1
|
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol 2024; 12:1372158. [PMID: 38576448 PMCID: PMC10991759 DOI: 10.3389/fbioe.2024.1372158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Trans-spinal electrical stimulation (tsES) to the intact spinal cord poststroke may modulate the cortico-muscular control in stroke survivors with diverse lesions in the brain. This work aimed to investigate the immediate effects of tsES on the cortico-muscular descending patterns during voluntary upper extremity (UE) muscle contractions by analyzing cortico-muscular coherence (CMCoh) and electromyography (EMG) in people with chronic stroke. Methods: Twelve chronic stroke participants were recruited to perform wrist-hand extension and flexion tasks at submaximal levels of voluntary contraction for the corresponding agonist flexors and extensors. During the tasks, the tsES was delivered to the cervical spinal cord with rectangular biphasic pulses. Electroencephalography (EEG) data were collected from the sensorimotor cortex, and the EMG data were recorded from both distal and proximal UE muscles. The CMCoh, laterality index (LI) of the peak CMCoh, and EMG activation level parameters under both non-tsES and tsES conditions were compared to evaluate the immediate effects of tsES on the cortico-muscular descending pathway. Results: The CMCoh and LI of peak CMCoh in the agonist distal muscles showed significant increases (p < 0.05) during the wrist-hand extension and flexion tasks with the application of tsES. The EMG activation levels of the antagonist distal muscle during wrist-hand extension were significantly decreased (p < 0.05) with tsES. Additionally, the proximal UE muscles exhibited significant decreases (p < 0.05) in peak CMCoh and EMG activation levels by applying tsES. There was a significant increase (p < 0.05) in LI of peak CMCoh of proximal UE muscles during tsES. Conclusion: The cervical spinal cord neuromodulation via tsES enhanced the residual descending excitatory control, activated the local inhibitory circuits within the spinal cord, and reduced the cortical and proximal muscular compensatory effects. These results suggested the potential of tsES as a supplementary input for improving UE motor functions in stroke rehabilitation.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Maner Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
- Research Institute for Smart Ageing (RISA), Hong Kong SAR, China
- Research Centre of Data Science and Artificial Intelligence (RC-DSAI), Hong Kong SAR, China
- Joint Research Centre for Biosensing and Precision Theranostics, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
2
|
Huang L, Yi L, Huang H, Zhan S, Chen R, Yue Z. Corticospinal tract: a new hope for the treatment of post-stroke spasticity. Acta Neurol Belg 2024; 124:25-36. [PMID: 37704780 PMCID: PMC10874326 DOI: 10.1007/s13760-023-02377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Stroke is the third leading cause of death and disability worldwide. Post-stroke spasticity (PSS) is the most common complication of stroke but represents only one of the many manifestations of upper motor neuron syndrome. As an upper motor neuron, the corticospinal tract (CST) is the only direct descending motor pathway that innervates the spinal motor neurons and is closely related to the recovery of limb function in patients with PSS. Therefore, promoting axonal remodeling in the CST may help identify new therapeutic strategies for PSS. In this review, we outline the pathological mechanisms of PSS, specifically their relationship with CST, and therapeutic strategies for axonal regeneration of the CST after stroke. We found it to be closely associated with astroglial scarring produced by astrocyte activation and its secretion of neurotrophic factors, mainly after the onset of cerebral ischemia. We hope that this review offers insight into the relationship between CST and PSS and provides a basis for further studies.
Collapse
Affiliation(s)
- Linxing Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lizhen Yi
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huiyuan Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sheng Zhan
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruixue Chen
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zenghui Yue
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
3
|
Malloy DC, Côté MP. Multi-session transcutaneous spinal cord stimulation prevents chloridehomeostasis imbalance and the development of spasticity after spinal cordinjury in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563419. [PMID: 37961233 PMCID: PMC10634766 DOI: 10.1101/2023.10.24.563419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.
Collapse
Affiliation(s)
- Dillon C. Malloy
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
4
|
Han S, Kim W, Kim O. Risk Factors for Suicidality in Individuals With Spinal Cord Injury: A Focus on Physical and Functional Characteristics. Ann Rehabil Med 2023; 47:377-384. [PMID: 37907229 PMCID: PMC10620485 DOI: 10.5535/arm.23110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE : To demonstrate the association between the physical and functional characteristics of individuals with spinal cord injury (SCI) and suicidality, an area of research that is less understood than the association with demographic, social, and psychological characteristics. METHODS : A retrospective cross-sectional study was conducted with 259 patients with SCI admitted for rehabilitation at the National Rehabilitation Center, Seoul, between January 2019 and December 2021. Demographic, SCI-related, physical, and functional data were collected from their medical records. Suicide risk was assessed using the Mini International Neuropsychiatric Interview. RESULTS : The 259 participants had an average age of 49.1 years, and 75.7% were male. The analysis revealed a statistically significant negative correlation between age and suicidality. No significant differences were found for sex, education, occupation, or SCI-related factors. Lower upper extremity motor score (UEMS) was significantly associated with higher suicide risk. Regarding functional factors, the inability to perform independent rolling, come to sit, wheelchair propelling, and self-driving were associated with increased suicidality. In the multiple linear regression analysis, lower UEMS, limited shoulder joint motion, upper extremity spasticity, and dependent wheelchair propulsion were predictors of higher suicide risk. CONCLUSION : This study highlights the associations among physical status, functional dependency, and suicide risk in individuals with SCI. These findings emphasize the need to address psychological aspects and physical and functional factors in the management of individuals with SCI who are at a high risk of suicide.
Collapse
Affiliation(s)
- Sora Han
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Wooyeung Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Onyoo Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
5
|
Minassian K, Bayart A, Lackner P, Binder H, Freundl B, Hofstoetter US. Rare phenomena of central rhythm and pattern generation in a case of complete spinal cord injury. Nat Commun 2023; 14:3276. [PMID: 37280242 DOI: 10.1038/s41467-023-39034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Lumbar central pattern generators (CPGs) control the basic rhythm and coordinate muscle activation underlying hindlimb locomotion in quadrupedal mammals. The existence and function of CPGs in humans have remained controversial. Here, we investigated a case of a male individual with complete thoracic spinal cord injury who presented with a rare form of self-sustained rhythmic spinal myoclonus in the legs and rhythmic activities induced by epidural electrical stimulation (EES). Analysis of muscle activation patterns suggested that the myoclonus tapped into spinal circuits that generate muscle spasms, rather than reflecting locomotor CPG activity as previously thought. The EES-induced patterns were fundamentally different in that they included flexor-extensor and left-right alternations, hallmarks of locomotor CPGs, and showed spontaneous errors in rhythmicity. These motor deletions, with preserved cycle frequency and period when rhythmic activity resumed, were previously reported only in animal studies and suggest a separation between rhythm generation and pattern formation. Spinal myoclonus and the EES-induced activity demonstrate that the human lumbar spinal cord contains distinct mechanisms for generating rhythmic multi-muscle patterns.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Aymeric Bayart
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna, Austria
- Department of Neurology, Clinic Floridsdorf, Vienna, Austria
| | | | | | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Roumengous T, Thakkar B, Peterson CL. Paired pulse transcranial magnetic stimulation in the assessment of biceps voluntary activation in individuals with tetraplegia. Front Hum Neurosci 2022; 16:976014. [PMID: 36405076 PMCID: PMC9669314 DOI: 10.3389/fnhum.2022.976014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
After spinal cord injury (SCI), motoneuron death occurs at and around the level of injury which induces changes in function and organization throughout the nervous system, including cortical changes. Muscle affected by SCI may consist of both innervated (accessible to voluntary drive) and denervated (inaccessible to voluntary drive) muscle fibers. Voluntary activation measured with transcranial magnetic stimulation (VATMS) can quantify voluntary cortical/subcortical drive to muscle but is limited by technical challenges including suboptimal stimulation of target muscle relative to its antagonist. The motor evoked potential (MEP) in the biceps compared to the triceps (i.e., MEP ratio) may be a key parameter in the measurement of biceps VATMS after SCI. We used paired pulse TMS, which can inhibit or facilitate MEPs, to determine whether the MEP ratio affects VATMS in individuals with tetraplegia. Ten individuals with tetraplegia following cervical SCI and ten non-impaired individuals completed single pulse and paired pulse VATMS protocols. Paired pulse stimulation was delivered at 1.5, 10, and 30 ms inter-stimulus intervals (ISI). In both the SCI and non-impaired groups, the main effect of the stimulation pulse (paired pulse compared to single pulse) on VATMS was not significant in the linear mixed-effects models. In both groups for the stimulation parameters we tested, the MEP ratio was not modulated across all effort levels and did not affect VATMS. Linearity of the voluntary moment and superimposed twitch moment relation was lower in SCI participants compared to non-impaired. Poor linearity in the SCI group limits interpretation of VATMS. Future work is needed to address methodological issues that limit clinical application of VATMS.
Collapse
Affiliation(s)
- Thibault Roumengous
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States
| | - Carrie L. Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Parker D. The functional properties of synapses made by regenerated axons across spinal cord lesion sites in lamprey. Neural Regen Res 2022; 17:2272-2277. [PMID: 35259849 PMCID: PMC9083143 DOI: 10.4103/1673-5374.335828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While the anatomical properties of regenerated axons across spinal cord lesion sites have been studied extensively, little is known of how the functional properties of regenerated synapses compared to those in unlesioned animals. This study aims to compare the properties of synapses made by regenerated axons with unlesioned axons using the lamprey, a model system for spinal injury research, in which functional locomotor recovery after spinal cord lesions is associated with axonal regeneration across the lesion site. Regenerated synapses below the lesion site did not differ from synapses from unlesioned axons with respect to the amplitude and duration of single excitatory postsynaptic potentials. They also showed the same activity-dependent depression over spike trains. However, regenerated synapses did differ from unlesioned synapses as the estimated number of synaptic vesicles was greater and there was evidence for increased postsynaptic quantal amplitude. For axons above the lesion site, the amplitude and duration of single synaptic inputs also did not differ significantly from unlesioned animals. However, in this case, there was evidence of a reduction in release probability and inputs facilitated rather than depressed over spike trains. Synaptic inputs from single regenerated axons below the lesion site thus do not increase in amplitude to compensate for the reduced number of descending axons after functional recovery. However, the postsynaptic input was maintained at the unlesioned level using different synaptic properties. Conversely, the facilitation from the same initial amplitude above the lesion site made the synaptic input over spike trains functionally stronger. This may help to increase propriospinal activity across the lesion site to compensate for the lesion-induced reduction in supraspinal inputs. The animal experiments were approved by the Animal Ethics Committee of Cambridge University.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Matson KJE, Russ DE, Kathe C, Hua I, Maric D, Ding Y, Krynitsky J, Pursley R, Sathyamurthy A, Squair JW, Levi BP, Courtine G, Levine AJ. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat Commun 2022; 13:5628. [PMID: 36163250 PMCID: PMC9513082 DOI: 10.1038/s41467-022-33184-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy. Matson et al. performed single nucleus sequencing of the “spared” spinal cord tissue distal to an injury in mice. They found that spinocerebellar neurons expressed a pro-regenerative gene signature and showed axon outgrowth after injury.
Collapse
Affiliation(s)
- Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Johns Hopkins University Department of Biology, Baltimore, MD, USA
| | - Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jonathan Krynitsky
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gregoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,NeuroRestore, Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Ji B, Wojtaś B, Skup M. Molecular Identification of Pro-Excitogenic Receptor and Channel Phenotypes of the Deafferented Lumbar Motoneurons in the Early Phase after SCT in Rats. Int J Mol Sci 2022; 23:ijms231911133. [PMID: 36232433 PMCID: PMC9569670 DOI: 10.3390/ijms231911133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Spasticity impacts the quality of life of patients suffering spinal cord injury and impedes the recovery of locomotion. At the cellular level, spasticity is considered to be primarily caused by the hyperexcitability of spinal α-motoneurons (MNs) within the spinal stretch reflex circuit. Here, we hypothesized that after a complete spinal cord transection in rats, fast adaptive molecular responses of lumbar MNs develop in return for the loss of inputs. We assumed that early loss of glutamatergic afferents changes the expression of glutamatergic AMPA and NMDA receptor subunits, which may be the forerunners of the developing spasticity of hindlimb muscles. To better understand its molecular underpinnings, concomitant expression of GABA and Glycinergic receptors and serotoninergic and noradrenergic receptors, which regulate the persistent inward currents crucial for sustained discharges in MNs, were examined together with voltage-gated ion channels and cation-chloride cotransporters. Using quantitative real-time PCR, we showed in the tracer-identified MNs innervating extensor and flexor muscles of the ankle joint multiple increases in transcripts coding for AMPAR and 5-HTR subunits, along with a profound decrease in GABAAR, GlyR subunits, and KCC2. Our study demonstrated that both MNs groups similarly adapt to a more excitable state, which may increase the occurrence of extensor and flexor muscle spasms.
Collapse
Affiliation(s)
- Benjun Ji
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Bartosz Wojtaś
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
10
|
Chen B, Perez MA. Altered regulation of Ia afferent input during voluntary contraction in humans with spinal cord injury. eLife 2022; 11:e80089. [PMID: 36069767 PMCID: PMC9451536 DOI: 10.7554/elife.80089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory input converging on the spinal cord contributes to the control of movement. Although sensory pathways reorganize following spinal cord injury (SCI), the extent to which sensory input from Ia afferents is regulated during voluntary contraction after the injury remains largely unknown. To address this question, the soleus H-reflex and conditioning of the H-reflex by stimulating homonymous [depression of the soleus H-reflex evoked by common peroneal nerve (CPN) stimulation, D1 inhibition] and heteronymous (d), [monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation (FN facilitation)] nerves were tested at rest, and during tonic voluntary contraction in humans with and without chronic incomplete SCI. The soleus H-reflex size increased in both groups during voluntary contraction compared with rest, but to a lesser extent in SCI participants. Compared with rest, the D1 inhibition decreased during voluntary contraction in controls but it was still present in SCI participants. Further, the FN facilitation increased in controls but remained unchanged in SCI participants during voluntary contraction compared with rest. Changes in the D1 inhibition and FN facilitation were correlated with changes in the H-reflex during voluntary contraction, suggesting an association between outcomes. These findings provide the first demonstration that the regulation of Ia afferent input from homonymous and heteronymous nerves is altered during voluntary contraction in humans with SCI, resulting in lesser facilitatory effect on motor neurons.
Collapse
Affiliation(s)
- Bing Chen
- Shirley Ryan AbilityLab, Northwestern University, and Edward Hines Jr., VA Medical CenterChicagoUnited States
| | - Monica A Perez
- Shirley Ryan AbilityLab, Northwestern University, and Edward Hines Jr., VA Medical CenterChicagoUnited States
| |
Collapse
|
11
|
Sangari S, Perez MA. Prevalence of spasticity in humans with spinal cord injury with different injury severity. J Neurophysiol 2022; 128:470-479. [PMID: 35507475 PMCID: PMC9423778 DOI: 10.1152/jn.00126.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Spasticity is one of the most common symptoms manifested following spinal cord injury (SCI). The aim of this study was to assess spasticity in individuals with subacute and chronic SCI with different injury severity, standardizing the time and assessments of spasticity. We tested 110 individuals with SCI classified by the American Spinal Injury Association Impairment Scale (AIS) as either motor complete (AIS A and B; subacute, n = 25; chronic, n = 33) or motor incomplete (AIS C and D; subacute, n = 23; chronic, n = 29) at a similar time after injury (subacute, ∼1 mo after injury during inpatient rehabilitation and chronic, ≥1 yr after injury) using clinical (modified Ashworth scale) and kinematic (pendulum test) outcomes to assess spasticity in the quadriceps femoris muscle. Using both methodologies, we found that among individuals with subacute motor complete injuries, only a minority showed spasticity, whereas the majority exhibited no spasticity. This finding stands in contrast to individuals with subacute motor incomplete injury, where both methodologies revealed that a majority exhibited spasticity, whereas a minority exhibited no spasticity. In chronic injuries, most individuals showed spasticity regardless of injury severity. Notably, when spasticity was present, its magnitude was similar across injury severity in both subacute and chronic injuries. Our results suggest that the prevalence, not the magnitude, of spasticity differs between individuals with motor complete and incomplete SCI in the subacute and chronic stages of the injury. We thus argue that considering the "presence of spasticity" might help the stratification of participants with motor complete injuries for clinical trials.NEW & NOTEWORTHY The prevalence of spasticity in humans with SCI remains poorly understood. Using kinematic and clinical outcomes, we examined spasticity in individuals with subacute and chronic injuries of different severity. We found that spasticity in the quadriceps femoris muscle was more prevalent among individuals with subacute motor incomplete than in those with motor complete injuries. However, in a different group of individuals with chronic injuries, no differences were found in the prevalence of spasticity across injury severity.
Collapse
Affiliation(s)
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
- Edward Hines Jr., VA Hospital, Hines, Illinois
| |
Collapse
|
12
|
Munteanu C, Rotariu M, Turnea M, Ionescu AM, Popescu C, Spinu A, Ionescu EV, Oprea C, Țucmeanu RE, Tătăranu LG, Silișteanu SC, Onose G. Main Cations and Cellular Biology of Traumatic Spinal Cord Injury. Cells 2022; 11:2503. [PMID: 36010579 PMCID: PMC9406880 DOI: 10.3390/cells11162503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury is a life-changing condition with a significant socio-economic impact on patients, their relatives, their caregivers, and even the community. Despite considerable medical advances, there is still a lack of options for the effective treatment of these patients. The major complexity and significant disabling potential of the pathophysiology that spinal cord trauma triggers are the main factors that have led to incremental scientific research on this topic, including trying to describe the molecular and cellular mechanisms that regulate spinal cord repair and regeneration. Scientists have identified various practical approaches to promote cell growth and survival, remyelination, and neuroplasticity in this part of the central nervous system. This review focuses on specific detailed aspects of the involvement of cations in the cell biology of such pathology and on the possibility of repairing damaged spinal cord tissue. In this context, the cellular biology of sodium, potassium, lithium, calcium, and magnesium is essential for understanding the related pathophysiology and also the possibilities to counteract the harmful effects of traumatic events. Lithium, sodium, potassium-monovalent cations-and calcium and magnesium-bivalent cations-can influence many protein-protein interactions, gene transcription, ion channel functions, cellular energy processes-phosphorylation, oxidation-inflammation, etc. For data systematization and synthesis, we used the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) methodology, trying to make, as far as possible, some order in seeing the "big forest" instead of "trees". Although we would have expected a large number of articles to address the topic, we were still surprised to find only 51 unique articles after removing duplicates from the 207 articles initially identified. Our article integrates data on many biochemical processes influenced by cations at the molecular level to understand the real possibilities of therapeutic intervention-which must maintain a very narrow balance in cell ion concentrations. Multimolecular, multi-cellular: neuronal cells, glial cells, non-neuronal cells, but also multi-ionic interactions play an important role in the balance between neuro-degenerative pathophysiological processes and the development of effective neuroprotective strategies. This article emphasizes the need for studying cation dynamics as an important future direction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Aura Spinu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Roxana Elena Țucmeanu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Ligia Gabriela Tătăranu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sînziana Calina Silișteanu
- Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
13
|
Phenotypes of Motor Deficit and Pain after Experimental Spinal Cord Injury. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060262. [PMID: 35735505 PMCID: PMC9220047 DOI: 10.3390/bioengineering9060262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Motor disability is a common outcome of spinal cord injury (SCI). The recovery of motor function after injury depends on the severity of neurotrauma; motor deficit can be reversible, at least partially, due to the innate tissue capability to recover, which, however, deteriorates with age. Pain is often a comorbidity of injury, although its prediction remains poor. It is largely unknown whether pain can attend motor dysfunction. Here, we implemented SCI for modelling severe and moderate neurotrauma and monitored SCI rats for up to 5 months post-injury to determine the profiles of both motor deficit and nociceptive sensitivity. Our data showed that motor dysfunction remained persistent after a moderate SCI in older animals (5-month-old); however, there were two populations among young SCI rats (1 month-old) whose motor deficit either declined or exacerbated even more over 4–5 weeks after identical injury. All young SCI rats displayed changed nociceptive sensitivity in thermal and mechanical modalities. The regression analysis of the changes revealed a population trend with respect to hyper- or hyposensitivity/motor deficit. Together, our data describe the phenotypes of motor deficit and pain, the two severe complications of neurotrauma. Our findings also suggest the predictability of motor dysfunction and pain syndromes following SCI that can be a hallmark for long-term rehabilitation and recovery after injury.
Collapse
|
14
|
Surface EMG in Subacute and Chronic Care after Traumatic Spinal Cord Injuries. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (SCI) is a devastating condition commonly originating from motor vehicle accidents or falls. Trauma care after SCI is challenging; after decompression surgery and spine stabilization, the first step is to assess the location and severity of the traumatic lesion. For this, clinical outcome measures are used to quantify the residual sensation and volitional control of muscles below the level of injury. These clinical assessments are important for decision-making, including the prediction of the recovery potential of individuals after the SCI. In clinical care, this quantification is usually performed using sensation and motor scores, a semi-quantitative measurement, alongside the binary classification of the sacral sparing (yes/no). Objective: In this perspective article, I review the use of surface EMG (sEMG) as a quantitative outcome measurement in subacute and chronic trauma care after SCI. Methods: Here, I revisit the main findings of two comprehensive scoping reviews recently published by our team on this topic. I offer a perspective on the combined findings of these scoping reviews, which integrate the changes in sEMG with SCI and the use of sEMG in neurorehabilitation after SCI. Results: sEMG provides a complimentary assessment to quantify the residual control of muscles with great sensitivity and detail compared to the traditional clinical assessments. Our scoping reviews unveiled the ability of the sEMG assessment to detect discomplete lesions (muscles with absent motor scores but present sEMG). Moreover, sEMG is able to measure the spontaneous activity of motor units at rest, and during passive maneuvers, the evoked responses with sensory or motor stimulation, and the integrity of the spinal cord and descending tracts with motor evoked potentials. This greatly complements the diagnostics of the SCI in the subacute phase of trauma care and deepens our understanding of neurorehabilitation strategies during the chronic phase of the traumatic injury. Conclusions: sEMG offers important insights into the neurophysiological factors underlying sensorimotor impairment and recovery after SCIs. Although several qualitative or semi-quantitative outcome measures determine the level of injury and the natural recovery after SCIs, using quantitative measures such as sEMG is promising. Nonetheless, there are still several barriers limiting the use of sEMG in the clinical environment and a need to advance high-density sEMG technology.
Collapse
|
15
|
Talifu Z, Qin C, Xin Z, Chen Y, Liu J, Dangol S, Ma X, Gong H, Pei Z, Yu Y, Li J, Du L. The Overexpression of Insulin-Like Growth Factor-1 and Neurotrophin-3 Promote Functional Recovery and Alleviate Spasticity After Spinal Cord Injury. Front Neurosci 2022; 16:863793. [PMID: 35573286 PMCID: PMC9099063 DOI: 10.3389/fnins.2022.863793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Objective This study was conducted to investigate the effects of the exogenous overexpression of nerve growth factors NT-3 and IGF-1 on the recovery of nerve function after spinal cord injury (SCI) and identify the potential mechanism involved. Methods Sixty-four female SD rats were randomly divided into four groups: an SCI group, an adeno-associated viral (AAV)-RFP and AAV-GFP injection group, an AAV-IGF-1 and AAV-NT-3 injection group, and a Sham group. After grouping, the rats were subjected to a 10-week electrophysiological and behavioral evaluation to comprehensively evaluate the effects of the intervention on motor function, spasticity, mechanical pain, and thermal pain. Ten weeks later, samples were taken for immunofluorescence (IF) staining and Western blot (WB) detection, focusing on the expression of KCC2, 5-HT2A, and 5-HT2C receptors in motor neurons and the spinal cord. Results Electrophysiological and behavioral data indicated that the AAV-IGF-1 and AAV-NT-3 groups showed better recovery of motor function (P < 0.05 from D14 compared with the AAV-RFP + AAV-GFP group; P < 0.05 from D42 compared with SCI group) and less spasticity (4-10 weeks, at 5 Hz all P < 0.05 compared with SCI group and AAV- RFP + AAV-GFP group) but with a trend for more pain sensitivity. Compared with the SCI group, the von Frey value result of the AAV-IGF-1 and AAV-NT-3 groups showed a lower pain threshold (P < 0.05 at 4-8 weeks), and shorter thermal pain threshold (P < 0.05 at 8-10 weeks). IF staining further suggested that compared with the SCI group, the overexpression of NT-3 and IGF-1 in the SCI-R + G group led to increased levels of KCC2 (p < 0.05), 5-HT2A (p < 0.05), and 5-HT2C (p < 0.001) in motor neurons. WB results showed that compared with the SCI group, the SCI-R + G group exhibited higher expression levels of CHAT (p < 0.01), 5-HT2A (p < 0.05), and 5-HT2C (p < 0.05) proteins in the L2-L6 lumbar enlargement. Conclusion Data analysis showed that the overexpression of NT-3 and IGF-1 may improve motor function after SCI and alleviate spasms in a rat model; however, these animals were more sensitive to mechanical pain and thermal pain. These behavioral changes may be related to increased numbers of KCC2, 5-HT2A, and 5-HT2C receptors in the spinal cord tissue. The results of this study may provide a new theoretical basis for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Chuan Qin
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhang Xin
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yixin Chen
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Subarna Dangol
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xiaodong Ma
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhisheng Pei
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
16
|
Medvediev VV, Oleksenko NP, Pichkur LD, Verbovska SA, Savosko SI, Draguntsova NG, Lontkovskiy YA, Vaslovych VV, Tsymbalyuk VI. Effect of Implantation of a Fibrin Matrix Associated with Neonatal Brain Cells on the Course of an Experimental Spinal Cord Injury. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722020086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
An injury-induced serotonergic neuron subpopulation contributes to axon regrowth and function restoration after spinal cord injury in zebrafish. Nat Commun 2021; 12:7093. [PMID: 34876587 PMCID: PMC8651775 DOI: 10.1038/s41467-021-27419-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinal cord injury (SCI) interrupts long-projecting descending spinal neurons and disrupts the spinal central pattern generator (CPG) that controls locomotion. The intrinsic mechanisms underlying re-wiring of spinal neural circuits and recovery of locomotion after SCI are unclear. Zebrafish shows axonal regeneration and functional recovery after SCI making it a robust model to study mechanisms of regeneration. Here, we use a two-cut SCI model to investigate whether recovery of locomotion can occur independently of supraspinal connections. Using this injury model, we show that injury induces the localization of a specialized group of intraspinal serotonergic neurons (ISNs), with distinctive molecular and cellular properties, at the injury site. This subpopulation of ISNs have hyperactive terminal varicosities constantly releasing serotonin activating 5-HT1B receptors, resulting in axonal regrowth of spinal interneurons. Axon regrowth of excitatory interneurons is more pronounced compared to inhibitory interneurons. Knock-out of htr1b prevents axon regrowth of spinal excitatory interneurons, negatively affecting coordination of rostral-caudal body movements and restoration of locomotor function. On the other hand, treatment with 5-HT1B receptor agonizts promotes functional recovery following SCI. In summary, our data show an intraspinal mechanism where a subpopulation of ISNs stimulates axonal regrowth resulting in improved recovery of locomotor functions following SCI in zebrafish.
Collapse
|
18
|
Calvert JS, Gill ML, Linde MB, Veith DD, Thoreson AR, Lopez C, Lee KH, Gerasimenko YP, Edgerton VR, Lavrov IA, Zhao KD, Grahn PJ, Sayenko DG. Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. J Clin Med 2021; 10:jcm10214898. [PMID: 34768418 PMCID: PMC8584516 DOI: 10.3390/jcm10214898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Andrew R. Thoreson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Kendall H. Lee
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Peter J. Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-363-7949
| |
Collapse
|
19
|
Levasseur A, Mac-Thiong JM, Richard-Denis A. Are early clinical manifestations of spasticity associated with long-term functional outcome following spinal cord injury? A retrospective study. Spinal Cord 2021; 59:910-916. [PMID: 34230603 DOI: 10.1038/s41393-021-00661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Retrospective study of a prospective cohort of patients with traumatic spinal cord injury (SCI). OBJECTIVES Determine the relationship between the occurrence of early spasticity, defined as the development of signs and/or symptoms of spasticity during the hospitalization in traumatology, and the functional outcome 6-12 months following a SCI. Secondly, to determine the specific impact of early clonus, velocity-dependent hypertonia and/or muscle spasms on the functional outcome at the same timepoint. SETTING Single trauma center specialized in SCI care. METHODS One hundred sixty-two patients sustaining an acute traumatic SCI were included in the analyses. Comparative analysis was performed to describe the characteristics of patients with early spasticity. Correlations were performed to determine the relationship between the clinical signs of spasticity and the Spinal Cord Independence Measure (SCIM) scores collected 6-12 months after SCI. RESULTS 51.9% of the cohort developed clinical signs of spasticity during the hospitalization in traumatology (29.7 days) following SCI. These showed a significantly lower total SCIM score and subscores compared to individuals without early spasticity at follow-up (p < 0.05). After adjusting for confounding factors, the occurrence of early spasms was only clinical sign of spasticity significantly associated with a decreased mobility at follow-up (r = -0.17, p = 0.04). CONCLUSIONS The development of signs and symptoms of spasticity, in particular the occurrence of spasms in the first month following the injury may be associated with decreased functional outcome and mobility. Early assessment of spasticity following SCI is thus recommended.
Collapse
Affiliation(s)
- Annie Levasseur
- Research Center, Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal (Hopital du Sacré-Coeur de Montréal), Montreal, QC, H4J 1C5, Canada.,Department of Biomedical Sciences, University of Montreal, Montreal, QC, Canada
| | - Jean-Marc Mac-Thiong
- Research Center, Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal (Hopital du Sacré-Coeur de Montréal), Montreal, QC, H4J 1C5, Canada.,Department of Surgery, Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal (Hopital du Sacré-Coeur de Montréal), Montreal, QC, Canada.,Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andréane Richard-Denis
- Research Center, Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal (Hopital du Sacré-Coeur de Montréal), Montreal, QC, H4J 1C5, Canada. .,Department of Physical Medicine and Rehabilitation, Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal (Hopital du Sacré-Coeur de Montréal), Montreal, QC, Canada. .,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
20
|
Islam MA, Pulverenti TS, Knikou M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability During Walking in Humans With and Without Spinal Cord Injury. Front Hum Neurosci 2021; 15:620414. [PMID: 33679347 PMCID: PMC7930001 DOI: 10.3389/fnhum.2021.620414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigated the neuromodulatory effects of transspinal stimulation on soleus H-reflex excitability and electromyographic (EMG) activity during stepping in humans with and without spinal cord injury (SCI). Thirteen able-bodied adults and 5 individuals with SCI participated in the study. EMG activity from both legs was determined for steps without, during, and after a single-pulse or pulse train transspinal stimulation delivered during stepping randomly at different phases of the step cycle. The soleus H-reflex was recorded in both subject groups under control conditions and following single-pulse transspinal stimulation at an individualized exactly similar positive and negative conditioning-test interval. The EMG activity was decreased in both subject groups at the steps during transspinal stimulation, while intralimb and interlimb coordination were altered only in SCI subjects. At the steps immediately after transspinal stimulation, the physiological phase-dependent EMG modulation pattern remained unaffected in able-bodied subjects. The conditioned soleus H-reflex was depressed throughout the step cycle in both subject groups. Transspinal stimulation modulated depolarization of motoneurons over multiple segments, limb coordination, and soleus H-reflex excitability during assisted stepping. The soleus H-reflex depression may be the result of complex spinal inhibitory interneuronal circuits activated by transspinal stimulation and collision between orthodromic and antidromic volleys in the peripheral mixed nerve. The soleus H-reflex depression by transspinal stimulation suggests a potential application for normalization of spinal reflex excitability after SCI.
Collapse
Affiliation(s)
- Md. Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Timothy S. Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
21
|
Lewis MJ, Jeffery ND, Olby NJ. Ambulation in Dogs With Absent Pain Perception After Acute Thoracolumbar Spinal Cord Injury. Front Vet Sci 2020; 7:560. [PMID: 33062648 PMCID: PMC7479830 DOI: 10.3389/fvets.2020.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute thoracolumbar spinal cord injury (SCI) is common in dogs frequently secondary to intervertebral disc herniation. Following severe injury, some dogs never regain sensory function to the pelvic limbs or tail and are designated chronically "deep pain negative." Despite this, a subset of these dogs develop spontaneous motor recovery over time including some that recover sufficient function in their pelvic limbs to walk independently without assistance or weight support. This type of ambulation is commonly known as "spinal walking" and can take up to a year or more to develop. This review provides a comparative overview of locomotion and explores the physiology of locomotor recovery after severe SCI in dogs. We discuss the mechanisms by which post-injury plasticity and coordination between circuitry contained within the spinal cord, peripheral sensory feedback, and residual or recovered supraspinal connections might combine to underpin spinal walking. The clinical characteristics of spinal walking are outlined including what is known about the role of patient or injury features such as lesion location, timeframe post-injury, body size, and spasticity. The relationship between the emergence of spinal walking and electrodiagnostic and magnetic resonance imaging findings are also discussed. Finally, we review possible ways to predict or facilitate recovery of walking in chronically deep pain negative dogs. Improved understanding of the mechanisms of gait generation and plasticity of the surviving tissue after injury might pave the way for further treatment options and enhanced outcomes in severely injured dogs.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas a & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
22
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
23
|
Peña Pino I, Hoover C, Venkatesh S, Ahmadi A, Sturtevant D, Patrick N, Freeman D, Parr A, Samadani U, Balser D, Krassioukov A, Phillips A, Netoff TI, Darrow D. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front Syst Neurosci 2020; 14:35. [PMID: 32714156 PMCID: PMC7340010 DOI: 10.3389/fnsys.2020.00035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Chronic spinal cord injury (SCI) portends a low probability of recovery, especially in the most severe subset of motor-complete injuries. Active spinal cord stimulation with or without intensive locomotor training has been reported to restore movement after traumatic SCI. Only three cases have been reported where participants developed restored volitional movement with active stimulation turned off after a period of chronic stimulation and only after intensive rehabilitation with locomotor training. It is unknown whether restoration of movement without stimulation is possible after stimulation alone. Objective: We describe the development of spontaneous volitional movement (SVM) without active stimulation in a subset of participants in the Epidural Stimulation After Neurologic Damage (ESTAND) trial, in which locomotor training is not prescribed as part of the study protocol, and subject’s rehabilitation therapies are not modified. Methods: Volitional movement was evaluated with the Brain Motor Control Assessment using sEMG recordings and visual examination at baseline and at follow-up visits with and without stimulation. Additional functional assessment with a motor-assisted bicycle exercise at follow-up with and without stimulation identified generated work with and without effort. Results: The first seven participants had ASIA Impairment Scale (AIS) A or B thoracic SCI, a mean age of 42 years, and 7.7 years post-injury on average. Four patients developed evidence of sustained volitional movement, even in the absence of active stimulation after undergoing chronic epidural spinal cord stimulation (eSCS). Significant increases in volitional power were found between those observed to spontaneously move without stimulation and those unable (p < 0.0005). The likelihood of recovery of spontaneous volitional control was correlated with spasticity scores prior to the start of eSCS therapy (p = 0.048). Volitional power progressively improved over time (p = 0.016). Additionally, cycling was possible without stimulation (p < 0.005). Conclusion: While some SVM after eSCS has been reported in the literature, this study demonstrates sustained restoration without active stimulation after long-term eSCS stimulation in chronic and complete SCI in a subset of participants. This finding supports previous studies suggesting that “complete” SCI is likely not as common as previously believed, if it exists at all in the absence of transection and that preserved pathways are substrates for eSCS-mediated recovery in clinically motor-complete SCI. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT03026816.
Collapse
Affiliation(s)
- Isabela Peña Pino
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Caleb Hoover
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Aliya Ahmadi
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Dylan Sturtevant
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Nick Patrick
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Ann Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States.,Division of Neurosurgery, VA Healthcare System, Minneapolis, MN, United States
| | - David Balser
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| | - Andrei Krassioukov
- International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC, Canada
| | - Aaron Phillips
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States.,Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, United States
| |
Collapse
|
24
|
DeForest BA, Bohorquez J, Perez MA. Vibration attenuates spasm-like activity in humans with spinal cord injury. J Physiol 2020; 598:2703-2717. [PMID: 32298483 DOI: 10.1113/jp279478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Cutaneous reflexes were tested to examine the neuronal mechanisms contributing to muscle spasms in humans with chronic spinal cord injury (SCI). Specifically, we tested the effect of Achilles and tibialis anterior tendon vibration on the early and late components of the cutaneous reflex and reciprocal Ia inhibition in the soleus and tibialis anterior muscles in humans with chronic SCI. We found that tendon vibration reduced the amplitude of later but not earlier cutaneous reflex in the antagonist but not in the agonist muscle relative to the location of the vibration. In addition, reciprocal Ia inhibition between antagonist ankle muscles increased with tendon vibration and participants with a larger suppression of the later component of the cutaneous reflex had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration attenuates late cutaneous spasm-like reflex activity, likely via reciprocal inhibitory mechanisms, and may represent a method, when properly targeted, for controlling spasms in humans with SCI. ABSTRACT The neuronal mechanisms contributing to the generation of involuntary muscle contractions (spasms) in humans with spinal cord injury (SCI) remain poorly understood. To address this question, we examined the effect of Achilles and tibialis anterior tendon vibration at 20, 40, 80 and 120 Hz on the amplitude of the long-polysynaptic (LPR, from reflex onset to 500 ms) and long-lasting (LLR, from 500 ms to reflex offset) cutaneous reflex evoked by medial plantar nerve stimulation in the soleus and tibialis anterior, and reciprocal Ia inhibition between these muscles, in 25 individuals with chronic SCI. We found that Achilles tendon vibration at 40 and 80 Hz, but not other frequencies, reduced the amplitude of the LLR in the tibialis anterior, but not the soleus muscle, without affecting the amplitude of the LPR. Vibratory effects were stronger at 80 than 40 Hz. Similar results were found in the soleus muscle when the tibialis anterior tendon was vibrated. Notably, tendon vibration at 80 Hz increased reciprocal Ia inhibition between antagonistic ankle muscles and vibratory-induced increases in reciprocal Ia inhibition were correlated with decreases in the LLR, suggesting that participants with a larger suppression of later cutaneous reflex activity had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration suppresses late spasm-like activity in antagonist but not agonist muscles, likely via reciprocal inhibitory mechanisms, in humans with chronic SCI. We argue that targeted vibration of antagonistic tendons might help to control spasms after SCI.
Collapse
Affiliation(s)
- Bradley A DeForest
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| | - Jorge Bohorquez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33124
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis and Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, FL, 33136.,Shirley Ryan AbilityLab and Edward Jr. Hines VA Hospital, Chicago, IL, 60141
| |
Collapse
|
25
|
Chen B, Sangari S, Lorentzen J, Nielsen JB, Perez MA. Bilateral and asymmetrical contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with spinal cord injury. J Neurophysiol 2020; 124:973-984. [PMID: 32432501 DOI: 10.1152/jn.00044.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spasticity is one of the most common symptoms present in humans with spinal cord injury (SCI); however, its clinical assessment remains underdeveloped. The purpose of the study was to examine the contribution of passive muscle stiffness and active spinal reflex mechanisms to clinical outcomes of spasticity after SCI. It is important that passive and active contributions to increased muscle stiffness are distinguished to make appropriate decisions about antispastic treatments and to monitor its effectiveness. To address this question, we combined biomechanical and electrophysiological assessments of ankle plantarflexor muscles bilaterally in individuals with and without chronic SCI. Spasticity was assessed using the Modified Ashworth Scale (MAS) and a self-reported questionnaire. We performed slow and fast dorsiflexion stretches of the ankle joint to measure passive muscle stiffness and reflex-induced torque using a dynamometer and the soleus H reflex using electrical stimulation over the posterior tibial nerve. All SCI participants reported the presence of spasticity. While 96% of them reported higher spasticity on one side compared with the other, the MAS detected differences across sides in only 25% of the them. Passive muscle stiffness and the reflex-induced torque were larger in SCI compared with controls more on one side compared with the other. The soleus stretch reflex, but not the H reflex, was larger in SCI compared with controls and showed differences across sides, with a larger reflex in the side showing a higher reflex-induced torque. MAS scores were not correlated with biomechanical and electrophysiological outcomes. These findings provide evidence for bilateral and asymmetric contributions of passive and active ankle plantar flexors stiffness to spasticity in humans with chronic SCI and highlight a poor agreement between a self-reported questionnaire and the MAS for detecting asymmetries in spasticity across sides.NEW & NOTEWORTHY Spasticity affects a number of people with spinal cord injury (SCI). Using biomechanical, electrophysiological, and clinical assessments, we found that passive muscle properties and active spinal reflex mechanisms contribute bilaterally and asymmetrically to spasticity in ankle plantarflexor muscles in humans with chronic SCI. A self-reported questionnaire had poor agreement with the Modified Ashworth Scale in detecting asymmetries in spasticity. The nature of these changes might contribute to the poor sensitivity of clinical exams.
Collapse
Affiliation(s)
- Bing Chen
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| | - Sina Sangari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| | - Jakob Lorentzen
- Institute of Neuroscience, University of Copenhagen and Institute of Nutrition and Exercise and Elsass Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jens B Nielsen
- Institute of Neuroscience, University of Copenhagen and Institute of Nutrition and Exercise and Elsass Institute, University of Copenhagen, Copenhagen, Denmark
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida.,Shirley Ryan AbilityLab and Northwestern University, Chicago, United States and Hines Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
26
|
Long-latency Responses to a Mechanical Perturbation of the Index Finger Have a Spinal Component. J Neurosci 2020; 40:3933-3948. [PMID: 32245828 PMCID: PMC7219296 DOI: 10.1523/jneurosci.1901-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022] Open
Abstract
In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. In an uncertain external environment, the motor system may need to respond rapidly to an unexpected stimulus. Limb displacement causes muscle stretch; the corrective response has multiple activity bursts, which are suggested to originate from different parts of the neuraxis. The earliest response is so fast, it can only be produced by spinal circuits; this is followed by slower components thought to arise from primary motor cortex (M1) and other supraspinal areas. Spinal cord (SC) contributions to the slower components are rarely considered. To address this, we recorded neural activity in M1 and the cervical SC during a visuomotor tracking task, in which 2 female macaque monkeys moved their index finger against a resisting motor to track an on-screen target. Following the behavioral trial, an increase in motor torque rapidly returned the finger to its starting position (lever velocity >200°/s). Many cells responded to this passive mechanical perturbation (M1: 148 of 211 cells, 70%; SC: 67 of 119 cells, 56%). The neural onset latency was faster for SC compared with M1 cells (21.7 ± 11.2 ms vs 25.5 ± 10.7 ms, respectively, mean ± SD). Using spike-triggered averaging, some cells in both regions were identified as likely premotor cells, with monosynaptic connections to motoneurons. Response latencies for these cells were compatible with a contribution to the muscle responses following the perturbation. Comparable fractions of responding neurons in both areas were active up to 100 ms after the perturbation, suggesting that both SC circuits and supraspinal centers could contribute to later response components. SIGNIFICANCE STATEMENT Following a limb perturbation, multiple reflexes help to restore limb position. Given conduction delays, the earliest part of these reflexes can only arise from spinal circuits. By contrast, long-latency reflex components are typically assumed to originate from supraspinal centers. We recorded from both spinal and motor cortical cells in monkeys responding to index finger perturbations. Many spinal interneurons, including those identified as projecting to motoneurons, responded to the perturbation; the timing of responses was compatible with a contribution to both short- and long-latency reflexes. We conclude that spinal circuits also contribute to long-latency reflexes in distal and forearm muscles, alongside supraspinal regions, such as the motor cortex and brainstem.
Collapse
|
27
|
Paget-Blanc A, Chang JL, Saul M, Lin R, Ahmed Z, Volpe BT. Non-invasive treatment of patients with upper extremity spasticity following stroke using paired trans-spinal and peripheral direct current stimulation. Bioelectron Med 2020; 5:11. [PMID: 32232101 PMCID: PMC7098221 DOI: 10.1186/s42234-019-0028-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background Muscle spasticity is a common impediment to motor recovery in patients with chronic stroke. Standard-of-care treatments such as botulinum toxin injections can temporarily relieve muscle stiffness and pain associated with spasticity, but often at the expense of increased muscle weakness. Recent preclinical investigations of a non-invasive treatment that pairs trans-spinal direct current stimulation and peripheral nerve direct current stimulation (tsDCS+pDCS) provided promising data for a novel approach based on bioelectronic medicine for the treatment of patients with post-stroke spasticity. Methods Twenty-six patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke participated in this single-blind crossover design study to test whether tsDCS+pDCS reduces chronic upper-extremity spasticity. Subjects received five consecutive daily sessions (20 min of stimulation or sham) of anodal tsDCS+pDCS, separated by a one-week washout period. The sham condition always preceded the active condition. Clinical and objective measures of spasticity and motor function were collected before and after each condition, and for five weeks after the completion of the active intervention. Results Subjects treated with active tsDCS+pDCS demonstrated significant reductions in both Modified Tardieu Scale scores (summed across the upper limb, P < 0.05), and in objective torque measures (Nm) of the spastic catch response at the wrist flexor (P < 0.05), compared to the sham condition. Motor function also improved significantly (measured by the Fugl-Meyer and Wolf Motor Function Test; P < 0.05 for both tests) after active treatment. Conclusions tsDCS+pDCS intervention alone significantly reduced upper limb spasticity in participants with stroke. Decreased spasticity was persistent for five weeks after treatment, and was accompanied by improved motor function even though patients were unsupervised and there was no prescribed activity or training during that interval. Trial registration NCT03080454, March 15, 2017.
Collapse
Affiliation(s)
- Alexandra Paget-Blanc
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Johanna L Chang
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Maira Saul
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| | - Regina Lin
- BARC Global Central Laboratory, 5 Delaware Dr, Hyde Park, NY 11042 USA
| | - Zaghloul Ahmed
- College of Staten Island, Department of Physical Therapy, Center for Developmental Neuroscience, Staten Island, NY 10314 USA.,4Graduate Center, City University of New York, New York, NY USA
| | - Bruce T Volpe
- 1Feinstein Institute for Medical Research, Biomedical Science Division, Biomedical Sciences /Robot Lab, Laboratory of Clinical Neurorehabilitation Research, 350 Community Dr, Manhasset, NY 11030 USA
| |
Collapse
|
28
|
Novel human models for elucidating mechanisms of rate-sensitive H-reflex depression. Biomed J 2020; 43:44-52. [PMID: 32200955 PMCID: PMC7090317 DOI: 10.1016/j.bj.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/24/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study used novel human neurophysiologic models to investigate whether the mechanism of rate-sensitive H-reflex depression lies in the pre-synaptic or post-synaptic locus in humans. We hypothesized that pre-synaptic inhibition would suppress Ia afferents and H-reflexes without suppressing alpha motor neurons or motor evoked potentials (MEPs). In contrast, post-synaptic inhibition would suppress alpha motor neurons, thereby reducing H-reflexes and MEPs. METHODS We recruited 23 healthy adults with typical rate-sensitive H-reflex depression, 2 participants with acute sensory-impaired spinal cord injury (SCI) (to rule out influence of sensory stimulation on supra-spinal excitability), and an atypical cohort of 5 healthy adults without rate-sensitive depression. After a single electrical stimulation to the tibial nerve, we administered either a testing H-reflex or a testing MEP at 50-5000 ms intervals. RESULTS Testing MEPs were not diminished in healthy subjects with or without typical rate-sensitive H-reflex depression, or in subjects with sensory-impaired SCI. MEP responses were similar in healthy subjects with versus without rate-sensitive H-reflex depression. CONCLUSIONS Results from these novel in vivo human models support a pre-synaptic locus of rate-sensitive H-reflex depression for the first time in humans. Spinal reflex excitability can be modulated separately from descending corticospinal influence. Each represents a potential target for neuromodulatory intervention.
Collapse
|
29
|
Develle Y, Leblond H. Biphasic Effect of Buspirone on the H-Reflex in Acute Spinal Decerebrated Mice. Front Cell Neurosci 2020; 13:573. [PMID: 32009904 PMCID: PMC6974439 DOI: 10.3389/fncel.2019.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022] Open
Abstract
Pharmacological treatment facilitating locomotor expression will also have some effects on reflex expression through the modulation of spinal circuitry. Buspirone, a partial serotonin receptor agonist (5-HT1 A), was recently shown to facilitate and even trigger locomotor movements in mice after complete spinal lesion (Tx). Here, we studied its effect on the H-reflex after acute Tx in adult mice. To avoid possible impacts of anesthetics on H-reflex depression, experiments were performed after decerebration in un-anesthetized mice (N = 20). The H-reflex in plantar muscles of the hind paw was recorded after tibial nerve stimulation 2 h after Tx at the 8th thoracic vertebrae and was compared before and every 10 min after buspirone (8 mg/kg, i.p.) for 60 min (N = 8). Frequency-dependent depression (FDD) of the H-reflex was assessed before and 60 min after buspirone. Before buspirone, a stable H-reflex could be elicited in acute spinal mice and FDD of the H-reflex was observed at 5 and 10 Hz relative to 0.2 Hz, FDD was still present 60 min after buspirone. Early after buspirone, the H-reflex was significantly decreased to 69% of pre-treatment, it then increased significantly 30-60 min after treatment, reaching 170% 60 min after injection. This effect was not observed in a control group (saline, N = 5) and was blocked when a 5-HT1 A antagonist (NAD-299) was administered with buspirone (N = 7). Altogether results suggest that the reported pro-locomotor effect of buspirone occurs at a time where there is a 5-HT1 A receptors mediated reflex depression followed by a second phase marked by enhancement of reflex excitability.
Collapse
Affiliation(s)
- Yann Develle
- Department of Anatomy, CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- Department of Anatomy, CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
30
|
Meneghel MC, Manffra EF, Neto GNN. A Tool to Select FES Parameters for chronic SCI .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3799-3802. [PMID: 31946701 DOI: 10.1109/embc.2019.8857421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional electrical stimulation has been used in rehabilitation programs for patients with chronic spinal cord injury. When used correctly it is able to improve the well-being of patients. However, when the stimulus is not adequate it can accelerate the process of fatigue, reducing the time available for training the programmed motor activity. To optimize the configuration of the stimulatory parameters, we developed a tool capable of simulating the muscle strength performance in response to different stimulatory profiles. The tool was able to reproduce the behavior of motoneurons in chronic spinal cord injury and to estimate the muscular strength resulting from the application of different stimuli. We consider that this FES Simulator is a promising tool to design and simulate different profiles of electrical stimulation, optimizing the decision process of the stimulation parameters.
Collapse
|
31
|
Cabahug P, Pickard C, Edmiston T, Lieberman JA. A Primary Care Provider's Guide to Spasticity Management in Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2020; 26:157-165. [PMID: 33192042 PMCID: PMC7640908 DOI: 10.46292/sci2603-157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Muscle spasticity is a common sequela of spinal cord injury (SCI) that may impact daily function. Spasticity dynamically varies and is an important physiologic response to illness or other stressors. The challenge for the general practitioner is in recognizing, treating, and developing an effective plan focused on the patient's individual goals. Objective: To provide the general practitioner with a basic contextual, diagnostic, and therapeutic approach to spasticity management for individuals with neurologic injury such as SCI. Discussion: Muscle spasticity can be disabling and can be managed effectively by using a comprehensive approach. We discuss a representative case and the assessment and planning for individuals with SCI and spasticity. Through an understanding of pathophysiology, careful history taking, and physical exam, a cause for increased spasticity can be identified, such as infection, constipation, or pregnancy. Symptomatology of these triggers is often quite different in the SCI population than in the general population. Management includes the treatment of this causative stressor as well as the thoughtful management of spasticity itself. Conclusion: Muscle spasticity is dynamic and requires a patient-centered approach. The general practitioner can play a key role in recognizing and treating spasticity in an individual with SCI. Comprehensive management to meet patient and caregiver goals involves primary care providers, specialists, and allied health practitioners.
Collapse
Affiliation(s)
- Philippines Cabahug
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, Maryland
| | - Charles Pickard
- The Centre for Family Medicine Family Health Team, Kitchener, Ontario
| | - Travis Edmiston
- Rancho Los Amigos National Rehabilitation Center, Downey, California
| | | |
Collapse
|
32
|
Plantier V, Sanchez-Brualla I, Dingu N, Brocard C, Liabeuf S, Gackière F, Brocard F. Calpain fosters the hyperexcitability of motoneurons after spinal cord injury and leads to spasticity. eLife 2019; 8:e51404. [PMID: 31815668 PMCID: PMC6927741 DOI: 10.7554/elife.51404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Up-regulation of the persistent sodium current (INaP) and down-regulation of the potassium/chloride extruder KCC2 lead to spasticity after spinal cord injury (SCI). We here identified calpain as the driver of the up- and down-regulation of INaP and KCC2, respectively, in neonatal rat lumbar motoneurons. Few days after SCI, neonatal rats developed behavioral signs of spasticity with the emergence of both hyperreflexia and abnormal involuntary muscle contractions on hindlimbs. At the same time, in vitro isolated lumbar spinal cords became hyperreflexive and displayed numerous spontaneous motor outputs. Calpain-I expression paralleled with a proteolysis of voltage-gated sodium (Nav) channels and KCC2. Acute inhibition of calpains reduced this proteolysis, restored the motoneuronal expression of Nav and KCC2, normalized INaP and KCC2 function, and curtailed spasticity. In sum, by up- and down-regulating INaP and KCC2, the calpain-mediated proteolysis of Nav and KCC2 drives the hyperexcitability of motoneurons which leads to spasticity after SCI.
Collapse
Affiliation(s)
- Vanessa Plantier
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Irene Sanchez-Brualla
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Nejada Dingu
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Cécile Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Sylvie Liabeuf
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Florian Gackière
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRSMarseilleFrance
| |
Collapse
|
33
|
Patwa S, Benson CA, Dyer L, Olson K, Bangalore L, Hill M, Waxman SG, Tan AM. Spinal cord motor neuron plasticity accompanies second-degree burn injury and chronic pain. Physiol Rep 2019; 7:e14288. [PMID: 31858746 PMCID: PMC6923170 DOI: 10.14814/phy2.14288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Burn injuries and associated complications present a major public health challenge. Many burn patients develop clinically intractable complications, including pain and other sensory disorders. Recent evidence has shown that dendritic spine neuropathology in spinal cord sensory and motor neurons accompanies central nervous system (CNS) or peripheral nervous system (PNS) trauma and disease. However, no research has investigated similar dendritic spine neuropathologies following a cutaneous thermal burn injury. In this retrospective investigation, we analyzed dendritic spine morphology and localization in alpha-motor neurons innervating a burn-injured area of the body (hind paw). To identify a molecular regulator of these dendritic spine changes, we further profiled motor neuron dendritic spines in adult mice treated with romidepsin, a clinically approved Pak1-inhibitor, or vehicle control at two postburn time points: Day 6 immediately after treatment, or Day 10 following drug withdrawal. In control treated mice, we observed an overall increase in dendritic spine density, including structurally mature spines with mushroom-shaped morphology. Pak1-inhibitor treatment reduced injury-induced changes to similar levels observed in animals without burn injury. The effectiveness of the Pak1-inhibitor was durable, since normalized dendritic spine profiles remained as long as 4 days despite drug withdrawal. This study is the first report of evidence demonstrating that a second-degree burn injury significantly affects motor neuron structure within the spinal cord. Furthermore, our results support the opportunity to study dendritic spine dysgenesis as a novel avenue to clarify the complexities of neurological disease following traumatic injury.
Collapse
Affiliation(s)
- Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Curtis A. Benson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lauren Dyer
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Kai‐Lan Olson
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Myriam Hill
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| | - Andrew M. Tan
- Department of Neurology and Center for Neuroscience and Regeneration ResearchYale University School of MedicineNew HavenConnecticut
- Rehabilitation Research CenterVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticut
| |
Collapse
|
34
|
Grycz K, Głowacka A, Ji B, Czarkowska-Bauch J, Gajewska-Woźniak O, Skup M. Early pre- and postsynaptic decrease in glutamatergic and cholinergic signaling after spinalization is not modified when stimulating proprioceptive input to the ankle extensor α-motoneurons: Anatomical and neurochemical study. PLoS One 2019; 14:e0222849. [PMID: 31557259 PMCID: PMC6763201 DOI: 10.1371/journal.pone.0222849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/08/2019] [Indexed: 12/23/2022] Open
Abstract
Alpha-motoneurons (MNs) innervating ankle extensor muscles show reduced peripheral inputs from Ia proprioceptive afferents and cholinergic afferents after chronic spinalization (SCT). That phenomenon is not observed on ankle flexor MNs, indicating a smaller vulnerability of the latter MNs circuit to SCT. Locomotor training of spinal rats which partially restored those inputs to extensor MNs tended to hyper innervate flexor MNs, disclosing a need for selective approaches. In rats with intact spinal cord 7-days of low-threshold proprioceptive stimulation of the tibial nerve enriched glutamatergic Ia and cholinergic innervation of lateral gastrocnemius (LG) MNs, suggesting usefulness of selective stimulation for restoration of inputs to extensor MNs after SCT. Accordingly, to examine its effectiveness after SCT, tibial nerves and soleus muscles were implanted bilaterally, and for MN identification fluorescence tracers to LG and tibialis anterior (TA) muscles were injected two weeks prior to spinalization. Stimulation of tibial nerve, controlled by H-reflex recorded in the soleus muscle, started on the third post-SCT day and continued for 7 days. Nine days post-SCT the number and volume of glutamatergic Ia and of cholinergic C-boutons on LG MNs was decreased, but stimulation affected neither of them. Postsynaptically, a threefold decrease of NMDAR NR1 subunit and thirtyfold decrease of M2 muscarinic receptor transcripts caused by SCT were not counteracted by stimulation, whereas a threefold decrease of AMPAR GluR2 subunit tended to deepen after stimulation. We conclude that LG MNs, supported with proprioceptive stimuli after SCT, do not transcribe the perceived cues into compensatory response at the transcriptional level in the early post-SCT period.
Collapse
Affiliation(s)
- Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Głowacka
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Benjun Ji
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Małgorzata Skup
- Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail: (OG-W); (MS)
| |
Collapse
|
35
|
Calvert JS, Manson GA, Grahn PJ, Sayenko DG. Preferential activation of spinal sensorimotor networks via lateralized transcutaneous spinal stimulation in neurologically intact humans. J Neurophysiol 2019; 122:2111-2118. [PMID: 31553681 DOI: 10.1152/jn.00454.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcutaneous spinal stimulation (TSS), a noninvasive technique to modulate sensorimotor circuitry within the spinal cord, has been shown to enable a wide range of functions that were thought to be permanently impaired in humans with spinal cord injury. However, the extent to which TSS can be used to target specific mediolateral spinal cord circuitry remains undefined. We tested the hypothesis that TSS applied unilaterally to the skin ~2 cm lateral to the midline of the lumbosacral spine selectively activates ipsilateral spinal sensorimotor circuitry, resulting in ipsilateral activation of downstream lower extremity neuromusculature. TSS cathodes and anodes were positioned lateral from the midline of the spine in 15 healthy subjects while supine, and the timing of TSS pulses was synchronized to recordings of lower extremity muscle activity and force. At motor threshold, left and right TSS-evoked muscle activity was significantly higher in the ipsilateral leg compared with contralateral recordings from the same muscles. Similarly, we observed a significant increase in force production in the ipsilateral leg compared with the contralateral leg. Delivery of paired TSS pulses, during which an initial stimulus was applied to one side of the spinal cord and 50 ms later a second stimulus was applied to the contralateral side, revealed that ipsilateral leg muscle responses decreased following the initial stimulus, whereas contralateral muscle responses did not decrease, indicating side-specific activation of lateral spinal sensorimotor circuitry. Our results indicate TSS can selectively engage ipsilateral neuromusculature via lumbosacral sensorimotor networks responsible for lower extremity function in healthy humans.NEW & NOTEWORTHY We demonstrate the selectivity of transcutaneous spinal stimulation (TSS), which has been shown to enable function in humans with chronic paralysis. Specifically, we demonstrate that TSS applied to locations lateral to the spinal cord can selectively activate ipsilateral spinal sensorimotor networks. We quantified lumbosacral spinal network activity by recording lower extremity muscle electromyography and force. Our results suggest lumbosacral TSS engages side-specific spinal sensorimotor networks associated with ipsilateral lower extremity function in humans.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Gerome A Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota.,Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
36
|
Sacino A, Rosenblatt K. Critical Care Management of Acute Spinal Cord Injury-Part II: Intensive Care to Rehabilitation. JOURNAL OF NEUROANAESTHESIOLOGY AND CRITICAL CARE 2019; 6:222-235. [PMID: 33907704 DOI: 10.1055/s-0039-1694686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Spinal cord injury is devastating to those affected due to the loss of motor and sensory function, and, in some cases, cardiovascular collapse, ventilatory failure, and bowel and bladder dysfunction. Primary trauma to the spinal cord is exacerbated by secondary insult from the inflammatory response to injury. Specialized intensive care of patients with acute spinal cord injury involves the management of multiple systems and incorporates evidence-based practices to reduce secondary injury to the spinal cord. Patients greatly benefit from early multidisciplinary rehabilitation for neurologic and functional recovery. Treatment of acute spinal cord injury may soon incorporate novel molecular agents currently undergoing clinical investigation to assist in neuroprotection and neuroregeneration.
Collapse
Affiliation(s)
- Amanda Sacino
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kathryn Rosenblatt
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
37
|
Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Changes in Activity of Spinal Postural Networks at Different Time Points After Spinalization. Front Cell Neurosci 2019; 13:387. [PMID: 31496938 PMCID: PMC6712497 DOI: 10.3389/fncel.2019.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Postural limb reflexes (PLRs) are an essential component of postural corrections. Spinalization leads to disappearance of postural functions (including PLRs). After spinalization, spastic, incorrectly phased motor responses to postural perturbations containing oscillatory EMG bursting gradually develop, suggesting plastic changes in the spinal postural networks. Here, to reveal these plastic changes, rabbits at 3, 7, and 30 days after spinalization at T12 were decerebrated, and responses of spinal interneurons from L5 along with hindlimb muscles EMG responses to postural sensory stimuli, causing PLRs in subjects with intact spinal cord (control), were characterized. Like in control and after acute spinalization, at each of three studied time points after spinalization, neurons responding to postural sensory stimuli were found. Proportion of such neurons during 1st month after spinalization did not reach the control level, and was similar to that observed after acute spinalization. In contrast, their activity (which was significantly decreased after acute spinalization) reached the control value at 3 days after spinalization and remained close to this level during the following month. However, the processing of postural sensory signals, which was severely distorted after acute spinalization, did not recover by 30 days after injury. In addition, we found a significant enhancement of the oscillatory activity in a proportion of the examined neurons, which could contribute to generation of oscillatory EMG bursting. Motor responses to postural stimuli (which were almost absent after acute spinalization) re-appeared at 3 days after spinalization, although they were very weak, irregular, and a half of them was incorrectly phased in relation to postural stimuli. Proportion of correct and incorrect motor responses remained almost the same during the following month, but their amplitude gradually increased. Thus, spinalization triggers two processes of plastic changes in the spinal postural networks: rapid (taking days) restoration of normal activity level in spinal interneurons, and slow (taking months) recovery of motoneuronal excitability. Most likely, recovery of interneuronal activity underlies re-appearance of motor responses to postural stimuli. However, absence of recovery of normal processing of postural sensory signals and enhancement of oscillatory activity of neurons result in abnormal PLRs and loss of postural functions.
Collapse
|
38
|
Mekhael W, Begum S, Samaddar S, Hassan M, Toruno P, Ahmed M, Gorin A, Maisano M, Ayad M, Ahmed Z. Repeated anodal trans-spinal direct current stimulation results in long-term reduction of spasticity in mice with spinal cord injury. J Physiol 2019; 597:2201-2223. [PMID: 30689208 PMCID: PMC6462463 DOI: 10.1113/jp276952] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/18/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Spasticity is a disorder of muscle tone that is associated with lesions of the motor system. This condition involves an overactive spinal reflex loop that resists the passive lengthening of muscles. Previously, we established that application of anodal trans-spinal direct current stimulation (a-tsDCS) for short periods of time to anaesthetized mice sustaining a spinal cord injury leads to an instantaneous reduction of spasticity. However, the long-term effects of repeated a-tsDCS and its mechanism of action remained unknown. In the present study, a-tsDCS was performed for 7 days and this was found to cause long-term reduction in spasticity, increased rate-dependent depression in spinal reflexes, and improved ground and skill locomotion. Pharmacological, molecular and cellular evidence further suggest that a novel mechanism involving Na-K-Cl cotransporter isoform 1 mediates the observed long-term effects of repeated a-tsDCS. ABSTRACT Spasticity can cause pain, fatigue and sleep disturbances; restrict daily activities such as walking, sitting and bathing; and complicate rehabilitation efforts. Thus, spasticity negatively influences an individual's quality of life and novel therapeutic interventions are needed. We previously demonstrated in anaesthetized mice that a short period of trans-spinal subthreshold direct current stimulation (tsDCS) reduces spasticity. In the present study, the long-term effects of repeated tsDCS to attenuate abnormal muscle tone in awake female mice with spinal cord injuries were investigated. A motorized system was used to test velocity-dependent ankle resistance and associated electromyographical activity. Analysis of ground and skill locomotion was also performed, with electrophysiological, molecular and cellular studies being conducted to reveal a potential underlying mechanism of action. A 4 week reduction in spasticity was associated with an increase in rate-dependent depression of spinal reflexes, and ground and skill locomotion were improved following 7 days of anodal-tsDCS (a-tsDCS). Secondary molecular, cellular and pharmacological experiments further demonstrated that the expression of K-Cl co-transporter isoform 2 (KCC2) was not changed in animals with spasticity. However, Na-K-Cl cotransporter isoform 1 (NKCC1) was significantly up-regulated in mice that exhibited spasticity. When mice were treated with a-tsDCS, down regulation of NKCC1 was detected, and this level did not significantly differ from that in the non-injured control mice. Thus, long lasting reduction of spasticity by a-tsDCS via downregulation of NKCC1 may constitute a novel therapy for spasticity following spinal cord injury.
Collapse
Affiliation(s)
- Wagdy Mekhael
- Graduate CenterCity University of New YorkNew YorkNYUSA
| | - Sultana Begum
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Sreyashi Samaddar
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| | - Mazen Hassan
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Pedro Toruno
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Malik Ahmed
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Alexis Gorin
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Michael Maisano
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Mark Ayad
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
| | - Zaghloul Ahmed
- Graduate CenterCity University of New YorkNew YorkNYUSA
- Center for Developmental NeuroscienceThe College of Staten IslandStaten IslandNYUSA
- Department of Physical TherapyThe College of Staten IslandStaten IslandNYUSA
| |
Collapse
|
39
|
Lucas-Osma AM, Li Y, Murray K, Lin S, Black S, Stephens MJ, Ahn AH, Heckman CJ, Fenrich KK, Fouad K, Bennett DJ. 5-HT 1D receptors inhibit the monosynaptic stretch reflex by modulating C-fiber activity. J Neurophysiol 2019; 121:1591-1608. [PMID: 30625007 DOI: 10.1152/jn.00805.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The monosynaptic stretch reflex (MSR) plays an important role in feedback control of movement and posture but can also lead to unstable oscillations associated with tremor and clonus, especially when increased with spinal cord injury (SCI). To control the MSR and clonus after SCI, we examined how serotonin regulates the MSR in the sacrocaudal spinal cord of rats with and without a chronic spinal transection. In chronic spinal rats, numerous 5-HT receptor agonists, including zolmitriptan, methylergonovine, and 5-HT, inhibited the MSR with a potency highly correlated to their binding affinity to 5-HT1D receptors and not other 5-HT receptors. Selective 5-HT1D receptor antagonists blocked this agonist-induced inhibition, although antagonists alone had no action, indicating a lack of endogenous or constitutive receptor activity. In normal uninjured rats, the MSR was likewise inhibited by 5-HT, but at much higher doses, indicating a supersensitivity after SCI. This supersensitivity resulted from the loss of the serotonin transporter SERT with spinal transection, because normal and injured rats were equally sensitive to 5-HT after SERT was blocked or to agonists not transported by SERT (zolmitriptan). Immunolabeling revealed that the 5-HT1D receptor was confined to superficial lamina of the dorsal horn, colocalized with CGRP-positive C-fibers, and eliminated by dorsal rhizotomy. 5-HT1D receptor labeling was not found on large proprioceptive afferents or α-motoneurons of the MSR. Thus serotonergic inhibition of the MSR acts indirectly by modulating C-fiber activity, opening up new possibilities for modulating reflex function and clonus via pain-related pathways. NEW & NOTEWORTHY Brain stem-derived serotonin potently inhibits afferent transmission in the monosynaptic stretch reflex. We show that serotonin produces this inhibition exclusively via 5-HT1D receptors, and yet these receptors are paradoxically mostly confined to C-fibers. This suggests that serotonin acts by gating of C-fiber activity, which in turn modulates afferent transmission to motoneurons. We also show that the classic supersensitivity to 5-HT after spinal cord injury results from a loss of SERT, and not 5-HT1D receptor plasticity.
Collapse
Affiliation(s)
- Ana M Lucas-Osma
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Katie Murray
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Sophie Black
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Marilee J Stephens
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Andrew H Ahn
- Teva Pharmaceuticals, Clinical Development, North Wales, Pennsylvania
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine , Chicago, Illinois
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
40
|
Mills PB, Holtz KA, Szefer E, Noonan VK, Kwon BK. Early predictors of developing problematic spasticity following traumatic spinal cord injury: A prospective cohort study. J Spinal Cord Med 2018; 43:315-330. [PMID: 30299227 PMCID: PMC7241552 DOI: 10.1080/10790268.2018.1527082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: To identify early predictors and develop reliable, validated prediction models for development of problematic spasticity after traumatic spinal cord injury (SCI).Design: Prospective cohort study of the Rick Hansen Spinal Cord Injury Registry (RHSCIR), retrospective review of inpatient medical charts.Setting: Quaternary trauma center, rehabilitation center, community settings.Participants: Individuals with traumatic SCI between March 1, 2005, and March 31, 2014, prospectively enrolled in the Vancouver site RHSCIR.Interventions: None.Main Outcome Measure: Spasticity limiting function or requiring treatment (problematic spasticity) on the Spinal Cord Injury Health Questionnaire.Results: In 350 patients, variables documented during hospitalization that predicted the development of problematic spasticity up to 5 years post-injury included: initial Glasgow Coma Scale; age at time of injury; admission to rehabilitation center; community discharge anti-spasticity medication prescription, neurological status, Penn Spasm Frequency Scale, and pain interference with quality of life, sleep, activities; greater change in AIS motor scores between admission and discharge. The predictive models had area under the receiver operating characteristic curve of 0.80 (95% CI 0.75, 0.85) in the development set (N = 244) and 0.84 (95% CI 0.74, 0.92) in the validation set (N = 106) for spasticity limiting function and 0.81 (95% CI 0.76, 0.85) in the development set and 0.85 (95% CI 0.77, 0.92) in the validation set for spasticity requiring treatment.Conclusions: Our prediction models provide an early prognosis of risk of developing problematic spasticity after traumatic SCI, which can be used to improve clinical spasticity management and assist research (e.g. risk stratification in interventional trials).
Collapse
Affiliation(s)
- Patricia B. Mills
- ICORD (International Collaboration on Repair Discoveries), University of British Columbia, Vancouver, BC, Canada,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,Rehabilitation Research Program, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada,Correspondence to: Patricia B. Mills, Rehabilitation Research Program, Vancouver Coastal Health Research Institute, GF Strong Rehab Centre, 4255 Laurel Street, Vancouver, BC, Canada V5Z 2G9; Ph: 604-714-4112.
| | - Kaila A. Holtz
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Brian K. Kwon
- ICORD (International Collaboration on Repair Discoveries), University of British Columbia, Vancouver, BC, Canada,Vancouver Spine Surgery Institute, Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Intraspinal Grafting of Serotonergic Neurons Modifies Expression of Genes Important for Functional Recovery in Paraplegic Rats. Neural Plast 2018; 2018:4232706. [PMID: 30147717 PMCID: PMC6083740 DOI: 10.1155/2018/4232706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) plays an important role in control of locomotion, partly through direct effects on motoneurons. Spinal cord complete transection (SCI) results in changes in 5-HT receptors on motoneurons that influence functional recovery. Activation of 5-HT2A and 5-HT7 receptors improves locomotor hindlimb movements in paraplegic rats. Here, we analyzed the mRNA of 5-HT2A and 5-HT7 receptors (encoded by Htr2a and Htr7 genes, resp.) in motoneurons innervating tibialis anterior (TA) and gastrocnemius lateralis (GM) hindlimb muscles and the tail extensor caudae medialis (ECM) muscle in intact as well as spinal rats. Moreover, the effect of intraspinal grafting of serotonergic neurons on Htr2a and Htr7 gene expression was examined to test the possibility that the graft origin 5-HT innervation in the spinal cord of paraplegic rats could reverse changes in gene expression induced by SCI. Our results indicate that SCI at the thoracic level leads to changes in Htr2a and Htr7 gene expression, whereas transplantation of embryonic serotonergic neurons modifies these changes in motoneurons innervating hindlimb muscles but not those innervating tail muscles. This suggests that the upregulation of genes critical for locomotor recovery, resulting in limb motoneuron plasticity, might account for the improved locomotion in grafted animals.
Collapse
|
42
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI). BMC Neurol 2018; 18:17. [PMID: 29433467 PMCID: PMC5809925 DOI: 10.1186/s12883-018-1020-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Methods Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Results Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (− 31.3 ± 25.7%). However, there were no statistically significant differences between these sub-groups or between conditions when the data were pooled. Conclusions Based on the present results there is insufficient evidence to conclude that patellar tendon vibration provides a clear benefit to muscle force production or delays muscle fatigue during wide-pulse width, moderate-intensity NMES in people with SCI. Trial registration ACTRN12618000022268. Date: 11/01/2018. Retrospectively registered.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Building 34.1.02, Bruce Highway, North Rockhampton, Qld, 4702, Australia. .,Exercise Medicine Research Clinic, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Robert U Newton
- Exercise Medicine Research Clinic, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
43
|
Lewis MJ, Olby NJ. Development of a clinical spasticity scale for evaluation of dogs with chronic thoracolumbar spinal cord injury. Am J Vet Res 2017. [PMID: 28650240 DOI: 10.2460/ajvr.78.7.854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop a spasticity scale for dogs with chronic deficits following severe spinal cord injury (SCI) for use in clinical assessment and outcome measurement in clinical trials. ANIMALS 20 chronically paralyzed dogs with a persistent lack of hind limb pain perception caused by an acute SCI at least 3 months previously. PROCEDURES Spasticity was assessed in both hind limbs via tests of muscle tone, clonus, and flexor and extensor spasms adapted from human scales. Measurement of patellar clonus duration and flexor spasm duration and degree was feasible. These components were used to create a canine spasticity scale (CSS; overall score range, 0 to 18). Temporal variation for individual dogs and interrater reliability were evaluated. Gait was quantified with published gait scales, and CSS scores were compared with gait scores and clinical variables. Owners were questioned regarding spasticity observed at home. RESULTS 20 dogs were enrolled: 18 with no apparent hind limb pain perception and 2 with blunted responses; 5 were ambulatory. Testing was well tolerated, and scores were repeatable between raters. Median overall CSS score was 7 (range, 3 to 11), and flexor spasms were the most prominent finding. Overall CSS score was not associated with age, SCI duration, lesion location, or owner-reported spasticity. Overall CSS score and flexor spasm duration were associated with gait scores. CONCLUSIONS AND CLINICAL RELEVANCE The CSS could be used to quantify hind limb spasticity in dogs with chronic thoracolumbar SCI and might be a useful outcome measure. Flexor spasms may represent an integral part of stepping in dogs with severe SCI.
Collapse
|
44
|
Parker D. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front Neural Circuits 2017; 11:84. [PMID: 29163065 PMCID: PMC5681538 DOI: 10.3389/fncir.2017.00084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2017; 119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting.
Collapse
Affiliation(s)
- Kristan A Leech
- Department of Neuroscience, Johns Hopkins University , Baltimore, Maryland
| | - Hyosub E Kim
- Department of Psychology, University of California at Berkeley , Berkeley, California
| | | |
Collapse
|
46
|
Santin JM, Vallejo M, Hartzler LK. Synaptic up-scaling preserves motor circuit output after chronic, natural inactivity. eLife 2017; 6:30005. [PMID: 28914603 PMCID: PMC5636609 DOI: 10.7554/elife.30005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Neural systems use homeostatic plasticity to maintain normal brain functions and to prevent abnormal activity. Surprisingly, homeostatic mechanisms that regulate circuit output have mainly been demonstrated during artificial and/or pathological perturbations. Natural, physiological scenarios that activate these stabilizing mechanisms in neural networks of mature animals remain elusive. To establish the extent to which a naturally inactive circuit engages mechanisms of homeostatic plasticity, we utilized the respiratory motor circuit in bullfrogs that normally remains inactive for several months during the winter. We found that inactive respiratory motoneurons exhibit a classic form of homeostatic plasticity, up-scaling of AMPA-glutamate receptors. Up-scaling increased the synaptic strength of respiratory motoneurons and acted to boost motor amplitude from the respiratory network following months of inactivity. Our results show that synaptic scaling sustains strength of the respiratory motor output following months of inactivity, thereby supporting a major neuroscience hypothesis in a normal context for an adult animal. Neurons in the brain communicate using chemical signals that they send and receive across junctions called synapses. To maintain normal behavior over time, circuits of neurons must reliably process these signals. A variety of nervous system disorders may result if they are unable to do so, as may occur when neural activity changes as a result of disease or injury. The processes underlying the stability of a neuron’s synapses is referred to as “homeostatic” synaptic plasticity because the changes made by the neuron directly oppose the altered level of activity. In one form of homeostatic plasticity, known as synaptic scaling, neurons modify the strength of all of their synapses in response to changes in neural activity. There is substantial experimental evidence to show that in young animals, neurons that communicate using a chemical called glutamate undergo synaptic scaling in response to artificial changes in activity. It had not been directly shown that synaptic scaling protects the neural activity of adult animals in their natural environments, in part, because neural activity in most healthy animals generally only goes through small changes. However, the neurons in the brain that cause the breathing muscles of bullfrogs to contract are ideal for studying homeostatic plasticity because they are naturally inactive for several months when frogs hibernate in ponds during the winter. During this time, the bullfrogs do not need to use their lungs to breathe because enough oxygen passes through their skin to keep them alive. Santin et al. have now observed synaptic scaling of glutamate synapses in individual bullfrog neurons that had been inactive for two months. Further experiments that examined the activity of the breathing control circuit in the brainstem provided evidence that synaptic scaling leads to sufficient amounts of neural activity that would activate the breathing muscles when frogs emerge from hibernation. Therefore neural activity after prolonged, natural inactivity relies on synaptic scaling to preserve life-sustaining behavior in frogs. These results open up new questions: mainly, how do synaptic scaling and other forms of homeostatic plasticity operate in animals as they experience normal variations in neural activity? Determining how homeostatic plasticity works normally in an animal will help us to understand what happens when plasticity mechanisms go wrong, as is thought to occur in several human nervous system diseases including nervous system injury, Alzheimer’s disease, and epilepsy.
Collapse
Affiliation(s)
- Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, United States.,Department of Biological Sciences, Wright State University, Dayton, United States
| | - Mauricio Vallejo
- Department of Biological Sciences, Wright State University, Dayton, United States
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, United States
| |
Collapse
|
47
|
Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Sci Rep 2017; 7:5884. [PMID: 28724992 PMCID: PMC5517549 DOI: 10.1038/s41598-017-06049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Spasticity, a common complication after spinal cord injury (SCI), is frequently accompanied by chronic pain. The physiological origin of this pain (critical to its treatment) remains unknown, although spastic motor dysfunction has been related to the hyperexcitability of motoneurons and to changes in spinal sensory processing. Here we show that the pain mechanism involves changes in sensory circuits of the dorsal horn (DH) where nociceptive inputs integrate for pain processing. Spasticity is associated with the DH hyperexcitability resulting from an increase in excitation and disinhibition occurring in two respective types of sensory interneurons. In the tonic-firing inhibitory lamina II interneurons, glutamatergic drive was reduced while glycinergic inhibition was potentiated. In contrast, excitatory drive was boosted to the adapting-firing excitatory lamina II interneurons while GABAergic and glycinergic inhibition were reduced. Thus, increased activity of excitatory DH interneurons coupled with the reduced excitability of inhibitory DH interneurons post-SCI could provide a neurophysiological mechanism of central sensitization and chronic pain associated with spasticity.
Collapse
|
48
|
Lee KZ, Gonzalez-Rothi EJ. Contribution of 5-HT 2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury. Respir Physiol Neurobiol 2017; 244:51-55. [PMID: 28711602 DOI: 10.1016/j.resp.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Taiwan.
| | | |
Collapse
|
49
|
Ozdemir RA, Perez MA. Afferent input and sensory function after human spinal cord injury. J Neurophysiol 2017; 119:134-144. [PMID: 28701541 DOI: 10.1152/jn.00354.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) often disrupts the integrity of afferent (sensory) axons projecting through the spinal cord dorsal columns to the brain. Examinations of ascending sensory tracts, therefore, are critical for monitoring the extent of SCI and recovery processes. In this review, we discuss the most common electrophysiological techniques used to assess transmission of afferent inputs to the primary motor cortex (i.e., afferent input-induced facilitation and inhibition) and the somatosensory cortex [i.e., somatosensory evoked potentials (SSEPs), dermatomal SSEPs, and electrical perceptual thresholds] following human SCI. We discuss how afferent input modulates corticospinal excitability by involving cortical and spinal mechanisms depending on the timing of the effects, which need to be considered separately for upper and lower limb muscles. We argue that the time of arrival of afferent input onto the sensory and motor cortex is critical to consider in plasticity-induced protocols in humans with SCI. We also discuss how current sensory exams have been used to detect differences between control and SCI participants but might be less optimal to characterize the level and severity of injury. There is a need to conduct some of these electrophysiological examinations during functionally relevant behaviors to understand the contribution of impaired afferent inputs to the control, or lack of control, of movement. Thus the effects of transmission of afferent inputs to the brain need to be considered on multiple functions following human SCI.
Collapse
Affiliation(s)
- Recep A Ozdemir
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami , Miami, Florida.,Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
50
|
Ryu Y, Ogata T, Nagao M, Kitamura T, Morioka K, Ichihara Y, Doi T, Sawada Y, Akai M, Nishimura R, Fujita N. The swimming test is effective for evaluating spasticity after contusive spinal cord injury. PLoS One 2017; 12:e0171937. [PMID: 28182676 PMCID: PMC5300247 DOI: 10.1371/journal.pone.0171937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/28/2017] [Indexed: 12/27/2022] Open
Abstract
Spasticity is a frequent chronic complication in individuals with spinal cord injury (SCI). However, the severity of spasticity varies in patients with SCI. Therefore, an evaluation method is needed to determine the severity of spasticity. We used a contusive SCI model that is suitable for clinical translation. In this study, we examined the feasibility of the swimming test and an EMG for evaluating spasticity in a contusive SCI rat model. Sprague-Dawley rats received an injury at the 8th thoracic vertebra. Swimming tests were performed 3 to 6 weeks after SCI induction. We placed the SCI rats into spasticity-strong or spasticity-weak groups based on the frequency of spastic behavior during the swimming test. Subsequently, we recorded the Hoffman reflex (H-reflex) and examined the immunoreactivity of serotonin (5-HT) and its receptor (5-HT2A) in the spinal tissues of the SCI rats. The spasticity-strong group had significantly decreased rate-dependent depression of the H-reflex compared to the spasticity-weak group. The area of 5-HT2A receptor immunoreactivity was significantly increased in the spasticity-strong group. Thus, both electrophysiological and histological evaluations indicate that the spasticity-strong group presented with a more severe upper motor neuron syndrome. We also observed the groups in their cages for 20 hours. Our results suggest that the swimming test provides an accurate evaluation of spasticity in this contusive SCI model. We believe that the swimming test is an effective method for evaluating spastic behaviors and developing treatments targeting spasticity after SCI.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- * E-mail:
| | - Motoshi Nagao
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Taku Kitamura
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Kazuhito Morioka
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- Department of Neurosurgery, Brain and Spinal Injury Center, University of California, San Francisco, California, United States of America
| | - Yoshinori Ichihara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Toru Doi
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Yasuhiro Sawada
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
| | - Masami Akai
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Saitama, Japan
- Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|