1
|
Popovičová A, Račeková E, Martončíková M, Fabianová K, Raček A, Žideková M. Effect of microwave radiation on adult neurogenesis and behavior of prenatally exposed rats. IBRO Neurosci Rep 2024; 17:235-244. [PMID: 39286040 PMCID: PMC11404077 DOI: 10.1016/j.ibneur.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Postnatal neurogenesis appears to be highly sensitive to environmental factors, including microwave electromagnetic radiation (MWR). Here, we investigated the impact of MWR during intrauterine development on juvenile and adult neurogenesis in the rostral migratory stream (RMS) and the dentate gyrus of the hippocampus in the rat brain, as well as its effect on animal behavior. Female rats were exposed to MWR at a frequency of 2.45 GHz for 2 hours daily throughout pregnancy. The offspring of irradiated mothers survived to either juvenile age or adulthood. The brains of the rats were subjected to morphological analysis, assessing cell proliferation and death in both neurogenic regions. In the RMS, the differentiation of nitrergic neurons was also investigated. The effect of MWR on behavior was evaluated in rats surviving to adulthood. Prenatal MWR exposure caused significant changes in the number of proliferating and dying cells, depending on the age of the animals and the observed neurogenic region. In addition, MWR attenuated the maturation of nitrergic neurons in the RMS in both juvenile and adult rats. Morphological alterations in neurogenesis were accompanied by changes in animals' behavior. Affected neurogenesis and changes in animal behavior suggest a high sensitivity of the developing brain to MWR.
Collapse
Affiliation(s)
- Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Monika Žideková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| |
Collapse
|
2
|
Dejou J, Mandairon N, Didier A. Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health. Front Neural Circuits 2024; 18:1467203. [PMID: 39175668 PMCID: PMC11338910 DOI: 10.3389/fncir.2024.1467203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.
Collapse
Affiliation(s)
- Jules Dejou
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Nathalie Mandairon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
| | - Anne Didier
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Neuroplasticity and Neuropathology of Olfactory Perception Team, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Kwon OH, Choe J, Kim D, Kim S, Moon C. Sensory Stimulation-dependent Npas4 Expression in the Olfactory Bulb during Early Postnatal Development. Exp Neurobiol 2024; 33:77-98. [PMID: 38724478 PMCID: PMC11089401 DOI: 10.5607/en23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/15/2024] Open
Abstract
The development of the olfactory system is influenced by sensory inputs, and it maintains neuronal generation and plasticity throughout the lifespan. The olfactory bulb contains a higher proportion of interneurons than other brain regions, particularly during the early postnatal period of neurogenesis. Although the relationship between sensory stimulation and olfactory bulb development during the postnatal period has been well studied, the molecular mechanisms have yet to be identified. In this study, we used western blotting and immunohistochemistry to analyze the expression of the transcription factor Npas4, a neuron-specific immediate-early gene that acts as a developmental regulator in many brain regions. We found that Npas4 is highly expressed in olfactory bulb interneurons during the early postnatal stages and gradually decreases toward the late postnatal stages. Npas4 expression was observed in all olfactory bulb layers, including the rostral migratory stream, where newborn neurons are generated and migrate to the olfactory bulb. Under sensory deprivation, the olfactory bulb size and the number of olfactory bulb interneurons were reduced. Furthermore, Npas4 expression and the expression of putative Npas4 downstream molecules were decreased. Collectively, these findings indicate that Npas4 expression induced by sensory input plays a role in the formation of neural circuits with excitatory mitral/tufted cells by regulating the survival of olfactory bulb interneurons during the early stages of postnatal development.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jiyun Choe
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dokyeong Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sunghwan Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Cheil Moon
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
4
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Chaker Z, Segalada C, Kretz JA, Acar IE, Delgado AC, Crotet V, Moor AE, Doetsch F. Pregnancy-responsive pools of adult neural stem cells for transient neurogenesis in mothers. Science 2023; 382:958-963. [PMID: 37995223 DOI: 10.1126/science.abo5199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/05/2023] [Indexed: 11/25/2023]
Abstract
Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Valerie Crotet
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Alvites R, Caine A, Cherubini GB, Prada J, Varejão ASP, Maurício AC. The Olfactory Bulb in Companion Animals-Anatomy, Physiology, and Clinical Importance. Brain Sci 2023; 13:brainsci13050713. [PMID: 37239185 DOI: 10.3390/brainsci13050713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Olfactory Bulb is a component of the Olfactory System, in which it plays an essential role as an interface between the peripheral components and the cerebral cortex responsible for olfactory interpretation and discrimination. It is in this element that the first selective integration of olfactory stimuli occurs through a complex cell interaction that forwards the received olfactory information to higher cortical centers. Considering its position in the organizational hierarchy of the olfactory system, it is now known that changes in the Olfactory Bulb can lead to olfactory abnormalities. Through imaging techniques, it was possible to establish relationships between the occurrence of changes secondary to brain aging and senility, neurodegenerative diseases, head trauma, and infectious diseases with a decrease in the size of the Olfactory Bulb and in olfactory acuity. In companion animals, this relationship has also been identified, with observations of relations between the cranial conformation, the disposition, size, and shape of the Olfactory Bulb, and the occurrence of structural alterations associated with diseases with different etiologies. However, greater difficulty in quantitatively assessing olfactory acuity in animals and a manifestly smaller number of studies dedicated to this topic maintain a lack of concrete and unequivocal results in this field of veterinary sciences. The aim of this work is to revisit the Olfactory Bulb in companion animals in all its dimensions, review its anatomy and histological characteristics, physiological integration in the olfactory system, importance as a potential early indicator of the establishment of specific pathologies, as well as techniques of imaging evaluation for its in vivo clinical exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Abby Caine
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire CB8 0UH, UK
| | - Giunio Bruto Cherubini
- Department of Veterinary Sciences, Veterinary Teaching Hospital "Mario Modenato", University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Artur Severo P Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Takeuchi S, Shimizu K, Fukada Y, Emoto K. The circadian clock in the piriform cortex intrinsically tunes daily changes of odor-evoked neural activity. Commun Biol 2023; 6:332. [PMID: 36973364 PMCID: PMC10043281 DOI: 10.1038/s42003-023-04691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The daily activity in the brain is typically fine-tuned by the circadian clock in the local neurons as well as by the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. In the olfactory response, odor-evoked activity in the piriform cortex (PC) and olfactory behavior retain circadian rhythmicity in the absence of the SCN, yet how the circadian rhythm in the PC is achieved independently of the SCN remains elusive. Here, to define neurons regulating the circadian rhythm of the odor-evoked activity in the PC, we knocked out the clock gene Bmal1 in a host of specific neurons along the olfactory circuit. We discovered that Bmal1 knockout in the PC largely abolishes the circadian rhythm of the odor-evoked activity. We further showed that isolated PC exhibits sustained circadian rhythms of the clock gene Per2 expression. Quantitative PCR analysis revealed that expression patterns of multiple genes involved in neural activity and synaptic transmission exhibit circadian rhythm in the PC in a BMAL1-dependent manner. Our findings indicate that BMAL1 acts intrinsically in the PC to control the circadian rhythm of the odor-evoked activity in the PC, possibly through regulating expression patterns of multiple genes involved in neural activity and transmission.
Collapse
Affiliation(s)
- Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kimiko Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532547. [PMID: 36993675 PMCID: PMC10055067 DOI: 10.1101/2023.03.14.532547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogenous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent upon their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes the NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Zuk KE, Cansler HL, Wang J, Meeks JP. Arc-Expressing Accessory Olfactory Bulb Interneurons Support Chemosensory Social Behavioral Plasticity. J Neurosci 2023; 43:1178-1190. [PMID: 36623874 PMCID: PMC9962775 DOI: 10.1523/jneurosci.0847-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.
Collapse
Affiliation(s)
- Kelsey E Zuk
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Hillary L Cansler
- Department of Pharmacology, University of Florida College of Medicine, Gainesville, Florida 32603
| | - Jinxin Wang
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Julian P Meeks
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
11
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|
12
|
Riley VA, Holmberg JC, Sokolov AM, Feliciano DM. Tsc2 shapes olfactory bulb granule cell molecular and morphological characteristics. Front Mol Neurosci 2022; 15:970357. [PMID: 36277492 PMCID: PMC9581303 DOI: 10.3389/fnmol.2022.970357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a neurodevelopmental disorder caused by mutations that inactivate TSC1 or TSC2. Hamartin and tuberin are encoded by TSC1 and TSC2 which form a GTPase activating protein heteromer that inhibits the Rheb GTPase from activating a growth promoting protein kinase called mammalian target of rapamycin (mTOR). Growths and lesions occur in the ventricular-subventricular zone (V-SVZ), cortex, olfactory tract, and olfactory bulbs (OB) in TSC. A leading hypothesis is that mutations in inhibitory neural progenitor cells cause brain growths in TSC. OB granule cells (GCs) are GABAergic inhibitory neurons that are generated through infancy by inhibitory progenitor cells along the V-SVZ. Removal of Tsc1 from mouse OB GCs creates cellular phenotypes seen in TSC lesions. However, the role of Tsc2 in OB GC maturation requires clarification. Here, it is demonstrated that conditional loss of Tsc2 alters GC development. A mosaic model of TSC was created by performing neonatal CRE recombinase electroporation into inhibitory V-SVZ progenitors yielded clusters of ectopic cytomegalic neurons with hyperactive mTOR complex 1 (mTORC1) in homozygous Tsc2 mutant but not heterozygous or wild type mice. Similarly, homozygous Tsc2 mutant GC morphology was altered at postnatal days 30 and 60. Tsc2 mutant GCs had hypertrophic dendritic arbors that were established by postnatal day 30. In contrast, loss of Tsc2 from mature GCs had negligible effects on mTORC1, soma size, and dendrite arborization. OB transcriptome profiling revealed a network of significantly differentially expressed genes following loss of Tsc2 during development that altered neural circuitry. These results demonstrate that Tsc2 has a critical role in regulating neural development and shapes inhibitory GC molecular and morphological characteristics.
Collapse
Affiliation(s)
| | | | | | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
13
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
14
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
15
|
Chen X, Qin Y, Zhang Y, Yang X, Xing Z, Shen Y, Cheng J, Yeh ETH, Wu H, Qi Y. SENP2-PLCβ4 signaling regulates neurogenesis through the maintenance of calcium homeostasis. Cell Death Differ 2022; 29:337-350. [PMID: 34465891 PMCID: PMC8817034 DOI: 10.1038/s41418-021-00857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neurogenesis plays a critical role in brain physiology and behavioral performance, and defective neurogenesis leads to neurological and psychiatric disorders. Here, we show that PLCβ4 expression is markedly reduced in SENP2-deficient cells and mice, resulting in decreased IP3 formation and altered intracellular calcium homeostasis. PLCβ4 stability is regulated by the SUMO-dependent ubiquitin-mediated proteolytic pathway, which is catalyzed by PIAS2α and RNF4. SUMOylated PLCβ4 is transported to the nucleus through Nup205- and RanBP2-dependent pathways and regulates nuclear signaling. Furthermore, dysregulated calcium homeostasis induced defects in neurogenesis and neuronal viability in SENP2-deficient mice. Finally, SENP2 and PLCβ4 are stimulated by starvation and oxidative stress, which maintain calcium homeostasis regulated neurogenesis. Our findings provide mechanistic insight into the critical roles of SENP2 in the regulation of PLCβ4 SUMOylation, and the involvement of SENP2-PLCβ4 axis in calcium homeostasis regulated neurogenesis under stress.
Collapse
Affiliation(s)
- Xu Chen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuanyuan Qin
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuhong Zhang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Xinyi Yang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Zhengcao Xing
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yajie Shen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Jinke Cheng
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edward T. H. Yeh
- grid.241054.60000 0004 4687 1637Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Hongmei Wu
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yitao Qi
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| |
Collapse
|
16
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
17
|
Dubrovskaya NM, Vasilev DS, Tumanova NL, Alekseeva OS, Nalivaeva NN. Prenatal Hypoxia Impairs Olfactory Function in Postnatal Ontogeny in Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:262-270. [PMID: 35317268 PMCID: PMC8930458 DOI: 10.1007/s11055-022-01233-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- N. M. Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - D. S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - O. S. Alekseeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. N. Nalivaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
18
|
Murray HC, Johnson K, Sedlock A, Highet B, Dieriks BV, Anekal PV, Faull RLM, Curtis MA, Koretsky A, Maric D. Lamina-specific immunohistochemical signatures in the olfactory bulb of healthy, Alzheimer's and Parkinson's disease patients. Commun Biol 2022; 5:88. [PMID: 35075270 PMCID: PMC8786934 DOI: 10.1038/s42003-022-03032-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional neuroanatomy immunohistology studies involve low-content analyses of a few antibodies of interest, typically applied and compared across sequential tissue sections. The efficiency, consistency, and ultimate insights of these studies can be substantially improved using high-plex immunofluorescence labelling on a single tissue section to allow direct comparison of many markers. Here we present an expanded and efficient multiplexed fluorescence-based immunohistochemistry (MP-IHC) approach that improves throughput with sequential labelling of up to 10 antibodies per cycle, with no limitation on the number of cycles, and maintains versatility and accessibility by using readily available commercial reagents and standard epifluorescence microscopy imaging. We demonstrate this approach by cumulatively screening up to 100 markers on formalin-fixed paraffin-embedded sections of human olfactory bulb sourced from neurologically normal (no significant pathology), Alzheimer's (AD), and Parkinson's disease (PD) patients. This brain region is involved early in the symptomology and pathophysiology of AD and PD. We also developed a spatial pixel bin analysis approach for unsupervised analysis of the high-content anatomical information from large tissue sections. Here, we present a comprehensive immunohistological characterisation of human olfactory bulb anatomy and a summary of differentially expressed biomarkers in AD and PD using the MP-IHC labelling and spatial protein analysis pipeline.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand.
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Kory Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Praju Vikas Anekal
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
- Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag, Auckland, 92019, New Zealand
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
21
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
22
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
23
|
Touj S, Cloutier S, Jemâa A, Piché M, Bronchti G, Al Aïn S. Better Olfactory Performance and Larger Olfactory Bulbs in a Mouse Model of Congenital Blindness. Chem Senses 2021; 45:523-531. [PMID: 32766717 DOI: 10.1093/chemse/bjaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is well established that early blindness results in enhancement of the remaining nonvisual sensory modalities accompanied by functional and anatomical brain plasticity. While auditory and tactile functions have been largely investigated, the results regarding olfactory functions remained less explored and less consistent. In the present study, we investigated olfactory function in blind mice using 3 tests: the buried food test, the olfactory threshold test, and the olfactory performance test. The results indicated better performance of blind mice in the buried food test and odor performance test while there was no difference in the olfactory threshold test. Using histological measurements, we also investigated if there was anatomical plasticity in the olfactory bulbs (OB), the most salient site for olfactory processing. The results indicated a larger volume of the OB driven by larger glomerular and granular layers in blind mice compared with sighted mice. Structural plasticity in the OB may underlie the enhanced olfactory performance in blind mice.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Samie Cloutier
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Amel Jemâa
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, Boul. des Forges, Trois-Rivières, Canada
| |
Collapse
|
24
|
Gribaudo S, Saraulli D, Nato G, Bonzano S, Gambarotta G, Luzzati F, Costanzi M, Peretto P, Bovetti S, De Marchis S. Neurogranin Regulates Adult-Born Olfactory Granule Cell Spine Density and Odor-Reward Associative Memory in Mice. Int J Mol Sci 2021; 22:ijms22084269. [PMID: 33924098 PMCID: PMC8074334 DOI: 10.3390/ijms22084269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Neurogranin (Ng) is a brain-specific postsynaptic protein, whose role in modulating Ca2+/calmodulin signaling in glutamatergic neurons has been linked to enhancement in synaptic plasticity and cognitive functions. Accordingly, Ng knock-out (Ng-ko) mice display hippocampal-dependent learning and memory impairments associated with a deficit in long-term potentiation induction. In the adult olfactory bulb (OB), Ng is expressed by a large population of GABAergic granule cells (GCs) that are continuously generated during adult life, undergo high synaptic remodeling in response to the sensory context, and play a key role in odor processing. However, the possible implication of Ng in OB plasticity and function is yet to be investigated. Here, we show that Ng expression in the OB is associated with the mature state of adult-born GCs, where its active-phosphorylated form is concentrated at post-synaptic sites. Constitutive loss of Ng in Ng-ko mice resulted in defective spine density in adult-born GCs, while their survival remained unaltered. Moreover, Ng-ko mice show an impaired odor-reward associative memory coupled with reduced expression of the activity-dependent transcription factor Zif268 in olfactory GCs. Overall, our data support a role for Ng in the molecular mechanisms underlying GC plasticity and the formation of olfactory associative memory.
Collapse
Affiliation(s)
- Simona Gribaudo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council, 00143 Rome, Italy;
| | - Giulia Nato
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Giovanna Gambarotta
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Department of Clinical and Biological Sciences (DSCB), University of Torino, 10043 Turin, Italy
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, 00193 Rome, Italy;
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, 10123 Turin, Italy; (S.G.); (G.N.); (S.B.); (F.L.); (P.P.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, 10043 Turin, Italy;
- Correspondence: (S.B.); (S.D.M.)
| |
Collapse
|
25
|
TAK-242 ameliorates olfactory dysfunction in a mouse model of allergic rhinitis by inhibiting neuroinflammation in the olfactory bulb. Int Immunopharmacol 2021; 92:107368. [PMID: 33454639 DOI: 10.1016/j.intimp.2021.107368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Olfactory dysfunction (OD) is a common symptom of allergic rhinitis (AR) that can seriously affect patient quality of life; however, the associated pathogenesis remains unclear. This study aimed to explore the relationship between OD and damage of the olfactory bulb (OB) in allergic rhinitis (AR). The therapeutic potential of TAK-242, a selective TLR4 inhibitor, was evaluated for OD. METHOD An AR mouse model was established with ovalbumin (OVA) to test the olfactory function of AR mice using the buried food pellet test (BFPT). Mice with OD were intraperitoneally injected with TAK-242 or 1% DMSO (vehicle). Immunohistochemistry was used to detect microglia and astrocyte activation in the OB. TUNNEL staining was performed to detect apoptosis in the OB. Proteins in the TLR4 signaling pathway were detected by Western blot. The level of proinflammatory factor mRNA in the OB was determined by RT-PCR. RESULT Neuroinflammation was observed in the OB of the OD group, as evidenced by glial cell activation and increased proinflammatory factor expression. The number of apoptotic cells was significantly increased in the OB of the OD group. The expression of TLR4, MyD88, and p-NF-κBp65 was significantly up-regulated in the OB of the OD group. TAK-242 treatment significantly reduced the level of IL-1β, IL-6, and TNF-α mRNA expression, as well as activation of microglia and astrocytes in the OB tissues. CONCLUSION TAK-242 improve olfactory function in AR mice mainly by reducing neuroinflammation and apoptosis in the OB, which may be related to blocking the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
26
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
27
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
28
|
Pérez-Revuelta L, Téllez de Meneses PG, López M, Briñón JG, Weruaga E, Díaz D, Alonso JR. Secretagogin expression in the mouse olfactory bulb under sensory impairments. Sci Rep 2020; 10:21533. [PMID: 33299042 PMCID: PMC7726155 DOI: 10.1038/s41598-020-78499-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
The interneurons of the olfactory bulb (OB) are characterized by the expression of different calcium-binding proteins, whose specific functions are not fully understood. This is the case of one of the most recently discovered, the secretagogin (SCGN), which is expressed in interneurons of the glomerular and the granule cell layers, but whose function in the olfactory pathway is still unknown. To address this question, we examined the distribution, generation and activity of SCGN-positive interneurons in the OB of two complementary models of olfactory impairments: Purkinje Cell Degeneration (PCD) and olfactory-deprived mice. Our results showed a significant increase in the density of SCGN-positive cells in the inframitral layers of olfactory-deprived mice as compared to control animals. Moreover, BrdU analyses revealed that these additional SCGN-positive cells are not newly formed. Finally, the neuronal activity, estimated by c-Fos expression, increased in preexisting SCGN-positive interneurons of both deprived and PCD mice -being higher in the later- in comparison with control animals. Altogether, our results suggest that the OB possesses different compensatory mechanisms depending on the type of alteration. Particularly, the SCGN expression is dependent of olfactory stimuli and its function may be related to a compensation against a reduction in sensory inputs.
Collapse
Affiliation(s)
- L Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - P G Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - M López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - J G Briñón
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - E Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - D Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain.
| | - J R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| |
Collapse
|
29
|
Diving into the streams and waves of constitutive and regenerative olfactory neurogenesis: insights from zebrafish. Cell Tissue Res 2020; 383:227-253. [PMID: 33245413 DOI: 10.1007/s00441-020-03334-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
The olfactory system is renowned for its functional and structural plasticity, with both peripheral and central structures displaying persistent neurogenesis throughout life and exhibiting remarkable capacity for regenerative neurogenesis after damage. In general, fish are known for their extensive neurogenic ability, and the zebrafish in particular presents an attractive model to study plasticity and adult neurogenesis in the olfactory system because of its conserved structure, relative simplicity, rapid cell turnover, and preponderance of neurogenic niches. In this review, we present an overview of the anatomy of zebrafish olfactory structures, with a focus on the neurogenic niches in the olfactory epithelium, olfactory bulb, and ventral telencephalon. Constitutive and regenerative neurogenesis in both the peripheral olfactory organ and central olfactory bulb of zebrafish is reviewed in detail, and a summary of current knowledge about the cellular origin and molecular signals involved in regulating these processes is presented. While some features of physiologic and injury-induced neurogenic responses are similar, there are differences that indicate that regeneration is not simply a reiteration of the constitutive proliferation process. We provide comparisons to mammalian neurogenesis that reveal similarities and differences between species. Finally, we present a number of open questions that remain to be answered.
Collapse
|
30
|
Touj S, Gallino D, Chakravarty MM, Bronchti G, Piché M. Structural brain plasticity induced by early blindness. Eur J Neurosci 2020; 53:778-795. [PMID: 33113245 DOI: 10.1111/ejn.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
It is well established that early blindness results in behavioural adaptations. While the functional effects of visual deprivation have been well researched, anatomical studies are scarce. The aim of this study was to investigate whole brain structural plasticity in a mouse model of congenital blindness. Volumetric analyses were conducted on high-resolution MRI images and histological sections from the same brains. These morphometric measurements were compared between anophthalmic and sighted ZRDBA mice obtained by breeding ZRDCT and DBA mice. Results from MRI analyses using the Multiple Automatically Generated Templates (MAGeT) method showed smaller volume for the primary visual cortex and superior colliculi in anophthalmic compared with sighted mice. Deformation-based morphometry revealed smaller volumes within the dorsal lateral geniculate nuclei and the lateral secondary visual cortex and larger volumes within olfactory areas, piriform cortex, orbital areas and the amygdala, in anophthalmic compared with sighted mice. Histological analyses revealed a larger volume for the amygdala and smaller volume for the superior colliculi, primary visual cortex and medial secondary visual cortex, in anophthalmic compared with sighted mice. The absence of superficial visual layers of the superior colliculus and the thinner cortical layer IV of the primary and secondary visual cortices may explain the smaller volume of these areas, although this was observed in a limited sample. The present study shows large-scale brain plasticity in a mouse model of congenital blindness. In addition, the congruence of MRI and histological findings support the use of MRI to investigate structural brain plasticity in the mouse.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, McGill, Montréal, QC, Canada.,Department of Psychiatry, McGill, Montréal, QC, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
31
|
Tsuboi A. LRR-Containing Oncofetal Trophoblast Glycoprotein 5T4 Shapes Neural Circuits in Olfactory and Visual Systems. Front Mol Neurosci 2020; 13:581018. [PMID: 33192298 PMCID: PMC7655536 DOI: 10.3389/fnmol.2020.581018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
In mammals, the sensory experience can regulate the development of various brain structures, including the cortex, hippocampus, retina, and olfactory bulb (OB). Odor experience-evoked neural activity drives the development of dendrites on excitatory projection neurons in the OB, such as mitral and tufted cells, as well as inhibitory interneurons. OB interneurons are generated continuously in the subventricular zone and differentiate into granule cells (GCs) and periglomerular cells (PGCs). However, it remains unknown what role each type of OB interneuron plays in controlling olfactory behaviors. Recent studies showed that among the various types of OB interneurons, a subtype of GCs expressing oncofetal trophoblast glycoprotein 5T4 is required for simple odor detection and discrimination behaviors. Mouse 5T4 (also known as Tpbg) is a type I membrane glycoprotein whose extracellular domain contains seven leucine-rich repeats (LRRs) sandwiched between characteristic LRR-N and LRR-C regions. Recently, it was found that the developmental expression of 5T4 increases dramatically in the retina just before eye-opening. Single-cell transcriptomics further suggests that 5T4 is involved in the development and maintenance of functional synapses in a subset of retinal interneurons, including rod bipolar cells (RBCs) and amacrine cells (ACs). Collectively, 5T4, expressed in interneurons of the OB and retina, plays a key role in sensory processing in the olfactory and visual systems.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
32
|
Egger V, Diamond JS. A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information. Front Cell Neurosci 2020; 14:600537. [PMID: 33250720 PMCID: PMC7674606 DOI: 10.3389/fncel.2020.600537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback via GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles via multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.
Collapse
Affiliation(s)
- Veronica Egger
- Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Lietzau G, Nyström T, Wang Z, Darsalia V, Patrone C. Western Diet Accelerates the Impairment of Odor-Related Learning and Olfactory Memory in the Mouse. ACS Chem Neurosci 2020; 11:3590-3602. [PMID: 33054173 PMCID: PMC7645872 DOI: 10.1021/acschemneuro.0c00466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Olfactory dysfunction could be an early indicator of cognitive decline in type 2 diabetes (T2D). However, whether obesity affects olfaction in people with T2D is unclear. This question needs to be addressed, because most people with T2D are obese. Importantly, whether different contributing factors leading to obesity (e.g., different components of diet or gain in weight) affect specific olfactory functions and underlying mechanisms is unknown. We examined whether two T2D-inducing obesogenic diets, one containing a high proportion of fat (HFD) and one with moderate fat and high sugar (Western diet, WD), affect odor detection/discrimination, odor-related learning, and olfactory memory in the mouse. We also investigated whether the diets impair adult neurogenesis, GABAergic interneurons, and neuroblasts in the olfactory system. Here, we further assessed olfactory cortex volume and cFos expression-based neuronal activity. The WD-fed mice showed declined odor-related learning and olfactory memory already after 3 months of diet intake (p = 0.046), although both diets induced similar hyperglycemia and weight gain compared to those of standard diet-fed mice (p = 0.0001 and p < 0.0001, respectively) at this time point. Eight months of HFD and WD diminished odor detection (p = 0.016 and p = 0.045, respectively), odor-related learning (p = 0.015 and p = 0.049, respectively), and olfactory memory. We observed no changes in the investigated cellular mechanisms. We show that the early deterioration of olfactory parameters related to learning and memory is associated with a high content of sugar in the diet rather than with hyperglycemia or weight gain. This finding could be exploited for understanding, and potentially preventing, cognitive decline/dementia in people with T2D. The mechanisms behind this finding remain to be elucidated.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
- Department of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk 80-210, Poland
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| | - Zhida Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm 118-83, Sweden
| |
Collapse
|
34
|
Rahimi S, Ragerdikashani M, Beheshti F, Baghishani F, Hosseini M, Saeedi N, Mirdoosti M, Negah SS. Alteration of the neurogenesis and long term potential of olfactory bulb in an animal model of PTSD. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Cavallucci V, Fidaleo M, Pani G. Nutrients and neurogenesis: the emerging role of autophagy and gut microbiota. Curr Opin Pharmacol 2019; 50:46-52. [PMID: 31869664 DOI: 10.1016/j.coph.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis, the generation of mature functional neurons from neural stem cells in specific regions of the adult mammalian brain, is implicated in brain physiology, neurodegeneration and mood disorders. Among the many intrinsic and extrinsic factors that modulate neurogenic activity, the role of nutrients, energy metabolism, and gut microbiota has recently emerged. It is increasingly evident that excessive calorie intake accelerates the age-dependent decline of neurogenesis, while calorie restriction and physical exercise have the opposite effect. Mechanistically, nutrient availability could affect neurogenesis by modulating autophagy, a cell-rejuvenating process, in neural stem cells. In parallel, diet can alter the composition of gut microbiota thus impacting the intestine-neurogenic niche communication. These exciting breakthroughs are here concisely reviewed.
Collapse
Affiliation(s)
- Virve Cavallucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Fidaleo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovambattista Pani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
36
|
Takahashi Y, Takahashi H, Stern PL, Kirita T, Tsuboi A. Expression of Oncofetal Antigen 5T4 in Murine Taste Papillae. Front Cell Neurosci 2019; 13:343. [PMID: 31417363 PMCID: PMC6685444 DOI: 10.3389/fncel.2019.00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Multicellular taste buds located within taste papillae on the tongue mediate taste sensation. In taste papillae, taste bud cells (TBCs), such as taste receptor cells and taste precursor cells, and the surrounding lingual epithelium including epithelial progenitors (also called taste stem/progenitor cells) are maintained by continuous cell turnover throughout life. However, it remains unknown how the cells constituting taste buds proliferate and differentiate to maintain taste bud tissue. Based on in situ hybridization (ISH) screening, we demonstrated that the oncofetal antigen 5T4 (also known as trophoblast glycoprotein: TPBG) gene is expressed in the adult mouse tongue. Results: In immunohistochemistry of coronal tongue sections, 5T4 protein was detected at a low level exclusively in the basal part of the lingual epithelium in developing and adult mice, and at a high level particularly in foliate papillae and circumvallate papillae (CVPs). Furthermore, immunohistochemistry of the basal part of CVPs indicated that the proliferation marker PCNA (proliferating cell nuclear antigen) co-localized with 5T4. 5T4 was strongly expressed in Krt5+ epithelial progenitors and Shh+ taste precursor cells, but weakly in mature taste receptor cells. The number of proliferating cells in the CVP was higher in 5T4-knockout mice than in wild-type (WT) mice, while neither cell differentiation nor the size of taste buds differed between these two groups of mice. Notably, X-ray irradiation enhanced cell proliferation more in 5T4-knockout mice than in WT mice. Conclusion: Our results suggest that 5T4, expressed in epithelial progenitors (taste stem/progenitor cells), and taste precursor cells, may influence the maintenance of taste papillae under both normal and injury conditions.
Collapse
Affiliation(s)
- Yuka Takahashi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroo Takahashi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Japan
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
37
|
Tseng CS, Chou SJ, Huang YS. CPEB4-Dependent Neonate-Born Granule Cells Are Required for Olfactory Discrimination. Front Behav Neurosci 2019; 13:5. [PMID: 30728769 PMCID: PMC6351472 DOI: 10.3389/fnbeh.2019.00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022] Open
Abstract
The rodent olfactory bulb (OB) contains two distinct populations of postnatally born interneurons, mainly granule cells (GCs), to support local circuits throughout life. During the early postnatal period (i.e., 2 weeks after birth), GCs are mostly produced locally from progenitor cells in the OB with a proportion of them deriving from proliferating cells in the rostral migratory stream (RMS). Afterward, the replenishment of GCs involves differentiated neuroblasts from the subventricular zone (SVZ) in a process known as adult neurogenesis. Although numerous studies have addressed the role of SVZ-born GCs in olfactory behaviors, the function of GCs produced early postnatally in the OB remains elusive. Our previous study demonstrated that the translational regulator, cytoplasmic polyadenylation element-binding protein 4 (CPEB4), is a survival factor exclusively for neonate-born but not SVZ/adult-derived GCs, so CPEB4-knockout (KO) mice provide unique leverage to study early postnatal-born GC-regulated olfactory functions. CPEB4-KO mice with hypoplastic OBs showed normal olfactory sensitivity and short-term memory, but impaired ability to spontaneously discriminate two odors. Such olfactory dysfunction was recapitulated in specific ablation of Cpeb4 gene in inhibitory interneurons but not in excitatory projection neurons or SVZ-derived interneurons. The continuous supply of GCs from adult neurogenesis eventually restored the OB size but not the discrimination function in 6-month-old KO mice. Hence, in the early postnatal OB, whose function cannot be replaced by adult-born GCs, construct critical circuits for odor discrimination.
Collapse
Affiliation(s)
- Ching-San Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|