1
|
Huo C, Xu G, Xie H, Chen T, Shao G, Wang J, Li W, Wang D, Li Z. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen Res 2024; 19:1517-1522. [PMID: 38051894 PMCID: PMC10883499 DOI: 10.4103/1673-5374.387970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks, which have been widely applied in the field of central neurological diseases, such as stroke, Parkinson's disease, and mental disorders. Although significant advances have been made in neuromodulation technologies, the identification of optimal neurostimulation parameters including the cortical target, duration, and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits. Moreover, the neural mechanism underlying neuromodulation for improved behavioral performance remains poorly understood. Recently, advancements in neuroimaging have provided insight into neuromodulation techniques. Functional near-infrared spectroscopy, as a novel non-invasive optical brain imaging method, can detect brain activity by measuring cerebral hemodynamics with the advantages of portability, high motion tolerance, and anti-electromagnetic interference. Coupling functional near-infrared spectroscopy with neuromodulation technologies offers an opportunity to monitor the cortical response, provide real-time feedback, and establish a closed-loop strategy integrating evaluation, feedback, and intervention for neurostimulation, which provides a theoretical basis for development of individualized precise neurorehabilitation. We aimed to summarize the advantages of functional near-infrared spectroscopy and provide an overview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and brain-computer interfaces. Furthermore, the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized. In conclusion, functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central neural reorganization to achieve better functional recovery from central nervous system diseases.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Tiandi Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong Province, China
| | - Jue Wang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Wenhao Li
- School of Rehabilitation Engineering, Beijing College of Social Administration, Beijing, China
| | - Daifa Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
2
|
Gonçalves ÓF, Sayal J, Lisboa F, Palhares P. The experimental study of consciousness: Is psychology travelling back to the future? Int J Clin Health Psychol 2024; 24:100475. [PMID: 39021679 PMCID: PMC11253270 DOI: 10.1016/j.ijchp.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
It was with the promise of rendering an experimental approach to consciousness that psychology started its trajectory as an independent science more than 150 years ago. Here, we will posit that the neurosciences were instrumental in leading psychology to resume the study of consciousness by projecting an empirical agenda for the future. First, we will start by showing how scientists were able to venture into the consciousness of supposedly unconscious patients, opening the door for the identification of important neural correlates of distinct consciousness states. Then, we will describe how different technological advances and elegant experimental paradigms helped in establishing important neuronal correlates of global consciousness (i.e., being conscious at all), perceptual consciousness (i.e., being conscious of something), and self-consciousness (i.e., being conscious of itself). Finally, we will illustrate how the study of complex consciousness experiences may contribute to the clarification of the mechanisms associated with global consciousness, the relationship between perceptual and self-consciousness, and the interface among distinct self-consciousness domains. In closing, we will elaborate on the road ahead of us for re-establishing psychology as a science of consciousness.
Collapse
Affiliation(s)
| | - Joana Sayal
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Fábio Lisboa
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| | - Pedro Palhares
- Proaction Lab – CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Colégio de Jesus, R. Inácio Duarte 65, Coimbra 3000-481, Portugal
| |
Collapse
|
3
|
Kamar F, Shoemaker LN, Eskandari R, Milej D, Drosdowech D, Murkin JM, St. Lawrence K, Chui J, Diop M. Assessing changes in regional cerebral hemodynamics in adults with a high-density full-head coverage time-resolved near-infrared spectroscopy device. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S33302. [PMID: 38707651 PMCID: PMC11068267 DOI: 10.1117/1.jbo.29.s3.s33302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Significance Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results In the first protocol (28 ± 5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65 ± 15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.
Collapse
Affiliation(s)
- Farah Kamar
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Leena N. Shoemaker
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Rasa Eskandari
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Darren Drosdowech
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Orthopaedic Surgery, London, Ontario, Canada
| | - John M. Murkin
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Anesthesia and Perioperative Medicine, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jason Chui
- Lawson Health Research Institute, London, Ontario, Canada
- Western University, Department of Anesthesia and Perioperative Medicine, London, Ontario, Canada
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Markow ZE, Tripathy K, Svoboda AM, Schroeder ML, Rafferty SM, Richter EJ, Eggebrecht AT, Anastasio MA, Chevillet MA, Mugler EM, Naufel SN, Yin A, Trobaugh JW, Culver JP. Identifying Naturalistic Movies from Human Brain Activity with High-Density Diffuse Optical Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.27.566650. [PMID: 38076976 PMCID: PMC10705261 DOI: 10.1101/2023.11.27.566650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Modern neuroimaging modalities, particularly functional MRI (fMRI), can decode detailed human experiences. Thousands of viewed images can be identified or classified, and sentences can be reconstructed. Decoding paradigms often leverage encoding models that reduce the stimulus space into a smaller yet generalizable feature set. However, the neuroimaging devices used for detailed decoding are non-portable, like fMRI, or invasive, like electrocorticography, excluding application in naturalistic use. Wearable, non-invasive, but lower-resolution devices such as electroencephalography and functional near-infrared spectroscopy (fNIRS) have been limited to decoding between stimuli used during training. Herein we develop and evaluate model-based decoding with high-density diffuse optical tomography (HD-DOT), a higher-resolution expansion of fNIRS with demonstrated promise as a surrogate for fMRI. Using a motion energy model of visual content, we decoded the identities of novel movie clips outside the training set with accuracy far above chance for single-trial decoding. Decoding was robust to modulations of testing time window, different training and test imaging sessions, hemodynamic contrast, and optode array density. Our results suggest that HD-DOT can translate detailed decoding into naturalistic use.
Collapse
|
5
|
Srinivasan S, Acharya D, Butters E, Collins-Jones L, Mancini F, Bale G. Subject-specific information enhances spatial accuracy of high-density diffuse optical tomography. FRONTIERS IN NEUROERGONOMICS 2024; 5:1283290. [PMID: 38444841 PMCID: PMC10910052 DOI: 10.3389/fnrgo.2024.1283290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached. Such variations can therefore influence the conclusions drawn in NIRS studies that attempt to explore specific cortical regions. In order to preserve the spatial identity of each NIRS channel, subject-specific differences in NIRS array registration must be considered. Using high-density diffuse optical tomography (HD-DOT), we have demonstrated the inter-subject variability of the same HD-DOT array applied to ten participants recorded in the resting state. We have also compared three-dimensional image reconstruction results obtained using subject-specific positioning information to those obtained using generic optode locations. To mitigate the error introduced by using generic information for all participants, photogrammetry was used to identify specific optode locations per-participant. The present work demonstrates the large variation between subjects in terms of which cortical parcels are sampled by equivalent channels in the HD-DOT array. In particular, motor cortex recordings suffered from the largest optode localization errors, with a median localization error of 27.4 mm between generic and subject-specific optodes, leading to large differences in parcel sensitivity. These results illustrate the importance of collecting subject-specific optode locations for all wearable NIRS experiments, in order to perform accurate group-level analysis using cortical parcellation.
Collapse
Affiliation(s)
- Sruthi Srinivasan
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Deepshikha Acharya
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Emilia Butters
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Liam Collins-Jones
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Flavia Mancini
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Gemma Bale
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Shoemaker LN, Milej D, Sajid A, Mistry J, Lawrence KS, Shoemaker JK. Characterization of cerebral macro- and microvascular hemodynamics during transient hypotension. J Appl Physiol (1985) 2023; 135:717-725. [PMID: 37560766 PMCID: PMC10642516 DOI: 10.1152/japplphysiol.00743.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Aleena Sajid
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Jigneshkumar Mistry
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Molina-Pérez A, Bernat JL, Dalle Ave A. Inconsistency between the Circulatory and the Brain Criteria of Death in the Uniform Determination of Death Act. THE JOURNAL OF MEDICINE AND PHILOSOPHY 2023; 48:422-433. [PMID: 37364165 PMCID: PMC10501178 DOI: 10.1093/jmp/jhad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
The Uniform Determination of Death Act (UDDA) provides that "an individual who has sustained either (1) irreversible cessation of circulatory and respiratory functions or (2) irreversible cessation of all functions of the entire brain, including the brain stem, is dead." We show that the UDDA contains two conflicting interpretations of the phrase "cessation of functions." By one interpretation, what matters for the determination of death is the cessation of spontaneous functions only, regardless of their generation by artificial means. By the other, what matters is the cessation of both spontaneous and artificially supported functions. Because each UDDA criterion uses a different interpretation, the law is conceptually inconsistent. A single consistent interpretation would lead to the conclusion that conscious individuals whose respiratory and circulatory functions are artificially supported are actually dead, or that individuals whose brain is entirely and irreversibly destroyed may be alive. We explore solutions to mitigate the inconsistency.
Collapse
Affiliation(s)
| | - James L Bernat
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Anne Dalle Ave
- The Kennedy Institute of Ethics, Georgetown University, Washington, USA
| |
Collapse
|
8
|
Kumar A, Ridha M, Claassen J. Prognosis of consciousness disorders in the intensive care unit. Presse Med 2023; 52:104180. [PMID: 37805070 PMCID: PMC10995112 DOI: 10.1016/j.lpm.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Assessments of consciousness are a critical part of prognostic algorithms for critically ill patients suffering from severe brain injuries. There have been significant advances in the field of coma science over the past two decades, providing clinicians with more advanced and precise tools for diagnosing and prognosticating disorders of consciousness (DoC). Advanced neuroimaging and electrophysiological techniques have vastly expanded our understanding of the biological mechanisms underlying consciousness, and have helped identify new states of consciousness. One of these, termed cognitive motor dissociation, can predict functional recovery at 1 year post brain injury, and is present in up to 15-20% of patients with DoC. In this chapter, we review several tools that are used to predict DoC, describing their strengths and limitations, from the neurological examination to advanced imaging and electrophysiologic techniques. We also describe multimodal assessment paradigms that can be used to identify covert consciousness and thus help recognize patients with the potential for future recovery and improve our prognostication practices.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Mohamed Ridha
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
9
|
Si J, Yang Y, Xu L, Xu T, Liu H, Zhang Y, Jing R, Li J, Wang D, Wu S, He J. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy. NEUROPHOTONICS 2023; 10:025003. [PMID: 37064779 PMCID: PMC10091901 DOI: 10.1117/1.nph.10.2.025003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/26/2023] [Indexed: 06/06/2023]
Abstract
SIGNIFICANCE Accurate evaluation of consciousness in patients with prolonged disorders of consciousness (DOC) is critical for designing therapeutic plans, determining rehabilitative services, and predicting prognosis. Effective ways for detecting consciousness in patients with DOC are still needed. AIM Evaluation of the residual awareness in patients with DOC and investigation of the spatiotemporal differences in the hemodynamic responses between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) groups using active command-driven motor imagery (MI) tasks. APPROACH In this study, functional near-infrared spectroscopy (fNIRS) was used to measure the changes of hemodynamic responses in 19 patients with DOC (9 MCS and 10 UWS) using active command-driven MI tasks. The characteristics of the hemodynamic responses were extracted to compare the differences between the MCS and UWS groups. Moreover, the correlations between the hemodynamic responses and the clinical behavioral evaluations were also studied. RESULTS The results showed significant differences in the spatiotemporal distribution of the hemodynamic responses between the MCS and UWS groups. For the patients with MCS, significant increases in task-evoked hemodynamic responses occurred during the "YES" questions of the command-driven MI tasks. Importantly, these changes were significantly correlated with their coma-recovery scale-revised (CRS-R) scores. However, for the patients with UWS, no significant changes of the hemodynamic responses were found. Additionally, the results did not show any statistical correlation between the hemodynamic responses and their CRS-R scores. CONCLUSIONS The fNIRS-based command-driven MI tasks can be used as a promising tool for detecting residual awareness in patients with DOC. We hope that the findings and the active paradigm used in this study will provide useful insights into the diagnosis, therapy, and prognosis of this challenging patient population.
Collapse
Affiliation(s)
- Juanning Si
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Yi Yang
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Long Xu
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| | - Tianshuai Xu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Hao Liu
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Yujin Zhang
- Chinese Academy of Sciences, Institute of Automation, Brainnetome Center, Beijing, China
- Chinese Academy of Sciences, Institute of Automation, National Laboratory of Pattern Recognition, Beijing, China
| | - Rixing Jing
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jinglian Li
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Dongdong Wang
- Sanhe Yanjiao Fuhe First Hospital, Department of Neurosurgery, Langfang, China
| | - Sijin Wu
- Beijing Information Science and Technology University, School of Instrumentation Science and Opto-Electronics Engineering, Beijing, China
| | - Jianghong He
- Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing, China
| |
Collapse
|
10
|
Cohen DJF, Li NC, Ioussoufovitch S, Diop M. Fast estimation of adult cerebral blood content and oxygenation with hyperspectral time-resolved near-infrared spectroscopy. Front Neurosci 2023; 17:1020151. [PMID: 36875650 PMCID: PMC9978211 DOI: 10.3389/fnins.2023.1020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) can measure tissue blood content and oxygenation; however, its use for adult neuromonitoring is challenging due to significant contamination from their thick extracerebral layers (ECL; primarily scalp and skull). This report presents a fast method for accurate estimation of adult cerebral blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data. A two-phase fitting method, based on a two-layer head model (ECL and brain), was developed. Phase 1 uses spectral constraints to accurately estimate the baseline blood content and oxygenation in both layers, which are then used by Phase 2 to correct for the ECL contamination of the late-arriving photons. The method was validated with in silico data from Monte-Carlo simulations of hyperspectral trNIRS in a realistic model of the adult head obtained from a high-resolution MRI. Phase 1 recovered cerebral blood oxygenation and total hemoglobin with an accuracy of 2.7 ± 2.5 and 2.8 ± 1.8%, respectively, with unknown ECL thickness, and 1.5 ± 1.4 and 1.7 ± 1.1% when the ECL thickness was known. Phase 2 recovered these parameters with an accuracy of 1.5 ± 1.5 and 3.1 ± 0.9%, respectively. Future work will include further validation in tissue-mimicking phantoms with various top layer thicknesses and in a pig model of the adult head before human applications.
Collapse
Affiliation(s)
| | - Natalie C Li
- School of Biomedical Engineering, Western University, London, ON, Canada
| | | | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,School of Biomedical Engineering, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
11
|
Wojtkiewicz S, Bejm K, Liebert A. Lock-in functional near-infrared spectroscopy for measurement of the haemodynamic brain response. BIOMEDICAL OPTICS EXPRESS 2022; 13:1869-1887. [PMID: 35519260 PMCID: PMC9045899 DOI: 10.1364/boe.448038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Here we show a method of the lock-in amplifying near-infrared signals originating within a human brain. It implies using two 90-degree rotated source-detector pairs fixed on a head surface. Both pairs have a joint sensitivity region located towards the brain. A direct application of the lock-in technique on both signals results in amplifying common frequency components, e.g. related to brain cortex stimulation and attenuating the rest, including all components not related to the stimulation: e.g. pulse, instrumental and biological noise or movement artefacts. This is a self-driven method as no prior assumptions are needed and the noise model is provided by the interfering signals themselves. We show the theory (classical modified Beer-Lambert law and diffuse optical tomography approaches), the algorithm implementation and tests on a finite element mathematical model and in-vivo on healthy volunteers during visual cortex stimulation. The proposed hardware and algorithm complexity suit the entire spectrum of (continuous wave, frequency domain, time-resolved) near-infrared spectroscopy systems featuring real-time, direct, robust and low-noise brain activity registration tool. As such, this can be of special interest in optical brain computer interfaces and high reliability/stability monitors of tissue oxygenation.
Collapse
Affiliation(s)
- Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| |
Collapse
|
12
|
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI. SENSORS 2022; 22:s22072575. [PMID: 35408190 PMCID: PMC9003428 DOI: 10.3390/s22072575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Brain-computer interface (BCI) systems based on functional near-infrared spectroscopy (fNIRS) have been used as a way of facilitating communication between the brain and peripheral devices. The BCI provides an option to improve the walking pattern of people with poor walking dysfunction, by applying a rehabilitation process. A state-of-the-art step-wise BCI system includes data acquisition, pre-processing, channel selection, feature extraction, and classification. In fNIRS-based BCI (fNIRS-BCI), channel selection plays a vital role in enhancing the classification accuracy of the BCI problem. In this study, the concentration of blood oxygenation (HbO) in a resting state and in a walking state was used to decode the walking activity and the resting state of the subject, using channel selection by Least Absolute Shrinkage and Selection Operator (LASSO) homotopy-based sparse representation classification. The fNIRS signals of nine subjects were collected from the left hemisphere of the primary motor cortex. The subjects performed the task of walking on a treadmill for 10 s, followed by a 20 s rest. Appropriate filters were applied to the collected signals to remove motion artifacts and physiological noises. LASSO homotopy-based sparse representation was used to select the most significant channels, and then classification was performed to identify walking and resting states. For comparison, the statistical spatial features of mean, peak, variance, and skewness, and their combination, were used for classification. The classification results after channel selection were then compared with the classification based on the extracted features. The classifiers used for both methods were linear discrimination analysis (LDA), support vector machine (SVM), and logistic regression (LR). The study found that LASSO homotopy-based sparse representation classification successfully discriminated between the walking and resting states, with a better average classification accuracy (p < 0.016) of 91.32%. This research provides a step forward in improving the classification accuracy of fNIRS-BCI systems. The proposed methodology may also be used for rehabilitation purposes, such as controlling wheelchairs and prostheses, as well as an active rehabilitation training technique for patients with motor dysfunction.
Collapse
|
13
|
Molina Pérez A. Brain death debates: from bioethics to epistemology. F1000Res 2022; 11:195. [PMID: 35844817 PMCID: PMC9253658 DOI: 10.12688/f1000research.109184.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 09/05/2024] Open
Abstract
50 years after its introduction, brain death remains controversial among scholars. The debates focus on one question: is brain death a good criterion for determining death? This question has been answered from various perspectives: medical, metaphysical, ethical, and legal or political. Most authors either defend the criterion as it is, propose some minor or major revisions, or advocate abandoning it and finding better solutions to the problems that brain death was intended to solve when it was introduced. In short, debates about brain death have been characterized by partisanship, for or against. Here I plead for a non-partisan approach that has been overlooked in the literature: the epistemological or philosophy of science approach. Some scholars claim that human death is a matter of fact, a biological phenomenon whose occurrence can be determined empirically, based on science. We should take this claim seriously, whether we agree with it or not. The question is: how do we know that human death is a scientific matter of fact? Taking the epistemological approach means, among other things, examining how the determination of human death became an object of scientific inquiry, exploring the nature of the brain death criterion itself, and analysing the meaning of its core concepts such as "irreversibility" and "functions".
Collapse
Affiliation(s)
- Alberto Molina Pérez
- Institute for Advanced Social Studies, Spanish National Research Council (IESA–CSIC), Cordoba, 14004, Spain
| |
Collapse
|
14
|
Molina Pérez A. Brain death debates: from bioethics to philosophy of science. F1000Res 2022; 11:195. [PMID: 35844817 PMCID: PMC9253658 DOI: 10.12688/f1000research.109184.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
50 years after its introduction, brain death remains controversial among scholars. The debates focus on one question: is brain death a good criterion for determining death? This question has been answered from various perspectives: medical, metaphysical, ethical, and legal or political. Most authors either defend the criterion as it is, propose some minor or major revisions, or advocate abandoning it and finding better solutions to the problems that brain death was intended to solve when it was introduced. Here I plead for a different approach that has been overlooked in the literature: the philosophy of science approach. Some scholars claim that human death is a matter of fact, a biological phenomenon whose occurrence can be determined empirically, based on science. We should take this claim seriously, whether we agree with it or not. The question is: how do we know that human death is a scientific matter of fact? Taking the philosophy of science approach means, among other things, examining how the determination of human death became an object of scientific inquiry, exploring the nature of the brain death criterion itself, and analysing the meaning of its core concepts such as "irreversibility" and "functions".
Collapse
Affiliation(s)
- Alberto Molina Pérez
- Institute for Advanced Social Studies, Spanish National Research Council (IESA–CSIC), Cordoba, 14004, Spain
| |
Collapse
|
15
|
Nagels-Coune L, Riecke L, Benitez-Andonegui A, Klinkhammer S, Goebel R, De Weerd P, Lührs M, Sorger B. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions. Front Hum Neurosci 2021; 15:784522. [PMID: 34899223 PMCID: PMC8656940 DOI: 10.3389/fnhum.2021.784522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Severely motor-disabled patients, such as those suffering from the so-called "locked-in" syndrome, cannot communicate naturally. They may benefit from brain-computer interfaces (BCIs) exploiting brain signals for communication and therewith circumventing the muscular system. One BCI technique that has gained attention recently is functional near-infrared spectroscopy (fNIRS). Typically, fNIRS-based BCIs allow for brain-based communication via voluntarily modulation of brain activity through mental task performance guided by visual or auditory instructions. While the development of fNIRS-BCIs has made great progress, the reliability of fNIRS-BCIs across time and environments has rarely been assessed. In the present fNIRS-BCI study, we tested six healthy participants across three consecutive days using a straightforward four-choice fNIRS-BCI communication paradigm that allows answer encoding based on instructions using various sensory modalities. To encode an answer, participants performed a motor imagery task (mental drawing) in one out of four time periods. Answer encoding was guided by either the visual, auditory, or tactile sensory modality. Two participants were tested outside the laboratory in a cafeteria. Answers were decoded from the time course of the most-informative fNIRS channel-by-chromophore combination. Across the three testing days, we obtained mean single- and multi-trial (joint analysis of four consecutive trials) accuracies of 62.5 and 85.19%, respectively. Obtained multi-trial accuracies were 86.11% for visual, 80.56% for auditory, and 88.89% for tactile sensory encoding. The two participants that used the fNIRS-BCI in a cafeteria obtained the best single- (72.22 and 77.78%) and multi-trial accuracies (100 and 94.44%). Communication was reliable over the three recording sessions with multi-trial accuracies of 86.11% on day 1, 86.11% on day 2, and 83.33% on day 3. To gauge the trade-off between number of optodes and decoding accuracy, averaging across two and three promising fNIRS channels was compared to the one-channel approach. Multi-trial accuracy increased from 85.19% (one-channel approach) to 91.67% (two-/three-channel approach). In sum, the presented fNIRS-BCI yielded robust decoding results using three alternative sensory encoding modalities. Further, fNIRS-BCI communication was stable over the course of three consecutive days, even in a natural (social) environment. Therewith, the developed fNIRS-BCI demonstrated high flexibility, reliability and robustness, crucial requirements for future clinical applicability.
Collapse
Affiliation(s)
- Laurien Nagels-Coune
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Zorggroep Sint-Kamillus, Bierbeek, Belgium
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
| | - Amaia Benitez-Andonegui
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- MEG Core Facility, National Institutes of Mental Health, Bethesda, MD, United States
| | - Simona Klinkhammer
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Brain Innovation B.V., Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | | | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Maastricht Brain Imaging Center, Maastricht, Netherlands
| |
Collapse
|
16
|
Sanz LRD, Thibaut A, Edlow BL, Laureys S, Gosseries O. Update on neuroimaging in disorders of consciousness. Curr Opin Neurol 2021; 34:488-496. [PMID: 34054109 PMCID: PMC8938964 DOI: 10.1097/wco.0000000000000951] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging has acquired a prominent place in the assessment of disorders of consciousness (DoC). Rapidly evolving technologies combined with state-of-the-art data analyses open new horizons to probe brain activity, but selecting appropriate imaging modalities from the plethora of available techniques can be challenging for clinicians. This update reviews selected advances in neuroimaging that demonstrate clinical relevance and translational potential in the assessment of severely brain-injured patients with DoC. RECENT FINDINGS Magnetic resonance imaging and high-density electroencephalography provide measurements of brain connectivity between functional networks, assessments of language function, detection of covert consciousness, and prognostic markers of recovery. Positron emission tomography can identify patients with preserved brain metabolism despite clinical unresponsiveness and can measure glucose consumption rates in targeted brain regions. Transcranial magnetic stimulation and near-infrared spectroscopy are noninvasive and practical tools with promising clinical applications. SUMMARY Each neuroimaging technique conveys advantages and pitfalls to assess consciousness. We recommend a multimodal approach in which complementary techniques provide diagnostic and prognostic information about brain function. Patients demonstrating neuroimaging evidence of covert consciousness may benefit from early adapted rehabilitation. Translating methodological advances to clinical care will require the implementation of recently published international guidelines and the integration of neuroimaging techniques into patient-centered decision-making algorithms.
Collapse
Affiliation(s)
- Leandro R. D. Sanz
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
17
|
Li M, Yang Y, Zhang Y, Gao Y, Jing R, Dang Y, Chen X, He J, Si J. Detecting Residual Awareness in Patients With Prolonged Disorders of Consciousness: An fNIRS Study. Front Neurol 2021; 12:618055. [PMID: 34393964 PMCID: PMC8355369 DOI: 10.3389/fneur.2021.618055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in neuroimaging technologies have provided insights into detecting residual consciousness and assessing cognitive abilities in patients with disorders of consciousness (DOC). Functional near-infrared spectroscopy (fNIRS) is non-invasive and portable and can be used for longitudinal bedside monitoring, making it uniquely suited for evaluating brain function in patients with DOC at appropriate spatiotemporal resolutions. In this pilot study, an active command-driven motor imagery (MI) paradigm based on fNIRS was used to detect residual consciousness in patients with prolonged DOC. A support vector machine (SVM) classifier was used to classify yes-or-no responses. The results showed that relatively reliable responses were detected from three out of five patients in a minimally consciousness state (MCS). One of the patients answered all the questions accurately when assessed according to this method. This study confirmed the feasibility of using portable fNIRS technology to detect residual cognitive ability in patients with prolonged DOC by active command-driven motor imagery. We hope to detect the exact level of consciousness in DOC patients who may have a higher level of consciousness.
Collapse
Affiliation(s)
- Meng Li
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujin Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhang Gao
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Rixing Jing
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yuanyuan Dang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
18
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
19
|
Devezas MÂM. Shedding light on neuroscience: Two decades of functional near-infrared spectroscopy applications and advances from a bibliometric perspective. J Neuroimaging 2021; 31:641-655. [PMID: 34002425 DOI: 10.1111/jon.12877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical brain-imaging technique that detects changes in hemoglobin concentration in the cerebral cortex. fNIRS devices are safe, silent, portable, robust against motion artifacts, and have good temporal resolution. fNIRS is reliable and trustworthy, as well as an alternative and a complement to other brain-imaging modalities, such as electroencephalography or functional magnetic resonance imaging. Given these advantages, fNIRS has become a well-established tool for neuroscience research, used not only for healthy cortical activity but also as a biomarker during clinical assessment in individuals with schizophrenia, major depressive disorder, bipolar disease, epilepsy, Alzheimer's disease, vascular dementia, and cancer screening. Owing to its wide applicability, studies on fNIRS have increased exponentially over the last two decades. In this study, scientific publications indexed in the Web of Science databases were collected and a bibliometric-type methodology was developed. For this purpose, a comprehensive science mapping analysis, including top-ranked authors, journals, institutions, countries, and co-occurring keywords network, was conducted. From a total of 2310 eligible documents, 6028 authors and 531 journals published fNIRS-related papers, Fallgatter published the highest number of articles and was the most cited author. University of Tübingen in Germany has produced the most trending papers since 2000. USA was the most prolific country with the most active institutions, followed by China, Japan, Germany, and South Korea. The results also revealed global trends in emerging areas of research, such as neurodevelopment, aging, and cognitive and emotional assessment.
Collapse
|
20
|
Milej D, Abdalmalak A, Rajaram A, Jhajj A, Owen AM, St. Lawrence K. Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:056003. [PMCID: PMC8130006 DOI: 10.1117/1.jbo.26.5.056003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 06/14/2023]
Abstract
Significance: Despite its advantages in terms of safety, low cost, and portability, functional near-infrared spectroscopy applications can be challenging due to substantial signal contamination from hemodynamics in the extracerebral layer (ECL). Time-resolved near-infrared spectroscopy (tr NIRS) can improve sensitivity to brain activity but contamination from the ECL remains an issue. This study demonstrates how brain signal isolation can be further improved by applying regression analysis to tr data acquired at a single source–detector distance. Aim: To investigate if regression analysis can be applied to single-channel trNIRS data to further isolate the brain and reduce signal contamination from the ECL. Approach: Appropriate regressors for trNIRS were selected based on simulations, and performance was evaluated by applying the regression technique to oxygenation responses recording during hypercapnia and functional activation. Results: Compared to current methods of enhancing depth sensitivity for trNIRS (i.e., higher statistical moments and late gates), incorporating regression analysis using a signal sensitive to the ECL significantly improved the extraction of cerebral oxygenation signals. In addition, this study demonstrated that regression could be applied to trNIRS data from a single detector using the early arriving photons to capture hemodynamic changes in the ECL. Conclusion: Applying regression analysis to trNIRS metrics with different depth sensitivities improves the characterization of cerebral oxygenation signals.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Amandeep Jhajj
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Adrian M. Owen
- Western University, Brain and Mind Institute, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
21
|
Xu C, Zou J, He F, Wen X, Li J, Gao J, Ding N, Luo B. Neural Tracking of Sound Rhythms Correlates With Diagnosis, Severity, and Prognosis of Disorders of Consciousness. Front Neurosci 2021; 15:646543. [PMID: 33994924 PMCID: PMC8113690 DOI: 10.3389/fnins.2021.646543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/19/2021] [Indexed: 12/03/2022] Open
Abstract
Effective diagnosis and prognosis of patients with disorders of consciousness (DOC) provides a basis for family counseling, decision-making, and the design of rehabilitation programs. However, effective and objective bedside evaluation is a challenging problem. In this study, we explored electroencephalography (EEG) response tracking sound rhythms as potential neural markers for DOC evaluation. We analyzed the responses to natural speech and tones modulated at 2 and 41 Hz. At the population level, patients with positive outcomes (DOC-P) showed higher cortical synchronization to modulated tones at 41 Hz compared with patients with negative outcomes (DOC-N). At the individual level, phase coherence to modulated tones at 41 Hz was significantly correlated with Coma Recovery Scale-Revised (CRS-R) and Glasgow Outcome Scale-Extended (GOS-E) scores. Furthermore, SVM classifiers, trained using phase coherences in higher frequency bands or combination of the low frequency aSSR and speech tracking responses, performed very well in diagnosis and prognosis of DOC. These findings show that EEG response to auditory rhythms is a potential tool for diagnosis, severity, and prognosis of DOC.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiajie Zou
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory Zhejiang Lab, Hangzhou, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinrui Wen
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingqi Li
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Jian Gao
- Department of Rehabilitation, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory Zhejiang Lab, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Schmitz S. TechnoBrainBodies-in-Cultures: An Intersectional Case. FRONTIERS IN SOCIOLOGY 2021; 6:651486. [PMID: 33987221 PMCID: PMC8112819 DOI: 10.3389/fsoc.2021.651486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The cyborgization of brainbodies with computer hardware and software today ranges in scope from the realization of Brain-Computer Interfaces (BCIs) to visions of mind upload to silicon, the latter being targeted toward a transhuman future. Refining posthumanist concepts to formulate a posthumanities perspective, and contrasting those approaches with transhumanist trajectories, I explore the intersectional dimension of realizations and visions of neuro-technological developments, which I name TechnoBrainBodies-in-Cultures. In an intersectional analysis, I investigate the embedding and legitimation of transhumanist visions brought about by neuroscientific research and neuro-technological development based on a concept of modern neurobiological determinism. The conjoined trajectories of BCI research and development and transhumanist visions perpetuate the inscription of intersectional norms, with the concomitant danger of producing discriminatory effects. This culminates in normative capacity being seen as a conflation of the abled, successful, white masculinized techno-brain with competition. My deeper analysis, however, also enables displacements within recent BCI research and development to be characterized: from ''thought-translation" to affective conditioning and from controllability to obstinacy within the BCI, going so far as to open the closed loop. These realizations challenge notions about the BCI's actor status and agency and foster questions about shifts in the corresponding subject-object relations. Based on these analyses, I look at the effects of neuro-technological and transhumanist governmentality on the question of whose lives are to be improved and whose lives should be excluded from these developments. Within the framework of political feminist materialisms, I combine the concept of posthumanities with my concept of TechnoBrainBodies-in-Cultures to envision and discuss a material-discursive strategy, encompassing dimensions of affect, sociality, resistance, compassion, cultural diversity, ethnic diversity, multiple sexes/sexualities, aging, dis/abilities-in short, all of this "intersectional stuff"-as well as obstinate techno-brain agencies and contumacies foreseen in these cyborgian futures.
Collapse
|
23
|
Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6614112. [PMID: 33688336 PMCID: PMC7920718 DOI: 10.1155/2021/6614112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Objectives Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is expected to provide an optional active rehabilitation training method for patients with walking dysfunction, which will affect their quality of life seriously. Sparse representation classification (SRC) oxyhemoglobin (HbO) concentration was used to decode walking imagery and idle state to construct fNIRS-BCI based on walking imagery. Methods 15 subjects were recruited and fNIRS signals were collected during walking imagery and idle state. Firstly, band-pass filtering and baseline drift correction for HbO signal were carried out, and then the mean value, peak value, and root mean square (RMS) of HbO and their combinations were extracted as classification features; SRC was used to identify the extracted features and the result of SRC was compared with those of support vector machine (SVM), K-Nearest Neighbor (KNN), linear discriminant analysis (LDA), and logistic regression (LR). Results The experimental results showed that the average classification accuracy for walking imagery and idle state by SRC using three features combination was 91.55±3.30%, which was significantly higher than those of SVM, KNN, LDA, and LR (86.37±4.42%, 85.65±5.01%, 86.43±4.41%, and 76.14±5.32%, respectively), and the classification accuracy of other combined features was higher than that of single feature. Conclusions The study showed that introducing SRC into fNIRS-BCI can effectively identify walking imagery and idle state. It also showed that different time windows for feature extraction have an impact on the classification results, and the time window of 2–8 s achieved a better classification accuracy (94.33±2.60%) than other time windows. Significance. The study was expected to provide a new and optional active rehabilitation training method for patients with walking dysfunction. In addition, the experiment was also a rare study based on fNIRS-BCI using SRC to decode walking imagery and idle state.
Collapse
|
24
|
Soekadar SR, Kohl SH, Mihara M, von Lühmann A. Optical brain imaging and its application to neurofeedback. Neuroimage Clin 2021; 30:102577. [PMID: 33545580 PMCID: PMC7868728 DOI: 10.1016/j.nicl.2021.102577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Besides passive recording of brain electric or magnetic activity, also non-ionizing electromagnetic or optical radiation can be used for real-time brain imaging. Here, changes in the radiation's absorption or scattering allow for continuous in vivo assessment of regional neurometabolic and neurovascular activity. Besides magnetic resonance imaging (MRI), over the last years, also functional near-infrared spectroscopy (fNIRS) was successfully established in real-time metabolic brain imaging. In contrast to MRI, fNIRS is portable and can be applied at bedside or in everyday life environments, e.g., to restore communication and movement. Here we provide a comprehensive overview of the history and state-of-the-art of real-time optical brain imaging with a special emphasis on its clinical use towards neurofeedback and brain-computer interface (BCI) applications. Besides pointing to the most critical challenges in clinical use, also novel approaches that combine real-time optical neuroimaging with other recording modalities (e.g. electro- or magnetoencephalography) are described, and their use in the context of neuroergonomics, neuroenhancement or neuroadaptive systems discussed.
Collapse
Affiliation(s)
- Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Dept. of Psychiatry and Psychotherapy, Neuroscience Research Center, Campus Charité Mitte (CCM), Charité - University Medicine of Berlin, Berlin, Germany.
| | - Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany; Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany
| | - Masahito Mihara
- Department of Neurology, Kawasaki Medical School, Kurashiki-City, Okayama, Japan
| | - Alexander von Lühmann
- Machine Learning Department, Computer Science, Technische Universität Berlin, Berlin, Germany; Neurophotonics Center, Biomedical Engineering, Boston University, Boston, USA
| |
Collapse
|
25
|
Hernandez-Martin E, Marcano F, Modroño C, Janssen N, González-Mora JL. Diffuse optical tomography to measure functional changes during motor tasks: a motor imagery study. BIOMEDICAL OPTICS EXPRESS 2020; 11:6049-6067. [PMID: 33282474 PMCID: PMC7687968 DOI: 10.1364/boe.399907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
The present work shows the spatial reliability of the diffuse optical tomography (DOT) system in a group of healthy subjects during a motor imagery task. Prior to imagery task performance, the subjects executed a motor task based on the finger to thumb opposition for motor training, and to corroborate the DOT spatial localization during the motor execution. DOT technology and data treatment allows us to distinguish oxy- and deoxyhemoglobin at the cerebral gyri level unlike the cerebral activations provided by fMRI series that were processed using different approaches. Here we show the DOT reliability showing functional activations at the cerebral gyri level during motor execution and motor imagery, which provide subtler cerebral activations than the motor execution. These results will allow the use of the DOT system as a monitoring device in a brain computer interface.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
| | - Francisco Marcano
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Cristian Modroño
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Niels Janssen
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
- Psychology Department, Universidad de La Laguna 38071, Spain
| | - Jose Luis González-Mora
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| |
Collapse
|
26
|
Decoding visual information from high-density diffuse optical tomography neuroimaging data. Neuroimage 2020; 226:117516. [PMID: 33137479 PMCID: PMC8006181 DOI: 10.1016/j.neuroimage.2020.117516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Neural decoding could be useful in many ways, from serving as a neuroscience research tool to providing a means of augmented communication for patients with neurological conditions. However, applications of decoding are currently constrained by the limitations of traditional neuroimaging modalities. Electrocorticography requires invasive neurosurgery, magnetic resonance imaging (MRI) is too cumbersome for uses like daily communication, and alternatives like functional near-infrared spectroscopy (fNIRS) offer poor image quality. High-density diffuse optical tomography (HD-DOT) is an emerging modality that uses denser optode arrays than fNIRS to combine logistical advantages of optical neuroimaging with enhanced image quality. Despite the resulting promise of HD-DOT for facilitating field applications of neuroimaging, decoding of brain activity as measured by HD-DOT has yet to be evaluated. Objective: To assess the feasibility and performance of decoding with HD-DOT in visual cortex. Methods and Results: To establish the feasibility of decoding at the single-trial level with HD-DOT, a template matching strategy was used to decode visual stimulus position. A receiver operating characteristic (ROC) analysis was used to quantify the sensitivity, specificity, and reproducibility of binary visual decoding. Mean areas under the curve (AUCs) greater than 0.97 across 10 imaging sessions in a highly sampled participant were observed. ROC analyses of decoding across 5 participants established both reproducibility in multiple individuals and the feasibility of inter-individual decoding (mean AUCs > 0.7), although decoding performance varied between individuals. Phase-encoded checkerboard stimuli were used to assess more complex, non-binary decoding with HD-DOT. Across 3 highly sampled participants, the phase of a 60° wide checkerboard wedge rotating 10° per second through 360° was decoded with a within-participant error of 25.8±24.7°. Decoding between participants was also feasible based on permutation-based significance testing. Conclusions: Visual stimulus information can be decoded accurately, reproducibly, and across a range of detail (for both binary and non-binary outcomes) at the single-trial level (without needing to block-average test data) using HD-DOT data. These results lay the foundation for future studies of more complex decoding with HD-DOT and applications in clinical populations.
Collapse
|
27
|
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St. Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4571-4585. [PMID: 32923065 PMCID: PMC7449704 DOI: 10.1364/boe.392113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.
Collapse
Affiliation(s)
- Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Marwan Shahid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|