1
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
2
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
4
|
Zhang S, Zhao J, Wu M, Zhou Y, Wu X, Du A, Tao Y, Huang S, Cai S, Zhou M, Wei T, Zhang Y, Xie L, Wu Y, Xiao J. Over-activation of TRPM2 ion channel accelerates blood-spinal cord barrier destruction in diabetes combined with spinal cord injury rat. Int J Biol Sci 2023; 19:2475-2494. [PMID: 37215981 PMCID: PMC10197895 DOI: 10.7150/ijbs.80672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that often results in loss of motor and sensory function. Diabetes facilitates the blood-spinal cord barrier (BSCB) destruction and aggravates SCI recovery. However, the molecular mechanism underlying it is still unclear. Our study has focused on transient receptor potential melastatin 2 (TRPM2) channel and investigated its regulatory role on integrity and function of BSCB in diabetes combined with SCI rat. We have confirmed that diabetes is obviously not conductive to SCI recovery through accelerates BSCB destruction. Endothelial cells (ECs) are the important component of BSCB. It was observed that diabetes significantly worsens mitochondrial dysfunction and triggers excessive apoptosis of ECs in spinal cord from SCI rat. Moreover, diabetes impeded neovascularization in spinal cord from SCI rat with decreases of VEGF and ANG1. TRPM2 acts as a cellular sensor of ROS. Our mechanistic studies showed that diabetes significantly induces elevated ROS level to activate TRPM2 ion channel of ECs. Then, TRPM2 channel mediated the Ca2+ influx and subsequently activated p-CaMKII/eNOS pathway, and which in turn triggered the ROS production. Consequently, over-activation of TRPM2 ion channel results in excessive apoptosis and weaker angiogenesis during SCI recovery. Inhibition of TRPM2 with 2-Aminoethyl diphenylborinate (2-APB) or TRPM2 siRNA will ameliorate the apoptosis of ECs and promote angiogenesis, subsequently enhance BSCB integrity and improve the locomotor function recovery of diabetes combined with SCI rat. In conclusion, TRPM2 channel may be a key target for the treatment of diabetes combined with SCI rat.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiaxin Zhao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Man Wu
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yongxiu Zhou
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xuejuan Wu
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Anyu Du
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibing Tao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shanshan Huang
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shufang Cai
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Mei Zhou
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Tao Wei
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Ling Xie
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
5
|
Wang Q, Yu Y, Chang Y, Xu X, Wu M, Ediriweera GR, Peng H, Zhen X, Jiang X, Searles DJ, Fu C, Whittaker AK. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS NANO 2023; 17:8483-8498. [PMID: 37097065 DOI: 10.1021/acsnano.3c00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Min Wu
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xu Zhen
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Hong DK, Kho AR, Lee SH, Kang BS, Park MK, Choi BY, Suh SW. Pathophysiological Roles of Transient Receptor Potential (Trp) Channels and Zinc Toxicity in Brain Disease. Int J Mol Sci 2023; 24:ijms24076665. [PMID: 37047637 PMCID: PMC10094935 DOI: 10.3390/ijms24076665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Maintaining the correct ionic gradient from extracellular to intracellular space via several membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these transporters is the transient receptor potential (TRP) channel family that consists of six putative transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP channels by brain disease, several cations are translocated through TRP channels. Brain disease, especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is essential for regulating diverse physiological functions, the brain-disease-induced excessive release and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain disease is critical for the prevention of brain damage. In this review, we summarize recent experimental research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP channels may serve as targets for treating and preventing neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
7
|
Sanders OD, Rajagopal L, Rajagopal JA. The oxidatively damaged DNA and amyloid-β oligomer hypothesis of Alzheimer's disease. Free Radic Biol Med 2022; 179:403-412. [PMID: 34506904 DOI: 10.1016/j.freeradbiomed.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
The amyloid-β (Aβ) oligomer hypothesis of Alzheimer's disease (AD) still dominates the field, yet the clinical trial evidence does not robustly support it. A falsifiable prediction of the hypothesis is that Aβ oligomer levels should be elevated in the brain regions and at the disease stages where and when neuron death and synaptic protein loss begin and are the most severe, but we review previous evidence to demonstrate that this is not consistently the case. To rescue the Aβ oligomer hypothesis from falsification, we propose the novel ad-hoc hypothesis that the exceptionally vulnerable hippocampus may normally produce Aβ peptides even in healthily aging individuals, and hippocampal oxidatively damaged DNA, pathogen DNA, and metal ions such as zinc may initiate and drive Aβ peptide aggregation into oligomers and spreading, neuron death, synaptic dysfunction, and other aspects of AD neurodegeneration. We highlight additional evidence consistent with the underwhelming efficacy of Aβ oligomer-lowering agents, such as aducanumab, and of antioxidants, such as vitamin E, versus the so far isolated case report that DNase-I treatment for 2 months resulted in a severe AD patient's Mini-Mental State Exam score increasing from 3 to 18, reversing his diagnosis to moderate AD, according to the Mini-Mental State Exam.
Collapse
Affiliation(s)
| | - Lekshmy Rajagopal
- Seven Hills Hospital, Marol Maroshi Rd, Shivaji Nagar JJC, Marol, Andheri East, Mumbai, Maharashtra, 400059, India
| | | |
Collapse
|
8
|
Xing Y, Wei X, Liu Y, Wang MM, Sui Z, Wang X, Zhu W, Wu M, Lu C, Fei YH, Jiang Y, Zhang Y, Wang Y, Guo F, Cao JL, Qi J, Wang W. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway. Autophagy 2021; 18:1932-1954. [PMID: 34878954 DOI: 10.1080/15548627.2021.2008752] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Compelling evidence has demonstrated that macroautophagy/autophagy plays an important role in regulating multiple steps of metastatic cascades; however, the precise role of autophagy in metastasis remains unclear. This study demonstrates that autophagy inhibition induced by MCOLN1/TRPML1 suppresses cancer metastasis by evoking the ROS-mediated TP53/p53 pathway. First, we found that MCOLN1-mediated autophagy inhibition not only profoundly inhibits both migration and invasion in malignant melanoma and glioma cell lines in vitro, but also suppresses melanoma metastasis in vivo. Second, our study reveals that autophagy inhibition induced by MCOLN1 leads to damaged mitochondria accumulation followed by large quantities of ROS release. Third, we demonstrate that the elevated ROS resulting from autophagy inhibition subsequently triggers TP53 activity, which in turn modulates expression of its downstream targets which are involved in a broad spectrum of the metastatic cascade to suppress metastasis including MMP members and TWIST. In summary, our findings have established a mechanism by which autophagy inhibition suppresses metastasis via the ROS-TP53 signaling pathway. More importantly, our study demonstrates that autophagy inhibition through stimulation of MCOLN1 could evidently be one of the therapeutic potentials for combating cancer metastasis.Abbreviations: 3-MA: 3-methyladenine; AA: amino acid; ATG5: autophagy related 5; ATG12: autophagy related 12; Baf-A1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; DMEM: Dulbecco's Modified Eagle Medium; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HEK: human embryonic kidney; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MMP: matrix metallopeptidase; NC: negative control; NRK: normal rat kidney; PBS: phosphate-buffered saline; shRNA: short hairpin RNA; siRNA: short interfering RNA; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Xiangqing Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, China
| | - Yucheng Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Zhongheng Sui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Wucheng Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Mengmei Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yuan-Hui Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yi Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, 8128582, Japan
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Jiansong Qi
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
9
|
Wang Q, Liu N, Ni YS, Yang JM, Ma L, Lan XB, Wu J, Niu JG, Yu JQ. TRPM2 in ischemic stroke: Structure, molecular mechanisms, and drug intervention. Channels (Austin) 2021; 15:136-154. [PMID: 33455532 PMCID: PMC7833771 DOI: 10.1080/19336950.2020.1870088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke has a high lethality rate worldwide, and novel treatments are limited. Calcium overload is considered to be one of the mechanisms of cerebral ischemia. Transient receptor potential melastatin 2 (TRPM2) is a reactive oxygen species (ROS)-sensitive calcium channel. Cerebral ischemia-induced TRPM2 activation triggers abnormal intracellular Ca2+ accumulation and cell death, which in turn causes irreversible brain damage. Thus, TRPM2 has emerged as a new therapeutic target for ischemic stroke. This review provides data on the expression, structure, and function of TRPM2 and illustrates its cellular and molecular mechanisms in ischemic stroke. Natural and synthetic TRPM2 inhibitors (both specific and nonspecific) are also summarized. The three-dimensional protein structure of TRPM2 has been identified, and we speculate that molecular simulation techniques will be essential for developing new drugs that block TRPM2 channels. These insights about TRPM2 may be the key to find potent therapeutic approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Yuan-Shu Ni
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
10
|
TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10081243. [PMID: 34439491 PMCID: PMC8389341 DOI: 10.3390/antiox10081243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.
Collapse
|
11
|
Deficiency of ROS-Activated TRPM2 Channel Protects Neurons from Cerebral Ischemia-Reperfusion Injury through Upregulating Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7356266. [PMID: 34367466 PMCID: PMC8337124 DOI: 10.1155/2021/7356266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia-reperfusion (I-R) transiently increased autophagy by producing excessively reactive oxygen species (ROS); on the other hand, activated autophagy would remove ROS-damaged mitochondria and proteins, which led to cell survival. However, the regulation mechanism of autophagy activity during cerebral I-R is still unclear. In this study, we found that deficiency of the TRPM2 channel which is a ROS sensor significantly decreased I-R-induced neuronal damage. I-R transiently increased autophagy activity both in vitro and in vivo. More importantly, TRPM2 deficiency decreased I-R-induced neurological deficit score and infarct volume. Interestingly, our results indicated that TRPM2 deficiency could further activate AMPK rather than Beclin1 activity, suggesting that TRPM2 inhibits autophagy by regulating the AMPK/mTOR pathway in I-R. In conclusion, our study reveals that ROS-activated TRPM2 inhibits autophagy by downregulating the AMPK/mTOR pathway, which results in neuronal death induced by cerebral I-R, further supporting that TRPM2 might be a potential drug target for cerebral ischemic injury therapy.
Collapse
|
12
|
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction. Biomedicines 2021; 9:biomedicines9050489. [PMID: 33946782 PMCID: PMC8145363 DOI: 10.3390/biomedicines9050489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
Zinc is a highly abundant cation in the brain, essential for cellular functions, including transcription, enzymatic activity, and cell signaling. However, zinc can also trigger injurious cascades in neurons, contributing to the pathology of neurodegenerative diseases. Mitochondria, critical for meeting the high energy demands of the central nervous system (CNS), are a principal target of the deleterious actions of zinc. An increasing body of work suggests that intracellular zinc can, under certain circumstances, contribute to neuronal damage by inhibiting mitochondrial energy processes, including dissipation of the mitochondrial membrane potential (MMP), leading to ATP depletion. Additional consequences of zinc-mediated mitochondrial damage include reactive oxygen species (ROS) generation, mitochondrial permeability transition, and excitotoxic calcium deregulation. Zinc can also induce mitochondrial fission, resulting in mitochondrial fragmentation, as well as inhibition of mitochondrial motility. Here, we review the known mechanisms responsible for the deleterious actions of zinc on the organelle, within the context of neuronal injury associated with neurodegenerative processes. Elucidating the critical contributions of zinc-induced mitochondrial defects to neurotoxicity and neurodegeneration may provide insight into novel therapeutic targets in the clinical setting.
Collapse
|
13
|
Ying Y, Jiang P. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:267-276. [PMID: 34137233 PMCID: PMC8710270 DOI: 10.3724/zdxbyxb-2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Transient receptor potential M2 (TRPM2) ion channel is a non-selective cationic channel that can permeate calcium ions, and plays an important role in neuroinflammation, ischemic reperfusion brain injury, neurodegenerative disease, neuropathic pain, epilepsy and other neurological diseases. In ischemic reperfusion brain injury, TRPM2 mediates neuronal death by modulating the different subunits of glutamate N-methyl-D-aspartic acid receptor in response to calcium/zinc signal. In Alzheimer's disease, TRPM2 is activated by reactive oxygen species generated by β-amyloid peptide to form a malignant positive feedback loop that induces neuronal death and is involved in the pathological process of glial cells by promoting inflammatory response and oxidative stress. In epilepsy, the TRPM2-knockout alleviates epilepsy induced neuronal degeneration by inhibiting autophagy and apoptosis related proteins. The roles of TRPM2 channel in the pathogenesis of various central nervous system diseases and its potential drug development and clinical application prospects are summarized in this review.
Collapse
|
14
|
TRPM2 channel in oxidative stress-induced mitochondrial dysfunction and apoptotic cell death. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:51-72. [PMID: 33931144 DOI: 10.1016/bs.apcsb.2020.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitochondria, conserved intracellular organelles best known as the powerhouse of cells for generating ATP, play an important role in apoptosis. Oxidative stress can induce mitochondrial dysfunction and activate mitochondria-mediated apoptotic cell death. TRPM2 is a Ca2+-permeable cation channel that is activated by pathologically relevant concentrations of reactive oxygen species (ROS) and one of its well-recognized roles is to confer susceptibility to ROS-induced cell death. Increasing evidence from recent studies supports TRPM2 channel-mediated cell death as an important cellular mechanism linking miscellaneous oxidative stress-inducing pathological factors to associated diseased conditions. In this chapter, we will discuss the role of the TRPM2 channel in neurons in the brain and pancreatic β-cells in mediating mitochondrial dysfunction and cell death, focusing mainly on apoptotic cell death, that are induced by pathological stimuli implicated in the pathogenesis of neurodegenerative diseases, ischemic stroke and diabetes.
Collapse
|
15
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
16
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
17
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
18
|
Atsushi T, Tamano H. New insight into Parkinson's disease pathogenesis from reactive oxygen species-mediated extracellular Zn 2+ influx. J Trace Elem Med Biol 2020; 61:126545. [PMID: 32438294 DOI: 10.1016/j.jtemb.2020.126545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the common neurodegenerative disorder in the elderly characterized by motor symptoms such as tremors, which is caused by selective loss of nigral dopaminergic neurons. Oxidative stress induced by the auto-oxidation of dopamine has been implicated as a key cause of the selective loss of dopaminergic neurons. METHODS To understand the selective loss of nigral dopaminergic neurons, the PD pathogenesis is reviewed focused on paraquat (PQ) and 6-hydroxydopamine (6-OHDA)-induced PD in rats. RESULTS Reactive oxygen species (ROS), which are produced by PQ and 6-OHDA, are retrogradely transported to presynaptic glutamatergic neuron terminals. ROS activate presynaptic transient receptor potential melastatin 2 (TRPM2) cation channels and induce extracellular glutamate accumulation in the substantia nigra pars compacta (SNpc), followed by age-related intracellular Zn2+ dysregulation. Loss of nigral dopaminergic neurons is accelerated by age-related intracellular Zn2+ dysregulation in the SNpc of rat PD models. The intracellular Zn2+ dysregulation in nigral dopaminergic neurons is linked with the rapid influx of extracellular Zn2+ via postsynaptic AMPA receptor activation, suggesting that PQ- and 6-OHDA-induced pathogenesis is linked with age-related intracellular Zn2+ dysregulation in the SNpc. Postsynaptic TRPM2 channels may be also involved in intracellular Zn2+ dysregulation in the SNpc. CONCLUSION A novel mechanism of nigral dopaminergic degeneration, in which ROS induce rapid intracellular Zn2+ dysregulation, figures out the PD pathogenesis induced by PQ and 6-OHDA in rats. This review deals with new insight into PD pathogenesis from ROS-mediated extracellular Zn2+ influx and its proposed defense strategy.
Collapse
Affiliation(s)
- Takeda Atsushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
Wang L, Wei LY, Ding R, Feng Y, Li D, Li C, Malko P, Syed Mortadza SA, Wu W, Yin Y, Jiang LH. Predisposition to Alzheimer's and Age-Related Brain Pathologies by PM2.5 Exposure: Perspective on the Roles of Oxidative Stress and TRPM2 Channel. Front Physiol 2020; 11:155. [PMID: 32174842 PMCID: PMC7054442 DOI: 10.3389/fphys.2020.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological evidence supports that chronic exposure to ambient fine particular matters of <2.5 μm (PM2.5) predisposes both children and adults to Alzheimer’s disease (AD) and age-related brain damage leading to dementia. There is also experimental evidence to show that PM2.5 exposure results in early onset of AD-related pathologies in transgenic AD mice and development of AD-related and age-related brain pathologies in healthy rodents. Studies have also documented that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition to elevated levels of amyloid β (Aβ) and tau phosphorylation. Oxidative stress and the oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple molecular and cellular alterations that underpin AD-related cognitive dysfunction. Documented evidence suggests critical engagement of oxidative stress and TRPM2 channel activation in various PM2.5-induced cellular effects. Here we discuss recent studies that favor causative relationships of PM2.5 exposure to increased AD prevalence and AD- and age-related pathologies, and raise the perspective on the roles of oxidative stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and age-related brain damage.
Collapse
Affiliation(s)
- Lu Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Lin Yu Wei
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ran Ding
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Yanyan Feng
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Dongliang Li
- Department of Physiology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sharifah A Syed Mortadza
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Weidong Wu
- School of Public Heath, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Mai C, Mankoo H, Wei L, An X, Li C, Li D, Jiang LH. TRPM2 channel: A novel target for alleviating ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemic brain damage. J Cell Mol Med 2019; 24:4-12. [PMID: 31568632 PMCID: PMC6933339 DOI: 10.1111/jcmm.14679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential melastatin-related 2 (TRPM2) channel, a reactive oxygen species (ROS)-sensitive cation channel, has been well recognized for being an important and common mechanism that confers the susceptibility to ROS-induced cell death. An elevated level of ROS is a salient feature of ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxia-ischaemia. The TRPM2 channel is expressed in hippocampus, cortex and striatum, the brain regions that are critical for cognitive functions. In this review, we examine the recent studies that combine pharmacological and/or genetic interventions with using in vitro and in vivo models to demonstrate a crucial role of the TRPM2 channel in brain damage by ischaemia-reperfusion, chronic cerebral hypo-perfusion and neonatal hypoxic-ischaemia. We also discuss the current understanding of the underlying TRPM2-dependent cellular and molecular mechanisms. These new findings lead to the hypothesis of targeting the TRPM2 channel as a potential novel therapeutic strategy to alleviate brain damage and cognitive dysfunction caused by these conditions.
Collapse
Affiliation(s)
- Chendi Mai
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Harneet Mankoo
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Linyu Wei
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Xinfang An
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Xinxiang Maternal and Child Health Care Hospital, Xinxiang, China
| | - Chaokun Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Dongliang Li
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brian Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Sanquan College of Xinxiang Medical University, Xinxiang, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
21
|
Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium 2019; 82:102052. [DOI: 10.1016/j.ceca.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
|
22
|
An X, Sun X, Yang X, Liu D, Hou Y, Chen H, Wu J. Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3448-3455. [PMID: 31411068 DOI: 10.1080/21691401.2019.1652631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaona An
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Anesthesiology, Zibo Center Hospital of Shandong, Zibo, Shandong, China
| | - Xiaotong Sun
- Department of Anesthesiology, Weifang Medical University, Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, Weifang, Shandong, China
| | - Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dejie Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonghao Hou
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongli Chen
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Wu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Pathophysiological Role of TRPM2 in Age-Related Cognitive Impairment in Mice. Neuroscience 2019; 408:204-213. [PMID: 30999030 DOI: 10.1016/j.neuroscience.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/23/2022]
Abstract
Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. Therefore, we examined the effects of TRPM2 deletion in young (2-3 months) and older (12-24 months) mice. Compared with young wild-type (WT) mice, middle-aged (12-16 months) WT mice showed working and cognitive memory dysfunction and aged (20-24 months) WT mice exhibited impaired spatial memory. However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging.
Collapse
|
24
|
An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH. Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death. Cells 2019; 8:cells8010028. [PMID: 30625984 PMCID: PMC6356620 DOI: 10.3390/cells8010028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Human neuroblastoma SH-SY5Y cells are a widely-used human neuronal cell model in the study of neurodegeneration. A recent study shows that, 1-methyl-4-phenylpyridine ion (MPP), which selectively causes dopaminergic neuronal death leading to Parkinson’s disease-like symptoms, can reduce SH-SY5Y cell viability by inducing H2O2 generation and subsequent TRPM2 channel activation. MPP-induced cell death is enhanced by increasing the TRPM2 expression. By contrast, increasing the TRPM2 expression has also been reported to support SH-SY5Y cell survival after exposure to H2O2, leading to the suggestion of a protective role for the TRPM2 channel. To clarify the role of reactive oxygen species (ROS)-induced TRPM2 channel activation in SH-SY5Y cells, we generated a stable SH-SY5Y cell line overexpressing the human TRPM2 channel and examined cell death and cell viability after exposure to H2O2 in the wild-type and TRPM2-overexpressing SH-SY5Y cells. Exposure to H2O2 resulted in concentration-dependent cell death and reduction in cell viability in both cell types. TRPM2 overexpression remarkably augmented H2O2-induced cell death and reduction in cell viability. Furthermore, H2O2-induced cell death in both the wild-type and TRPM2-overexpressing cells was prevented by 2-APB, a TRPM2 inhibitor, and also by PJ34 and DPQ, poly(ADP-ribose) polymerase (PARP) inhibitors. Collectively, our results show that increasing the TRPM2 expression renders SH-SY5Y cells to be more susceptible to ROS-induced cell death and reinforce the notion that the TRPM2 channel plays a critical role in conferring ROS-induced cell death. It is anticipated that SH-SY5Y cells can be useful for better understanding the molecular and signaling mechanisms for ROS-induced TRPM2-mediated neurodegeneration in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinfang An
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zixing Fu
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Chendi Mai
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Weiming Wang
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Linyu Wei
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Dongliang Li
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Chaokun Li
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory for Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, China.
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 JT, UK.
| |
Collapse
|
25
|
Guo WL, Qi ZP, Yu L, Sun TW, Qu WR, Liu QQ, Zhu Z, Li R. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen Res 2019; 14:328-338. [PMID: 30531017 PMCID: PMC6301163 DOI: 10.4103/1673-5374.244796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After nerve-root avulsion injury of the brachial plexus, oxidative damage, inflammatory reaction, and glial scar formation can affect nerve regeneration and functional recovery. Melatonin (MT) has been shown to have good anti-inflammatory, antioxidant, and neuroprotective effects. Chondroitin sulfate ABC (ChABC) has been shown to metabolize chondroitin sulfate proteoglycans and can reduce colloidal scar formation. However, the effect of any of these drugs alone in the recovery of nerve function after injury is not completely satisfactory. Therefore, this experiment aimed to explore the effect and mechanism of combined application of melatonin and chondroitin sulfate ABC on nerve regeneration and functional recovery after nerve-root avulsion of the brachial plexus. Fifty-two Sprague-Dawley rats were selected and their C5-7 nerve roots were avulsed. Then, the C6 nerve roots were replanted to construct the brachial plexus nerve-root avulsion model. After successful modeling, the injured rats were randomly divided into four groups. The first group (injury) did not receive any drug treatment, but was treated with a pure gel-sponge carrier nerve-root implantation and an ethanol-saline solution via intraperitoneal (i.p.) injection. The second group (melatonin) was treated with melatonin via i.p. injection. The third group (chondroitin sulfate ABC) was treated with chondroitin sulfate ABC through local administration. The fourth group (melatonin + chondroitin sulfate ABC) was treated with melatonin through i.p. injection and chondroitin sulfate ABC through local administration. The upper limb Terzis grooming test was used 2-6 weeks after injury to evaluate motor function. Inflammation and oxidative damage within 24 hours of injury were evaluated by spectrophotometry. Immunofluorescence and neuroelectrophysiology were used to evaluate glial scar, neuronal protection, and nerve regeneration. The results showed that the Terzis grooming-test scores of the three groups that received treatment were better than those of the injury only group. Additionally, these three groups showed lower levels of C5-7 intramedullary peroxidase and malondialdehyde. Further, glial scar tissue in the C6 spinal segment was smaller and the number of motor neurons was greater. The endplate area of the biceps muscle was larger and the structure was clear. The latency of the compound potential of the myocutaneous nerve-biceps muscle was shorter. All these indexes were even greater in the melatonin + chondroitin sulfate ABC group than in the melatonin only or chondroitin sulfate ABC only groups. Thus, the results showed that melatonin combined with chondroitin sulfate ABC can promote nerve regeneration after nerve-root avulsion injury of the brachial plexus, which may be achieved by reducing oxidative damage and inflammatory reaction in the injury area and inhibiting glial scar formation.
Collapse
Affiliation(s)
- Wen-Lai Guo
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhi-Ping Qi
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tian-Wen Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian-Qian Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
26
|
Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition. J Pharmacol Exp Ther 2018; 368:246-254. [DOI: 10.1124/jpet.118.253922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
|
27
|
The TRPM2 channel nexus from oxidative damage to Alzheimer's pathologies: An emerging novel intervention target for age-related dementia. Ageing Res Rev 2018; 47:67-79. [PMID: 30009973 DOI: 10.1016/j.arr.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative condition, is the most common cause of dementia among the elder people, but currently there is no treatment. A number of putative pathogenic events, particularly amyloid β peptide (Aβ) accumulation, are believed to be early triggers that initiate AD. However, thus far targeting Aβ generation/aggregation as the mainstay strategy of drug development has not led to effective AD-modifying therapeutics. Oxidative damage is a conspicuous feature of AD, but this remains poorly defined phenomenon and mechanistically ill understood. The TRPM2 channel has emerged as a potentially ubiquitous molecular mechanism mediating oxidative damage and thus plays a vital role in the pathogenesis and progression of diverse neurodegenerative diseases. This article will review the emerging evidence from recent studies and propose a novel 'hypothesis' that multiple TRPM2-mediated cellular and molecular mechanisms cascade Aβ and/or oxidative damage to AD pathologies. The 'hypothesis' based on these new findings discusses the prospect of considering the TRPM2 channel as a novel therapeutic target for intervening AD and age-related dementia.
Collapse
|
28
|
Li X, Jiang LH. A critical role of the transient receptor potential melastatin 2 channel in a positive feedback mechanism for reactive oxygen species-induced delayed cell death. J Cell Physiol 2018; 234:3647-3660. [PMID: 30229906 DOI: 10.1002/jcp.27134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Transient receptor potential melastatin 2 (TRPM2) channel activation by reactive oxygen species (ROS) plays a critical role in delayed neuronal cell death, responsible for postischemia brain damage via altering intracellular Zn2+ homeostasis, but a mechanistic understanding is still lacking. Here, we showed that H2 O2 induced neuroblastoma SH-SY5Y cell death with a significant delay, dependently of the TRPM2 channel and increased [Zn2+ ]i , and therefore used this cell model to investigate the mechanisms underlying ROS-induced TRPM2-mediated delayed cell death. H2 O2 increased concentration-dependently the [Zn2+ ]i and caused lysosomal dysfunction and Zn2+ loss and, furthermore, mitochondrial Zn2+ accumulation, fragmentation, and ROS generation. Such effects were suppressed by preventing poly(adenosine diphosphate ribose, ADPR) polymerase-1-dependent TRPM2 channel activation with PJ34 and 3,3',5,5'-tetra-tert-butyldiphenoquinone, inhibiting the TRPM2 channel with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid, or chelating Zn2+ with N,N,N,N-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Bafilomycin-induced lysosomal dysfunction also resulted in mitochondrial Zn2+ accumulation, fragmentation, and ROS generation that were inhibited by PJ34 or 2-APB, suggesting that these mitochondrial events are TRPM2 dependent and sequela of lysosomal dysfunction. Mitochondrial TRPM2 expression was detected and exposure to ADPR-induced Zn2+ uptake in isolated mitochondria, which was prevented by TPEN. H2 O2 -induced delayed cell death was inhibited by apocynin and diphenyleneiodonium, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase (NOX) inhibitors, GKT137831, an NOX1/4-specific inhibitor, or Gö6983, a protein kinase C (PKC) inhibitor. Moreover, inhibition of PKC/NOX prevented H2 O2 -induced ROS generation, lysosomal dysfunction and Zn2+ release, and mitochondrial Zn2+ accumulation, fragmentation and ROS generation. Collectively, these results support a critical role for the TRPM2 channel in coupling PKC/NOX-mediated ROS generation, lysosomal Zn2+ release, and mitochondrial Zn2+ accumulation, and ROS generation to form a vicious positive feedback signaling mechanism for ROS-induced delayed cell death.
Collapse
Affiliation(s)
- Xin Li
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury, Xinxiang Medical University, Xinxiang, China.,Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|