1
|
Peng W, Tutol JN, Phelps SM, Kam H, Lynd JK, Dodani SC. Directed Evolution of a Genetically Encoded Indicator for Chloride. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.624492. [PMID: 39717147 PMCID: PMC11666241 DOI: 10.1101/2024.11.25.624492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Inarguably, the green fluorescent protein (GFP) family is an exemplary model for protein engineering, accessing a range of unparalleled functions and utility in biology. The first variant to recognize and provide an optical output of chloride in living cells was serendipitously uncovered more than 25 years ago. Since then, researchers have actively expanded the potential of GFP indicators for chloride through site-directed and combinatorial site-saturation mutagenesis, along with chimeragenesis. However, to date, the power of directed evolution has yet to be unleashed. As a proof-of-concept, here, we use random mutagenesis paired with anion walking to engineer a chloride-insensitive fluorescent protein named OFPxm into a functional indicator named ChlorOFF. The sampled mutational landscape unveils an evolutionary convergent solution at one position in the anion binding pocket and nine other mutations across eight positions, of which only one has been previously linked to chloride sensing potential in the GFP family.
Collapse
|
2
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
Affiliation(s)
- Assunta Merolla
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Vacca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | - Alessandra Romei
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Horenkamp
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Rodan AR. Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. Physiology (Bethesda) 2024; 39:0. [PMID: 38411570 PMCID: PMC11368518 DOI: 10.1152/physiol.00006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, Drosophila melanogaster, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.
Collapse
Affiliation(s)
- Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Frei MS, Sanchez SA, Liu L, Schneider F, Wang Z, Hakozaki H, Li Y, Lyons AC, Rohm TV, Olefsky JM, Shi L, Schöneberg J, Fraser SE, Mehta S, Wang Y, Zhang J. Far-red chemigenetic biosensors for multi-dimensional and super-resolved kinase activity imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579766. [PMID: 38370804 PMCID: PMC10871310 DOI: 10.1101/2024.02.10.579766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Fluorescent biosensors revolutionized biomedical science by enabling the direct measurement of signaling activities in living cells, yet the current technology is limited in resolution and dimensionality. Here, we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling protein tag HaloTag7 with bright far-red-emitting synthetic fluorophores. This technology enables five-color biosensor multiplexing, 4D activity imaging, and functional super-resolution imaging via stimulated emission depletion (STED) microscopy.
Collapse
Affiliation(s)
- Michelle S. Frei
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Samantha A. Sanchez
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Longwei Liu
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Falk Schneider
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zichen Wang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yajuan Li
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Anne C. Lyons
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Johannes Schöneberg
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Scott E. Fraser
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yingxiao Wang
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Tutol J, Ong WSY, Phelps SM, Peng W, Goenawan H, Dodani SC. Engineering the ChlorON Series: Turn-On Fluorescent Protein Sensors for Imaging Labile Chloride in Living Cells. ACS CENTRAL SCIENCE 2024; 10:77-86. [PMID: 38292617 PMCID: PMC10823515 DOI: 10.1021/acscentsci.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Beyond its role as the "queen of electrolytes", chloride can also serve as an allosteric regulator or even a signaling ion. To illuminate this essential anion across such a spectrum of biological processes, researchers have relied on fluorescence imaging with genetically encoded sensors. In large part, these have been derived from the green fluorescent protein found in the jellyfish Aequorea victoria. However, a standalone sensor with a turn-on intensiometric response at physiological pH has yet to be reported. Here, we address this technology gap by building on our discovery of the anion-sensitive fluorescent protein mNeonGreen (mNG). The targeted engineering of two non-coordinating residues, namely K143 and R195, in the chloride binding pocket of mNG coupled with an anion walking screening and selection strategy resulted in the ChlorON sensors: ChlorON-1 (K143W/R195L), ChlorON-2 (K143R/R195I), and ChlorON-3 (K143R/R195L). In vitro spectroscopy revealed that all three sensors display a robust turn-on fluorescence response to chloride (20- to 45-fold) across a wide range of affinities (Kd ≈ 30-285 mM). We further showcase how this unique sensing mechanism can be exploited to directly image labile chloride transport with spatial and temporal resolution in a cell model overexpressing the cystic fibrosis transmembrane conductance regulator. Building from this initial demonstration, we anticipate that the ChlorON technology will have broad utility, accelerating the path forward for fundamental and translational aspects of chloride biology.
Collapse
Affiliation(s)
- Jasmine
N. Tutol
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Whitney S. Y. Ong
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shelby M. Phelps
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Weicheng Peng
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Helen Goenawan
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sheel C. Dodani
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Li SA, Meng XY, Zhang YJ, Chen CL, Jiao YX, Zhu YQ, Liu PP, Sun W. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Front Pharmacol 2024; 14:1339518. [PMID: 38269286 PMCID: PMC10806205 DOI: 10.3389/fphar.2023.1339518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.
Collapse
Affiliation(s)
- Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Jie Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Li Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Xue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Qing Zhu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Gunawan R, Yang M, Lau C. X-RAY MEASUREMENT OF INTRACELLULAR CHLORIDE AND OTHER IONS IN MAMMALIAN CELLS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
8
|
Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR. Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol 2022; 32:1429-1438.e6. [PMID: 35303418 PMCID: PMC8972083 DOI: 10.1016/j.cub.2022.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 12/21/2022]
Abstract
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies.1,2 Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABAA receptor chloride channels.3 However, results have been contradictory,4-9 and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response.10 Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLNv) pacemaker neurons. In control flies, intracellular chloride increases in sLNvs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.11Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLNv pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
Collapse
Affiliation(s)
- Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Qifei Sun
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA
| | - John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung-Wan An
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jianrui Hu
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Gaëlle Mercenne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Chou-Long Huang
- Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Adrian Rothenfluh
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT 84148, USA.
| |
Collapse
|
9
|
Lodovichi C, Ratto GM, Trevelyan AJ, Arosio D. Genetically encoded sensors for Chloride concentration. J Neurosci Methods 2022; 368:109455. [PMID: 34952088 DOI: 10.1016/j.jneumeth.2021.109455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Insights into chloride regulation in neurons have come slowly, but they are likely to be critical for our understanding of how the brain works. The reason is that the intracellular Cl- level ([Cl-]i) is the key determinant of synaptic inhibitory function, and this in turn dictates all manner of neuronal network function. The true impact on the network will only be apparent, however, if Cl- is measured at many locations at once (multiple neurons, and also across the subcellular compartments of single neurons), which realistically, can only be achieved using imaging. The development of genetically-encoded anion biosensors (GABs) brings the additional benefit that Cl- imaging may be done in identified cell-classes and hopefully in subcellular compartments. Here, we describe the historical background and motivation behind the development of these sensors and how they have been used so far. There are, however, still major limitations for their use, the most important being the fact that all GABs are sensitive to both pH and Cl-. Disambiguating the two signals has proved a major challenge, but there are potential solutions; notable among these is ClopHensor, which has now been developed for in vivo measurements of both ion species. We also speculate on how these biosensors may yet be improved, and how this could advance our understanding of Cl- regulation and its impact on brain function.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute-CNR, Depart. Biomedical Sciences, Unipd, Padova, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| | - Gian Michele Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniele Arosio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica, 38123 Trento, Italy.
| |
Collapse
|
10
|
Ponomareva D, Petukhova E, Bregestovski P. Simultaneous Monitoring of pH and Chloride (Cl -) in Brain Slices of Transgenic Mice. Int J Mol Sci 2021; 22:13601. [PMID: 34948398 PMCID: PMC8708776 DOI: 10.3390/ijms222413601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl-]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl-]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl-]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl-, K+, Na+) and synaptic stimulation of Shaffer's collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl- and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl- and pH.
Collapse
Affiliation(s)
- Daria Ponomareva
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Piotr Bregestovski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|
11
|
Salto R, Giron MD, Puente-Muñoz V, Vilchez JD, Espinar-Barranco L, Valverde-Pozo J, Arosio D, Paredes JM. New Red-Emitting Chloride-Sensitive Fluorescent Protein with Biological Uses. ACS Sens 2021; 6:2563-2573. [PMID: 34148347 PMCID: PMC8478333 DOI: 10.1021/acssensors.1c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
A new chloride-sensitive red fluorescent protein derived from Entacmaea quadricolor is described. We found that mBeRFP exhibited moderate sensitivity to chloride and, via site-directed mutagenesis (S94V and R205Y), we increased the chloride affinity by more than an order of magnitude (kd = 106 ± 6 mM) at physiological pH. In addition, cis-trans isomerization of the chromophore produces a dual emission band with different chloride sensitivities, which allowed us to develop a ratiometric methodology to measure intracellular chloride concentrations.
Collapse
Affiliation(s)
- Rafael Salto
- Department
of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad
de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Maria D. Giron
- Department
of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad
de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Virginia Puente-Muñoz
- Department
of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en
Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Jose D. Vilchez
- Department
of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad
de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Laura Espinar-Barranco
- Department
of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en
Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Javier Valverde-Pozo
- Department
of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en
Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Daniele Arosio
- Consiglio
Nazionale delle Ricerche (CNR), Istituto di Biofisica (IBF-CNR), 38123 Trento, Italy
| | - Jose M. Paredes
- Department
of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en
Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
12
|
Tutol JN, Lee J, Chi H, Faizuddin FN, Abeyrathna SS, Zhou Q, Morcos F, Meloni G, Dodani SC. A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride. Chem Sci 2021; 12:5655-5663. [PMID: 34163777 PMCID: PMC8179538 DOI: 10.1039/d0sc06061e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli. This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the pK a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli, expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water.
Collapse
Affiliation(s)
- Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jessica Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Hsichuan Chi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Farah N Faizuddin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Qin Zhou
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Bioengineering, The University of Texas at Dallas Richardson TX 75080 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
13
|
Subunit-Specific Photocontrol of Glycine Receptors by Azobenzene-Nitrazepam Photoswitcher. eNeuro 2021; 8:ENEURO.0294-20.2020. [PMID: 33298457 PMCID: PMC7877471 DOI: 10.1523/eneuro.0294-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Photopharmacology is a unique approach that through a combination of photochemistry methods and advanced life science techniques allows the study and control of specific biological processes, ranging from intracellular pathways to brain circuits. Recently, a first photochromic channel blocker of anion-selective GABAA receptors, the azobenzene-nitrazepam-based photochromic compound (Azo-NZ1), has been described. In the present study, using patch-clamp technique in heterologous system and in mice brain slices, site-directed mutagenesis and molecular modeling we provide evidence of the interaction of Azo-NZ1 with glycine receptors (GlyRs) and determine the molecular basis of this interaction. Glycinergic synaptic neurotransmission determines an important inhibitory drive in the vertebrate nervous system and plays a crucial role in the control of neuronal circuits in the spinal cord and brain stem. GlyRs are involved in locomotion, pain sensation, breathing, and auditory function, as well as in the development of such disorders as hyperekplexia, epilepsy, and autism. Here, we demonstrate that Azo-NZ1 blocks in a UV-dependent manner the activity of α2 GlyRs (GlyR2), while being barely active on α1 GlyRs (GlyR1). The site of Azo-NZ1 action is in the chloride-selective pore of GlyR at the 2’ position of transmembrane helix 2 and amino acids forming this site determine the difference in Azo-NZ1 blocking activity between GlyR2 and GlyR1. This subunit-specific modulation is also shown on motoneurons of brainstem slices from neonatal mice that switch during development from expressing “fetal” GlyR2 to “adult” GlyR1 receptors.
Collapse
|
14
|
Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol 2021; 320:C703-C721. [PMID: 33439774 DOI: 10.1152/ajpcell.00456.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With no lysine (K) (WNK) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low- or high-potassium diet. We, therefore, investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ∼13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1, and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, Ste20-related proline/alanine-rich kinase (SPAK). The greatest sensitivity of WNK4 to potassium occurred in the range of 80-180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.
Collapse
Affiliation(s)
- John M Pleinis
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Radha Akella
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M Humphreys
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Haixia He
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qifei Sun
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Feng Zhang
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jason Sosa-Pagan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Jeffrey N Schellinger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Human Genetics, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
15
|
Gomila AMJ, Rustler K, Maleeva G, Nin-Hill A, Wutz D, Bautista-Barrufet A, Rovira X, Bosch M, Mukhametova E, Petukhova E, Ponomareva D, Mukhamedyarov M, Peiretti F, Alfonso-Prieto M, Rovira C, König B, Bregestovski P, Gorostiza P. Photocontrol of Endogenous Glycine Receptors In Vivo. Cell Chem Biol 2020; 27:1425-1433.e7. [PMID: 32846115 DOI: 10.1016/j.chembiol.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.
Collapse
Affiliation(s)
- Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Karin Rustler
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France
| | - Alba Nin-Hill
- University of Barcelona, Department of Inorganic and Organic Chemistry, Institute of Theoretical Chemistry (IQTCUB), Barcelona 08028, Spain
| | - Daniel Wutz
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany
| | - Antoni Bautista-Barrufet
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Xavier Rovira
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Elvira Mukhametova
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France; Kazan Federal University, Open Lab of Motor Neurorehabilitation, Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Daria Ponomareva
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | | | - Franck Peiretti
- Aix Marseille Université, INSERM 1263, INRA 1260, C2VN, Marseille, France
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany; Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Carme Rovira
- University of Barcelona, Department of Inorganic and Organic Chemistry, Institute of Theoretical Chemistry (IQTCUB), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08003 Spain.
| | - Burkhard König
- University of Regensburg, Institute of Organic Chemistry, Regensburg 93053, Germany.
| | - Piotr Bregestovski
- Aix-Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille 13005, France; Institute of Neurosciences, Kazan State Medical University, Kazan, Russia.
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08003 Spain; CIBER-BBN, Madrid 28001 Spain.
| |
Collapse
|
16
|
Su XT, Klett NJ, Sharma A, Allen CN, Wang WH, Yang CL, Ellison DH. Distal convoluted tubule Cl - concentration is modulated via K + channels and transporters. Am J Physiol Renal Physiol 2020; 319:F534-F540. [PMID: 32715757 DOI: 10.1152/ajprenal.00284.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl--sensitive with-no-lysine kinase (WNK) plays a key role in regulating the thiazide-sensitive Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT). Cl- enters DCT cells through NCC and leaves the cell across the basolateral membrane via the Cl- channel ClC-K2 or K+-Cl- cotransporter (KCC). While KCC is electroneutral, Cl- exit via ClC-K2 is electrogenic. Therefore, an alteration in DCT basolateral K+ channel activity is expected to influence Cl- movement across the basolateral membrane. Although a role for intracellular Cl- in the regulation of WNK and NCC has been established, intracellular Cl- concentrations ([Cl-]i) have not been directly measured in the mammalian DCT. Therefore, to measure [Cl-]i in DCT cells, we generated a transgenic mouse model expressing an optogenetic kidney-specific Cl-Sensor and measured Cl- fluorescent imaging in the isolated DCT. Basal measurements indicated that the mean [Cl-]i was ~7 mM. Stimulation of Cl- exit with low-Cl- hypotonic solutions decreased [Cl-]i, whereas inhibition of KCC by DIOA or inhibition of ClC-K2 by NPPB increased [Cl-]i, suggesting roles for both KCC and ClC-K2 in the modulation of [Cl-]i . Blockade of basolateral K+ channels (Kir4.1/5.1) with barium significantly increased [Cl-]i. Finally, a decrease in extracellular K+ concentration transiently decreased [Cl-]i, whereas raising extracellular K+ transiently increased [Cl-]i, further suggesting a role for Kir4.1/5.1 in the regulation of [Cl-]i. We conclude that the alteration in ClC-K2, KCC, and Kir4.1/5.1 activity influences [Cl-]i in the DCT.
Collapse
Affiliation(s)
- Xiao-Tong Su
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Nathan J Klett
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Avika Sharma
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, School of Medicine, Oregon Health and Science University, Portland, Oregon.,Veterans Administration Portland Health Care System, Portland, Oregon
| |
Collapse
|
17
|
Balapattabi K, Farmer GE, Knapp BA, Little JT, Bachelor M, Yuan JP, Cunningham JT. Effects of salt-loading on supraoptic vasopressin neurones assessed by ClopHensorN chloride imaging. J Neuroendocrinol 2019; 31:e12752. [PMID: 31136029 PMCID: PMC7041405 DOI: 10.1111/jne.12752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022]
Abstract
Salt-loading (SL) impairs GABAA inhibition of arginine vasopressin (AVP) neurones in the supraoptic nucleus (SON) of the hypothalamus. Based on previous studies, we hypothesised that SL activates tyrosine receptor kinase B (TrkB), down-regulating the activity of K+ /Cl- co-transporter2 (KCC2) and up-regulating Na+ /K+ /Cl- co-transporter1 (NKCC1). These changes in chloride transport would result in increased [Cl- ]i in SON AVP neurones. The study combined virally-mediated chloride imaging with ClopHensorN with a single-cell western blot analysis. An adeno-associated virus with ClopHensorN and a vasopressin promoter (AAV2-0VP1-ClopHensorN) was bilaterally injected in the SON of adult male Sprague-Dawley rats that were either euhydrated (Eu) or salt-loaded (SL) for 7 days. Acutely dissociated SON neurones expressing ClopHensorN were tested for decreases or increases in [Cl- ]i in response to focal application of the GABAA agonist muscimol (100 μmol L-1 ). SON AVP neurones from Eu rats showed muscimol-induced chloride influx (P < 0.05;23/35). SON AVP neurones from SL rats either significantly increased chloride efflux (P < 0.05;27/39) or did not change chloride flux (12/39). The SON AVP neurones that responded to muscimol appeared to be viable and expressed KCC2 and β-actin. Neurones that did not respond during chloride imaging did not show KCC2 and β-actin protein expression. The KCC2 antagonist (VU0240551,10 μmol L-1 ) significantly blocked the chloride influx in cells from Eu rats but did not affect cells from SL rats. A NKCC1 antagonist (bumetanide,10 μmol L-1 ) significantly blocked the chloride efflux in cells from SL rats but had no effect on cells from Eu rats. Blocking NKCC1 using bumetanide had less of an effect on the muscimol-induced Cl- influx in Eu rat neurones compared to the KCC2 antagonist. The TrkB antagonist (AnA-12) (50 μmol L-1 ) and protein kinase inhibitor (K252a) (100 nmol L-1 ) each significantly blocked chloride efflux in SON AVP neurones from SL rats. Salt-loading increases [Cl- ]i in SON AVP neurones via a TrKB-KCC2-NKCC1-dependent mechanism in rats.
Collapse
Affiliation(s)
- Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Blayne A Knapp
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Martha Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Joseph P Yuan
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|
18
|
Diuba AV, Samigullin DV, Kaszas A, Zonfrillo F, Malkov A, Petukhova E, Casini A, Arosio D, Esclapez M, Gross CT, Bregestovski P. CLARITY analysis of the Cl/pH sensor expression in the brain of transgenic mice. Neuroscience 2019; 439:181-194. [PMID: 31302264 DOI: 10.1016/j.neuroscience.2019.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. This construct, called ClopHensor, consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Artem V Diuba
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Kazan, Russia; Department of Radiophotonics and microwave technologies, Kazan National Research Technical University named after A.N.Tupolev, 420111, Kazan, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University,420111, Kazan, Russia
| | - Attila Kaszas
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix- Marseille Université, 13005 Marseille, France
| | - Francesca Zonfrillo
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, ITALY
| | - Anton Malkov
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan Medical State University, Kazan, Russia
| | | | - Daniele Arosio
- Institute of Biophysics, National Research Council of Italy, 38123 Trento, Italy
| | - Monique Esclapez
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, ITALY
| | - Piotr Bregestovski
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institute of Neurosciences, Kazan Medical State University, Kazan, Russia.
| |
Collapse
|
19
|
Maleeva G, Wutz D, Rustler K, Nin-Hill A, Rovira C, Petukhova E, Bautista-Barrufet A, Gomila-Juaneda A, Scholze P, Peiretti F, Alfonso-Prieto M, König B, Gorostiza P, Bregestovski P. A photoswitchable GABA receptor channel blocker. Br J Pharmacol 2019; 176:2661-2677. [PMID: 30981211 PMCID: PMC6609548 DOI: 10.1111/bph.14689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Anion-selective Cys-loop receptors (GABA and glycine receptors) provide the main inhibitory drive in the CNS. Both types of receptor operate via chloride-selective ion channels, though with different kinetics, pharmacological profiles, and localization. Disequilibrium in their function leads to a variety of disorders, which are often treated with allosteric modulators. The few available GABA and glycine receptor channel blockers effectively suppress inhibitory currents in neurons, but their systemic administration is highly toxic. With the aim of developing an efficient light-controllable modulator of GABA receptors, we constructed azobenzene-nitrazepam (Azo-NZ1), which is composed of a nitrazepam moiety merged to an azobenzene photoisomerizable group. EXPERIMENTAL APPROACH The experiments were carried out on cultured cells expressing Cys-loop receptors of known subunit composition and in brain slices using patch-clamp. Site-directed mutagenesis and molecular modelling approaches were applied to evaluate the mechanism of action of Azo-NZ1. KEY RESULTS At visible light, being in trans-configuration, Azo-NZ1 blocked heteromeric α1/β2/γ2 GABAA receptors, ρ2 GABAA (GABAC ), and α2 glycine receptors, whereas switching the compound into cis-state by UV illumination restored the activity. Azo-NZ1 successfully photomodulated GABAergic currents recorded from dentate gyrus neurons. We demonstrated that in trans-configuration, Azo-NZ1 blocks the Cl-selective ion pore of GABA receptors interacting mainly with the 2' level of the TM2 region. CONCLUSIONS AND IMPLICATIONS Azo-NZ1 is a soluble light-driven Cl-channel blocker, which allows photo-modulation of the activity induced by anion-selective Cys-loop receptors. Azo-NZ1 is able to control GABAergic postsynaptic currents and provides new opportunities to study inhibitory neurotransmission using patterned illumination.
Collapse
Affiliation(s)
- Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France
| | - Daniel Wutz
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Karin Rustler
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elena Petukhova
- Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
| | - Antoni Bautista-Barrufet
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandre Gomila-Juaneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Franck Peiretti
- INSERM 1263, INRA 1260, C2VN, Aix-Marseille Université, Marseille, France
| | - Mercedes Alfonso-Prieto
- Department of Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Regensburg, Germany
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Network Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Spain
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Department of Normal Physiology, Kazan State Medical University, Kazan, Russia.,Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
20
|
Wasiluk T, Roueinfar M, Hiryak K, Torsiello M, Miner A, Lee J, Venditto M, Terzaghi W, Lucent D, VanWert AL. Simultaneous expression of ClopHensor and SLC26A3 reveals the nature of endogenous oxalate transport in CHO cells. Biol Open 2019; 8:bio.041665. [PMID: 30837228 PMCID: PMC6504001 DOI: 10.1242/bio.041665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ClopHensor, a fluorescent fusion protein, is a dual function biosensor that has been utilized as a tool for the simultaneous measurement of intracellular chloride and pH in cells. ClopHensor has traditionally been used in conjunction with fluorescence microscopy for single cell measurements. Here, we present a promising multi-well format advancement for the use of ClopHensor as a potential high-throughput method capable of measuring fluorescence signal intensity across a well of confluent cells with highly reproducible results. Using this system, we gained mechanistic insight into an endogenous oxalate transporter in Chinese hamster ovary (CHO) cells expressing ClopHensor and the human chloride transporter, SLC26A3. SLC26A3, a known anion exchanger, has been proposed to play a role in colonic oxalate absorption in humans. Our attempt to study the role of SLC26A3 in oxalate transport revealed the presence of an endogenous oxalate transporter in CHO cells. This transporter was strongly inhibited by niflumate, and exhibited clear saturability. Use of ClopHensor in a multi-well cell assay allowed us to quickly demonstrate that the endogenous oxalate transporter was unable to exchange chloride for bicarbonate, unlike SLC26A3.
Collapse
Affiliation(s)
- Teresa Wasiluk
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Mina Roueinfar
- Department of Electrical Engineering and Physics, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Kayla Hiryak
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Maria Torsiello
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Alexander Miner
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Jennifer Lee
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Michael Venditto
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - William Terzaghi
- Department of Biology, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Del Lucent
- Department of Electrical Engineering and Physics, College of Science and Engineering, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Adam L VanWert
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA 18766, USA
| |
Collapse
|
21
|
Genetically encoded fluorescent indicators for live cell pH imaging. Biochim Biophys Acta Gen Subj 2018; 1862:2924-2939. [PMID: 30279147 DOI: 10.1016/j.bbagen.2018.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intracellular pH underlies most cellular processes. There is emerging evidence of a pH-signaling role in plant cells and microorganisms. Dysregulation of pH is associated with human diseases, such as cancer and Alzheimer's disease. SCOPE OF REVIEW In this review, we attempt to provide a summary of the progress that has been made in the field during the past two decades. First, we present an overview of the current state of the design and applications of fluorescent protein (FP)-based pH indicators. Then, we turn our attention to the development and applications of hybrid pH sensors that combine the capabilities of non-GFP fluorophores with the advantages of genetically encoded tags. Finally, we discuss recent advances in multicolor pH imaging and the applications of genetically encoded pH sensors in multiparameter imaging. MAJOR CONCLUSIONS Genetically encoded pH sensors have proven to be indispensable noninvasive tools for selective targeting to different cellular locations. Although a variety of genetically encoded pH sensors have been designed and applied at the single cell level, there is still much room for improvements and future developments of novel powerful tools for pH imaging. Among the most pressing challenges in this area is the design of brighter redshifted sensors for tissue research and whole animal experiments. GENERAL SIGNIFICANCE The design of precise pH measuring instruments is one of the important goals in cell biochemistry and may give rise to the development of new powerful diagnostic tools for various diseases.
Collapse
|
22
|
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium. Am J Physiol Renal Physiol 2018; 315:F903-F907. [PMID: 29923766 DOI: 10.1152/ajprenal.00176.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
WNK [with no lysine (K)] kinases regulate renal epithelial ion transport to maintain homeostasis of electrolyte concentrations, extracellular volume, and blood pressure. The SLC12 cation-chloride cotransporters, including the sodium-potassium-2-chloride (NKCC) and sodium chloride cotransporters (NCC), are targets of WNK regulation via the intermediary kinases SPAK (Ste20-related proline/alanine-rich kinase) and OSR1 (oxidative stress response). The pathway is activated by low dietary potassium intake, resulting in increased phosphorylation and activity of NCC. Chloride regulates WNK kinases in vitro by binding to the active site and inhibiting autophosphorylation and has been proposed to modulate WNK activity in the distal convoluted tubule in response to low dietary potassium. WNK-SPAK/OSR1 regulation of NKCC-dependent ion transport is evolutionarily ancient, and it occurs in the Drosophila Malpighian (renal) tubule. Here, we review recent studies from the Drosophila tubule demonstrating cooperative roles for chloride and the scaffold protein Mo25 (mouse protein-25, also known as calcium-binding protein-39) in the regulation of WNK-SPAK/OSR1 signaling in a transporting renal epithelium. Insights gained from this genetically manipulable and physiologically accessible epithelium shed light on molecular mechanisms of regulation of the WNK-SPAK/OSR1 pathway, which is important in human health and disease.
Collapse
Affiliation(s)
- Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension, Molecular Medicine Program, University of Utah , Salt Lake City, Utah
| |
Collapse
|
23
|
Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM, He H, Schellinger JN, Akella R, Stenesen D, Krämer H, Goldsmith EJ, Rodan AR. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol 2018; 29:1449-1461. [PMID: 29602832 DOI: 10.1681/asn.2017101091] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.
Collapse
Affiliation(s)
- Qifei Sun
- Division of Nephrology, Department of Internal Medicine and
| | - Yipin Wu
- Division of Nephrology, Department of Internal Medicine and
| | - Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - John M Pleinis
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | | | | | | | | | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Aylin R Rodan
- Division of Nephrology, Department of Internal Medicine and .,Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
24
|
Hudson DA, Caplan JL, Thorpe C. Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Biochemistry 2018; 57:1178-1189. [PMID: 29341594 DOI: 10.1021/acs.biochem.7b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of genetically encoded fluorescent probes for analyte-specific imaging has revolutionized our understanding of intracellular processes. Current classes of intracellular probes depend on the selection of binding domains that either undergo conformational changes on analyte binding or can be linked to thiol redox chemistry. Here we have designed novel probes by fusing a flavoenzyme, whose fluorescence is quenched on reduction by the analyte of interest, with a GFP domain to allow for rapid and specific ratiometric sensing. Two flavoproteins, Escherichia coli thioredoxin reductase and Saccharomyces cerevisiae lipoamide dehydrogenase, were successfully developed into thioredoxin and NAD+/NADH specific probes, respectively, and their performance was evaluated in vitro and in vivo. A flow cell format, which allowed dynamic measurements, was utilized in both bacterial and mammalian systems. In E. coli the first reported intracellular steady-state of the cytoplasmic thioredoxin pool was measured. In HEK293T mammalian cells, the steady-state cytosolic ratio of NAD+/NADH induced by glucose was determined. These genetically encoded fluorescent constructs represent a modular approach to intracellular probe design that should extend the range of metabolites that can be quantitated in live cells.
Collapse
Affiliation(s)
- Devin A Hudson
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jeffrey L Caplan
- Bioimaging Center, Delaware Biotechnology Institute , Newark, Delaware 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
25
|
Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo. Proc Natl Acad Sci U S A 2017; 114:E8770-E8779. [PMID: 28973889 DOI: 10.1073/pnas.1702861114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracellular chloride ([Cl-]i) and pH (pHi) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl-]i and pHi, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl- and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl-]i and pHi at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl-]i and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pHi and [Cl-]i in response to hypercapnia and seizure activity.
Collapse
|
26
|
Klett NJ, Allen CN. Intracellular Chloride Regulation in AVP+ and VIP+ Neurons of the Suprachiasmatic Nucleus. Sci Rep 2017; 7:10226. [PMID: 28860458 PMCID: PMC5579040 DOI: 10.1038/s41598-017-09778-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Several reports have described excitatory GABA transmission in the suprachiasmatic nucleus (SCN), the master pacemaker of circadian physiology. However, there is disagreement regarding the prevalence, timing, and neuronal location of excitatory GABA transmission in the SCN. Whether GABA is inhibitory or excitatory depends, in part, on the intracellular concentration of chloride ([Cl-]i). Here, using ratiometric Cl- imaging, we have investigated intracellular chloride regulation in AVP and VIP-expressing SCN neurons and found evidence suggesting that [Cl-]i is higher during the day than during the night in both AVP+ and VIP+ neurons. We then investigated the contribution of the cation chloride cotransporters to setting [Cl-]i in these SCN neurons and found that the chloride uptake transporter NKCC1 contributes to [Cl-]i regulation in SCN neurons, but that the KCCs are the primary regulators of [Cl-]i in SCN neurons. Interestingly, we observed that [Cl-]i is differentially regulated between AVP+ and VIP+ neurons-a low concentration of the loop diuretic bumetanide had differential effects on AVP+ and VIP+ neurons, while blocking the KCCs with VU0240551 had a larger effect on VIP+ neurons compared to AVP+ neurons.
Collapse
Affiliation(s)
- Nathan J Klett
- Neuroscience Graduate Program, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon Institute for Occupational Health Sciences, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Charles N Allen
- Oregon Institute for Occupational Health Sciences, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Maleeva G, Peiretti F, Zhorov BS, Bregestovski P. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid. Front Mol Neurosci 2017; 10:125. [PMID: 28559795 PMCID: PMC5432571 DOI: 10.3389/fnmol.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
Niflumic acid (NFA) is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs) with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2') increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.
Collapse
Affiliation(s)
- Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Cytology, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| | - Franck Peiretti
- INSERM 1062, INRA 1260, NORT, Aix-Marseille UniversityMarseille, France
| | - Boris S Zhorov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. Petersburg, Russia.,Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille UniversityMarseille, France.,Department of Physiology, Kazan State Medical UniversityKazan, Russia
| |
Collapse
|
28
|
Rupprecht C, Wingen M, Potzkei J, Gensch T, Jaeger KE, Drepper T. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. J Biotechnol 2017; 258:25-32. [PMID: 28501596 DOI: 10.1016/j.jbiotec.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 02/07/2023]
Abstract
The intracellular pH is an important modulator of various bio(techno)logical processes such as enzymatic conversion of metabolites or transport across the cell membrane. Changes of intracellular pH due to altered proton distribution can thus cause dysfunction of cellular processes. Consequently, accurate monitoring of intracellular pH allows elucidating the pH-dependency of (patho)physiological and biotechnological processes. In this context, genetically encoded biosensors represent a powerful tool to determine intracellular pH values non-invasively and with high spatiotemporal resolution. We have constructed a toolbox of novel genetically encoded FRET-based pH biosensors (named Fluorescence Biosensors for pH or FluBpH) that utilizes the FMN-binding fluorescent protein EcFbFP as donor domain. In contrast to many fluorescent proteins of the GFP family, EcFbFP exhibits a remarkable tolerance towards acidic pH (pKa∼3.2). To cover the broad range of physiologically relevant pH values, three EYFP variants exhibiting pKa values of 5.7, 6.1 and 7.5 were used as pH-sensing FRET acceptor domains. The resulting biosensors FluBpH 5.7, FluBpH 6.1 and FluBpH 7.5 were calibrated in vitro and in vivo to accurately evaluate their pH indicator properties. To demonstrate the in vivo applicability of FluBpH, changes of intracellular pH were ratiometrically measured in E. coli cells during acid stress.
Collapse
Affiliation(s)
- Christian Rupprecht
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Marcus Wingen
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Janko Potzkei
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany; GO-Bio Projekt SenseUP, Forschungszentrum Jülich, D-52425 Jülich GmbH, Germany
| | - Thomas Gensch
- Institute of Complex Systems ICS-4: Cellular Biophysics, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52425 Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
29
|
Ludwig A, Rivera C, Uvarov P. A noninvasive optical approach for assessing chloride extrusion activity of the K-Cl cotransporter KCC2 in neuronal cells. BMC Neurosci 2017; 18:23. [PMID: 28143398 PMCID: PMC5286847 DOI: 10.1186/s12868-017-0336-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cation-chloride cotransporters (CCCs) are indispensable for maintaining chloride homeostasis in multiple cell types, but K-Cl cotransporter KCC2 is the only CCC member with an exclusively neuronal expression in mammals. KCC2 is critical for rendering fast hyperpolarizing responses of ionotropic γ-aminobutyric acid and glycine receptors in adult neurons, for neuronal migration in the developing central nervous system, and for the formation and maintenance of small dendritic protrusions-dendritic spines. Deficit in KCC2 expression and/or activity is associated with epilepsy and neuropathic pain, and effective strategies are required to search for novel drugs augmenting KCC2 function. RESULTS We revised current methods to develop a noninvasive optical approach for assessing KCC2 transport activity using a previously characterized genetically encoded chloride sensor. Our protocol directly assesses dynamics of KCC2-mediated chloride efflux and allows measuring genuine KCC2 activity with good spatial and temporal resolution. As a proof of concept, we used this approach to compare transport activities of the two known KCC2 splice isoforms, KCC2a and KCC2b, in mouse neuronal Neuro-2a cells. CONCLUSIONS Our noninvasive optical protocol proved to be efficient for assessment of furosemide-sensitive chloride fluxes. Transport activities of the N-terminal splice isoforms KCC2a and KCC2b obtained by the novel approach matched to those reported previously using standard methods for measuring chloride fluxes.
Collapse
Affiliation(s)
- Anastasia Ludwig
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM U1024, CNRS 8197, Paris, France
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- INSERM U901, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France
- UMR S901, Aix-Marseille Université, Marseille, France
| | - Pavel Uvarov
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Pendin D, Greotti E, Lefkimmiatis K, Pozzan T. Exploring cells with targeted biosensors. J Gen Physiol 2016; 149:1-36. [PMID: 28028123 PMCID: PMC5217087 DOI: 10.1085/jgp.201611654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 01/10/2023] Open
Abstract
Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.
Collapse
Affiliation(s)
- Diana Pendin
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elisa Greotti
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council, Padua Section, 35121 Padua, Italy.,Venetian Institute of Molecular Medicine, 35129 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| |
Collapse
|
31
|
Maleeva G, Buldakova S, Bregestovski P. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid. Front Mol Neurosci 2015; 8:64. [PMID: 26578878 PMCID: PMC4624854 DOI: 10.3389/fnmol.2015.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Glycine receptors (GlyRs) belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision, and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analyzed the effects of ginkgolic acid in concentrations from 30 nM to 25 μM on α1–α3 and α1/β, α2/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a) cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10–25 μM) ginkgolic acid was not able to augment ionic currents mediated by α2, α2/β, and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S) in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs.
Collapse
Affiliation(s)
- Galyna Maleeva
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France ; Department of Cytology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Svetlana Buldakova
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France
| | - Piotr Bregestovski
- Aix Marseille Université, INS UMR_S 1106 Marseille, France ; INSERM, UMR_S 1106 Marseille, France
| |
Collapse
|
32
|
Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES, Balaban PM, Okabe S, Lukyanov S, Enikolopov G, Zaraisky AG, Belousov VV. Fluorescent ratiometric pH indicator SypHer2: Applications in neuroscience and regenerative biology. Biochim Biophys Acta Gen Subj 2015; 1850:2318-28. [PMID: 26259819 DOI: 10.1016/j.bbagen.2015.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND SypHer is a genetically encoded fluorescent pH-indicator with a ratiometric readout, suitable for measuring fast intracellular pH shifts. However, the relatively low brightness of the indicator limits its use. METHODS Here we designed a new version of pH-sensor called SypHer-2, which has up to three times brighter fluorescence in cultured mammalian cells compared to the SypHer. RESULTS Using the new indicator we registered activity-associated pH oscillations in neuronal cell culture. We observed prominent transient neuronal cytoplasm acidification that occurs in parallel with calcium entry. Furthermore, we monitored pH in presynaptic and postsynaptic termini by targeting SypHer-2 directly to these compartments and revealed marked differences in pH dynamics between synaptic boutons and dendritic spines. Finally, we were able to reveal for the first time the intracellular pH drop that occurs within an extended region of the amputated tail of the Xenopus laevis tadpole before it begins to regenerate. CONCLUSIONS SypHer2 is suitable for quantitative monitoring of pH in biological systems of different scales, from small cellular subcompartments to animal tissues in vivo. GENERAL SIGNIFICANCE The new pH-sensor will help to investigate pH-dependent processes in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mikhail E Matlashov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia A Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Faculty of Biology, Moscow State University, 119991 Moscow, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Natalia M Mishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Yulia G Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, 117485 Moscow, Russia
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia
| | - Grigori Enikolopov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, NY 11794, USA; Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794, USA; NBIC, Moscow Institute of Physics and Technology, 123182 Moscow, Russia.
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; Nizhny Novgorod State Medical Academy, 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
33
|
Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis. Proc Natl Acad Sci U S A 2014; 111:14301-6. [PMID: 25228763 DOI: 10.1073/pnas.1412706111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epithelia frequently segregate transport processes to specific cell types, presumably for improved efficiency and control. The molecular players underlying this functional specialization are of particular interest. In Drosophila, the renal (Malpighian) tubule displays the highest per-cell transport rates known and has two main secretory cell types, principal and stellate. Electrogenic cation transport is known to reside in the principal cells, whereas stellate cells control the anion conductance, but by an as-yet-undefined route. Here, we resolve this issue by showing that a plasma membrane chloride channel, encoded by ClC-a, is exclusively expressed in the stellate cell and is required for Drosophila kinin-mediated induction of diuresis and chloride shunt conductance, evidenced by chloride ion movement through the stellate cells, leading to depolarization of the transepithelial potential. By contrast, ClC-a knockdown had no impact on resting secretion levels. Knockdown of a second CLC gene showing highly abundant expression in adult Malpighian tubules, ClC-c, did not impact depolarization of transepithelial potential after kinin stimulation. Therefore, the diuretic action of kinin in Drosophila can be explained by an increase in ClC-a-mediated chloride conductance, over and above a resting fluid transport level that relies on other (ClC-a-independent) mechanisms or routes. This key segregation of cation and anion transport could explain the extraordinary fluid transport rates displayed by some epithelia.
Collapse
|
34
|
Arosio D, Ratto GM. Twenty years of fluorescence imaging of intracellular chloride. Front Cell Neurosci 2014; 8:258. [PMID: 25221475 PMCID: PMC4148895 DOI: 10.3389/fncel.2014.00258] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
Chloride homeostasis has a pivotal role in controlling neuronal excitability in the adult brain and during development. The intracellular concentration of chloride is regulated by the dynamic equilibrium between passive fluxes through membrane conductances and the active transport mediated by importers and exporters. In cortical neurons, chloride fluxes are coupled to network activity by the opening of the ionotropic GABAA receptors that provides a direct link between the activity of interneurons and chloride fluxes. These molecular mechanisms are not evenly distributed and regulated over the neuron surface and this fact can lead to a compartmentalized control of the intracellular concentration of chloride. The inhibitory drive provided by the activity of the GABAA receptors depends on the direction and strength of the associated currents, which are ultimately dictated by the gradient of chloride, the main charge carrier flowing through the GABAA channel. Thus, the intracellular distribution of chloride determines the local strength of ionotropic inhibition and influences the interaction between converging excitation and inhibition. The importance of chloride regulation is also underlined by its involvement in several brain pathologies, including epilepsy and disorders of the autistic spectra. The full comprehension of the physiological meaning of GABAergic activity on neurons requires the measurement of the spatiotemporal dynamics of chloride fluxes across the membrane. Nowadays, there are several available tools for the task, and both synthetic and genetically encoded indicators have been successfully used for chloride imaging. Here, we will review the available sensors analyzing their properties and outlining desirable future developments.
Collapse
Affiliation(s)
- Daniele Arosio
- Institute of Biophysics, National Research Council and Bruno Kessler Foundation Trento, Italy ; Centre for Integrative Biology, University of Trento Trento, Italy
| | - Gian Michele Ratto
- Nanoscience Institute, National Research Council of Italy Pisa, Italy ; NEST, Scuola Normale Superiore Pisa, Italy
| |
Collapse
|
35
|
Medina I, Friedel P, Rivera C, Kahle KT, Kourdougli N, Uvarov P, Pellegrino C. Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2. Front Cell Neurosci 2014; 8:27. [PMID: 24567703 PMCID: PMC3915100 DOI: 10.3389/fncel.2014.00027] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/18/2014] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Igor Medina
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Perrine Friedel
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Claudio Rivera
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Kristopher T. Kahle
- Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's HospitalBoston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Nazim Kourdougli
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| | - Pavel Uvarov
- Institute of Biomedicine, Anatomy, University of HelsinkiHelsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institut de Neurobiologie de la Méditerranée (INMED)Marseille, France
- Aix-Marseille Université, UMR901Marseille, France
| |
Collapse
|
36
|
Benčina M. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. SENSORS 2013; 13:16736-58. [PMID: 24316570 PMCID: PMC3892890 DOI: 10.3390/s131216736] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
Fluorescent proteins have been extensively used for engineering genetically encoded sensors that can monitor levels of ions, enzyme activities, redox potential, and metabolites. Certain fluorescent proteins possess specific pH-dependent spectroscopic features, and thus can be used as indicators of intracellular pH. Moreover, concatenated pH-sensitive proteins with target proteins pin the pH sensors to a definite location within the cell, compartment, or tissue. This study provides an overview of the continually expanding family of pH-sensitive fluorescent proteins that have become essential tools for studies of pH homeostasis and cell physiology. We describe and discuss the design of intensity-based and ratiometric pH sensors, their spectral properties and pH-dependency, as well as their performance. Finally, we illustrate some examples of the applications of pH sensors targeted at different subcellular compartments.
Collapse
Affiliation(s)
- Mojca Benčina
- Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
Raimondo JV, Joyce B, Kay L, Schlagheck T, Newey SE, Srinivas S, Akerman CJ. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front Cell Neurosci 2013; 7:202. [PMID: 24312004 PMCID: PMC3826072 DOI: 10.3389/fncel.2013.00202] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023] Open
Abstract
Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.
Collapse
Affiliation(s)
- Joseph V Raimondo
- Department of Pharmacology, University of Oxford Oxford, UK ; UCT/MRC Receptor Biology Unit, Division of Medical Biochemistry, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
38
|
Hübner CA, Holthoff K. Anion transport and GABA signaling. Front Cell Neurosci 2013; 7:177. [PMID: 24187533 PMCID: PMC3807543 DOI: 10.3389/fncel.2013.00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/21/2013] [Indexed: 12/02/2022] Open
Abstract
Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.
Collapse
Affiliation(s)
- Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University Jena Jena, Germany
| | | |
Collapse
|
39
|
Batti L, Mukhtarov M, Audero E, Ivanov A, Paolicelli RC, Zurborg S, Gross C, Bregestovski P, Heppenstall PA. Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride. Front Mol Neurosci 2013; 6:11. [PMID: 23734096 PMCID: PMC3659292 DOI: 10.3389/fnmol.2013.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Chloride is the most abundant physiological anion and participates in a variety of cellular processes including trans-epithelial transport, cell volume regulation, and regulation of electrical excitability. The development of tools to monitor intracellular chloride concentration ([Cli]) is therefore important for the evaluation of cellular function in normal and pathological conditions. Recently, several Cl-sensitive genetically encoded probes have been described which allow for non-invasive monitoring of [Cli]. Here we describe two mouse lines expressing a CFP-YFP-based Cl probe called Cl-Sensor. First, we generated transgenic mice expressing Cl-Sensor under the control of the mouse Thy1 mini promoter. Cl-Sensor exhibited good expression from postnatal day two (P2) in neurons of the hippocampus and cortex, and its level increased strongly during development. Using simultaneous whole-cell monitoring of ionic currents and Cl-dependent fluorescence, we determined that the apparent EC 50 for Cli was 46 mM, indicating that this line is appropriate for measuring neuronal [Cli] in postnatal mice. We also describe a transgenic mouse reporter line for Cre-dependent conditional expression of Cl-Sensor, which was targeted to the Rosa26 locus and by incorporating a strong exogenous promoter induced robust expression upon Cre-mediated recombination. We demonstrate high levels of tissue-specific expression in two different Cre-driver lines targeting cells of the myeloid lineage and peripheral sensory neurons. Using these mice the apparent EC 50 for Cli was estimated to be 61 and 54 mM in macrophages and DRG, respectively. Our data suggest that these mouse lines will be useful models for ratiometric monitoring of Cli in specific cell types in vivo.
Collapse
Affiliation(s)
- Laura Batti
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|