1
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
2
|
Campbell KL, Davis EE. Hyper-Binding: Older Adults Form Too Many Associations, Not Too Few. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2024; 33:292-299. [PMID: 39493580 PMCID: PMC11530341 DOI: 10.1177/09637214241263020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Associative memory declines with age, and this decline is thought to stem from a decreased ability to form new associations or bind information together. However, a growing body of work suggests that (a) the binding process itself remains relatively intact with age when tested implicitly and (b) older adults form excessive associations (or "hyper-bind") because of a decreased ability to control attention. In this article, we review evidence for the hyper-binding hypothesis. This work shows that older adults form more nontarget associations than younger adults, which leads to increased interference at retrieval and forgetting, an effect that may extend to others with poor attentional control, such as children and people with attention-deficit disorder. We discuss why hyper-binding is apparent only under implicit test conditions and how it affects memory for everyday events. Although hyper-binding likely contributes to forgetting, it may also confer certain advantages when seemingly irrelevant associations later become relevant.
Collapse
|
3
|
Uslu Ö, Eroğlu S, Oğuz K, Haznedaroğlu DI, Erata MC, Erdoğan Y, Kan ÖY, Gönül AS. The Effect of Aging on Face-Name Recognition: An fMRI Study. TURK PSIKIYATRI DERGISI = TURKISH JOURNAL OF PSYCHIATRY 2024; 35:214-224. [PMID: 39224994 PMCID: PMC11375747 DOI: 10.5080/u27095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The aim of this study is to detect functional changes in the brain during the memory task with aging and the association between functional changes and memory performance. METHOD The study consisted of Young Adult Group (YAG, n=20) aged 20 to 25 and Late Adult Group (LAG, n=18) aged 60 to 70. Individuals with Montreal Cognitive Assessment (MoCA) scores above 21 and no family history of Alzheimer's Disease were included in the study. Functional Magnetic Resonance Imaging (fMRI) scanning was performed on all participants during a memory task including encoding (face and name), face and name recognition sub-tasks. RESULTS Results indicated that LAG showed increased activity during face recognition task in left posterior cingulate cortex, left superior frontal cortex, left fusiform face area and another increased activity was found out during name recognition task in left superior frontal cortex, right prefrontal cortex, left anterior + posterior cingulate cortex. The accuracy of face recognition and name recognition memory tests were significantly lower in LAG (respectively, p=0.026; p=0.001). CONCLUSION These results indicated that advanced age were associated with more widespread activation in brain during memory task. Thus with aging, individuals require more neuronal and cognitive resources during memory processing.
Collapse
|
4
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
5
|
Schott BH, Soch J, Kizilirmak JM, Schütze H, Assmann A, Maass A, Ziegler G, Sauvage M, Richter A. Inhibitory temporo-parietal effective connectivity is associated with explicit memory performance in older adults. iScience 2023; 26:107765. [PMID: 37744028 PMCID: PMC10514462 DOI: 10.1016/j.isci.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Successful explicit memory encoding is associated with inferior temporal activations and medial parietal deactivations, which are attenuated in aging. Here we used dynamic causal modeling (DCM) of functional magnetic resonance imaging data to elucidate effective connectivity patterns between hippocampus, parahippocampal place area (PPA), and precuneus during encoding of novel visual scenes. In 117 young adults, DCM revealed pronounced activating input from the PPA to the hippocampus and inhibitory connectivity from the PPA to the precuneus during novelty processing, with both being enhanced during successful encoding. This pattern could be replicated in two cohorts (N = 141 and 148) of young and older adults. In both cohorts, older adults selectively exhibited attenuated inhibitory PPA-precuneus connectivity, which correlated negatively with memory performance. Our results provide insight into the network dynamics underlying explicit memory encoding and suggest that age-related differences in memory-related network activity are, at least partly, attributable to altered temporo-parietal neocortical connectivity.
Collapse
Affiliation(s)
- Björn H. Schott
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany
| | - Jasmin M. Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurodidactics and NeuroLab, Institute for Psychology, University of Hildesheim, Hildesheim, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Assmann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Otto von Guericke University, Medical Faculty, Magdeburg, Germany
| | | | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Mental Health (DZPG), Magdeburg, Germany
- Center for Intervention and Research on adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C) Jena-Magdeburg-Halle, Magdeburg, Germany
| |
Collapse
|
6
|
Tao Z, Sun N, Yuan Z, Chen Z, Liu J, Wang C, Li S, Ma X, Ji B, Li K. Research on a New Intelligent and Rapid Screening Method for Depression Risk in Young People Based on Eye Tracking Technology. Brain Sci 2023; 13:1415. [PMID: 37891784 PMCID: PMC10605395 DOI: 10.3390/brainsci13101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a prevalent mental disorder, with young people being particularly vulnerable to it. Therefore, we propose a new intelligent and rapid screening method for depression risk in young people based on eye tracking technology. We hypothesized that the "emotional perception of eye movement" could characterize defects in emotional perception, recognition, processing, and regulation in young people at high risk for depression. Based on this hypothesis, we designed the "eye movement emotional perception evaluation paradigm" and extracted digital biomarkers that could objectively and accurately evaluate "facial feature perception" and "facial emotional perception" characteristics of young people at high risk of depression. Using stepwise regression analysis, we identified seven digital biomarkers that could characterize emotional perception, recognition, processing, and regulation deficiencies in young people at high risk for depression. The combined effectiveness of an early warning can reach 0.974. Our proposed technique for rapid screening has significant advantages, including high speed, high early warning efficiency, low cost, and high intelligence. This new method provides a new approach to help effectively screen high-risk individuals for depression.
Collapse
Affiliation(s)
- Zhanbo Tao
- Police Sports Department, Zhejiang Police College, Hangzhou 310053, China
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zeyuan Chen
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Jiakang Liu
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Wang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuwu Li
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowen Ma
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Kai Li
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Håglin S, Koch E, Schäfer Hackenhaar F, Nyberg L, Kauppi K. APOE ɛ4, but not polygenic Alzheimer's disease risk, is related to longitudinal decrease in hippocampal brain activity in non-demented individuals. Sci Rep 2023; 13:8433. [PMID: 37225733 DOI: 10.1038/s41598-023-35316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The hippocampus is affected early in Alzheimer's disease (AD) and altered hippocampal functioning influences normal cognitive aging. Here, we used task-based functional MRI to assess if the APOE ɛ4 allele or a polygenic risk score (PRS) for AD was linked to longitudinal changes in memory-related hippocampal activation in normal aging (baseline age 50-95, n = 292; n = 182 at 4 years follow-up, subsequently non-demented for at least 2 years). Mixed-models were used to predict level and change in hippocampal activation by APOE ɛ4 status and PRS based on gene variants previously linked to AD at p ≤ 1, p < 0.05, or p < 5e-8 (excluding APOE). APOE ɛ4 and PRSp<5e-8 significantly predicted AD risk in a larger sample from the same study population (n = 1542), while PRSp≤1 predicted memory decline. APOE ɛ4 was linked to decreased hippocampal activation over time, with the most prominent effect in the posterior hippocampi, while PRS was unrelated to hippocampal activation at all p-thresholds. These results suggests a link for APOE ɛ4, but not for AD genetics in general, on functional changes of the hippocampi in normal aging.
Collapse
Affiliation(s)
- Sofia Håglin
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Fernanda Schäfer Hackenhaar
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
9
|
Mori H, Yoshino Y, Iga JI, Ochi S, Funahashi Y, Yamazaki K, Kumon H, Ozaki Y, Ueno SI. Aberrant Expression of GABA-Related Genes in the Hippocampus of 3xTg-AD Model Mice from the Early to End Stages of Alzheimer's Disease. J Alzheimers Dis 2023; 94:177-188. [PMID: 37212113 PMCID: PMC10357162 DOI: 10.3233/jad-230078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND We explored the gene expression levels in the brain of 3xTg-AD model mice to elucidate the molecular pathological changes from the early to end stages of Alzheimer's disease (AD). OBJECTIVE We re-analyzed our previously published microarray data obtained from the hippocampus of 3xTg-AD model mice at 12 and 52 weeks of age. METHODS Functional annotation and network analyses of the up- and downregulated differentially expressed genes (DEGs) in mice aged 12 to 52 weeks were performed. Validation tests for gamma-aminobutyric acid (GABA)-related genes were also performed by quantitative polymerase chain reaction (qPCR). RESULTS In total, 644 DEGs were upregulated and 624 DEGs were downregulated in the hippocampus of both the 12- and 52-week-old 3xTg-AD mice. In the functional analysis of the upregulated DEGs, 330 gene ontology biological process terms, including immune response, were found, and they interacted with each other in the network analysis. In the functional analysis of the downregulated DEGs, 90 biological process terms, including several terms related to membrane potential and synapse function, were found, and they also interacted with each other in the network analysis. In the qPCR validation test, significant downregulation was seen for Gabrg3 at the ages of 12 (p = 0.02) and 36 (p = 0.005) weeks, Gabbr1 at the age of 52 weeks (p = 0.001), and Gabrr2 at the age of 36 weeks (p = 0.02). CONCLUSION Changes in immune response and GABAergic neurotransmission may occur in the brain of 3xTg mice from the early to end stages of AD.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
10
|
Nyberg L, Andersson M, Lundquist A. Longitudinal change-change associations of cognition with cortical thickness and surface area. AGING BRAIN 2023. [DOI: 10.1016/j.nbas.2023.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
11
|
Han SD, Fleischman DA, Yu L, Poole V, Lamar M, Kim N, Leurgans SE, Bennett DA, Arfanakis K, Barnes LL. Cognitive decline and hippocampal functional connectivity within older Black adults. Hum Brain Mapp 2022; 43:5044-5052. [PMID: 36066181 PMCID: PMC9582363 DOI: 10.1002/hbm.26070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
While there has been a proliferation of neuroimaging studies on cognitive decline in older non-Hispanic White adults, there is a dearth of knowledge regarding neuroimaging correlates of cognitive decline in Black adults. Resting-state functional neuroimaging approaches may be particularly sensitive to early cognitive decline, but there are no studies that we know of that apply this approach to examining associations of brain function to cognition in older Black adults. We investigated the association of cognitive decline with whole-brain voxel-wise functional connectivity to the hippocampus, a key brain region functionally implicated in early Alzheimer's dementia, in 132 older Black adults without dementia participating in the Minority Aging Research Study and Rush Memory and Aging Project, two longitudinal studies of aging that include harmonized annual cognitive assessments and magnetic resonance imaging brain imaging. In models adjusted for demographic factors (age, education, sex), global cognitive decline was associated with functional connectivity of the hippocampus to three clusters in the right and left frontal regions of the dorsolateral prefrontal cortex. In domain-specific analyses, decline in semantic memory was associated with functional connectivity of the hippocampus to bilateral clusters in the precentral gyrus, and decline in perceptual speed was inversely associated with connectivity of the hippocampus to the bilateral intracalcarine cortex and the right fusiform gyrus. These findings elucidate neurobiological mechanisms underlying cognitive decline in older Black adults and may point to specific targets of intervention for Alzheimer's disease.
Collapse
Affiliation(s)
- S. Duke Han
- Department of Family MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of NeurologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Debra A. Fleischman
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Lei Yu
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Victoria Poole
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Melissa Lamar
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Namhee Kim
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Sue E. Leurgans
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Department of Diagnostic Radiology and Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Lisa L. Barnes
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
12
|
Eisenstein T, Giladi N, Hendler T, Havakuk O, Lerner Y. Neural Synchrony During Naturalistic Information Processing Is Associated With Aerobically Active Lifestyle and Cardiorespiratory Fitness in Cognitively Intact Older Adults. Front Hum Neurosci 2022; 16:906099. [PMID: 35874153 PMCID: PMC9300901 DOI: 10.3389/fnhum.2022.906099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The functional neural mechanisms underlying the cognitive benefits of aerobic exercise have been a subject of ongoing research in recent years. However, while most neuroimaging studies to date which examined functional neural correlates of aerobic exercise have used simple stimuli in highly controlled and artificial experimental conditions, our everyday life experiences require a much more complex and dynamic neurocognitive processing. Therefore, we have used a naturalistic complex information processing fMRI paradigm of story comprehension to investigate the role of an aerobically active lifestyle in the processing of real-life cognitive-demanding situations. By employing the inter-subject correlation (inter-SC) approach, we have identified differences in reliable stimulus-induced neural responses between groups of aerobically active (n = 27) and non-active (n = 22) cognitively intact older adults (age 65–80). Since cardiorespiratory fitness has previously been suggested to play a key role in the neuroprotective potential of aerobic exercise, we have investigated its dose-response relationship with regional inter-subject neural responses. We found that aerobically active lifestyle and cardiorespiratory fitness were associated with more synchronized inter-subject neural responses during story comprehension in higher order cognitive and linguistic brain regions in the prefrontal and temporo-parietal cortices. In addition, while higher regional inter-SC values were associated with higher performance on a post-listening memory task, this was not translated to a significant between-group difference in task performance. We, therefore, suggest that the modulatory potential of aerobic exercise and cardiorespiratory fitness on cognitive processing may extend beyond simple and highly controlled stimuli to situations in which the brain faces continuous real-life complex information. Additional studies incorporating other aspects of real-life situations such as naturalistic visual stimuli, everyday life decision making, and motor responses in these situations are desired to further validate the observed relationship between aerobic exercise, cardiorespiratory fitness, and complex naturalistic information processing.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- *Correspondence: Tamir Eisenstein Yulia Lerner
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Havakuk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Tamir Eisenstein Yulia Lerner
| |
Collapse
|
13
|
Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, McNulty C, Riklund K, Wåhlin A, Papenberg G, Kalpouzos G, Bäckman L, Salami A. DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res 2022; 100:1296-1320. [PMID: 35293013 PMCID: PMC9313590 DOI: 10.1002/jnr.25039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Abstract
Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Present address:
Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholm11330Sweden
| | - Tetiana Gorbach
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Umeå School of Business, Economics and StatisticsUmeå UniversityUmeåSweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Vania Panes Lundmark
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Charlotte McNulty
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Goran Papenberg
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Lars Bäckman
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| |
Collapse
|
14
|
Koch E, Nyberg L, Lundquist A, Kauppi K. Polygenic Risk for Schizophrenia Has Sex-Specific Effects on Brain Activity during Memory Processing in Healthy Individuals. Genes (Basel) 2022; 13:genes13030412. [PMID: 35327966 PMCID: PMC8950000 DOI: 10.3390/genes13030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Genetic risk for schizophrenia has a negative impact on memory and other cognitive abilities in unaffected individuals, and it was recently shown that this effect is specific to males. Using functional MRI, we investigated the effect of a polygenic risk score (PRS) for schizophrenia on brain activation during working memory and episodic memory in 351 unaffected participants (167 males and 184 females, 25–95 years), and specifically tested if any effect of PRS on brain activation is sex-specific. Schizophrenia PRS was significantly associated with decreased brain activation in the left dorsolateral prefrontal cortex (DLPFC) during working-memory manipulation and in the bilateral superior parietal lobule (SPL) during episodic-memory encoding and retrieval. A significant interaction effect between sex and PRS was seen in the bilateral SPL during episodic-memory encoding and retrieval, and sex-stratified analyses showed that the effect of PRS on SPL activation was male-specific. These results confirm previous findings of DLPFC inefficiency in schizophrenia, and highlight the SPL as another important genetic intermediate phenotype of the disease. The observed sex differences suggest that the previously shown male-specific effect of schizophrenia PRS on cognition translates into an additional corresponding effect on brain functioning.
Collapse
Affiliation(s)
- Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: ; Tel.: +46-90-786-50-00
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, 901 87 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Statistics, School of Business, Economics and Statistics, Umeå University, 901 87 Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Nobels väg 12A, 171 65 Solna, Sweden
| |
Collapse
|
15
|
Salami A, Adolfsson R, Andersson M, Blennow K, Lundquist A, Adolfsson AN, Schöll M, Zetterberg H, Nyberg L. Association of APOE ɛ4 and Plasma p-tau181 with Preclinical Alzheimer’s Disease and Longitudinal Change in Hippocampus Function. J Alzheimers Dis 2021; 85:1309-1320. [PMID: 34924376 PMCID: PMC8925119 DOI: 10.3233/jad-210673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Apolipoprotein E (APOE) ɛ4 allele has been linked to increased tau phosphorylation and tangle formation. APOE ɛ4 carriers with elevated tau might be at the higher risk for AD progression. Previous studies showed that tau pathology begins early in areas of the medial temporal lobe. Similarly, APOE ɛ4 carriers showed altered hippocampal functional integrity. However, it remains unknown whether elevated tau accumulation on hippocampal functional changes would be more pronounced for APOE ɛ4 carriers. Objective: We related ɛ4 carriage to levels of plasma phosphorylated tau (p-tau181) up to 15 years prior to AD onset. Furthermore, elevated p-tau181 was explored in relation to longitudinal changes in hippocampal function and connectivity. Methods: Longitudinal population-based study. Plasma p-tau181 was analyzed in 142 clinically defined Alzheimer’s disease (AD) cases and 126 controls. The longitudinal analysis involved 87 non-demented individuals with two waves of plasma samples and three waves of functional magnetic resonance imaging during rest and memory encoding. Results: Increased p-tau181 was observed for both ɛ4 carriers and non-carriers close to AD, but exclusively for ɛ4 carriers in the early preclinical groups (7- and 13-years pre-AD). In ɛ4 carriers, longitudinal p-tau181 increase was paralleled by elevated local hippocampal connectivity at rest and subsequent reduction of hippocampus encoding-related activity. Conclusion: Our findings support an association of APOE ɛ4 and p-tau181 with preclinical AD and hippocampus functioning.
Collapse
Affiliation(s)
- Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Statistics, USBE Umeå University, Umeå, Sweden
| | | | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Eisenstein T, Giladi N, Hendler T, Havakuk O, Lerner Y. Physically Active Lifestyle Is Associated With Attenuation of Hippocampal Dysfunction in Cognitively Intact Older Adults. Front Aging Neurosci 2021; 13:720990. [PMID: 34690738 PMCID: PMC8527880 DOI: 10.3389/fnagi.2021.720990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in hippocampal function have been shown in older adults, which are expressed as changes in hippocampal activity and connectivity. While hippocampal activation during memory demands has been demonstrated to decrease with age, some older individuals present increased activity, or hyperactivity, of the hippocampus which is associated with increased neuropathology and poor memory function. In addition, lower functional coherence between the hippocampus and core hubs of the default mode network (DMN), namely, the posteromedial and medial prefrontal cortices, as well as increased local intrahippocampal connectivity, were also demonstrated in cognitively intact older adults. Aerobic exercise has been shown to elicit neuroprotective effects on hippocampal structure and vasculature in aging, and improvements in cardiorespiratory fitness have been suggested to mediate these exercise-related effects. However, how these lifestyle factors relate to hippocampal function is not clear. Fifty-two cognitively intact older adults (aged 65-80 years) have been recruited and divided into physically active (n = 29) or non-active (n = 23) groups based on their aerobic activity lifestyle habits. Participants underwent resting-state and task-based fMRI experiments which included an associative memory encoding paradigm followed by a post-scan memory recognition test. In addition, 44 participants also performed cardiopulmonary exercise tests to evaluate cardiorespiratory fitness by measuring peak oxygen consumption (Vo2peak). While both groups demonstrated increased anterior hippocampal activation during memory encoding, a physically active lifestyle was associated with significantly lower activity level and higher memory performance in the recognition task. In addition, the physically active group also demonstrated higher functional connectivity of the anterior and posterior hippocampi with the core hubs of the DMN and lower local intra-hippocampal connectivity within and between hemispheres. Vo2peak was negatively associated with the hippocampal activation level and demonstrated a positive correlation with hippocampal-DMN connectivity. According to these findings, an aerobically active lifestyle may be associated with attenuation of hippocampal dysfunction in cognitively intact older adults.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Havakuk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Soch J, Richter A, Schütze H, Kizilirmak JM, Assmann A, Behnisch G, Feldhoff H, Fischer L, Heil J, Knopf L, Merkel C, Raschick M, Schietke C, Schult A, Seidenbecher CI, Yakupov R, Ziegler G, Wiltfang J, Düzel E, Schott BH. A comprehensive score reflecting memory-related fMRI activations and deactivations as potential biomarker for neurocognitive aging. Hum Brain Mapp 2021; 42:4478-4496. [PMID: 34132437 PMCID: PMC8410542 DOI: 10.1002/hbm.25559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Older adults and particularly those at risk for developing dementia typically show a decline in episodic memory performance, which has been associated with altered memory network activity detectable via functional magnetic resonance imaging (fMRI). To quantify the degree of these alterations, a score has been developed as a putative imaging biomarker for successful aging in memory for older adults (Functional Activity Deviations during Encoding, FADE; Düzel et al., Hippocampus, 2011; 21: 803-814). Here, we introduce and validate a more comprehensive version of the FADE score, termed FADE-SAME (Similarity of Activations during Memory Encoding), which differs from the original FADE score by considering not only activations but also deactivations in fMRI contrasts of stimulus novelty and successful encoding, and by taking into account the variance of young adults' activations. We computed both scores for novelty and subsequent memory contrasts in a cohort of 217 healthy adults, including 106 young and 111 older participants, as well as a replication cohort of 117 young subjects. We further tested the stability and generalizability of both scores by controlling for different MR scanners and gender, as well as by using different data sets of young adults as reference samples. Both scores showed robust age-group-related differences for the subsequent memory contrast, and the FADE-SAME score additionally exhibited age-group-related differences for the novelty contrast. Furthermore, both scores correlate with behavioral measures of cognitive aging, namely memory performance. Taken together, our results suggest that single-value scores of memory-related fMRI responses may constitute promising biomarkers for quantifying neurocognitive aging.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bernstein Center for Computational Neuroscience (BCCN)BerlinGermany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
| | - Hartmut Schütze
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | | | - Anne Assmann
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | | | - Hannah Feldhoff
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Julius Heil
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Lea Knopf
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Christian Merkel
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Clara‐Johanna Schietke
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Annika Schult
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
| | - Renat Yakupov
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Gabriel Ziegler
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| | - Emrah Düzel
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Otto von Guericke University, Medical FacultyMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
| | - Björn Hendrik Schott
- German Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Leibniz Institute for Neurobiology (LIN)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
18
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
19
|
Nordin K, Nyberg L, Andersson M, Karalija N, Riklund K, Bäckman L, Salami A. Distinct and Common Large-Scale Networks of the Hippocampal Long Axis in Older Age: Links to Episodic Memory and Dopamine D2 Receptor Availability. Cereb Cortex 2021; 31:3435-3450. [PMID: 33676372 PMCID: PMC8196260 DOI: 10.1093/cercor/bhab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/29/2023] Open
Abstract
The hippocampal longitudinal axis has been linked to dissociated functional networks relevant to episodic memory. However, the organization of axis-dependent networks and their relation to episodic memory in aging remains less explored. Moreover, age-related deterioration of the dopamine (DA) system, affecting memory and functional network properties, might constitute a source of reduced specificity of hippocampal networks in aging. Here, we characterized axis-dependent large-scale hippocampal resting-state networks, their relevance to episodic memory, and links to DA in older individuals (n = 170, 64–68 years). Partial least squares identified 2 dissociated networks differentially connected to the anterior and posterior hippocampus. These overlapped with anterior–temporal/posterior–medial networks in young adults, indicating preserved organization of axis-dependent connectivity in old age. However, axis-specific networks were overall unrelated to memory and hippocampal DA D2 receptor availability (D2DR) measured with [11C]-raclopride positron emission tomography. Further analyses identified a memory-related network modulated by hippocampal D2DR, equally connected to anterior–posterior regions. This network included medial frontal, posterior parietal, and striatal areas. The results add to the current understanding of large-scale hippocampal connectivity in aging, demonstrating axis-dependent connectivity with dissociated anterior and posterior networks, as well as a primary role in episodic memory of connectivity shared by regions along the hippocampalaxis.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet, S-11330 Stockholm, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, S-90187 Umeå, Sweden.,Aging Research Center, Karolinska Institutet, S-11330 Stockholm, Sweden
| |
Collapse
|
20
|
Wiklund-Hörnqvist C, Stillesjö S, Andersson M, Jonsson B, Nyberg L. Retrieval practice facilitates learning by strengthening processing in both the anterior and posterior hippocampus. Brain Behav 2021; 11:e01909. [PMID: 33094555 PMCID: PMC7821628 DOI: 10.1002/brb3.1909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION AND METHODS A large number of behavioral studies show that retrieval practice is a powerful way of strengthening learning of new information. Repeated retrieval might support long-term retention in a quantitative sense by inducing stronger episodic representations or in a qualitative sense by contributing to the formation of more gist-like representations. Here we used fMRI to examine the brain bases related to the learning effects following retrieval practice and provide imaging support for both views by showing increased activation of anterior and posterior hippocampus regions during a delayed memory test. RESULTS Brain activity in the posterior hippocampus increased linearly as a function of number of successful retrievals during initial learning, whereas anterior hippocampus activity was restricted to items retrieved many but not few times during the learning phase. CONCLUSION Taken together, these findings indicate that retrieval practice strengthens subsequent retention via "dual action" in the anterior and posterior hippocampus, possibly reflecting coding of individual experiences as well as integration and generalization across multiple experiences. Our findings are of educational significance by providing insight into the brain bases of a learning method of applied relevance.
Collapse
Affiliation(s)
- Carola Wiklund-Hörnqvist
- Department of Psychology, Umeå University, Umea, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umea, Sweden
| | - Sara Stillesjö
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umea, Sweden.,Department of Applied Educational Science, Umeå University, Umea, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umea, Sweden.,Department of Integrative Medical Biology, Umeå University, Umea, Sweden
| | - Bert Jonsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umea, Sweden.,Department of Applied Educational Science, Umeå University, Umea, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umea, Sweden.,Department of Integrative Medical Biology, Umeå University, Umea, Sweden.,Department of Radiation Sciences, Umeå University, Umea, Sweden
| |
Collapse
|
21
|
Hu S, Li CSR. Age-Related Structural and Functional Changes of the Hippocampus and the Relationship with Inhibitory Control. Brain Sci 2020; 10:brainsci10121013. [PMID: 33352718 PMCID: PMC7766783 DOI: 10.3390/brainsci10121013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer’s disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.
Collapse
Affiliation(s)
- Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126, USA
- Correspondence:
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
23
|
Friedl-Werner A, Brauns K, Gunga HC, Kühn S, Stahn AC. Exercise-induced changes in brain activity during memory encoding and retrieval after long-term bed rest. Neuroimage 2020; 223:117359. [PMID: 32919056 DOI: 10.1016/j.neuroimage.2020.117359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Episodic memory depends decisively on the hippocampus and the parahippocampal gyrus, brain structures that are also prone to exercise-induced neuroplasticity and cognitive improvement. We conducted a randomized controlled trial to investigate the effects of a high-intensity exercise program in twenty-two men resting in bed for 60 days on episodic memory and its neuronal basis. All participants were exposed to 60 days of uninterrupted bed rest. Eleven participants were additionally assigned to a high-intensity interval training that was performed five to six times weekly for 60 days. Episodic memory and its neural basis were determined four days prior to and on the 58th day of bed rest using functional magnetic resonance imaging (fMRI). We found increased BOLD signal in the left hippocampus and parahippocampal gyrus in the non-exercising group compared to the exercising bed rest group whereas the mnemonic performance did not differ significantly. These findings indicate a higher neuronal efficiency in the training group during memory encoding and retrieval and may suggest a dysfunctional mechanism in the non-exercising bed rest group induced by two months of physical inactivity. Our results provide further support for the modulating effects of physical exercise and adverse implications of a sedentary lifestyle and bedridden patients.
Collapse
Affiliation(s)
- Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Charitéplatz 1, CharitéCrossOver, Virchowweg 6, 10117 Berlin, Germany; Université de Normandie, INSERM U 1075 COMETE, 14000 Caen, France
| | - Katharina Brauns
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Charitéplatz 1, CharitéCrossOver, Virchowweg 6, 10117 Berlin, Germany
| | - Hanns-Christian Gunga
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Charitéplatz 1, CharitéCrossOver, Virchowweg 6, 10117 Berlin, Germany
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Max-Planck-Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, 14195 Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Charitéplatz 1, CharitéCrossOver, Virchowweg 6, 10117 Berlin, Germany; Unit of Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Avelar-Pereira B, Bäckman L, Wåhlin A, Nyberg L, Salami A. Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline. Neurobiol Aging 2020; 96:68-78. [PMID: 32949903 DOI: 10.1016/j.neurobiolaging.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022]
Abstract
Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear. The genu of the corpus callosum joins symmetrical parts of the prefrontal cortex (PFC) and is susceptible to age-related degeneration, suggesting that PFC homotopic connectivity is linked to changes in white-matter integrity. We investigated homotopic connectivity changes and whether these were associated with white-matter integrity in 338 individuals. In addition, we examined whether PFC homotopic FC was related to changes in the genu over 10 years and working memory over 5 years. There were increases and decreases in functional homotopy, with the former being prevalent in subcortical and frontal regions. Increased PFC homotopic FC was partially driven by structural degeneration and negatively associated with working memory, suggesting that it reflects detrimental age-related changes.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Nyberg L, Grande X, Andersson M, Berron D, Lundquist A, Stiernstedt M, Fjell A, Walhovd K, Orädd G. Forecasting memory function in aging: pattern-completion ability and hippocampal activity relate to visuospatial functioning over 25 years. Neurobiol Aging 2020; 94:217-226. [PMID: 32650185 DOI: 10.1016/j.neurobiolaging.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
Heterogeneity in episodic memory functioning in aging was assessed with a pattern-completion functional magnetic resonance imaging task that required reactivation of well-consolidated face-name memory traces from fragmented (partial) or morphed (noisy) face cues. About half of the examined individuals (N = 101) showed impaired (chance) performance on fragmented faces despite intact performance on complete and morphed faces, and they did not show a pattern-completion response in hippocampus or the examined subfields (CA1, CA23, DGCA4). This apparent pattern-completion deficit could not be explained by differential hippocampal atrophy. Instead, the impaired group displayed lower cortical volumes, accelerated reduction in mini-mental state examination scores, and lower general cognitive function as defined by longitudinal measures of visuospatial functioning and speed-of-processing. In the full sample, inter-individual differences in visuospatial functioning predicted performance on fragmented faces and hippocampal CA23 subfield activity over 25 years. These findings suggest that visuospatial functioning in middle age can forecast pattern-completion deficits in aging.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Statistics, USBE Umeå University, Umeå, Sweden
| | - Mikael Stiernstedt
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anders Fjell
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Walhovd
- UiO Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Johansson J, Salami A, Lundquist A, Wåhlin A, Andersson M, Nyberg L. Longitudinal evidence that reduced hemispheric encoding/retrieval asymmetry predicts episodic-memory impairment in aging. Neuropsychologia 2019; 137:107329. [PMID: 31887310 DOI: 10.1016/j.neuropsychologia.2019.107329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 01/31/2023]
Abstract
The HERA (Hemispheric Encoding/Retrieval Asymmetry) model captures hemispheric lateralization of prefrontal cortex (PFC) brain activity during memory encoding and retrieval. Reduced HERA has been observed in cross-sectional aging studies, but there is no longitudinal evidence, to our knowledge, on age-related changes in HERA and whether maintained or reduced HERA relates to well-preserved memory functioning. In the present study we set out to explore HERA in a longitudinal neuroimaging sample from the Betula study [3 Waves over 10 years; Wave-1: n = 363, W2: n = 227, W3: n = 101]. We used fMRI data from a face-name paired-associates task to derive a HERA index. In support of the HERA model, the mean HERA index was positive across the three imaging waves. The longitudinal age-HERA relationship was highly significant (p < 10-11), with a HERA decline occurring after age 60. The age-related HERA decline was associated with episodic memory decline (p < 0.05). Taken together, the findings provide large-scale support for the HERA model, and suggest that reduced HERA in the PFC reflects pathological memory aging possibly related to impaired ability to bias mnemonic processing according to the appropriate encoding or retrieval state.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden.
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Gävlegatan 16, S11330, Stockholm, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Statistics, USBE, Umeå University, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Umeå University, S90187, Umeå, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Umeå University, S90187, Umeå, Sweden
| |
Collapse
|