1
|
Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-Jean AKR, Liu XS, Jaenisch R. Mitochondrial dysfunction and increased reactive oxygen species production in MECP2 mutant astrocytes and their impact on neurons. Sci Rep 2024; 14:20565. [PMID: 39232000 PMCID: PMC11374804 DOI: 10.1038/s41598-024-71040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.
Collapse
Affiliation(s)
| | | | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katia I Alarcon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - X Shawn Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. Int J Mol Sci 2024; 25:8312. [PMID: 39125882 PMCID: PMC11311851 DOI: 10.3390/ijms25158312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Carlos Hernández-del Caño
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalia Varela-Andrés
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Cebrián-León
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Rubén Deogracias
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain; (C.H.-d.C.); (N.V.-A.); (A.C.-L.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Biología Celular y Patología, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024; 112:1657-1675.e10. [PMID: 38574730 PMCID: PMC11098688 DOI: 10.1016/j.neuron.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
Affiliation(s)
- Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leykashree Nagendren
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Instituto Cajal, CSIC 28002 Madrid, Spain
| | | | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Illescas S, Diaz-Osorio Y, Serradell A, Toro-Soria L, Musokhranova U, Juliá-Palacios N, Ribeiro-Constante J, Altafaj X, Olivella M, O'Callaghan M, Darling A, Armstrong J, Artuch R, García-Cazorla À, Oyarzábal A. Metabolic characterization of neurogenetic disorders involving glutamatergic neurotransmission. J Inherit Metab Dis 2024; 47:551-569. [PMID: 37932875 DOI: 10.1002/jimd.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
The study of inborn errors of neurotransmission has been mostly focused on monoamine disorders, GABAergic and glycinergic defects. The study of the glutamatergic synapse using the same approach than classic neurotransmitter disorders is challenging due to the lack of biomarkers in the CSF. A metabolomic approach can provide both insight into their molecular basis and outline novel therapeutic alternatives. We have performed a semi-targeted metabolomic analysis on CSF samples from 25 patients with neurogenetic disorders with an important expression in the glutamatergic synapse and 5 controls. Samples from patients diagnosed with MCP2, CDKL5-, GRINpathies and STXBP1-related encephalopathies were included. We have performed univariate (UVA) and multivariate statistical analysis (MVA), using Wilcoxon rank-sum test, principal component analysis (PCA), and OPLS-DA. By using the results of both analyses, we have identified the metabolites that were significantly altered and that were important in clustering the respective groups. On these, we performed pathway- and network-based analyses to define which metabolic pathways were possibly altered in each pathology. We have observed alterations in the tryptophan and branched-chain amino acid metabolism pathways, which interestingly converge on LAT1 transporter-dependency to cross the blood-brain barrier (BBB). Analysis of the expression of LAT1 transporter in brain samples from a mouse model of Rett syndrome (MECP2) revealed a decrease in the transporter expression, that was already noticeable at pre-symptomatic stages. The study of the glutamatergic synapse from this perspective advances the understanding of their pathophysiology, shining light on an understudied feature as is their metabolic signature.
Collapse
Affiliation(s)
- Sofía Illescas
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Yaiza Diaz-Osorio
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Anna Serradell
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Lucía Toro-Soria
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Uliana Musokhranova
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
| | - Natalia Juliá-Palacios
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Juliana Ribeiro-Constante
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Altafaj
- Neurophysiology Laboratory, Department of Biomedicine, Institute of Neurosciences, Faculty of Medicine and Health Sciences, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mireia Olivella
- School of International Studies, ESCI-UPF, Barcelona, Spain
- Bioinformatics and Bioimaging Group, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Vic, Spain
| | - Mar O'Callaghan
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| | - Alejandra Darling
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
| | - Judith Armstrong
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
- Department of Medical Genetics, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Àngels García-Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN, Esplugues de Llobregat, Barcelona, Spain
- Neurometabolic Unit, Hospital Sant Joan de Déu, Department of Neurology, Esplugues de Llobregat, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Barcelona, Spain
| |
Collapse
|
6
|
González-Ramírez LR. A fractional-order Wilson-Cowan formulation of cortical disinhibition. J Comput Neurosci 2024; 52:109-123. [PMID: 37787876 DOI: 10.1007/s10827-023-00862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
This work presents a fractional-order Wilson-Cowan model derivation under Caputo's formalism, considering an order of 0 < α ≤ 1 . To that end, we propose memory-dependent response functions and average neuronal excitation functions that permit us to naturally arrive at a fractional-order model that incorporates past dynamics into the description of synaptically coupled neuronal populations' activity. We then shift our focus on a particular example, aiming to analyze the fractional-order dynamics of the disinhibited cortex. This system mimics cortical activity observed during neurological disorders such as epileptic seizures, where an imbalance between excitation and inhibition is present, which allows brain dynamics to transition to a hyperexcited activity state. In the context of the first-order mathematical model, we recover traditional results showing a transition from a low-level activity state to a potentially pathological high-level activity state as an external factor modifies cortical inhibition. On the other hand, under the fractional-order formulation, we establish novel results showing that the system resists such transition as the order is decreased, permitting the possibility of staying in the low-activity state even with increased disinhibition. Furthermore, considering the memory index interpretation of the fractional-order model motivation here developed, our results establish that by increasing the memory index, the system becomes more resistant to transitioning towards the high-level activity state. That is, one possible effect of the memory index is to stabilize neuronal activity. Noticeably, this neuronal stabilizing effect is similar to homeostatic plasticity mechanisms. To summarize our results, we present a two-parameter structural portrait describing the system's dynamics dependent on a proposed disinhibition parameter and the order. We also explore numerical model simulations to validate our results.
Collapse
Affiliation(s)
- L R González-Ramírez
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738, Cd. de México, México.
| |
Collapse
|
7
|
Whitaker-Fornek JR, Jenkins PM, Levitt ES. Inhibitory synaptic transmission is impaired in the Kölliker-Fuse of male, but not female, Rett syndrome mice. J Neurophysiol 2023; 130:1578-1587. [PMID: 37965930 PMCID: PMC11068392 DOI: 10.1152/jn.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that mainly affects females due to silencing mutations in the X-linked MECP2 gene. One of the most troubling symptoms of RTT is breathing irregularity, including apneas, breath-holds, and hyperventilation. Mice with silencing mutations in Mecp2 exhibit breathing abnormalities similar to human patients and serve as useful models for studying mechanisms underlying breathing problems in RTT. Previous work implicated the pontine, respiratory-controlling Kölliker-Fuse (KF) in the breathing problems in RTT. The goal of this study was to test the hypothesis that inhibitory synaptic transmission is deficient in KF neurons from symptomatic male and female RTT mice. We performed whole cell voltage-clamp recordings from KF neurons in acute brain slices to examine spontaneous and electrically evoked inhibitory post-synaptic currents (IPSCs) in RTT mice and age- and sex-matched wild-type mice. The frequency of spontaneous IPSCs was reduced in KF neurons from male RTT mice but surprisingly not in female RTT mice. In addition, electrically evoked IPSCs were less reliable in KF neurons from male, but not female, RTT mice, which was positively correlated with paired-pulse facilitation, indicating decreased probability of release. KF neurons from male RTT mice were also more excitable and exhibited shorter-duration action potentials. Increased excitability of KF neurons from male mice was not explained by changes in axon initial segment length. These findings indicate impaired inhibitory neurotransmission and increased excitability of KF neurons in male but not female RTT mice and suggest that sex-dependent mechanisms contribute to breathing problems in RTT.NEW & NOTEWORTHY Kölliker-Fuse (KF) neurons in acute brain slices from male Rett syndrome (RTT) mice receive reduced inhibitory synaptic inputs compared with wild-type littermates. In female RTT mice, inhibitory transmission was not different in KF neurons compared with controls. The results from this study show that sex-specific alterations in synaptic transmission occur in the KF of RTT mice.
Collapse
Affiliation(s)
- Jessica R Whitaker-Fornek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erica S Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Rupert DD, Pagliaro AH, Choe J, Shea SD. Selective Deletion of Methyl CpG Binding Protein 2 from Parvalbumin Interneurons in the Auditory Cortex Delays the Onset of Maternal Retrieval in Mice. J Neurosci 2023; 43:6745-6759. [PMID: 37625856 PMCID: PMC10552946 DOI: 10.1523/jneurosci.0838-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome. MECP2 codes for methyl CpG binding protein 2 (MECP2), a transcriptional regulator that activates genetic programs for experience-dependent plasticity. Many neural and behavioral symptoms of Rett syndrome may result from dysregulated timing and thresholds for plasticity. As a model of adult plasticity, we examine changes to auditory cortex inhibitory circuits in female mice when they are first exposed to pups; this plasticity facilitates behavioral responses to pups emitting distress calls. Brainwide deletion of Mecp2 alters expression of markers associated with GABAergic parvalbumin interneurons (PVins) and impairs the emergence of pup retrieval. We hypothesized that loss of Mecp2 in PVins disproportionately contributes to the phenotype. Here, we find that deletion of Mecp2 from PVins delayed the onset of maternal retrieval behavior and recapitulated the major molecular and neurophysiological features of brainwide deletion of Mecp2 We observed that when PVin-selective mutants were exposed to pups, auditory cortical expression of PVin markers increased relative to that in wild-type littermates. PVin-specific mutants also failed to show the inhibitory auditory cortex plasticity seen in wild-type mice on exposure to pups and their vocalizations. Finally, using an intersectional viral genetic strategy, we demonstrate that postdevelopmental loss of Mecp2 in PVins of the auditory cortex is sufficient to delay onset of maternal retrieval. Our results support a model in which PVins play a central role in adult cortical plasticity and may be particularly impaired by loss of Mecp2 SIGNIFICANCE STATEMENT Rett syndrome is a neurodevelopmental disorder that includes deficits in both communication and the ability to update brain connections and activity during learning (plasticity). This condition is caused by mutations in the gene MECP2 We use a maternal behavioral test in mice requiring both vocal perception and neural plasticity to probe the role of Mecp2 in social and sensory learning. Mecp2 is normally active in all brain cells, but here we remove it from a specific population (parvalbumin neurons). We find that this is sufficient to delay learned behavioral responses to pups and recreates many deficits seen in whole-brain Mecp2 deletion. Our findings suggest that parvalbumin neurons specifically are central to the consequences of loss of Mecp2 activity and yield clues as to possible mechanisms by which Rett syndrome impairs brain function.
Collapse
Affiliation(s)
- Deborah D Rupert
- Department of Neurobiology and Behavior and Medical Scientist Training Program, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8434
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Alexa H Pagliaro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Jane Choe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| |
Collapse
|
9
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
10
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa-Severino FP, Bindu DS, Eroglu C. Astrocyte-Secreted Neurocan Controls Inhibitory Synapse Formation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535448. [PMID: 37066164 PMCID: PMC10104008 DOI: 10.1101/2023.04.03.535448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. To date, several astrocyte-secreted synaptogenic proteins controlling different stages of excitatory synapse development have been identified. However, the identities of astrocytic signals that induce inhibitory synapse formation remain elusive. Here, through a combination of in vitro and in vivo experiments, we identified Neurocan as an astrocyte-secreted inhibitory synaptogenic protein. Neurocan is a chondroitin sulfate proteoglycan that is best known as a protein localized to the perineuronal nets. However, Neurocan is cleaved into two after secretion from astrocytes. We found that the resulting N- and C-terminal fragments have distinct localizations in the extracellular matrix. While the N-terminal fragment remains associated with perineuronal nets, the Neurocan C-terminal fragment localizes to synapses and specifically controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic region have reduced inhibitory synapse numbers and function. Through super-resolution microscopy and in vivo proximity labeling by secreted TurboID, we discovered that the synaptogenic domain of Neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
|
11
|
Belaïdouni Y, Diabira D, Brosset-Heckel M, Valsamides V, Graziano JC, Santos C, Menuet C, Wayman GA, Gaiarsa JL. Leptin antagonism improves Rett syndrome phenotype in symptomatic male Mecp2-null mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526251. [PMID: 36778454 PMCID: PMC9915649 DOI: 10.1101/2023.02.03.526251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that arise from de novo mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Circulating levels of the adipocyte hormone leptin are elevated in RTT patients and rodent models of the disease. Leptin targets a large number of brain structures and regulates a wide range of developmental and physiological functions which are altered in RTT. We hypothesized that elevated leptin levels might contribute to RTT pathogenesis. Accordingly, we show that pharmacological antagonism of leptin or genetic reduction of leptin production prevents the degradation of health status, weight loss and the progression of breathing and locomotor deficits. At the neuronal level, the anti-leptin strategies rescue the hippocampal excitatory/inhibitory imbalance and synaptic plasticity impairment. Targeting leptin might therefore represent a new approach for RTT treatment.
Collapse
|
12
|
Activation-Inhibition Coordination in Neuron, Brain, and Behavior Sequencing/Organization: Implications for Laterality and Lateralization. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Activation-inhibition coordination is considered a dynamic process that functions as a common mechanism in the synchronization and functioning of neurons, brain, behavior, and their sequencing/organization, including over these different scales. The concept has broad applicability, for example, in applications to maladaptivity/atypicality. Young developed the hypothesis to help explain the efficacy of right-hand reaching to grasp in 1-month-olds, a study that implicated that the left hemisphere is specialized for activation-inhibition coordination. This underlying left-hemisphere function, noted to characterize the left hemisphere right from birth, can explain equally its language and fine motor skills, for example. The right hemisphere appears specialized for less complex inhibitory skills, such as outright damping/inhibition. The hypotheses related to inhibition and hemispheric specialization that appear in the literature typically refer to right hemisphere skills in these regards. The research to present also refers to excitation/inhibition balance/ratio in synaptic function, but not to coordination in the sense described here. Furthermore, it refers to the inhibitory function widely in neuronal networks. The paper presents a comprehensive literature review, framing the research in terms of the proposed concept. Further, the paper presents a broad model of activation-inhibition coordination that can help better understand neuron, brain, and behavior, generally, and left hemisphere specialization, specifically.
Collapse
|
13
|
Haase F, Singh R, Gloss B, Tam P, Gold W. Meta-Analysis Identifies BDNF and Novel Common Genes Differently Altered in Cross-Species Models of Rett Syndrome. Int J Mol Sci 2022; 23:11125. [PMID: 36232428 PMCID: PMC9570315 DOI: 10.3390/ijms231911125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a rare disorder and one of the most abundant causes of intellectual disabilities in females. Single mutations in the gene coding for methyl-CpG-binding protein 2 (MeCP2) are responsible for the disorder. MeCP2 regulates gene expression as a transcriptional regulator as well as through epigenetic imprinting and chromatin condensation. Consequently, numerous biological pathways on multiple levels are influenced. However, the exact molecular pathways from genotype to phenotype are currently not fully elucidated. Treatment of RTT is purely symptomatic as no curative options for RTT have yet to reach the clinic. The paucity of this is mainly due to an incomplete understanding of the underlying pathophysiology of the disorder with no clinically useful common disease drivers, biomarkers, or therapeutic targets being identified. With the premise of identifying universal and robust disease drivers and therapeutic targets, here, we interrogated a range of RTT transcriptomic studies spanning different species, models, and MECP2 mutations. A meta-analysis using RNA sequencing data from brains of RTT mouse models, human post-mortem brain tissue, and patient-derived induced pluripotent stem cell (iPSC) neurons was performed using weighted gene correlation network analysis (WGCNA). This study identified a module of genes common to all datasets with the following ten hub genes driving the expression: ATRX, ADCY7, ADCY9, SOD1, CACNA1A, PLCG1, CCT5, RPS9, BDNF, and MECP2. Here, we discuss the potential benefits of these genes as therapeutic targets.
Collapse
Affiliation(s)
- Florencia Haase
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Rachna Singh
- School of Medicine Sydney, The University of Notre Dame, Chippendale, NSW 2007, Australia
| | - Brian Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| | - Patrick Tam
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wendy Gold
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead, Westmead, NSW 2145, Australia
| |
Collapse
|
14
|
Lu S, Chen Y, Wang Z. Advances in the pathogenesis of Rett syndrome using cell models. Animal Model Exp Med 2022; 5:532-541. [PMID: 35785421 PMCID: PMC9773312 DOI: 10.1002/ame2.12236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022] Open
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder that occurs mainly in girls with a range of typical symptoms of autism spectrum disorders. MeCP2 protein loss-of-function in neural lineage cells is the main cause of RTT pathogenicity. As it is still hard to understand the mechanism of RTT on the basis of only clinical patients or animal models, cell models cultured in vitro play indispensable roles. Here we reviewed the research progress in the pathogenesis of RTT at the cellular level, summarized the preclinical-research-related applications, and prospected potential future development.
Collapse
Affiliation(s)
- Sijia Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina,Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| |
Collapse
|
15
|
Poll S, Fuhrmann M. O-LM interneurons: Gatekeepers of pyramidal neuron activity in the hippocampus. Neuron 2022; 110:1606-1608. [PMID: 35588712 DOI: 10.1016/j.neuron.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A balanced and fine-tuned ratio of neuronal excitation and inhibition is a prerequisite for information processing. In this issue of Neuron, He et al. (2022) reveal a causal link between reduced input to local somatostatin-expressing, MeCP2-negative O-LM interneurons in CA1 and long-term memory impairment in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Stefanie Poll
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127 Bonn, Germany; Cellular Neuropathology and Cognition Group, Institute of Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1/76, 53127 Bonn, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|