale Exploratory Study. J Alzheimers Dis 2024; 98:563-577. [PMID: 38427493 DOI: 10.3233/jad-240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Transcranial direct current stimulation (tDCS) is considered a potential therapeutic instrument for Alzheimer's disease (AD) because it affects long-term synaptic plasticity through the processes of long-term potentiation and long-term depression, thereby improving cognitive ability. Nevertheless, the efficacy of tDCS in treating AD is still debated. Dorsal lateral prefrontal cortex is the main role in executive functions. Objective We investigate the cognitive effects of tDCS on AD patients. Methods Thirty mild AD patients aged 66-86 years (mean = 75.6) were included in a double-blind, randomized, sham-controlled crossover study. They were randomly assigned to receive 10 consecutive daily sessions of active tDCS (2 mA for 30 min) or a sham intervention and switched conditions 3 months later. The anodal and cathodal electrodes were placed on the left dorsal lateral prefrontal cortex and the right supraorbital area, respectively. Subjects underwent various neuropsychological assessments before and after the interventions. Results The results showed that tDCS significantly improved Cognitive Abilities Screening Instrument scores, especially on the items of "concentration and calculation", "orientation", "language ability", and "categorical verbal fluency". Mini-Mental State Examination and Wisconsin Card Sorting Test scores in all domains of "concept formation", "abstract thinking", "cognitive flexibility", and "accuracy" also improved significantly after tDCS. For the sham condition, no difference was found between the baseline scores and the after-intervention scores on any of the neuropsychological tests. Conclusion >: Using tDCS improves the cognition of AD patients. Further large size clinical trials are necessary to validate the data.
Collapse
Affiliation(s)
- Carol Sheei-Meei Wang
- Department of BioMedical Engineering, National Cheng Kung University, Tainan City, Taiwan
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
| | - Po See Chen
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Tsung-Yu Tsai
- Department of Psychiatry, College of Medicines, National Cheng Kung University Hospital, National Cheng Kung University, Tainan City, Taiwan
| | - Nien-Tsen Hou
- Department of Neurology, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chia-Hung Tang
- Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Pai-Lien Chen
- Biostatistics Department, Family Health International (FHI) 360, Durham, NC, USA
| | - Ying-Che Huang
- Department of Neurology, Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Kuo-Sheng Cheng
- Department of BioMedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
20
|
Lim RY, Ang KK, Chew E, Guan C. A Review on Motor Imagery with Transcranial Alternating Current Stimulation: Bridging Motor and Cognitive Welfare for Patient Rehabilitation. Brain Sci 2023; 13:1584. [PMID: 38002544 PMCID: PMC10670393 DOI: 10.3390/brainsci13111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Research has shown the effectiveness of motor imagery in patient motor rehabilitation. Transcranial electrical stimulation has also demonstrated to improve patient motor and non-motor performance. However, mixed findings from motor imagery studies that involved transcranial electrical stimulation suggest that current experimental protocols can be further improved towards a unified design for consistent and effective results. This paper aims to review, with some clinical and neuroscientific findings from literature as support, studies of motor imagery coupled with different types of transcranial electrical stimulation and their experiments onhealthy and patient subjects. This review also includes the cognitive domains of working memory, attention, and fatigue, which are important for designing consistent and effective therapy protocols. Finally, we propose a theoretical all-inclusive framework that synergizes the three cognitive domains with motor imagery and transcranial electrical stimulation for patient rehabilitation, which holds promise of benefiting patients suffering from neuromuscular and cognitive disorders.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore;
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| |
Collapse
|
21
|
Kumpf U, Palm U, Eder J, Ezim H, Stadler M, Burkhardt G, Dechantsreiter E, Padberg F. TDCS at home for depressive disorders: an updated systematic review and lessons learned from a prematurely terminated randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1403-1420. [PMID: 37191697 PMCID: PMC10185954 DOI: 10.1007/s00406-023-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The application of transcranial direct current stimulation (tDCS) at home for the treatment of major depressive disorder (MDD) is the subject of current clinical trials. This is due to its positive safety profile, cost-effectiveness, and potential scalability for a wide outreach in clinical practice. Here, we provide a systematic review of the available studies and also a report on the results of a randomized controlled trial (RCT) on tDCS at home for the treatment of MDD. This trial had to be prematurely terminated due to safety concerns. The HomeDC trial is a double-blinded, placebo-controlled, parallel-group study. Patients with MDD (DSM-5) were randomized to active or sham tDCS. Patients conducted tDCS at home for 6 weeks with 5 sessions/week (30 min at 2 mA) anode over F3, cathode over F4. Sham tDCS resembled active tDCS, with ramp-in and ramp-out periods, but without intermittent stimulation. The study was prematurely terminated due to an accumulation of adverse events (AEs, skin lesions), so that only 11 patients were included. Feasibility was good. Safety monitoring was not sufficient enough to detect or prevent AEs within an appropriate timeframe. Regarding antidepressant effects, the reduction in depression scales over time was significant. However, active tDCS was not superior to sham tDCS in this regard. Both the conclusions from this review and the HomeDC trial show that there are several critical issues with the use of tDCS at home that need to be addressed. Nevertheless the array of transcranial electric simulation (TES) methods that this mode of application offers, including tDCS, is highly interesting and warrants further investigation in high quality RCTs. TRIAL REGISTRATION www. CLINICALTRIALS gov . TRIAL REGISTRATION NUMBER NCT05172505. Registration date: 12/13/2021, https://clinicaltrials.gov/ct2/show/NCT05172505 . *Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers) **If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 . For more information, visit: http://www.prisma-statement.org/.
Collapse
Affiliation(s)
- Ulrike Kumpf
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Ulrich Palm
- Medicalpark Chiemseeblick, Bernau-Felden, Germany
| | - Julia Eder
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Harry Ezim
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Matthias Stadler
- Faculty of Psychology and Educational Sciences Ludwig Maximilian University Munich, Munich, Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Esther Dechantsreiter
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|
22
|
Khan A, Mosbacher JA, Vogel SE, Binder M, Wehovz M, Moshammer A, Halverscheid S, Pustelnik K, Nitsche MA, Tong RKY, Grabner RH. Modulation of resting-state networks following repetitive transcranial alternating current stimulation of the dorsolateral prefrontal cortex. Brain Struct Funct 2023; 228:1643-1655. [PMID: 37436503 PMCID: PMC10471656 DOI: 10.1007/s00429-023-02667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Transcranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training. Fifty healthy participants (25 males and 25 females) were randomly assigned to the experimental and sham groups, half of the participants received individually adjusted theta band tACS, and half received sham stimulation. Resting-state functional magnetic resonance (rs-fMRI) and diffusion-weighted imaging (DWI) data were collected before and after 3 days of tACS-supported procedural learning training. Resting-state network analysis showed a significant increase in connectivity for the frontoparietal network (FPN) with the precuneus cortex. Seed-based analysis with a seed defined at the primary stimulation site showed an increase in connectivity with the precuneus cortex, posterior cingulate cortex (PCC), and lateral occipital cortex. There were no effects on the structural integrity of white matter tracts as measured by fractional anisotropy, and on behavioral measures. In conclusion, the study suggests that multi-session task-associated tACS can produce significant changes in resting-state functional connectivity; however, changes in functional connectivity do not necessarily translate to changes in white matter structure or behavioral performance.
Collapse
Affiliation(s)
- Ahsan Khan
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Mira Binder
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael Wehovz
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Arnulf Moshammer
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | | | - Kolja Pustelnik
- Mathematics Institute, University of Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Protestant Hospital of Bethel Foundation, Bielefeld University, University Hospital OWL, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China.
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| |
Collapse
|
23
|
Holczer A, Vékony T, Klivényi P, Must A. Frontal two-electrode transcranial direct current stimulation protocols may not affect performance on a combined flanker Go/No-Go task. Sci Rep 2023; 13:11901. [PMID: 37488206 PMCID: PMC10366169 DOI: 10.1038/s41598-023-39161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been tested to modulate cognitive control or response inhibition using various electrode montages. However, electrode montages and current polarities have not been systematically compared when examining tDCS effects on cognitive control and response inhibition. In this randomized, sham-controlled study, 38 healthy volunteers were randomly grouped into receiving one session of sham, anodal, and cathodal each in an electrode montage that targeted either the dorsolateral prefrontal cortex (DLPFC) or the fronto-medial (FM) region. Participants performed a combined flanker Go/No-Go task during stimulation. No effect of tDCS was found in the DLPFC and FM groups neither using anodal nor cathodal stimulation. No major adverse effects of tDCS were identified using either montage or stimulation type and the two groups did not differ in terms of the reported sensations. The present study suggests that single-session tDCS delivered in two two-electrode montages might not affect cognitive control or response inhibition, despite using widely popular stimulation parameters. This is in line with the heterogeneous findings in the field and calls for further systematic research to exclude less reliable methods from those with more pronounced effects, identify the determinants of responsiveness, and develop optimal ways to utilize this technique.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary.
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, 95 Boulevard Pinel, 69500, Bron, France
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary
| | - Anita Must
- Chronos Systems on behalf of WCG Clinical Endpoint Solutions, Budapest, Hungary
| |
Collapse
|
24
|
Rauh J, Müller ASM, Nolte G, Haaf M, Mußmann M, Steinmann S, Mulert C, Leicht G. Comparison of transcranial brain stimulation approaches: prefrontal theta alternating current stimulation enhances working memory performance. Front Psychiatry 2023; 14:1140361. [PMID: 37457770 PMCID: PMC10348840 DOI: 10.3389/fpsyt.2023.1140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.
Collapse
Affiliation(s)
- Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne S. M. Müller
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Haaf
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center of Psychiatry, Justus-Liebig University, Giessen, Germany
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Maldonado T, Jackson TB, Bernard JA. Time dependent effects of cerebellar tDCS on cerebello-cortical connectivity networks in young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546626. [PMID: 37425924 PMCID: PMC10327157 DOI: 10.1101/2023.06.26.546626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function and network connectivity in aging or disease may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. This allows us to investigate network changes that may parallel what is seen in aging and clinical populations, providing additional insights into these key circuits. Critically, what happens to these circuits if the cerebellum is not functioning optimally remains relatively unknown. We employed a between-subjects design applying anodal (n=25), cathodal (n=25), or sham (n=24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a sliding window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly in cognitive region in the cortex. Assuming the difference in connectivity and network-behavior relationships here parallels what occurs in aging or disease, this may provide a mechanism whereby offloading of function to the cerebellum is negatively impacted, resulting in subsequent differences in prefrontal cortical activation patterns and performance deficits. These results might inform and update existing compensatory models of function to include the cerebellum as a vital structure needed for scaffolding.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
26
|
Aloi D, Jalali R, Calzolari S, Lafanechere M, Miall RC, Fernández-Espejo D. Multi-session tDCS paired with passive mobilisation of the thumb modulates thalamo-cortical coupling during command following in the healthy brain. Neuroimage 2023; 274:120145. [PMID: 37121374 DOI: 10.1016/j.neuroimage.2023.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
Therapeutic options to restore responsiveness in patients with prolonged disorder of consciousness (PDOC) are limited. We have recently shown that a single session of tDCS over M1 delivered at rest can reduce thalamic self-inhibition during motor command following. Here, we build upon this by exploring whether pairing tDCS with a concurrent passive mobilisation protocol can further influence thalamo-M1 dynamics and whether these changes are enhanced after multiple stimulation sessions. Specifically, we used Dynamic Causal Modelling (DCM) of functional magnetic resonance imaging (fMRI) data from 22 healthy participants to assess changes on effective connectivity within the motor network during active thumb movements after 1 or 5 sessions of tDCS paired with passive mobilisations of the thumb. We found that a single anodal tDCS session (paired with passive mobilisation of the thumb) decreased self-inhibition in M1, with five sessions further enhancing this effect. In addition, anodal tDCS increased thalamo-M1 excitation as compared to cathodal stimulation, with the effects maintained after 5 sessions. Together, our results suggest that pairing anodal tDCS with passive mobilisation across multiple sessions may facilitate thalamo-cortical dynamics that are relevant for behavioural responsiveness in PDOC. More broadly, they offer a mechanistic window into the neural underpinnings of the cumulative effects of multi-session tDCS.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Roya Jalali
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Sara Calzolari
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | - Melanie Lafanechere
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham
| | | | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham; Centre for Human Brain Health, University of Birmingham.
| |
Collapse
|
27
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
28
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
29
|
Liu X, Lin W, Zhang L, Zhang WL, Cheng XP, Lian YH, Li MC, Wang SZ, Chen XY, Gan SR. Effects of cerebellar transcranial alternating current stimulation in cerebellar ataxia: study protocol for a randomised controlled trial. Front Neurosci 2023; 17:1180454. [PMID: 37179566 PMCID: PMC10172579 DOI: 10.3389/fnins.2023.1180454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Background Cerebellar ataxia (CA) is a movement disorder that can affect balance and gait, limb movement, oculomotor control, and cognition. Multiple system atrophy-cerebellar type (MSA-C) and spinocerebellar ataxia type 3 (SCA3) are the most common forms of CA, for which no effective treatment is currently available. Transcranial alternating current stimulation (tACS) is a non-invasive method of brain stimulation supposed to alter cortical excitability and brain electrical activity, modulating functional connectivity within the brain. The cerebellar tACS can modulate the cerebellar outflow and cerebellum-linked behavior and it is a proven safe technique for humans. Therefore, the aim of this study is to 1) examine whether cerebellar tACS improves ataxia severity and various non-motor symptoms in a homogeneous cohort of CA patients consisting of MSA-C and SCA3, 2) explore the time course of these effects, and 3) assess the safety and tolerance of cerebellar tACS in all participants. Methods/design This is a 2-week, triple-blind, randomised, sham-controlled study. 164 patients (MSA-C: 84, SCA3: 80) will be recruited and randomly assigned to either active cerebellar tACS or sham cerebellar tACS, in a 1:1 ratio. Patients, investigators, and outcome assessors are unaware of treatment allocation. Cerebellar tACS (40 min, 2 mA, ramp-up and down periods of 10s each) will be delivered over 10 sessions, distributed in two groups of five consecutive days with a two-day break in between. Outcomes are assessed after the tenth stimulation (T1), and after 1 month (T2) and 3 months (T3). The primary outcome measure is the difference between the active and sham groups in the proportion of patients with an improvement of 1.5 points in the Scale for the Assessment and Rating of Ataxia (SARA) score after 2 weeks of treatment. In addition, effects on a variety of non-motor symptoms, quality of life, and autonomic nerve dysfunctions are assessed via relative scales. Gait imbalance, dysarthria, and finger dexterity are objectively valued via relative tools. Finally, functional magnetic resonance imaging is performed to explore the possible mechanism of treatment effects. Discussion The results of this study will inform whether repeated sessions of active cerebellar tACS benefit CA patients and whether this form of non-invasive stimulation might be a novel therapeutic approach to consider in a neuro-rehabilitation setting.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT05557786; https://www.clinicaltrials.gov/ct2/show/NCT05557786.
Collapse
Affiliation(s)
- Xia Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wan-Li Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Xiao-Ping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan-Hua Lian
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Meng-Cheng Li
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- The School of Health, Fujian Medical University, Fuzhou, China
- *Correspondence: Shi-Zhong Wang,
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Xin-Yuan Chen,
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Shi-Rui Gan,
| |
Collapse
|
30
|
10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task. Behav Sci (Basel) 2022; 13:bs13010039. [PMID: 36661611 PMCID: PMC9855106 DOI: 10.3390/bs13010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Working memory is a cognitive process that involves short-term active maintenance, flexible updating, and processing of goal- or task-relevant information. All frequency bands are involved in working memory. The activities of the theta and gamma frequency bands in the frontoparietal network are highly involved in working memory processes; theta oscillations play a role in the temporal organization of working memory items, and gamma oscillations influence the maintenance of information in working memory. Transcranial alternating current stimulation (tACS) results in frequency-specific modulation of endogenous oscillations and has shown promising results in cognitive neuroscience. The electrophysiological and behavioral changes induced by the modulation of endogenous gamma frequency in the prefrontal cortex using tACS have not been extensively studied in the context of working memory. Therefore, we aimed to investigate the effects of frontal gamma-tACS on working memory outcomes. We hypothesized that a 10-min gamma tACS administered over the frontal cortex would significantly improve working memory outcomes. Young healthy participants performed Luck-Vogel cognitive behavioral tasks with simultaneous pre- and post-intervention EEG recording (Sham versus 40 Hz tACS). Data from forty-one participants: sham (15 participants) and tACS (26 participants), were used for the statistical and behavioral analysis. The relative changes in behavioral outcomes and EEG due to the intervention were analyzed. The results show that tACS caused an increase in the power spectral density in the high beta and low gamma EEG bands and a decrease in left-right coherence. On the other hand, tACS had no significant effect on success rates and response times. Conclusion: 10 min of frontal 40 Hz tACS was not sufficient to produce detectable behavioral effects on working memory, whereas electrophysiological changes were evident. The limitations of the current stimulation protocol and future directions are discussed in detail in the following sections.
Collapse
|
31
|
Jones KT, Johnson EL, Gazzaley A, Zanto TP. Structural and functional network mechanisms of rescuing cognitive control in aging. Neuroimage 2022; 262:119547. [PMID: 35940423 PMCID: PMC9464721 DOI: 10.1016/j.neuroimage.2022.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Age-related declines in cognitive control, an ability critical in most daily tasks, threaten individual independence. We previously showed in both older and younger adults that transcranial alternating current stimulation (tACS) can improve cognitive control, with effects observed across neural regions distant from the stimulated site and frequencies outside the stimulated range. Here, we assess network-level changes in neural activity that extend beyond the stimulated site and evaluate anatomical pathways that subserve these effects. We investigated the potential to rescue cognitive control in aging using prefrontal (F3-F4) theta (6 Hz) or control (1 Hz) tACS while older adults engaged in a cognitive control video game intervention on three consecutive days. Functional connectivity was assessed with EEG by measuring daily changes in frontal-posterior phase-locking values (PLV) from the tACS-free baseline. Structural connectivity was measured using MRI diffusion tractography data collected at baseline. Theta tACS improved multitasking performance, and individual gains reflected a dissociation in daily PLV changes, where theta tACS strengthened PLV and control tACS reduced PLV. Strengthened alpha-beta PLV in the theta tACS group correlated positively with inferior longitudinal fasciculus and corpus callosum body integrity, and further explained multitasking gains. These results demonstrate that theta tACS can improve cognitive control in aging by strengthening functional connectivity, particularly in higher frequency bands. However, the extent of functional connectivity gains is limited by the integrity of structural white matter tracts. Given that advanced age is associated with decreased white matter integrity, results suggest that the deployment of tACS as a therapeutic is best prior to advanced age.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, Illinois
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, California
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California
| |
Collapse
|
32
|
Martin DM, Berryhill ME, Dielenberg V. Can brain stimulation enhance cognition in clinical populations? A critical review. Restor Neurol Neurosci 2022:RNN211230. [PMID: 36404559 DOI: 10.3233/rnn-211230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many psychiatric and neurological conditions are associated with cognitive impairment for which there are very limited treatment options. Brain stimulation methodologies show promise as novel therapeutics and have cognitive effects. Electroconvulsive therapy (ECT), known more for its related transient adverse cognitive effects, can produce significant cognitive improvement in the weeks following acute treatment. Transcranial magnetic stimulation (TMS) is increasingly used as a treatment for major depression and has acute cognitive effects. Emerging research from controlled studies suggests that repeated TMS treatments may additionally have cognitive benefit. ECT and TMS treatment cause neurotrophic changes, although whether these are associated with cognitive effects remains unclear. Transcranial electrical stimulation methods including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are in development as novel treatments for multiple psychiatric conditions. These treatments may also produce cognitive enhancement particularly when stimulation occurs concurrently with a cognitive task. This review summarizes the current clinical evidence for these brain stimulation treatments as therapeutics for enhancing cognition. Acute, or short-lasting, effects as well as longer-term effects from repeated treatments are reviewed, together with potential putative neural mechanisms. Areas of future research are highlighted to assist with optimization of these approaches for enhancing cognition.
Collapse
Affiliation(s)
- Donel M. Martin
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| | - Marian E. Berryhill
- Memory and Brain Lab, Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, University of Nevada, Reno, NV, USA
| | - Victoria Dielenberg
- Sydney Neurostimulation Centre, Discipline of Psychiatry and Mental Health UNSW, Black Dog Institute, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Zhang Y, Zhou Z, Zhou J, Qian Z, Lü J, Li L, Liu Y. Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Front Hum Neurosci 2022; 16:918470. [PMID: 36393981 PMCID: PMC9650295 DOI: 10.3389/fnhum.2022.918470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Temporal interference (TI) stimulation is a novel technique that enables the non-invasive modulation of deep brain regions. However, the implementation of this technology in humans has not been well-characterized or examined, including its safety and feasibility. Objective We aimed to examine the feasibility, safety, and blinding of using TI on human participants in this pilot study. Materials and methods In a randomized, single-blinded, and sham-controlled pilot study, healthy young participants were randomly divided into four groups [TI and transcranial alternating current stimulation (tACS) targeting the right frontoparietal region, TI-sham, and tACS-sham]. Each participant was asked to complete N-back (N = 1 to 3) tasks before, during, and after one session of stimulation to assess their working memory (WM). The side effects and blinding efficacy were carefully assessed. The accuracy, reaction time (RT), and inverse efficiency score (IES, reaction time/accuracy) of the N-back tasks were measured. Results No severe side effects were reported. Only mild-to-moderate side effects were observed in those who received TI, which was similar to those observed in participants receiving tACS. The blinding efficacy was excellent, and there was no correlation between the severity of the reported side effects and the predicted type of stimulation that the participants received. WM appeared to be only marginally improved by TI compared to tACS-sham, and this improvement was only observed under high-load cognitive tasks. WM seemed to have improved a little in the TI-sham group. However, it was not observed significant differences between TI and TI-sham or TI and tACS in all N-back tests. Conclusion Our pilot study suggests that TI is a promising technique that can be safely implemented in human participants. Studies are warranted to confirm the findings of this study and to further examine the effects of TI-sham stimulation as well as the effects of TI on deeper brain regions.
Collapse
Affiliation(s)
- Yufeng Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhining Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research and Harvard Medical School, Boston, MA, United States
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jiaojiao Lü,
| | - Lu Li
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Lu Li,
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
34
|
Soleimani G, Towhidkhah F, Oghabian MA, Ekhtiari H. DLPFC stimulation alters large-scale brain networks connectivity during a drug cue reactivity task: A tDCS-fMRI study. Front Syst Neurosci 2022; 16:956315. [PMID: 36276607 PMCID: PMC9582757 DOI: 10.3389/fnsys.2022.956315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising intervention for reducing craving/consumption in individuals with substance use disorders. However, its exact mechanism of action has not yet been well explored. We aimed to examine the network-based effects of tDCS while people with methamphetamine use disorders (MUDs) were exposed to drug cues. In a randomized, double-blind sham-controlled trial with a crossover design, 15 participants with MUDs were recruited to receive 20 min of active/sham tDCS with an anode/cathode over F4/F3. MRI data, including structural and task-based functional MRI during a standard drug cue-reactivity task, were collected immediately before and after stimulation sessions. Craving scores were also recorded before and after MRI scans. Individualized head models were generated to determine brain regions with strong electric fields (EFs). Using atlas-based parcellation of head models, averaged EFs were extracted from the main nodes of three large-scale networks that showed abnormalities in MUDs; executive control (ECN), default mode (DMN), and ventral attention (VAN) networks. Main nodes with high EF intensity were used as seed regions for task-based functional connectivity (FC) [using generalized psychophysiological interaction (gPPI)] and activity [using a general linear model (GLM)] calculations. Subjective craving showed a significant reduction in immediate craving after active (-15.42 ± 5.42) compared to sham (-1 ± 2.63). In seed-to-whole brain results, the PFC node in ECN showed an enhanced PPI connectivity with precuneus and visual cortex; the cluster center in MNI (6, -84, -12); the PFC node in DMN showed a decreased PPI connectivity with contralateral parietal cortex;(-48, -60, 46). ROI-to-ROI results showed increased PPI connectivity within/between ECN-VAN while connectivity between ECN-DMN decreased. In line with connectivity, functional activity in the right PFC node in DMN decreased after tDCS while activity in PFC nodes of ECN/VAN increased. EF calculations in PFC nodes revealed that EF in DMN was outward, while the direction of EFs was inward in ECN/VAN. This study provides new insight into neural circuitry underlying MUDs that can be modulated by tDCS at the network level and specifically suggests that bilateral tDCS increases cortical excitability in ECN and VAN, while it has opposite effects on DMN that may be related to the direction of EFs.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Science, Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- Laureate Institute for Brain Research, Tulsa, OK, United States
| |
Collapse
|
35
|
Bjekić J, Paunovic D, Živanović M, Stanković M, Griskova-Bulanova I, Filipović SR. Determining the Individual Theta Frequency for Associative Memory Targeted Personalized Transcranial Brain Stimulation. J Pers Med 2022; 12:jpm12091367. [PMID: 36143152 PMCID: PMC9506372 DOI: 10.3390/jpm12091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) methods have gained increased interest in research and therapy of associative memory (AM) and its impairments. However, the one-size-fits-all approach yields inconsistent findings, thus putting forward the need for electroencephalography (EEG)-guided personalized frequency-modulated NIBS protocols to increase the focality and the effectiveness of the interventions. Still, extraction of individual frequency, especially in the theta band, turned out to be a challenging task. Here we present an approach to extracting the individual theta-band frequency (ITF) from EEG signals recorded during the AM task. The method showed a 93% success rate, good reliability, and the full range of variability of the extracted ITFs. This paper provides a rationale behind the adopted approach and critically evaluates it in comparison to the alternative methods that have been reported in the literature. Finally, we discuss how it could be used as an input parameter for personalized frequency-modulated NIBS approaches—transcranial alternating current stimulation (tACS) and transcranial oscillatory current stimulation (otDCS) directed at AM neuromodulation.
Collapse
Affiliation(s)
- Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (J.B.); (S.R.F.)
| | - Dunja Paunovic
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Marko Živanović
- Institute of Psychology and Laboratory for Research of Individual Differences, Department of Psychology, Faculty of Philosophy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Stanković
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Inga Griskova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, LT-10322 Vilnius, Lithuania
| | - Saša R. Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (J.B.); (S.R.F.)
| |
Collapse
|
36
|
Wang Y, Hou P, Li W, Zhang M, Zheng H, Chen X. The influence of different current-intensity transcranial alternating current stimulation on the eyes-open and eyes-closed resting-state electroencephalography. Front Hum Neurosci 2022; 16:934382. [PMID: 36061496 PMCID: PMC9429605 DOI: 10.3389/fnhum.2022.934382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) applies a sinusoidal oscillating current to modulate intrinsic oscillatory activity. Relevant studies of tACS have indicated that tACS can increase spontaneous brain activity in the occipital area. However, few studies have compared the effects of tACS with different current intensities on spontaneous brain activity in the occipital region. In this study, 10-Hz tACS was delivered to the occipital region at different current intensities (i.e., 1 and 2 mA). We investigated the effect of the tACS on both eyes-open and eyes-closed resting-state electroencephalography (EEG). A total of 20 subjects and fifteen subjects were recruited to participate in the 1-mA tACS experiment and the 2-mA tACS experiment, respectively. Ten subjects participated in both experiments. The experimental results demonstrated that both 1-mA tACS and 2-mA tACS could increase occipital resting-state EEG activities. For the eyes-open condition, alpha activity elicited by 2-mA tACS increased significantly greater than that elicited by 1-mA tACS, while 1-mA tACS could produce greater alpha activity compared to 2 mA for the eyes-closed condition. These results suggested that the optimal current intensity might be different for the eyes-open and eyes-closed resting-state conditions, laying a foundation for the subsequent study of occipital tACS on task-state EEG activities.
Collapse
Affiliation(s)
- Yao Wang
- School of Life Sciences, Tiangong University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Peiyun Hou
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Wenjing Li
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Mingxing Zhang
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Hongliang Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Xiaogang Chen,
| |
Collapse
|
37
|
Senkowski D, Sobirey R, Haslacher D, Soekadar SR. Boosting working memory: Uncovering the differential effects of tDCS and tACS. Cereb Cortex Commun 2022; 3:tgac018. [PMID: 35592391 PMCID: PMC9113288 DOI: 10.1093/texcom/tgac018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Working memory (WM) is essential for reasoning, decision making and problem solving. Recently, there has been an increasing effort in improving WM through non-invasive brain stimulation, especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM, but moderate effects of multi-session tDCS and single-session tACS. We discuss implications of these findings and future directions in the emerging research field of non-invasive brain stimulation and WM.
Collapse
Affiliation(s)
- Daniel Senkowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Rabea Sobirey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - David Haslacher
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| | - Surjo R Soekadar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charitéplatz 1, 10117 Berlin
| |
Collapse
|
38
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
39
|
Jor’dan AJ, Bernad-Elazari H, Mirelman A, Gouskova NA, Lo OY, Hausdorff JM, Manor B. Transcranial Direct Current Stimulation May Reduce Prefrontal Recruitment During Dual Task Walking in Functionally Limited Older Adults – A Pilot Study. Front Aging Neurosci 2022; 14:843122. [PMID: 35360209 PMCID: PMC8963782 DOI: 10.3389/fnagi.2022.843122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) targeting the left dorsolateral prefrontal cortex (dlPFC) improves dual task walking in older adults, when tested just after stimulation. The acute effects of tDCS on the cortical physiology of walking, however, remains unknown. Methods In a previous study, older adults with slow gait and executive dysfunction completed a dual task walking assessment before and after 20 min of tDCS targeting the left dlPFC or sham stimulation. In a subset of seven participants per group, functional near-infrared spectroscopy (fNIRS) was used to quantify left and right prefrontal recruitment defined as the oxygenated hemoglobin response to usual and dual task walking (ΔHbO2), as well as the absolute change in this metric from usual to dual task conditions (i.e., ΔHbO2cost). Paired t-tests examined pre- to post-stimulation differences in each fNIRS metric within each group. Results The tDCS group exhibited pre- to post-stimulation reduction in left prefrontal ΔHbO2cost (p = 0.03). This mitigation of dual task “cost” to prefrontal recruitment was induced primarily by a reduction in left prefrontal ΔHbO2 specifically within the dual task condition (p = 0.001), an effect that was observed in all seven participants within this group. Sham stimulation did not influence ΔHbO2cost or ΔHbO2 in either walking condition (p > 0.35), and neither tDCS nor sham substantially influenced right prefrontal recruitment (p > 0.16). Discussion This preliminary fNIRS data suggests that tDCS over the left dlPFC may modulate prefrontal recruitment, as reflected by a relative reduction in the oxygen consumption of this brain region in response to dual task walking.
Collapse
Affiliation(s)
- Azizah J. Jor’dan
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, United States
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Azizah J. Jor’dan,
| | - Hagar Bernad-Elazari
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia A. Gouskova
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer’s Disease Center and Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Zeng L, Guo M, Wu R, Luo Y, Wei P. The Effects of Electroencephalogram Feature-Based Transcranial Alternating Current Stimulation on Working Memory and Electrophysiology. Front Aging Neurosci 2022; 14:828377. [PMID: 35360204 PMCID: PMC8961031 DOI: 10.3389/fnagi.2022.828377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can influence cognitive functions by modulating brain oscillations. However, results regarding the effectiveness of tACS in regulating cognitive performance have been inconsistent. In the present study, we aimed to find electroencephalogram (EEG) characteristics associated with the improvements in working memory performance, to select tACS stimulus targets and frequency based on this feature, and to explore effects of selected stimulus on verbal working memory. To achieve this goal, we first investigated the EEG characteristics associated with improvements in working memory performance with the aid of EEG analyses and machine learning techniques. These analyses suggested that 8 Hz activity in the prefrontal region was related to accuracy in the verbal working memory task. The tACS stimulus target and pattern were then selected based on the EEG feature. Finally, the selected tACS frequency (8 Hz tACS in the prefrontal region) was applied to modulate working memory. Such modulation resulted significantly greater improvements, compared with 40 Hz and sham modulations (especially for participants with weak verbal working memory). In conclusion, using EEG features related to positive behavioral changes to select brain regions and stimulation patterns for tACS is an effective intervention for improving working memory. Our results contribute to the groundwork for future tACS closed-loop interventions for cognitive deterioration.
Collapse
Affiliation(s)
- Lanting Zeng
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Mingrou Guo
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Ruoling Wu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yu Luo
- Shenzhen Zhongke Huayi Technology Co., Ltd., Shenzhen, China
| | - Pengfei Wei
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Pengfei Wei,
| |
Collapse
|
41
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
42
|
Abellaneda-Pérez K, Vaqué-Alcázar L, Perellón-Alfonso R, Solé-Padullés C, Bargalló N, Salvador R, Ruffini G, Nitsche MA, Pascual-Leone A, Bartrés-Faz D. Multifocal Transcranial Direct Current Stimulation Modulates Resting-State Functional Connectivity in Older Adults Depending on the Induced Current Density. Front Aging Neurosci 2021; 13:725013. [PMID: 34899266 PMCID: PMC8662695 DOI: 10.3389/fnagi.2021.725013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/02/2021] [Indexed: 02/02/2023] Open
Abstract
Combining non-invasive brain stimulation (NIBS) with resting-state functional magnetic resonance imaging (rs-fMRI) is a promising approach to characterize and potentially optimize the brain networks subtending cognition that changes as a function of age. However, whether multifocal NIBS approaches are able to modulate rs-fMRI brain dynamics in aged populations, and if these NIBS-induced changes are consistent with the simulated electric current distribution on the brain remains largely unknown. In the present investigation, thirty-one cognitively healthy older adults underwent two different multifocal real transcranial direct current stimulation (tDCS) conditions (C1 and C2) and a sham condition in a crossover design during a rs-fMRI acquisition. The real tDCS conditions were designed to electrically induce two distinct complex neural patterns, either targeting generalized frontoparietal cortical overactivity (C1) or a detachment between the frontal areas and the posteromedial cortex (C2). Data revealed that the two tDCS conditions modulated rs-fMRI differently. C1 increased the coactivation of multiple functional couplings as compared to sham, while a smaller number of connections increased in C1 as compared to C2. At the group level, C1-induced changes were topographically consistent with the calculated electric current density distribution. At the individual level, the extent of tDCS-induced rs-fMRI modulation in C1 was related with the magnitude of the simulated electric current density estimates. These results highlight that multifocal tDCS procedures can effectively change rs-fMRI neural functioning in advancing age, being the induced modulation consistent with the spatial distribution of the simulated electric current on the brain. Moreover, our data supports that individually tailoring NIBS-based interventions grounded on subject-specific structural data might be crucial to increase tDCS potential in future studies amongst older adults.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Section of Neuroradiology, Department of Radiology, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Ricardo Salvador
- Neuroelectrics, Cambridge, MA, United States.,Neuroelectrics, Barcelona, Spain
| | - Giulio Ruffini
- Neuroelectrics, Cambridge, MA, United States.,Neuroelectrics, Barcelona, Spain
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Guttmann Brain Health Institute, Guttmann University Institute of Neurorehabilitation, Autonomous University of Barcelona, Badalona, Spain
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Guttmann Brain Health Institute, Guttmann University Institute of Neurorehabilitation, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
43
|
Behavioral and electrocortical effects of transcranial alternating current stimulation during advice-guided decision-making. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Ghafoor U, Yang D, Hong KS. Neuromodulatory effects of HD-tACS/tDCS on the prefrontal cortex: A resting-state fNIRS-EEG study. IEEE J Biomed Health Inform 2021; 26:2192-2203. [PMID: 34757916 DOI: 10.1109/jbhi.2021.3127080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) can modulate human brain dynamics and cognition. However, these modalities have not been compared using multiple imaging techniques concurrently. In this study, 15 participants participated in an experiment involving two sessions with a gap of 10 d. In the first and second sessions, tACS and tDCS were administered to the participants. The anode for tDCS was positioned at point FpZ, and four cathodes were positioned over the left and right prefrontal cortices (PFCs) to target the frontal regions simultaneously. tDCS was administered with 1 mA current. tACS was supplied with a current of 1 mA (zero-to-peak value) at 10 Hz frequency. Stimulation was applied concomitantly with functional near-infrared spectroscopy and electroencephalography acquisitions in the resting-state. The statistical test showed significant alteration (p < 0.001) in the mean hemodynamic responses during and after tDCS and tACS periods. Between-group comparison revealed a significantly less (p < 0.001) change in the mean hemodynamic response caused by tACS compared with tDCS. As hypothesized, we successfully increased the hemodynamics in both left and right PFCs using tDCS and tACS. Moreover, a significant increase in alpha-band power (p < 0.01) and low beta band power (p < 0.05) due to tACS was observed after the stimulation period. Although tDCS is not frequency-specific, it increased but not significantly (p > 0.05) the powers of most bands including delta, theta, alpha, low beta, high beta, and gamma. These findings suggest that both hemispheres can be targeted and that both tACS and tDCS are equally effective in high-definition configurations, which may be of clinical relevance.
Collapse
|
45
|
Gebodh N, Esmaeilpour Z, Datta A, Bikson M. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 2021; 8:274. [PMID: 34707095 PMCID: PMC8551279 DOI: 10.1038/s41597-021-01046-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
We present a dataset combining human-participant high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data include within participant application of nine High-Definition tES (HD-tES) types, targeting three cortical regions (frontal, motor, parietal) with three stimulation waveforms (DC, 5 Hz, 30 Hz); more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics. Experiment 1 and 2 consisted of participants performing a continuous vigilance/alertness task over three 70-minute and two 70.5-minute sessions, respectively. Demographic data were collected, as well as self-reported wellness questionnaires before and after each session. Participants received all 9 stimulation types in Experiment 1, with each session including three stimulation types, with 4 trials per type. Participants received two stimulation types in Experiment 2, with 20 trials of a given stimulation type per session. Within-participant reliability was tested by repeating select sessions. This unique dataset supports a range of hypothesis testing including interactions of tDCS/tACS location and frequency, brain-state, physiology, fatigue, and cognitive performance.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA.
- Soterix Medical Inc., New York, USA.
| | - Zeinab Esmaeilpour
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| |
Collapse
|
46
|
Kurtin DL, Violante IR, Zimmerman K, Leech R, Hampshire A, Patel MC, Carmichael DW, Sharp DJ, Li LM. Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimul 2021; 14:1261-1270. [PMID: 34438046 PMCID: PMC8460997 DOI: 10.1016/j.brs.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure. Objectives In this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity. Methods We applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n = 22) and TBI participants (n = 34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure. Results We find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional - in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region. Conclusions Our results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation. We replicated the brain state and polarity dependent effects of tDCS. White matter structure influences tDCS's state-dependent changes in neural activity The parameters of tDCS may operate under a hierarchy of influence.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom.
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Karl Zimmerman
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London, United Kingdom
| | - Adam Hampshire
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Maneesh C Patel
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - David W Carmichael
- Department of Biomedical Imaging, King's College London, 3rd Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - David J Sharp
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom
| | - Lucia M Li
- Computational, Clinical, and Cognitive Neuroimaging Laboratory, Department of Medicine, Imperial College London, London, United Kingdom; Imperial UK Dementia Research Institute at Imperial Care Research and Technology Centre, United Kingdom.
| |
Collapse
|
47
|
Wischnewski M, Mantell KE, Opitz A. Identifying regions in prefrontal cortex related to working memory improvement: A novel meta-analytic method using electric field modeling. Neurosci Biobehav Rev 2021; 130:147-161. [PMID: 34418436 DOI: 10.1016/j.neubiorev.2021.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Altering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8 % of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
48
|
Vaqué-Alcázar L, Mulet-Pons L, Abellaneda-Pérez K, Solé-Padullés C, Cabello-Toscano M, Macià D, Sala-Llonch R, Bargalló N, Solana J, Cattaneo G, Tormos JM, Pascual-Leone A, Bartrés-Faz D. tDCS-Induced Memory Reconsolidation Effects and Its Associations With Structural and Functional MRI Substrates in Subjective Cognitive Decline. Front Aging Neurosci 2021; 13:695232. [PMID: 34381353 PMCID: PMC8350070 DOI: 10.3389/fnagi.2021.695232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Previous evidence suggests that transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (l-DLPFC) can enhance episodic memory in subjects with subjective cognitive decline (SCD), known to be at risk of dementia. Our main goal was to replicate such findings in an independent sample and elucidate if baseline magnetic resonance imaging (MRI) characteristics predicted putative memory improvement. Thirty-eight participants with SCD (aged: 60-65 years) were randomly assigned to receive active (N = 19) or sham (N = 19) tDCS in a double-blind design. They underwent a verbal learning task with 15 words (DAY-1), and 24 h later (DAY-2) stimulation was applied for 15 min at 1.5 mA targeting the l-DLPFC after offering a contextual reminder. Delayed recall and recognition were measured 1 day after the stimulation session (DAY-3), and at 1-month follow-up (DAY-30). Before the experimental session, structural and functional MRI were acquired. We identified a group∗time interaction in recognition memory, being the active tDCS group able to maintain stable memory performance between DAY-3 and DAY-30. MRI results revealed that individuals with superior tDCS-induced effects on memory reconsolidation exhibited higher left temporal lobe thickness and greater intrinsic FC within the default-mode network. Present findings confirm that tDCS, through the modulation of memory reconsolidation, is capable of enhancing performance in people with self-perceived cognitive complaints. Results suggest that SCD subjects with more preserved structural and functional integrity might benefit from these interventions, promoting maintenance of cognitive function in a population at risk to develop dementia.
Collapse
Affiliation(s)
- Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Mulet-Pons
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - María Cabello-Toscano
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| | - Dídac Macià
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Roser Sala-Llonch
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Nuria Bargalló
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Gabriele Cattaneo
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| | | | - Alvaro Pascual-Leone
- Guttmann Institute, Badalona, Spain
- Harvard Medical School, Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Guttmann Institute, Badalona, Spain
| |
Collapse
|
49
|
Modulation of Working Memory and Resting-State fMRI by tDCS of the Right Frontoparietal Network. Neural Plast 2021; 2021:5594305. [PMID: 34349797 PMCID: PMC8328716 DOI: 10.1155/2021/5594305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Many cognitive functions, including working memory, are processed within large-scale brain networks. We targeted the right frontoparietal network (FPN) with one session of transcranial direct current stimulation (tDCS) in an attempt to modulate the cognitive speed of a visual working memory task (WMT) in 27 young healthy subjects using a double-blind crossover design. We further explored the neural underpinnings of induced changes by performing resting-state fMRI prior to and immediately after each stimulation session with the main focus on the interaction between a task-positive FPN and a task-negative default mode network (DMN). Twenty minutes of 2 mA anodal tDCS was superior to sham stimulation in terms of cognitive speed manipulation of a subtask with processing of objects and tools in unconventional views (i.e., the higher cognitive load subtask of the offline WMT). This result was linked to the magnitude of resting-state functional connectivity decreases between the stimulated FPN seed and DMN seeds. We provide the first evidence for the action reappraisal mechanism of object and tool processing. Modulation of cognitive speed of the task by tDCS was reflected by FPN-DMN cross-talk changes.
Collapse
|
50
|
Orendáčová M, Kvašňák E. Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review. Front Hum Neurosci 2021; 15:628229. [PMID: 34305549 PMCID: PMC8297546 DOI: 10.3389/fnhum.2021.628229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | |
Collapse
|