1
|
Yi M, Ji X, Chen C, Gao Z, Zhang S. Functional characterization of growth hormone releasing hormone and its receptor in amphioxus with implication for origin of hypothalamic-pituitary axis. Gen Comp Endocrinol 2024; 355:114560. [PMID: 38806133 DOI: 10.1016/j.ygcen.2024.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Xiaohan Ji
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chaoyi Chen
- University of Science and Technology of China, China
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266237 Qingdao, China.
| |
Collapse
|
2
|
Yavas E, Fanselow MS. Defensive behaviors and c-fos expression in the midbrain. Integr Zool 2024. [PMID: 39218997 DOI: 10.1111/1749-4877.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pavlovian fear conditioning serves as a valuable method for investigating species-specific defensive reactions (SSDRs) such as freezing and flight responses. The present study examines the role of white noise under different experimental conditions. Given that white noise has been shown to elicit both conditional (associative) and unconditional (nonassociative) defensive responses, we compared the response to noise following three separate training conditions: shock-only, white noise paired with shock, and context-only. Results showed that baseline freezing level significantly changed across groups: Both the shock-only group and the white noise paired with shock group froze more than the context-only group on the test day. White noise evoked differential freezing between groups on day 2: The shock-only group froze more than the context-only group although both groups were never exposed to white noise during training. Further, an activity burst triggered by white noise was similar for the shock-only and white noise paired with shock groups during testing, although shock-only group was never exposed to white noise stimuli during training. This aligned with c-fos data, indicating similar c-fos activity levels across different periaqueductal gray (PAG) regions for both shock-only and white noise paired with shock groups. However, the driving force behind c-fos activation-whether freezing, activity burst, or a combination of both-remains uncertain, warranting further analysis to explore specific correlations between SSDRs and c-fos activity within the PAG and related brain areas.
Collapse
Affiliation(s)
- Ersin Yavas
- Department of Psychology, Bartın University, Bartın, Turkey
| | - Michael S Fanselow
- Staglin Center for Brain and Behavioral Health, Department of Psychology, UCLA, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Pirger Z, Urbán P, Gálik B, Kiss B, Tapodi A, Schmidt J, Tóth GK, Koene JM, Kemenes G, Reglődi D, Kiss T, Fodor I. Same same, but different: exploring the enigmatic role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in invertebrate physiology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024:10.1007/s00359-024-01706-5. [PMID: 38940930 DOI: 10.1007/s00359-024-01706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Evidence has been accumulating that elements of the vertebrate pituitary adenylate cyclase-activating polypeptide (PACAP) system are missing in non-chordate genomes, which is at odds with the partial sequence-, immunohistochemical-, and physiological data in the literature. Multilevel experiments were performed on the great pond snail (Lymnaea stagnalis) to explore the role of PACAP in invertebrates. Screening of neuronal transcriptome and genome data did not reveal homologs to the elements of vertebrate PACAP system. Despite this, immunohistochemical investigations with an anti-human PAC1 receptor antibody yielded a positive signal in the neuronal elements in the heart. Although Western blotting of proteins extracted from the nervous system found a relevant band for PACAP-38, immunoprecipitation and mass spectrometric analyses revealed no corresponding peptide fragments. Similarly to the effects reported in vertebrates, PACAP-38 significantly increased cAMP synthesis in the heart and had a positive ionotropic effect on heart preparations. Moreover, it significantly modulated the effects of serotonin and acetylcholine. Homologs to members of Cluster B receptors, which have shared common evolutionary origin with the vertebrate PACAP receptors, PTHRs, and GCGRs, were identified and shown not to be expressed in the heart, which does not support a potential role in the mediation of PACAP-induced effects. Our findings support the notion that the PACAP system emerged after the protostome-deuterostome divergence. Using antibodies against vertebrate proteins is again highlighted to have little/no value in invertebrate studies. The physiological effects of vertebrate PACAP peptides in protostomes, no matter how similar they are to those in vertebrates, should be considered non-specific.
Collapse
Affiliation(s)
- Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Bence Gálik
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Bence Kiss
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Antal Tapodi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Joris M Koene
- Ecology & Evolution, Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Dóra Reglődi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Tibor Kiss
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, 8237, Hungary.
| |
Collapse
|
4
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
5
|
Meireles FATP, Antunes D, Temerozo JR, Bou-Habib DC, Caffarena ER. PACAP key interactions with PAC1, VPAC1, and VPAC2 identified by molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:3128-3144. [PMID: 37216328 DOI: 10.1080/07391102.2023.2213349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) belongs to the glucagon/secretin family. PACAP interacts with the pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) and vasoactive intestinal peptide receptors 1 and 2 (VPAC1 and VPAC2), exhibiting functions in the immune, endocrine, and nervous systems. This peptide is upregulated in numerous instances of brain injury, acting as a neuroprotective agent. It can also suppress HIV-1 and SARS-CoV-2 viral replication in vitro. This work aimed to identify, in each peptide-receptor system, the most relevant residues for complex stability and interaction energy communication via Molecular Dynamics (MD), Free Energy calculations, and Protein-energy networks, thus revealing in detail the underlying mechanisms of activation of these receptors. Hydrogen bond formation, interaction energies, and computational alanine scanning between PACAP and its receptors showed that His1, Asp3, Arg12, Arg14, and Lys15 are crucial to the peptide's stability. Furthermore, several PACAP interactions with structurally conserved positions deemed necessary in GPCR B1 activation, including Arg2.60, Lys2.67, and Glu7.42, were significant for the peptide's stability within the receptors. According to the protein-energy network, the connection between Asp3 of PACAP and the receptors' conserved Arg2.60 represents a critical energy communication hub in all complexes. Additionally, the ECDs of the receptors were also found to function as energy communication hubs for PACAP. Although the overall binding mode of PACAP in the three receptors was found to be highly conserved, Arg12 and Tyr13 of PACAP were more prominent in complex with PAC1, while Ser2 of PACAP was with VPAC2. The detailed analyses performed in this work pave the way for using PACAP and its receptors as therapeutic targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deborah Antunes
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Ernesto Raul Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
8
|
Denes V, Lukats A, Szarka G, Subicz R, Mester A, Kovacs-Valasek A, Geck P, Berta G, Herczeg R, Postyeni E, Gyenesei A, Gabriel R. Long-term Effects of the pituitary-adenylate cyclase-activating Polypeptide (PACAP38) in the Adult Mouse Retina: Microglial Activation and Induction of Neural Proliferation. Neurochem Res 2023; 48:3430-3446. [PMID: 37466802 PMCID: PMC10514177 DOI: 10.1007/s11064-023-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary.
| | - Akos Lukats
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Gergely Szarka
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Rovena Subicz
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Adrienn Mester
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Andrea Kovacs-Valasek
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Peter Geck
- Department of Medical Education, School of Medicine, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Robert Herczeg
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Etelka Postyeni
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| | - Attila Gyenesei
- János Szentágothai Research Centre, Bioinformatics Research Group, University of Pécs, 20 Ifjúság str, Pécs, H-7624, Hungary
| | - Robert Gabriel
- Department of Neurobiology, University of Pécs, 6 Ifjúság str, Pécs, H-7624, Hungary
| |
Collapse
|
9
|
Tóth D, Simon G, Reglődi D. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Sudden Infant Death Syndrome: A Potential Model for Investigation. Int J Mol Sci 2023; 24:15063. [PMID: 37894743 PMCID: PMC10606572 DOI: 10.3390/ijms242015063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Sudden infant death syndrome (SIDS) represents a significant cause of post-neonatal mortality, yet its underlying mechanisms remain unclear. The triple-risk model of SIDS proposes that intrinsic vulnerability, exogenous triggers, and a critical developmental period are required for SIDS to occur. Although case-control studies have identified potential risk factors, no in vivo model fully reflects the complexities observed in human studies. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide with diverse physiological functions, including metabolic and thermal regulation, cardiovascular adaptation, breathing control, stress responses, sleep-wake regulation and immunohomeostasis, has been subject to early animal studies, which revealed that the absence of PACAP or its specific receptor (PAC1 receptor: PAC1R) correlates with increased neonatal mortality similar to the susceptible period for SIDS in humans. Recent human investigations have further implicated PACAP and PAC1R genes as plausible contributors to the pathomechanism of SIDS. This mini-review comprehensively synthesizes all PACAP-related research from the perspective of SIDS and proposes that PACAP deficiency might offer a promising avenue for studying SIDS.
Collapse
Affiliation(s)
- Dénes Tóth
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Gábor Simon
- Department of Forensic Medicine, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| | - Dóra Reglődi
- Department of Anatomy, HUN-REG-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary;
| |
Collapse
|
10
|
Velázquez J, Rodríguez-Cornejo T, Rodríguez-Ramos T, Pérez-Rodríguez G, Rivera L, Campbell JH, Al-Hussinee L, Carpio Y, Estrada MP, Dixon B. New Evidence for the Role of Pituitary Adenylate Cyclase-Activating Polypeptide as an Antimicrobial Peptide in Teleost Fish. Antibiotics (Basel) 2023; 12:1484. [PMID: 37887185 PMCID: PMC10604671 DOI: 10.3390/antibiotics12101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed and conserved across species. We have previously shown that in teleost fish, PACAP not only possesses direct antimicrobial properties but also immunomodulatory effects against the bacterial pathogens Flavobacterium psychrophilum and Pseudomonas aeruginosa using in vitro and in vivo experiments. These previous results suggest PACAP can be used as an alternative to antibiotics to prevent and/or treat bacterial infections in the aquaculture industry. To accomplish this goal, more studies are needed to better understand the effect of PACAP on pathogens affecting fish in live infections. In the present study, the transcripts PACAP, PRP/PACAP, and VPAC2 receptor were examined in rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri, which exhibited an increase in their expression in the spleen when compared to healthy fish. Synthetic Clarias gariepinus PACAP-38 has direct antimicrobial activity on Y. ruckeri and inhibits up to 60% of the bacterial growth when the peptide is at concentrations between 50 and 100 µM in TSB. The growth inhibition increased up to 90% in the presence of 12.5 µM of PACAP-38 when salt-free LB broth was used instead of TSB. It was also found to inhibit Y. ruckeri growth in a dose-dependent manner when the rainbow trout monocyte/macrophage-like cell line (RTS11) was pre-treated with lower concentrations of the peptide (0.02 and 0.1 µM) before going through infection. Differential gene expression was analyzed in this in vitro model. Overall, the results revealed new evidence to support the role of PACAP as an antimicrobial and immunomodulatory peptide treatment in teleosts.
Collapse
Affiliation(s)
- Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Tania Rodríguez-Cornejo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Geysi Pérez-Rodríguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Laura Rivera
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana 10600, Cuba; (J.V.); (G.P.-R.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1, Canada; (T.R.-C.); (T.R.-R.); (L.R.); (J.H.C.); (L.A.-H.)
| |
Collapse
|
11
|
Beech EL, Riddell N, Murphy MJ, Crewther SG. Sex and stress hormone dysregulation as clinical manifestations of hypothalamic function in migraine disorder: A meta-analysis. Eur J Neurosci 2023; 58:3150-3171. [PMID: 37452646 DOI: 10.1111/ejn.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Migraine is a leading cause of disability in young adults. It occurs more frequently in females, often comorbidly with stress disorders, suggesting an association with hypothalamic sex and stress hormonal function and a likely interaction with autonomic nervous system activation. Thus, this study aimed to meta-analyse current literature pertaining to female and male sex hormones (estrogen, progesterone and testosterone concentration), hypothalamic-pituitary-adrenal axis (HPA axis) cortisol responses and heart rate variability (HRV) in migraineurs and controls aged 13-65 years. A systematic search of MEDLINE, Embase, PsycINFO, PubMed, CINAHL and Web of Science databases on 29/08/2022 identified 29 studies for meta-analysis (encompassing 719 migraineur and 592 control participants) that met inclusion and NHLBI risk of bias criteria. Results demonstrated that estrogen concentrations of female migraineurs were reduced (g = -.60, 95% CI [-.91, -.29], p < .001) in the luteal phase of the menstrual cycle, compared to controls. No differences were found in progesterone levels overall in female migraineurs, nor in testosterone levels in male migraineurs compared to controls. Further, early diurnal cortisol concentrations were elevated (g = .32, 95% CI [.00, .63], p = .036) in female and male migraineurs compared to controls, though no differences were found in HRV of female or male migraineurs compared to controls. These findings of dysregulation of estrogen in females and cortisol dysregulation in female and male migraineurs indicate perturbed hypothalamic function and highlight the association of migraine with stress and the need for further rigorous investigation of hypothalamic neuroendocrine functions in migraineurs of both sexes.
Collapse
Affiliation(s)
- Erin L Beech
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Australia
| | - Nina Riddell
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Australia
| | - Melanie J Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Australia
| | - Sheila G Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, Australia
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
12
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
13
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
14
|
On JSW, Su L, Shen H, Arokiaraj AWR, Cardoso JCR, Li G, Chow BKC. PACAP/GCGa Is an Important Modulator of the Amphioxus CNS-Hatschek's Pit Axis, the Homolog of the Vertebrate Hypothalamic-Pituitary Axis in the Basal Chordates. Front Endocrinol (Lausanne) 2022; 13:850040. [PMID: 35498398 PMCID: PMC9049855 DOI: 10.3389/fendo.2022.850040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Hatschek's pit in the cephalochordate amphioxus, an invertebrate deuterostome basal to chordates is suggested to be the functional homolog structure of the vertebrate adenohypophysis based on anatomy and expression of homologous neuroendocrine genes. However, the endocrine potential of the cephalochordate Hatschek's pit remains to be demonstrated as well as the physiological actions of the secreted neuropeptides. In this study, we have explored the distribution and characterize the potential function of the amphioxus PACAP/GCG precursor, which is the ortholog of the hypothalamic PACAP neuropeptide in vertebrates. In amphioxi, two PACAP/GCG transcripts PACAP/GCGa and PACAP/GCGbc that are alternative isoforms of a single gene with different peptide coding potentials were isolated. Immunofluorescence staining detected their expression around the nucleus of Rohde, supporting that this structure may be homologous of the neurosecretory cells of the vertebrate hypothalamus where abundant PACAP is found. PACAP/GCGa was also detected in the infundibulum-like downgrowth approaching the Hatschek's pit, indicating diffusion of PACAP/GCGa from the CNS to the pit via the infundibulum-like downgrowth. Under a high salinity challenge, PACAP/GCGa was upregulated in amphioxi head and PACAP/GCGa treatment increased expression of GHl in Hatschek's pit in a dose-dependent manner, suggesting that PACAP/GCGa may be involved in the regulation of GHl via hypothalamic-pituitary (HP)-like axis similar as in the vertebrates. Our results support that the amphioxus Hatschek's pit is likely to be the functional homolog of pituitary gland in vertebrates.
Collapse
Affiliation(s)
- Jason S. W. On
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Shen
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Billy K. C. Chow, ; Guang Li,
| |
Collapse
|
15
|
Fang Y, Shi H, Huang L, Ren R, Lenahan C, Xiao J, Liu Y, Liu R, Sanghavi R, Li C, Chen S, Tang J, Yu J, Zhang JH, Zhang J. Pituitary adenylate cyclase-activating polypeptide attenuates mitochondria-mediated oxidative stress and neuronal apoptosis after subarachnoid hemorrhage in rats. Free Radic Biol Med 2021; 174:236-248. [PMID: 34400297 PMCID: PMC8985554 DOI: 10.1016/j.freeradbiomed.2021.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria-mediated oxidative stress and neuronal apoptosis play an important role in early brain injury following subarachnoid hemorrhage (SAH). Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to reduce oxidative stress and cellular apoptosis by maintaining mitochondrial function under stress. The objective of this study is to investigate the effects of PACAP on mitochondria dysfunction - induced oxidative stress and neuronal apoptosis in both vivo and vitro models of SAH. PACAP Knockout CRISPR and exogenous PACAP38 were used to verify the neuroprotective effects of PACAP in rats after endovascular perforation - induced SAH as well as in primary neuron culture after hemoglobin stimulation. The results showed that endogenous PACAP knockout aggravated mitochondria dysfunction - mediated ATP reduction, reactive oxygen species accumulation and neuronal apoptosis in ipsilateral hemisphere at 24 h after SAH in rats. The exogenous PACAP38 treatment provided both short- and long-term neurological benefits by attenuating mitochondria - mediated oxidative stress and neuronal apoptosis after SAH in rats. Consistently, the exogenous PACAP38 treatment presented similar neuroprotection in the primary neuron culture after hemoglobin stimulation. Pharmacological inhibition of adenylyl cyclase (AC) or extracellular signal-regulated kinase (ERK) partly abolished the anti-oxidative stress and anti-apoptotic effects provided by PACAP38 treatment after the experimental SAH both in vivo and in vitro, suggesting the involvement of the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and ERK pathway. Collectively, PACAP38 may serve as a promising treatment strategy for alleviating early brain injury after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jie Xiao
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Rui Liu
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Rajvee Sanghavi
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Chenguang Li
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int J Mol Sci 2021; 22:ijms22168682. [PMID: 34445388 PMCID: PMC8395522 DOI: 10.3390/ijms22168682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide widely distributed in the central nervous system (CNS) and many peripheral organs, such as the digestive tract, endocrine, reproductive and respiratory systems, where it plays different regulatory functions and exerts a cytoprotective effect. The multifarious physiological effects of PACAP are mediated through binding to different G protein-coupled receptors, including PAC1 (PAC1-R), VPAC1 (VPAC1-R) and VPAC2 (VPAC2-R) receptors. In the gastrointestinal (GI) tract, PACAP plays an important regulatory function. PACAP stimulates the secretion of digestive juices and hormone release, regulates smooth muscle contraction, local blood flow, cell migration and proliferation. Additionally, there are many reports confirming the involvement of PACAP in pathological processes within the GI tract, including inflammatory states, neuronal injury, diabetes, intoxication and neoplastic processes. The purpose of this review is to summarize the distribution and pleiotropic action of PACAP in the control of GI tract function and its cytoprotective effect in the course of GI tract disorders.
Collapse
|