1
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
2
|
Rosenberg JB, Fung EK, Dyke JP, De BP, Lou H, Kelly JM, Reejhsinghani L, Ricart Arbona RJ, Sondhi D, Kaminsky SM, Cartier N, Hinderer C, Hordeaux J, Wilson JM, Ballon DJ, Crystal RG. Positron Emission Tomography Quantitative Assessment of Off-Target Whole-Body Biodistribution of I-124-Labeled Adeno-Associated Virus Capsids Administered to Cerebral Spinal Fluid. Hum Gene Ther 2023; 34:1095-1106. [PMID: 37624734 PMCID: PMC10659018 DOI: 10.1089/hum.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/09/2023] [Indexed: 08/27/2023] Open
Abstract
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Collapse
Affiliation(s)
| | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P. Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | | | | - James M. Kelly
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Layla Reejhsinghani
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J. Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | | | | | - Nathalie Cartier
- Neurogencell INSERM U1127 Paris Brain Institute, Paris Sorbonne University, Paris, France; and
| | - Christian Hinderer
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliette Hordeaux
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Douglas J. Ballon
- Department of Genetic Medicine
- Department of Radiology, Citigroup Biomedical Imaging Center; Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
3
|
Evans SW, Shi DQ, Chavarha M, Plitt MH, Taxidis J, Madruga B, Fan JL, Hwang FJ, van Keulen SC, Suomivuori CM, Pang MM, Su S, Lee S, Hao YA, Zhang G, Jiang D, Pradhan L, Roth RH, Liu Y, Dorian CC, Reese AL, Negrean A, Losonczy A, Makinson CD, Wang S, Clandinin TR, Dror RO, Ding JB, Ji N, Golshani P, Giocomo LM, Bi GQ, Lin MZ. A positively tuned voltage indicator for extended electrical recordings in the brain. Nat Methods 2023; 20:1104-1113. [PMID: 37429962 PMCID: PMC10627146 DOI: 10.1038/s41592-023-01913-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.
Collapse
Affiliation(s)
- S Wenceslao Evans
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dong-Qing Shi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mark H Plitt
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Jiannis Taxidis
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Blake Madruga
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jiang Lan Fan
- UC Berkeley/UCSF Joint Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Siri C van Keulen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Michelle M Pang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sharon Su
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Yukun A Hao
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Dongyun Jiang
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Conor C Dorian
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Austin L Reese
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Science, New York, NY, USA
| | - Christopher D Makinson
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University Medical Center, Stanford, CA, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, USA
| | - Na Ji
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peyman Golshani
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA
| | - Guo-Qiang Bi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Interdisciplinary Center for Brain Information, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Michael Z Lin
- Department of Neurobiology, Stanford University Medical Center, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, USA.
| |
Collapse
|
4
|
Simonnet C, Sinha M, Goutierre M, Moutkine I, Daumas S, Poncer JC. Silencing KCC2 in mouse dorsal hippocampus compromises spatial and contextual memory. Neuropsychopharmacology 2023; 48:1067-1077. [PMID: 36302847 PMCID: PMC10209115 DOI: 10.1038/s41386-022-01480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.
Collapse
Affiliation(s)
- Clémence Simonnet
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
- Basic Neuroscience Department, Centre Medical Universitaire, 1211, Geneva, Switzerland
| | - Manisha Sinha
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marie Goutierre
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 1270, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Stéphanie Daumas
- Sorbonne Université, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), 75005, Paris, France
| | - Jean Christophe Poncer
- Inserm UMR-S 1270, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
5
|
Tembo M, Bainbridge RE, Lara-Santos C, Komondor KM, Daskivich GJ, Durrant JD, Rosenbaum JC, Carlson AE. Phosphate position is key in mediating transmembrane ion channel TMEM16A-phosphatidylinositol 4,5-bisphosphate interaction. J Biol Chem 2022; 298:102264. [PMID: 35843309 PMCID: PMC9396059 DOI: 10.1016/j.jbc.2022.102264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.
Collapse
Affiliation(s)
- Maiwase Tembo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Crystal Lara-Santos
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant J Daskivich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Inak G, Rybak-Wolf A, Lisowski P, Pentimalli TM, Jüttner R, Glažar P, Uppal K, Bottani E, Brunetti D, Secker C, Zink A, Meierhofer D, Henke MT, Dey M, Ciptasari U, Mlody B, Hahn T, Berruezo-Llacuna M, Karaiskos N, Di Virgilio M, Mayr JA, Wortmann SB, Priller J, Gotthardt M, Jones DP, Mayatepek E, Stenzel W, Diecke S, Kühn R, Wanker EE, Rajewsky N, Schuelke M, Prigione A. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun 2021; 12:1929. [PMID: 33771987 PMCID: PMC7997884 DOI: 10.1038/s41467-021-22117-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.
Collapse
Affiliation(s)
- Gizem Inak
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - Pawel Lisowski
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, n/Warsaw, Magdalenka, Poland
| | - Tancredi M Pentimalli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - René Jüttner
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Petar Glažar
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Christopher Secker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Annika Zink
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
| | | | - Marie-Thérèse Henke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany
| | - Monishita Dey
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ummi Ciptasari
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Josef Priller
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Werner Stenzel
- Charité - Universitätsmedizin, Department of Neuropathology, Berlin, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany.
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany.
- NeuroCure Clinical Research Center, Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
7
|
Di Blasi R, Zouein A, Ellis T, Ceroni F. Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends Biotechnol 2021; 39:1004-1018. [PMID: 33526300 DOI: 10.1016/j.tibtech.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Construction of DNA-encoded programs is central to synthetic biology and the chosen method often determines the time required to design and build constructs for testing. Here, we describe and summarise key features of the available toolkits for DNA construction for mammalian cells. We compare the different cloning strategies based on their complexity and the time needed to generate constructs of different sizes, and we reflect on why Golden Gate toolkits now dominate due to their modular design. We look forward to future advances, including accessory packs for cloning toolkits that can facilitate editing, orthogonality, advanced regulation, and integration into synthetic chromosome construction.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Annalise Zouein
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
8
|
Ballon DJ, Rosenberg JB, Fung EK, Nikolopoulou A, Kothari P, De BP, He B, Chen A, Heier LA, Sondhi D, Kaminsky SM, Mozley PD, Babich JW, Crystal RG. Quantitative Whole-Body Imaging of I-124-Labeled Adeno-Associated Viral Vector Biodistribution in Nonhuman Primates. Hum Gene Ther 2020; 31:1237-1259. [PMID: 33233962 PMCID: PMC7769048 DOI: 10.1089/hum.2020.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
A method is presented for quantitative analysis of the biodistribution of adeno-associated virus (AAV) gene transfer vectors following in vivo administration. We used iodine-124 (I-124) radiolabeling of the AAV capsid and positron emission tomography combined with compartmental modeling to quantify whole-body and organ-specific biodistribution of AAV capsids from 1 to 72 h following administration. Using intravenous (IV) and intracisternal (IC) routes of administration of AAVrh.10 and AAV9 vectors to nonhuman primates in the absence or presence of anticapsid immunity, we have identified novel insights into initial capsid biodistribution and organ-specific capsid half-life. Neither I-124-labeled AAVrh.10 nor AAV9 administered intravenously was detected at significant levels in the brain relative to the administered vector dose. Approximately 50% of the intravenously administered labeled capsids were dispersed throughout the body, independent of the liver, heart, and spleen. When administered by the IC route, the labeled capsid had a half-life of ∼10 h in the cerebral spinal fluid (CSF), suggesting that by this route, the CSF serves as a source with slow diffusion into the brain. For both IV and IC administration, there was significant influence of pre-existing anticapsid immunity on I-124-capsid biodistribution. The methodology facilitates quantitative in vivo viral vector dosimetry, which can serve as a technique for evaluation of both on- and off-target organ biodistribution, and potentially accelerate gene therapy development through rapid prototyping of novel vector designs.
Collapse
Affiliation(s)
- Douglas J. Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center
- Department of Genetic Medicine
| | | | - Edward K. Fung
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Paresh Kothari
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Bin He
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | | - Linda A. Heier
- Department of Radiology; Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - John W. Babich
- Department of Radiology, Citigroup Biomedical Imaging Center
| | | |
Collapse
|
9
|
Boys IN, Xu E, Mar KB, De La Cruz-Rivera PC, Eitson JL, Moon B, Schoggins JW. RTP4 Is a Potent IFN-Inducible Anti-flavivirus Effector Engaged in a Host-Virus Arms Race in Bats and Other Mammals. Cell Host Microbe 2020; 28:712-723.e9. [PMID: 33113352 PMCID: PMC7666060 DOI: 10.1016/j.chom.2020.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Among mammals, bats are particularly rich in zoonotic viruses, including flaviviruses. Certain bat species can be productively yet asymptomatically infected with viruses that cause overt disease in other species. However, little is known about the antiviral effector repertoire in bats relative to other mammals. Here, we report the black flying fox receptor transporter protein 4 (RTP4) as a potent interferon (IFN)-inducible inhibitor of human pathogens in the Flaviviridae family, including Zika, West Nile, and hepatitis C viruses. Mechanistically, RTP4 associates with the flavivirus replicase, binds viral RNA, and suppresses viral genome amplification. Comparative approaches revealed that RTP4 undergoes positive selection, that a flavivirus can mutate to escape RTP4-imposed restriction, and that diverse mammalian RTP4 orthologs exhibit striking patterns of specificity against distinct Flaviviridae members. Our findings reveal an antiviral mechanism that has likely adapted over 100 million years of mammalian evolution to accommodate unique host-virus genetic conflicts.
Collapse
Affiliation(s)
- Ian N Boys
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elaine Xu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katrina B Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin Moon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Wu L, Wang Q, Gu J, Zhang H, Gu Y. Modulation of Actin Filament Dynamics by Inward Rectifying of Potassium Channel Kir2.1. Int J Mol Sci 2020; 21:ijms21207479. [PMID: 33050503 PMCID: PMC7589188 DOI: 10.3390/ijms21207479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
Apart from its ion channel properties, the Kir2.1 channel has been found in tumors and cancer cells to facilitate cancer cell motility. It is assumed that Kir2.1 might be associated with cell actin filament dynamics. With the help of structured illumination microscopy (SIM), we show that Kir2.1 overexpression promotes actin filament dynamics, cell invasion, and adhesion. Mutated Kir2.1 channels, with impaired membrane expression, present much weaker actin regulatory effects, which indicates that precise Kir2.1 membrane localization is key to its actin filament remolding effect. It is found that Kir2.1 membrane expression and anchoring are associated with PIP2 affinity, and PIP2 depletion inhibits actin filament dynamics. We also report that membrane-expressed Kir2.1 regulates redistribution and phosphorylation of FLNA (filamin A), which may be the mechanism underlying Kir2.1 and actin filament dynamics. In conclusion, Kir2.1 membrane localization regulates cell actin filaments, and not the ion channel properties. These data indicate that Kir2.1 may have additional cellular functions distinct from the regulation of excitability, which provides new insight into the study of channel proteins.
Collapse
Affiliation(s)
- Lida Wu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing 100871, China; (L.W.); (J.G.); (H.Z.)
- Aston Medical School, Aston University, Birmingham B4 7ET, UK
| | - Quanyi Wang
- Department of Biopharmaceutics, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China;
| | - Junzhong Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing 100871, China; (L.W.); (J.G.); (H.Z.)
| | - Huiyuan Zhang
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing 100871, China; (L.W.); (J.G.); (H.Z.)
| | - Yuchun Gu
- Molecular Pharmacology Laboratory, Institute of Molecular Medicine, Peking University, Beijing 100871, China; (L.W.); (J.G.); (H.Z.)
- Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Correspondence:
| |
Collapse
|
11
|
Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L, Mathieu B, Evans SW, Chamberland S, Shi D, Yang R, Kim BB, Ayon A, Jalil A, St-Pierre F, Schnitzer MJ, Bi G, Toth K, Ding J, Dieudonné S, Lin MZ. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Cell 2020; 179:1590-1608.e23. [PMID: 31835034 DOI: 10.1016/j.cell.2019.11.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.
Collapse
Affiliation(s)
- Vincent Villette
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Mariya Chavarha
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ivan K Dimov
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Bradley
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Lagnajeet Pradhan
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Mathieu
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Simon Chamberland
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Dongqing Shi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renzhi Yang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Biology PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Annick Ayon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France
| | - Abdelali Jalil
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris F-75006, France
| | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Guoqiang Bi
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 20031, China
| | - Katalin Toth
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Jun Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Stéphane Dieudonné
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris 75005, France.
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Tipanee J, Di Matteo M, Tulalamba W, Samara-Kuko E, Keirsse J, Van Ginderachter JA, Chuah MK, VandenDriessche T. Validation of miR-20a as a Tumor Suppressor Gene in Liver Carcinoma Using Hepatocyte-Specific Hyperactive piggyBac Transposons. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1309-1329. [PMID: 32160703 PMCID: PMC7036702 DOI: 10.1016/j.omtn.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
We established a semi-high-throughput in vivo screening platform using hyperactive piggyBac (hyPB) transposons (designated as PB-miR) to identify microRNAs (miRs) that inhibit hepatocellular carcinoma (HCC) development in vivo, following miR overexpression in hepatocytes. PB-miRs encoding six different miRs from the miR-17-92 cluster and nine miRs from outside this cluster were transfected into mouse livers that were chemically induced to develop HCC. In this slow-onset HCC model, miR-20a significantly inhibited HCC. Next, we developed a more aggressive HCC model by overexpression of oncogenic Harvey rat sarcoma viral oncogene homolog (HRASG12V) and c-MYC oncogenes that accelerated HCC development after only 6 weeks. The tumor suppressor effect of miR-20a could be demonstrated even in this rapid-onset HRASG12V/c-MYC HCC model, consistent with significantly prolonged survival and decreased HCC tumor burden. Comprehensive RNA expression profiling of 95 selected genes typically associated with HCC development revealed differentially expressed genes and functional pathways that were associated with miR-20a-mediated HCC suppression. To our knowledge, this is the first study establishing a direct causal relationship between miR-20a overexpression and liver cancer inhibition in vivo. Moreover, these results demonstrate that hepatocyte-specific hyPB transposons are an efficient platform to screen and identify miRs that affect overall survival and HCC tumor regression.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee Khim Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2019; 8:1-10. [PMID: 31890981 PMCID: PMC6928288 DOI: 10.1016/j.ibror.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive, ascending relaxin-3-containing neural networks are present throughout the rat forebrain. Relaxin-3 signalling modulates complex behaviours and cognitive processes including feeding, anxiety and memory. We tested a 1736 bp promoter sequence for specific transgene expression in relaxin-3 neurons of rat nucleus incertus (NI). This promoter restricted m-Cherry marker expression to NI relaxin-3 neurons with 98% specificity. This targeted transgene delivery offers a versatile method for ongoing preclinical studies of relaxin-3 circuitry.
Modern neuroscience utilizes transgenic techniques extensively to study the activity and function of brain neural networks. A key feature of this approach is its compatibility with molecular methods for selective transgene expression in neuronal circuits of interest. Until now, such targeted transgenic approaches have not been applied to the extensive circuitry involving the neuropeptide, relaxin-3. Pharmacological and gene knock-out studies have revealed relaxin-3 signalling modulates interrelated behaviours and cognitive processes, including stress and anxiety, food and alcohol consumption, and spatial and social memory, highlighting the potential of this system as a therapeutic target. In the present study, we aimed to identify a promoter sequence capable of regulating cell-type specific transgene expression from an adeno-associated viral (AAV) vector in relaxin-3 neurons of the rat nucleus incertus (NI). In parallel to relaxin-3 promoter sequences, we also tested an AAV vector containing promoter elements for the tropomyosin receptor kinase A (TrkA) gene, as TrkA is co-expressed with relaxin-3 in rat NI neurons. Stereotaxic injection of an mCherry-expressing AAV vector revealed widespread non-specific TrkA promoter (880 bp) activity in and adjacent to the NI at 8 weeks post-treatment. In contrast, mCherry expression was successfully restricted to relaxin-3 NI neurons with 98% specificity using a 1736 bp relaxin-3 promoter. In addition to detailed anatomical mapping of NI relaxin-3 networks, illustrated here in association with GABAergic medial septum neurons, this method for targeted transgene delivery offers a versatile tool for ongoing preclinical studies of relaxin-3 circuitry.
Collapse
Affiliation(s)
- Alexander D Wykes
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| |
Collapse
|
14
|
van der Peet PL, Gunawan C, Abdul-Ridha A, Ma S, Scott DJ, Gundlach AL, Bathgate RAD, White JM, Williams SJ. Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs. MethodsX 2018; 5:257-267. [PMID: 30038895 PMCID: PMC6053635 DOI: 10.1016/j.mex.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Chemogenetics uses engineered proteins that are controlled by small molecule actuators, allowing in vivo functional studies of proteins with temporal and dose control, and include Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). One major class of DREADDs are mutated muscarinic receptors that are unresponsive to acetylcholine, and are activated by administration of clozapine N-oxide (CNO). However, CNO is available in only small amounts and large scale studies involving animals and multiple cohorts are prohibitively expensive for many investigators. The precursor, clozapine, is also expensive when purchased from specialist suppliers. Here we report: A simple extraction method of clozapine from commercial tablets; A simple preparation of CNO from clozapine, and for the first time its single-crystal X-ray structure; and That the CNO prepared by this method specifically activates the DREADD receptor hM3Dq in vivo.
This method provides large quantities of CNO suitable for large-scale DREADD applications that is identical to commercial material.
Collapse
Affiliation(s)
- Phillip L van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Christian Gunawan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Alaa Abdul-Ridha
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010 Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Bannerman P, Guo F, Chechneva O, Burns T, Zhu X, Wang Y, Kim B, Singhal NK, McDonough JA, Pleasure D. Brain Nat8l Knockdown Suppresses Spongiform Leukodystrophy in an Aspartoacylase-Deficient Canavan Disease Mouse Model. Mol Ther 2018; 26:793-800. [PMID: 29456021 DOI: 10.1016/j.ymthe.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022] Open
Abstract
Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Olga Chechneva
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Travis Burns
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Xiaoqing Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266-61, China
| | - Yan Wang
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bokyung Kim
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Naveen K Singhal
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jennifer A McDonough
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci Rep 2017; 7:2968. [PMID: 28592882 PMCID: PMC5462828 DOI: 10.1038/s41598-017-02916-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/20/2017] [Indexed: 01/02/2023] Open
Abstract
Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs). ML290 did not directly compete with orthosteric relaxin binding and did not affect binding kinetics, but did increase binding to RXFP1. In HEK-RXFP1 cells, ML290 stimulated cAMP accumulation and p38MAPK phosphorylation but not cGMP accumulation or ERK1/2 phosphorylation although prior addition of ML290 increased p-ERK1/2 responses to relaxin. In human primary vascular endothelial and smooth muscle cells that endogenously express RXFP1, ML290 increased both cAMP and cGMP accumulation but not p-ERK1/2. In HCFs, ML290 increased cGMP accumulation but did not affect p-ERK1/2 and given chronically activated MMP-2 expression and inhibited TGF-β1-induced Smad2 and Smad3 phosphorylation. In vascular cells, ML290 was 10x more potent for cGMP accumulation and p-p38MAPK than for cAMP accumulation. ML290 caused strong coupling of RXFP1 to Gαs and GαoB but weak coupling to Gαi3. ML290 exhibited signalling bias at RXFP1 possessing a signalling profile indicative of vasodilator and anti-fibrotic properties.
Collapse
|
17
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
18
|
Alves S, Bode J, Bemelmans AP, von Kalle C, Cartier N, Tews B. Ultramicroscopy as a novel tool to unravel the tropism of AAV gene therapy vectors in the brain. Sci Rep 2016; 6:28272. [PMID: 27320056 PMCID: PMC4913310 DOI: 10.1038/srep28272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have advanced to the vanguard of gene therapy. Numerous naturally occurring serotypes have been used to target cells in various tissues. There is a strong need for fast and dynamic methods which efficiently unravel viral tropism in whole organs. Ultramicroscopy (UM) is a novel fluorescence microscopy technique that images optically cleared undissected specimens, achieving good resolutions at high penetration depths while being non-destructive. UM was applied to obtain high-resolution 3D analysis of AAV transduction in adult mouse brains, especially in the hippocampus, a region of interest for Alzheimer’s disease therapy. We separately or simultaneously compared transduction efficacies for commonly used serotypes (AAV9 and AAVrh10) using fluorescent reporter expression. We provide a detailed comparative and quantitative analysis of the transduction profiles. UM allowed a rapid analysis of marker fluorescence expression in neurons with intact projections deep inside the brain, in defined anatomical structures. Major hippocampal neuronal transduction was observed with both vectors, with slightly better efficacy for AAV9 in UM. Glial response and synaptic marker expression did not change post transduction.We propose UM as a novel valuable complementary tool to efficiently and simultaneously unravel tropism of different viruses in a single non-dissected adult rodent brain.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Julia Bode
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alexis-Pierre Bemelmans
- Commissariat à l´Energie Atomique et aux Energies Alternatives (CEA), Départment de la Recherche Fondamentale (DRF), Institut d´Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux Roses, France
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, Fontenay aux Roses 92265, France, Université Paris-Sud, Université Paris-Saclay, Orsay 91400, France
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.,Molecular Mechanisms of Tumor Invasion (V077), DKFZ, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Ma S, Allocca G, Ong-Pålsson EKE, Singleton CE, Hawkes D, McDougall SJ, Williams SJ, Bathgate RAD, Gundlach AL. Nucleus incertus promotes cortical desynchronization and behavioral arousal. Brain Struct Funct 2016; 222:515-537. [PMID: 27206427 DOI: 10.1007/s00429-016-1230-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/26/2016] [Indexed: 01/09/2023]
Abstract
Arousal and vigilance are essential for survival and relevant regulatory neural circuits lie within the brainstem, hypothalamus and forebrain. The nucleus incertus (NI) is a distinct site within the pontine periventricular gray, containing a substantial population of GABAergic neurons with long-range, ascending projections. Existing neuroanatomical data and functional studies in anesthetized rats, suggest the NI is a central component of a midline behavioral control network well positioned to modulate arousal, vigilance and exploratory navigation, yet none of these roles have been established experimentally. We used a chemogenetic approach-clozapine-N-oxide (CNO) activation of virally delivered excitatory hM3Dq-DREADDs-to activate the NI in rats and examined the behavioral and physiological effects, relative to effects in naïve rats and appropriate viral-treated controls. hM3Dq activation by CNO resulted in long-lasting depolarization of NI neurons with action potentials, in vitro. Peripheral injection of CNO significantly increased c-Fos immunoreactivity in the NI and promoted cortical electroencephalograph (EEG) desynchronization. These brain changes were associated with heightened arousal, and increased locomotor activity in the homecage and in a novel environment. Furthermore, NI activation altered responses in a fear conditioning paradigm, reflected by increased head-scanning, vigilant behaviors during conditioned fear recall. These findings provide direct evidence that the NI promotes general arousal via a broad behavioral activation circuit and support early hypotheses, based on its connectivity, that the NI is a modulator of cognition and attention, and emotional and motivated behaviors.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.
| | - Giancarlo Allocca
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Emma K E Ong-Pålsson
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Caitlin E Singleton
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - David Hawkes
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDougall
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
López AJ, Kramár E, Matheos DP, White AO, Kwapis J, Vogel-Ciernia A, Sakata K, Espinoza M, Wood MA. Promoter-Specific Effects of DREADD Modulation on Hippocampal Synaptic Plasticity and Memory Formation. J Neurosci 2016; 36:3588-99. [PMID: 27013687 PMCID: PMC4804014 DOI: 10.1523/jneurosci.3682-15.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Designer receptors exclusively activated by designer drug (DREADDs) are a novel tool with the potential to bidirectionally drive cellular, circuit, and ultimately, behavioral changes. We used DREADDs to evaluate memory formation in a hippocampus-dependent task in mice and effects on synaptic physiology in the dorsal hippocampus. We expressed neuron-specific (hSyn promoter) DREADDs that were either excitatory (HM3D) or inhibitory (HM4D) in the dorsal hippocampus. As predicted, hSyn-HM3D was able to transform a subthreshold learning event into long-term memory (LTM), and hSyn-HM4D completely impaired LTM formation. Surprisingly, the opposite was observed during experiments examining the effects on hippocampal long-term potentiation (LTP). hSyn-HM3D impaired LTP and hSyn-HM4D facilitated LTP. Follow-up experiments indicated that the hSyn-HM3D-mediated depression of fEPSP appears to be driven by presynaptic activation of inhibitory currents, whereas the hSyn-HM4D-mediated increase of fEPSP is induced by a reduction in GABAA receptor function. To determine whether these observations were promoter specific, we next examined the effects of using the CaMKIIα promoter that limits expression to forebrain excitatory neurons. CaMKIIα-HM3D in the dorsal hippocampus led to the transformation of a subthreshold learning event into LTM, whereas CaMKIIα-HM4D blocked LTM formation. Consistent with these findings, baseline synaptic transmission and LTP was increased in CaMKIIα-HM3D hippocampal slices, whereas slices from CaMKIIα-HM4D mice produced expected decreases in baseline synaptic transmission and LTP. Together, these experiments further demonstrate DREADDs as being a robust and reliable means of modulating neuronal function to manipulate long-term changes in behavior, while providing evidence for specific dissociations between LTM and LTP. SIGNIFICANCE STATEMENT This study evaluates the efficacy of designer receptors exclusively activated by designer drug (DREADDs) as a means of bidirectionally modulating the hippocampus in not only a hippocampus-dependent task but also in hippocampal synaptic plasticity. This is the first study to evaluate the effects of DREADD-mediated inhibition and excitation in hippocampal long-term potentiation. More specifically, this study evaluates the effect of promoter-specific expression of DREADD viruses in a heterogenic cell population, which revealed surprising effects of different promoters. With chemogenetics becoming a more ubiquitous tool throughout studies investigating circuit-specific function, these data are of broad interest to the neuroscientific community because we have shown that promoter-specific effects can drastically alter synaptic function within a specific region, without parallel changes at the level of behavior.
Collapse
Affiliation(s)
- Alberto J López
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Enikö Kramár
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Dina P Matheos
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - André O White
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Janine Kwapis
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Annie Vogel-Ciernia
- Davis M.I.N.D. Institute, University of California, Davis, Davis, California 96516
| | - Keith Sakata
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Monica Espinoza
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| | - Marcelo A Wood
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, UC Irvine Center for Addiction Neuroscience, and
| |
Collapse
|
21
|
de Jong JW, Roelofs TJM, Mol FMU, Hillen AEJ, Meijboom KE, Luijendijk MCM, van der Eerden HAM, Garner KM, Vanderschuren LJMJ, Adan RAH. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation. Neuropsychopharmacology 2015; 40:2085-95. [PMID: 25735756 PMCID: PMC4613606 DOI: 10.1038/npp.2015.60] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans. Moreover, knockout of the gene encoding the D2R receptor (Drd2) in dopamine neurons has been shown to enhance the locomotor response to cocaine in mice. Therefore, we here tested the hypothesis that decreasing D2R expression in the VTA of adult rats, using shRNA knockdown, promotes addiction-like behavior in rats responding for cocaine or palatable food. Rats with decreased VTA D2R expression showed markedly increased motivation for both sucrose and cocaine under a progressive ratio schedule of reinforcement, but the acquisition or maintenance of cocaine self-administration were not affected. They also displayed enhanced cocaine-induced locomotor activity, but no change in basal locomotion. This robust increase in incentive motivation was behaviorally specific, as we did not observe any differences in fixed ratio responding, extinction responding, reinstatement or conditioned suppression of cocaine, and sucrose seeking. We conclude that VTA D2R knockdown results in increased incentive motivation, but does not directly promote other aspects of addiction-like behavior.
Collapse
Affiliation(s)
- Johannes W de Jong
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theresia J M Roelofs
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frédérique M U Mol
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne E J Hillen
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina E Meijboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harrie A M van der Eerden
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keith M Garner
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, STR.4.205, Universiteitweg 100, 3584 CG Utrecht, The Netherlands, Tel: +887568517, E-mail:
| |
Collapse
|
22
|
van Gestel MA, Sanders LE, de Jong JW, Luijendijk MCM, Adan RAH. FTO knockdown in rat ventromedial hypothalamus does not affect energy balance. Physiol Rep 2014; 2:2/12/e12152. [PMID: 25501432 PMCID: PMC4332191 DOI: 10.14814/phy2.12152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) clustered in the first intron of the fat mass and obesity‐associated (FTO) gene has been associated with obesity. FTO expression is ubiquitous, with particularly high levels in the hypothalamic area of the brain. To investigate the region‐specific role of FTO, AAV technology was applied to knockdown FTO in the ventromedial hypothalamus (VMH). No effect of FTO knockdown was observed on bodyweight or parameters of energy balance. Animals were exposed twice to an overnight fast, followed by a high‐fat high‐sucrose (HFHS) diet for 1 week. FTO knockdown did not result in a different response to the diets. A region‐specific role for FTO in the VMH in the regulation of energy balance could not be found. Knocking down expression of the obesity‐associated gene FTO in rat ventromedial hypothalamus did not affect energy balance.
Collapse
Affiliation(s)
- Margriet A van Gestel
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Loek E Sanders
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes W de Jong
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Boender AJ, van Gestel MA, Garner KM, Luijendijk MCM, Adan RAH. The obesity-associated gene Negr1 regulates aspects of energy balance in rat hypothalamic areas. Physiol Rep 2014; 2:2/7/e12083. [PMID: 25077509 PMCID: PMC4187548 DOI: 10.14814/phy2.12083] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural growth regulator 1 (Negr1) is among the first common variants that have been associated with the regulation of body mass index. Using AAV technology directed to manipulate Negr1 expression in vivo, we find that decreased expression of Negr1 in periventricular hypothalamic areas leads to increases in body weight, presumably via increased food intake. Moreover, we observed that both increased and decreased levels of Negr1 lead to reduced locomotor activity and body temperature. In sum, our results provide further support for a role of hypothalamic expressed Negr1 in the regulation of energy balance.
Collapse
Affiliation(s)
- Arjen J Boender
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Margriet A van Gestel
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keith M Garner
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MCM, van der Plasse G, Adan RAH. Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 2014; 9:e95392. [PMID: 24736748 PMCID: PMC3988196 DOI: 10.1371/journal.pone.0095392] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/24/2014] [Indexed: 11/22/2022] Open
Abstract
We here describe a technique to transiently activate specific neural pathways in vivo. It comprises the combined use of a CRE-recombinase expressing canine adenovirus-2 (CAV-2) and an adeno-associated virus (AAV-hSyn-DIO-hM3D(Gq)-mCherry) that contains the floxed inverted sequence of the designer receptor exclusively activated by designer drugs (DREADD) hM3D(Gq)-mCherry. CAV-2 retrogradely infects projection neurons, which allowed us to specifically express hM3D(Gq)-mCherry in neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (Acb), the majority of which were dopaminergic. Activation of hM3D(Gq)-mCherry by intraperitoneal (i.p.) injections of clozapine-N-oxide (CNO) leads to increases in neuronal activity, which enabled us to specifically activate VTA to Acb projection neurons. The VTA to Acb pathway is part of the mesolimbic dopamine system and has been implicated in behavioral activation and the exertion of effort. Injections of all doses of CNO led to increases in progressive ratio (PR) performance. The effect of the lowest dose of CNO was suppressed by administration of a DRD1-antagonist, suggesting that CNO-induced increases in PR-performance are at least in part mediated by DRD1-signaling. We hereby validate the combined use of CAV-2 and DREADD-technology to activate specific neural pathways and determine consequent changes in behaviorally relevant paradigms.
Collapse
Affiliation(s)
- Arjen J. Boender
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johannes W. de Jong
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linde Boekhoudt
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C. M. Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geoffrey van der Plasse
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013; 8:e76310. [PMID: 24086725 PMCID: PMC3785459 DOI: 10.1371/journal.pone.0076310] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9) that allows systematic comparison and selection of the optimal vector for a specific application. In our studies we observed marked differences among serotypes in the efficiency to transduce three different brain regions namely the striatum, hippocampus and neocortex of the mouse. Despite the fact that the analyzed serotypes have the general ability to transduce all major cell types in the brain (neurons, microglia, astrocytes and oligodendrocytes), the expression level of a reporter gene driven from a ubiquitous promoter varies significantly for specific cell type / serotype combinations. For example, rAAV8 is particularly efficient to drive transgene expression in astrocytes while rAAV9 appears well suited for the transduction of cortical neurons. Interestingly, we demonstrate selective retrograde transport of rAAV5 along axons projecting from the ventral part of the entorhinal cortex to the dentate gyrus. Furthermore, we show that self-complementing rAAV can be used to significantly decrease the time required for the onset of transgene expression in the mouse brain.
Collapse
|
26
|
|
27
|
Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 2012; 485:507-11. [PMID: 22622579 DOI: 10.1038/nature11058] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/16/2012] [Indexed: 12/11/2022]
Abstract
The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.
Collapse
|
28
|
Pastoll H, Ramsden HL, Nolan MF. Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. Front Neural Circuits 2012; 6:17. [PMID: 22536175 PMCID: PMC3334835 DOI: 10.3389/fncir.2012.00017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 03/25/2012] [Indexed: 11/21/2022] Open
Abstract
The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields.
Collapse
Affiliation(s)
- Hugh Pastoll
- Neuroinformatics Doctoral Training Centre, University of Edinburgh Edinburgh, UK
| | | | | |
Collapse
|
29
|
Prospect of induced pluripotent stem cell genetic repair to cure genetic diseases. Stem Cells Int 2012; 2012:498197. [PMID: 22448173 PMCID: PMC3289873 DOI: 10.1155/2012/498197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022] Open
Abstract
In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient's own cell can be developed. However, iPSC from the patients's cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.
Collapse
|