1
|
Rahman MT, Mostaert B, Eckard P, Fatima SM, Scheperle R, Razu I, Hunger B, Olszewski RT, Gu S, Garcia C, Khan NA, Bennion DM, Oleson J, Kirk JR, Enke YL, Gay RD, Morell RJ, Hirose K, Hoa M, Claussen AD, Hansen MR. Cochlear implants with dexamethasone-eluting electrode arrays reduce foreign body response in a murine model of cochlear implantation and human subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315311. [PMID: 39417118 PMCID: PMC11483020 DOI: 10.1101/2024.10.11.24315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid on the intracochlear FBR and electrical impedance post-implantation in a murine model and human subjects. The left ears of CX3CR1 +/GFP Thy1 +/YFP (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurement of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggest that dexamethasone eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.
Collapse
|
2
|
Chen J, Lewis MA, Wai A, Yin L, Dawson SJ, Ingham NJ, Steel KP. A new mutation of Sgms1 causes gradual hearing loss associated with a reduced endocochlear potential. Hear Res 2024; 451:109091. [PMID: 39067415 DOI: 10.1016/j.heares.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Sgms1 encodes sphingomyelin synthase 1, an enzyme in the sphingosine-1-phosphate signalling pathway, and was previously reported to underlie hearing impairment in the mouse. A new mouse allele, Sgms1tm1a, unexpectedly showed normal Auditory Brainstem Response thresholds. We found that the Sgms1tm1a mutation led to incomplete knockdown of transcript to 20 % of normal values, which was enough to support normal hearing. The Sgms1tm1b allele was generated by knocking out exon 7, leading to a complete lack of detectable transcript in the inner ear. Sgms1tm1b homozygotes showed largely normal auditory brainstem response thresholds at first, followed by progressive loss of sensitivity until they showed severe impairment at 6 months old. The endocochlear potential was consistently reduced in Sgms1tm1b mutants at 3, 4 and 8 weeks old, to around 80 mV compared with around 120 mV in control littermates. The stria vascularis showed a characteristic irregularity of marginal cell surfaces and patchy loss of Kcnq1 expression at their apical membrane, and expression analysis of the lateral wall suggested that marginal cells were the most likely initial site of dysfunction in the mutants. Finally, significant association of auditory thresholds with DNA markers within and close to the human SGMS1 gene were found in the 1958 Birth Cohort, suggesting that SGMS1 variants may play a role in the range of hearing abilities in the human population.
Collapse
Affiliation(s)
- Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Alisa Wai
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Lucia Yin
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Sally J Dawson
- UCL Ear Institute, University College London, London WC1X 8EE, United Kingdom
| | - Neil J Ingham
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
3
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Faridi R, Yousaf R, Inagaki S, Olszewski R, Gu S, Morell RJ, Wilson E, Xia Y, Qaiser TA, Rashid M, Fenollar-Ferrer C, Hoa M, Riazuddin S, Friedman TB. Deafness DFNB128 Associated with a Recessive Variant of Human MAP3K1 Recapitulates Hearing Loss of Map3k1-Deficient Mice. Genes (Basel) 2024; 15:845. [PMID: 39062623 PMCID: PMC11276321 DOI: 10.3390/genes15070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Deafness in vertebrates is associated with variants of hundreds of genes. Yet, many mutant genes causing rare forms of deafness remain to be discovered. A consanguineous Pakistani family segregating nonsyndromic deafness in two sibships were studied using microarrays and exome sequencing. A 1.2 Mb locus (DFNB128) on chromosome 5q11.2 encompassing six genes was identified. In one of the two sibships of this family, a novel homozygous recessive variant NM_005921.2:c.4460G>A p.(Arg1487His) in the kinase domain of MAP3K1 co-segregated with nonsyndromic deafness. There are two previously reported Map3k1-kinase-deficient mouse models that are associated with recessively inherited syndromic deafness. MAP3K1 phosphorylates serine and threonine and functions in a signaling pathway where pathogenic variants of HGF, MET, and GAB1 were previously reported to be associated with human deafness DFNB39, DFNB97, and DFNB26, respectively. Our single-cell transcriptome data of mouse cochlea mRNA show expression of Map3k1 and its signaling partners in several inner ear cell types suggesting a requirement of wild-type MAP3K1 for normal hearing. In contrast to dominant variants of MAP3K1 associated with Disorders of Sex Development 46,XY sex-reversal, our computational modeling of the recessive substitution p.(Arg1487His) predicts a subtle structural alteration in MAP3K1, consistent with the limited phenotype of nonsyndromic deafness.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Ying Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Tanveer Ahmed Qaiser
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Sector G-8/3, Ravi Road, Islamabad 44000, Pakistan;
| | - Muhammad Rashid
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Center, Jinnah Burn and Reconstructive Surgery Center, University of Health Sciences, Lahore 54550, Pakistan;
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| |
Collapse
|
5
|
Thulasiram MR, Yamamoto R, Olszewski RT, Gu S, Morell RJ, Hoa M, Dabdoub A. Molecular differences between neonatal and adult stria vascularis from organotypic explants and transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590986. [PMID: 38712156 PMCID: PMC11071502 DOI: 10.1101/2024.04.24.590986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Summary The stria vascularis (SV), part of the blood-labyrinth barrier, is an essential component of the inner ear that regulates the ionic environment required for hearing. SV degeneration disrupts cochlear homeostasis, leading to irreversible hearing loss, yet a comprehensive understanding of the SV, and consequently therapeutic availability for SV degeneration, is lacking. We developed a whole-tissue explant model from neonatal and adult mice to create a robust platform for SV research. We validated our model by demonstrating that the proliferative behaviour of the SV in vitro mimics SV in vivo, providing a representative model and advancing high-throughput SV research. We also provided evidence for pharmacological intervention in our system by investigating the role of Wnt/β-catenin signaling in SV proliferation. Finally, we performed single-cell RNA sequencing from in vivo neonatal and adult mouse SV and revealed key genes and pathways that may play a role in SV proliferation and maintenance. Together, our results contribute new insights into investigating biological solutions for SV-associated hearing loss. Significance Hearing loss impairs our ability to communicate with people and interact with our environment. This can lead to social isolation, depression, cognitive deficits, and dementia. Inner ear degeneration is a primary cause of hearing loss, and our study provides an in depth look at one of the major sites of inner ear degeneration: the stria vascularis. The stria vascularis and associated blood-labyrinth barrier maintain the functional integrity of the auditory system, yet it is relatively understudied. By developing a new in vitro model for the young and adult stria vascularis and using single cell RNA sequencing, our study provides a novel approach to studying this tissue, contributing new insights and widespread implications for auditory neuroscience and regenerative medicine. Highlights - We established an organotypic explant system of the neonatal and adult stria vascularis with an intact blood-labyrinth barrier. - Proliferation of the stria vascularis decreases with age in vitro , modelling its proliferative behaviour in vivo . - Pharmacological studies using our in vitro SV model open possibilities for testing injury paradigms and therapeutic interventions. - Inhibition of Wnt signalling decreases proliferation in neonatal stria vascularis.- We identified key genes and transcription factors unique to developing and mature SV cell types using single cell RNA sequencing.
Collapse
|
6
|
Qin T, So KKH, Hui CC, Sham MH. Ptch1 is essential for cochlear marginal cell differentiation and stria vascularis formation. Cell Rep 2024; 43:114083. [PMID: 38602877 DOI: 10.1016/j.celrep.2024.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
A common cause of deafness in humans is dysregulation of the endocochlear potential generated by the stria vascularis (SV). Thus, proper formation of the SV is critical for hearing. Using single-cell transcriptomics and a series of Shh signaling mutants, we discovered that the Shh receptor Patched1 (Ptch1) is essential for marginal cell (MC) differentiation and SV formation. Single-cell RNA sequencing analyses revealed that the cochlear roof epithelium is already specified into discrete domains with distinctive gene expression profiles at embryonic day 14, with Gsc as a marker gene of the MC lineage. Ptch1 deficiency leads to defective specification of MC precursors along the cochlear basal-apical regions. We demonstrated that elevated Gli2 levels impede MC differentiation through sustaining Otx2 expression and maintaining the progenitor state of MC precursors. Our results uncover an early specification of cochlear non-sensory epithelial cells and establish a crucial role of the Ptch1-Gli2 axis in regulating the development of SV.
Collapse
Affiliation(s)
- Tianli Qin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mai Har Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
7
|
Gu X, Jiang K, Chen R, Chen Z, Wu X, Xiang H, Huang X, Nan B. Identification of common stria vascularis cellular alteration in sensorineural hearing loss based on ScRNA-seq. BMC Genomics 2024; 25:213. [PMID: 38413848 PMCID: PMC10897997 DOI: 10.1186/s12864-024-10122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kanglun Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Ruru Chen
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifeng Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianmin Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijie Xiang
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Benyu Nan
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024; 14:3038. [PMID: 38321040 PMCID: PMC10847169 DOI: 10.1038/s41598-024-52663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Sydney Nixon
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Soumya Korrapati
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Samuel Adadey
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA.
| |
Collapse
|
9
|
Johns JD, Olszewski R, Strepay D, Lopez IA, Ishiyama A, Hoa M. Emerging Mechanisms in the Pathogenesis of Menière's Disease: Evidence for the Involvement of Ion Homeostatic or Blood-Labyrinthine Barrier Dysfunction in Human Temporal Bones. Otol Neurotol 2023; 44:1057-1065. [PMID: 37733989 PMCID: PMC10840868 DOI: 10.1097/mao.0000000000004016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
HYPOTHESIS Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.
Collapse
Affiliation(s)
- J. Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Lopez
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| |
Collapse
|
10
|
Boussaty EC, Tedeschi N, Novotny M, Ninoyu Y, Du E, Draf C, Zhang Y, Manor U, Scheuermann RH, Friedman R. Cochlear transcriptome analysis of an outbred mouse population (CFW). Front Cell Neurosci 2023; 17:1256619. [PMID: 38094513 PMCID: PMC10716316 DOI: 10.3389/fncel.2023.1256619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 12/20/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types, and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach-first by linking to expression of known marker genes, then using the NSForest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website, and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes within the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Ely Cheikh Boussaty
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Neil Tedeschi
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Mark Novotny
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Yuzuru Ninoyu
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Eric Du
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Clara Draf
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA, United States
| | - Uri Manor
- Department of Cell and Developmental Biology, University of California San Diego, Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, CA, United States
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Rick Friedman
- Department of Otolaryngology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. PLoS Genet 2023; 19:e1011058. [PMID: 38011198 PMCID: PMC10718637 DOI: 10.1371/journal.pgen.1011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lois Matthews
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth I. Vaden
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Bradley A. Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
12
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) Fluorescent Reporter Mice Allow Visualization of Intermediate Cells in the Stria Vascularis. RESEARCH SQUARE 2023:rs.3.rs-3393161. [PMID: 37886521 PMCID: PMC10602146 DOI: 10.21203/rs.3.rs-3393161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Sydney Nixon
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Samuel Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health
| | | | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| |
Collapse
|
14
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Moore ST, Nakamura T, Nie J, Solivais AJ, Aristizábal-Ramírez I, Ueda Y, Manikandan M, Reddy VS, Romano DR, Hoffman JR, Perrin BJ, Nelson RF, Frolenkov GI, Chuva de Sousa Lopes SM, Hashino E. Generating high-fidelity cochlear organoids from human pluripotent stem cells. Cell Stem Cell 2023; 30:950-961.e7. [PMID: 37419105 PMCID: PMC10695300 DOI: 10.1016/j.stem.2023.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/15/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Mechanosensitive hair cells in the cochlea are responsible for hearing but are vulnerable to damage by genetic mutations and environmental insults. The paucity of human cochlear tissues makes it difficult to study cochlear hair cells. Organoids offer a compelling platform to study scarce tissues in vitro; however, derivation of cochlear cell types has proven non-trivial. Here, using 3D cultures of human pluripotent stem cells, we sought to replicate key differentiation cues of cochlear specification. We found that timed modulations of Sonic Hedgehog and WNT signaling promote ventral gene expression in otic progenitors. Ventralized otic progenitors subsequently give rise to elaborately patterned epithelia containing hair cells with morphology, marker expression, and functional properties consistent with both outer and inner hair cells in the cochlea. These results suggest that early morphogenic cues are sufficient to drive cochlear induction and establish an unprecedented system to model the human auditory organ.
Collapse
Affiliation(s)
- Stephen T Moore
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Otolaryngology-Head & Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander J Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mayakannan Manikandan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - V Shweta Reddy
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel R Romano
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John R Hoffman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin J Perrin
- Department of Biology, Purdue School of Science, Indianapolis, IN 46202, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
17
|
Richard EM, Brun E, Korchagina J, Crouzier L, Affortit C, Alves S, Cazevieille C, Mausset-Bonnefont AL, Lenoir M, Puel JL, Maurice T, Thiry M, Wang J, Delprat B. Wfs1 E864K knock-in mice illuminate the fundamental role of Wfs1 in endocochlear potential production. Cell Death Dis 2023; 14:387. [PMID: 37386014 PMCID: PMC10310813 DOI: 10.1038/s41419-023-05912-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase β1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase β1 subunit.
Collapse
Affiliation(s)
| | - Emilie Brun
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Stacy Alves
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Marc Lenoir
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Liège, Belgique
| | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Benjamin Delprat
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
- INM, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
18
|
van der Valk WH, van Beelen ESA, Steinhart MR, Nist-Lund C, Osorio D, de Groot JCMJ, Sun L, van Benthem PPG, Koehler KR, Locher H. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep 2023; 42:112623. [PMID: 37289589 PMCID: PMC10592453 DOI: 10.1016/j.celrep.2023.112623] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Inner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.
Collapse
Affiliation(s)
- Wouter H van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
| | - Edward S A van Beelen
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Osorio
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - John C M J de Groot
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Peter Paul G van Benthem
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
19
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Boussaty EC, Tedeschi N, Novotny M, Ninoyu Y, Du E, Draf C, Zhang Y, Manor U, Scheuermann RH, Friedman R. Cochlear transcriptome analysis of an outbred mouse population (CFW). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528661. [PMID: 36824745 PMCID: PMC9948975 DOI: 10.1101/2023.02.15.528661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach - first by linking to expression of known marker genes, then using the NS-Forest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website (https://umgear.org/), and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes withing the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Yuzuru Ninoyu
- Department of Otolaryngology, University of California, San Diego, CA
| | - Eric Du
- Department of Otolaryngology, University of California, San Diego, CA
| | - Clara Draf
- Department of Otolaryngology, University of California, San Diego, CA
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA
| | - Uri Manor
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, CA, United States
| | - Richard H. Scheuermann
- J. Craig Venter Institute, La Jolla, CA
- Department of Pathology, University of California, San Diego, CA
| | - Rick Friedman
- Department of Otolaryngology, University of California, San Diego, CA
| |
Collapse
|
21
|
Del Turco D, Paul MH, Schlaudraff J, Muellerleile J, Bozic F, Vuksic M, Jedlicka P, Deller T. Layer-specific changes of KCC2 and NKCC1 in the mouse dentate gyrus after entorhinal denervation. Front Mol Neurosci 2023; 16:1118746. [PMID: 37293543 PMCID: PMC10244516 DOI: 10.3389/fnmol.2023.1118746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
The cation-chloride cotransporters KCC2 and NKCC1 regulate the intracellular Cl- concentration and cell volume of neurons and/or glia. The Cl- extruder KCC2 is expressed at higher levels than the Cl- transporter NKCC1 in mature compared to immature neurons, accounting for the developmental shift from high to low Cl- concentration and from depolarizing to hyperpolarizing currents through GABA-A receptors. Previous studies have shown that KCC2 expression is downregulated following central nervous system injury, returning neurons to a more excitable state, which can be pathological or adaptive. Here, we show that deafferentation of the dendritic segments of granule cells in the outer (oml) and middle (mml) molecular layer of the dentate gyrus via entorhinal denervation in vivo leads to cell-type- and layer-specific changes in the expression of KCC2 and NKCC1. Microarray analysis validated by reverse transcription-quantitative polymerase chain reaction revealed a significant decrease in Kcc2 mRNA in the granule cell layer 7 days post-lesion. In contrast, Nkcc1 mRNA was upregulated in the oml/mml at this time point. Immunostaining revealed a selective reduction in KCC2 protein expression in the denervated dendrites of granule cells and an increase in NKCC1 expression in reactive astrocytes in the oml/mml. The NKCC1 upregulation is likely related to the increased activity of astrocytes and/or microglia in the deafferented region, while the transient KCC2 downregulation in granule cells may be associated with denervation-induced spine loss, potentially also serving a homeostatic role via boosting GABAergic depolarization. Furthermore, the delayed KCC2 recovery might be involved in the subsequent compensatory spinogenesis.
Collapse
Affiliation(s)
- Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Mandy H. Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Jessica Schlaudraff
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Fran Bozic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Vuksic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
22
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.27.23289040. [PMID: 37163093 PMCID: PMC10168485 DOI: 10.1101/2023.04.27.23289040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| | | | | | | | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | | | - Judy R Dubno
- The Medical University of South Carolina, SC, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| |
Collapse
|
23
|
Strepay D, Olszewski R, Taukulis I, Johns JD, Gu S, Hoa M. Dissection of Adult Mouse Stria Vascularis for Single-Nucleus Sequencing or Immunostaining. J Vis Exp 2023:10.3791/65254. [PMID: 37154552 PMCID: PMC10443831 DOI: 10.3791/65254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Endocochlear potential, which is generated by the stria vascularis, is essential to maintain an environment conducive to appropriate hair cell mechanotransduction and ultimately hearing. Pathologies of the stria vascularis can result in a decreased hearing. Dissection of the adult stria vascularis allows for focused single-nucleus capture and subsequent single-nucleus sequencing and immunostaining. These techniques are used to study stria vascularis pathophysiology at the single-cell level. Single-nucleus sequencing can be used in the setting of transcriptional analysis of the stria vascularis. Meanwhile, immunostaining continues to be useful in identifying specific populations of cells. Both methods require proper stria vascularis dissection as a prerequisite, which can prove to be technically challenging.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Ian Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - J Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health;
| |
Collapse
|
24
|
Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, Sun S, He X, Wang Q, Ji Z, Cheng F, Yan K, Liu Z, Belmonte JCI, Qu J, Wang S, Chai R, Liu GH. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 2023; 14:180-201. [PMID: 36933008 PMCID: PMC10098046 DOI: 10.1093/procel/pwac058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Collapse
Affiliation(s)
- Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ziyi Liu
- Shandong Provincial Hospital and School of Laboratory Animal Science, Shandong First Medical University, Jinan 250000, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
25
|
Butto T, Mungikar K, Baumann P, Winter J, Lutz B, Gerber S. Nuclei on the Rise: When Nuclei-Based Methods Meet Next-Generation Sequencing. Cells 2023; 12:cells12071051. [PMID: 37048124 PMCID: PMC10093037 DOI: 10.3390/cells12071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decade, we have witnessed an upsurge in nuclei-based studies, particularly coupled with next-generation sequencing. Such studies aim at understanding the molecular states that exist in heterogeneous cell populations by applying increasingly more affordable sequencing approaches, in addition to optimized methodologies developed to isolate and select nuclei. Although these powerful new methods promise unprecedented insights, it is important to understand and critically consider the associated challenges. Here, we provide a comprehensive overview of the rise of nuclei-based studies and elaborate on their advantages and disadvantages, with a specific focus on their utility for transcriptomic sequencing analyses. Improved designs and appropriate use of the various experimental strategies will result in acquiring biologically accurate and meaningful information.
Collapse
Affiliation(s)
- Tamer Butto
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center Mainz, 55128 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| |
Collapse
|
26
|
Arambula AM, Gu S, Warnecke A, Schmitt HA, Staecker H, Hoa M. In Silico Localization of Perilymph Proteins Enriched in Meńier̀e Disease Using Mammalian Cochlear Single-cell Transcriptomics. OTOLOGY & NEUROTOLOGY OPEN 2023; 3:e027. [PMID: 38516320 PMCID: PMC10950140 DOI: 10.1097/ono.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Proteins enriched in the perilymph proteome of Meńier̀e disease (MD) patients may identify affected cell types. Utilizing single-cell transcriptome datasets from the mammalian cochlea, we hypothesize that these enriched perilymph proteins can be localized to specific cochlear cell types. Background The limited understanding of human inner ear pathologies and their associated biomolecular variations hinder efforts to develop disease-specific diagnostics and therapeutics. Perilymph sampling and analysis is now enabling further characterization of the cochlear microenvironment. Recently, enriched inner ear protein expression has been demonstrated in patients with MD compared to patients with other inner ear diseases. Localizing expression of these proteins to cochlear cell types can further our knowledge of potential disease pathways and subsequent development of targeted therapeutics. Methods We compiled previously published data regarding differential perilymph proteome profiles amongst patients with MD, otosclerosis, enlarged vestibular aqueduct, sudden hearing loss, and hearing loss of undefined etiology (controls). Enriched proteins in MD were cross-referenced against published single-cell/single-nucleus RNA-sequencing datasets to localize gene expression to specific cochlear cell types. Results In silico analysis of single-cell transcriptomic datasets demonstrates enrichment of a unique group of perilymph proteins associated with MD in a variety of intracochlear cells, and some exogeneous hematologic and immune effector cells. This suggests that these cell types may play an important role in the pathology associated with late MD, suggesting potential future areas of investigation for MD pathophysiology and treatment. Conclusions Perilymph proteins enriched in MD are expressed by specific cochlear cell types based on in silico localization, potentially facilitating development of disease-specific diagnostic markers and therapeutics.
Collapse
Affiliation(s)
- Alexandra M. Arambula
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Athanasia Warnecke
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Heike A. Schmitt
- Department of Otolaryngology and Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
27
|
Johns JD, Adadey SM, Hoa M. The role of the stria vascularis in neglected otologic disease. Hear Res 2023; 428:108682. [PMID: 36584545 PMCID: PMC9840708 DOI: 10.1016/j.heares.2022.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The stria vascularis (SV) has been shown to play a critical role in the pathogenesis of many diseases associated with sensorineural hearing loss (SNHL), including age-related hearing loss (ARHL), noise-induced hearing loss (NIHL), hereditary hearing loss (HHL), and drug-induced hearing loss (DIHL), among others. There are a number of other disorders of hearing loss that may be relatively neglected due to being underrecognized, poorly understood, lacking robust diagnostic criteria or effective treatments. A few examples of these diseases include autoimmune inner ear disease (AIED) and/or autoinflammatory inner ear disease (AID), Meniere's disease (MD), sudden sensorineural hearing loss (SSNHL), and cytomegalovirus (CMV)-related hearing loss (CRHL). Although these diseases may often differ in etiology, there have been recent studies that support the involvement of the SV in the pathogenesis of many of these disorders. We strive to highlight a few prominent examples of these frequently neglected otologic diseases and illustrate the relevance of understanding SV composition, structure and function with regards to these disease processes. In this study, we review the physiology of the SV, lay out the importance of these neglected otologic diseases, highlight the current literature regarding the role of the SV in these disorders, and discuss the current strategies, both approved and investigational, for management of these disorders.
Collapse
Affiliation(s)
- J Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| | - Samuel M Adadey
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University School of Medicine, Washington, DC, USA; Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Chen YS, Cabrera E, Tucker BJ, Shin TJ, Moawad JV, Totten DJ, Booth KT, Nelson RF. TMPRSS3 expression is limited in spiral ganglion neurons: implication for successful cochlear implantation. J Med Genet 2022; 59:1219-1226. [PMID: 35961784 DOI: 10.1136/jmg-2022-108654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND It is well established that biallelic mutations in transmembrane protease, serine 3 (TMPRSS3) cause hearing loss. Currently, there is controversy regarding the audiological outcomes after cochlear implantation (CI) for TMPRSS3-associated hearing loss. This controversy creates confusion among healthcare providers regarding the best treatment options for individuals with TMPRSS3-related hearing loss. METHODS A literature review was performed to identify all published cases of patients with TMPRSS3-associated hearing loss who received a CI. CI outcomes of this cohort were compared with published adult CI cohorts using postoperative consonant-nucleus-consonant (CNC) word performance. TMPRSS3 expression in mouse cochlea and human auditory nerves (HAN) was determined by using hybridisation chain reaction and single-cell RNA-sequencing analysis. RESULTS In aggregate, 27 patients (30 total CI ears) with TMPRSS3-associated hearing loss treated with CI, and 85% of patients reported favourable outcomes. Postoperative CNC word scores in patients with TMPRSS3-associated hearing loss were not significantly different than those seen in adult CI cohorts (8 studies). Robust Tmprss3 expression occurs throughout the mouse organ of Corti, the spindle and root cells of the lateral wall and faint staining within <5% of the HAN, representing type II spiral ganglion neurons. Adult HAN express negligible levels of TMPRSS3. CONCLUSION The clinical features after CI and physiological expression of TMPRSS3 suggest against a major role of TMPRSS3 in auditory neurons.
Collapse
Affiliation(s)
- Yuan-Siao Chen
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ernesto Cabrera
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brady J Tucker
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Timothy J Shin
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jasmine V Moawad
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Douglas J Totten
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kevin T Booth
- Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
29
|
Szeto IYY, Chu DKH, Chen P, Chu KC, Au TYK, Leung KKH, Huang YH, Wynn SL, Mak ACY, Chan YS, Chan WY, Jauch R, Fritzsch B, Sham MH, Lovell-Badge R, Cheah KSE. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2122121119. [PMID: 36343245 PMCID: PMC9674217 DOI: 10.1073/pnas.2122121119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/10/2022] [Indexed: 11/09/2022] Open
Abstract
The in vivo mechanisms underlying dominant syndromes caused by mutations in SRY-Box Transcription Factor 9 (SOX9) and SOX10 (SOXE) transcription factors, when they either are expressed alone or are coexpressed, are ill-defined. We created a mouse model for the campomelic dysplasia SOX9Y440X mutation, which truncates the transactivation domain but leaves DNA binding and dimerization intact. Here, we find that SOX9Y440X causes deafness via distinct mechanisms in the endolymphatic sac (ES)/duct and cochlea. By contrast, conditional heterozygous Sox9-null mice are normal. During the ES development of Sox9Y440X/+ heterozygotes, Sox10 and genes important for ionic homeostasis are down-regulated, and there is developmental persistence of progenitors, resulting in fewer mature cells. Sox10 heterozygous null mutants also display persistence of ES/duct progenitors. By contrast, SOX10 retains its expression in the early Sox9Y440X/+ mutant cochlea. Later, in the postnatal stria vascularis, dominant interference by SOX9Y440X is implicated in impairing the normal cooperation of SOX9 and SOX10 in repressing the expression of the water channel Aquaporin 3, thereby contributing to endolymphatic hydrops. Our study shows that for a functioning endolymphatic system in the inner ear, SOX9 regulates Sox10, and depending on the cell type and target gene, it works either independently of or cooperatively with SOX10. SOX9Y440X can interfere with the activity of both SOXE factors, exerting effects that can be classified as haploinsufficient/hypomorphic or dominant negative depending on the cell/gene context. This model of disruption of transcription factor partnerships may be applicable to congenital deafness, which affects ∼0.3% of newborns, and other syndromic disorders.
Collapse
Affiliation(s)
- Irene Y. Y. Szeto
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Daniel K. H. Chu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ka Chi Chu
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Tiffany Y. K. Au
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Keith K. H. Leung
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Yong-Heng Huang
- Genome Regulation Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Sarah L. Wynn
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Angel C. Y. Mak
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ralf Jauch
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
- Genome Regulation Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bernd Fritzsch
- Department of Biology, College of Arts & Sciences, University of Iowa, Iowa City, IA 52242
- Department of Otolaryngology, College of Arts & Sciences, University of Iowa, Iowa City, IA 52242
| | - Mai Har Sham
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Kathryn S. E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| |
Collapse
|
30
|
Missner AA, Johns JD, Gu S, Hoa M. Repurposable Drugs That Interact with Steroid Responsive Gene Targets for Inner Ear Disease. Biomolecules 2022; 12:1641. [PMID: 36358991 PMCID: PMC9687275 DOI: 10.3390/biom12111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Corticosteroids, oral or transtympanic, remain the mainstay for inner ear diseases characterized by hearing fluctuation or sudden changes in hearing, including sudden sensorineural hearing loss (SSNHL), Meniere's disease (MD), and autoimmune inner ear disease (AIED). Despite their use across these diseases, the rate of complete recovery remains low, and results across the literature demonstrates significant heterogeneity with respect to the effect of corticosteroids, suggesting a need to identify more efficacious treatment options. Previously, our group has cross-referenced steroid-responsive genes in the cochlea with published single-cell and single-nucleus transcriptome datasets to demonstrate that steroid-responsive differentially regulated genes are expressed in spiral ganglion neurons (SGN) and stria vascularis (SV) cell types. These differentially regulated genes represent potential druggable gene targets. We utilized multiple gene target databases (DrugBank, Pharos, and LINCS) to identify orally administered, FDA approved medications that potentially target these genes. We identified 42 candidate drugs that have been shown to interact with these genes, with an emphasis on safety profile, and tolerability. This study utilizes multiple databases to identify drugs that can target a number of druggable genes in otologic disorders that are commonly treated with steroids, providing a basis for establishing novel repurposing treatment trials.
Collapse
Affiliation(s)
| | - James Dixon Johns
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20007, USA
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Xu Z, Tu S, Pass C, Zhang Y, Liu H, Diers J, Fu Y, He DZZ, Zuo J. Profiling mouse cochlear cell maturation using 10× Genomics single-cell transcriptomics. Front Cell Neurosci 2022; 16:962106. [PMID: 36060279 PMCID: PMC9434313 DOI: 10.3389/fncel.2022.962106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Juvenile and mature mouse cochleae contain various low-abundant, vulnerable sensory epithelial cells embedded in the calcified temporal bone, making it challenging to profile the dynamic transcriptome changes of these cells during maturation at the single-cell level. Here we performed the 10x Genomics single-cell RNA sequencing (scRNA-seq) of mouse cochleae at postnatal days 14 (P14) and 28. We attained the transcriptomes of multiple cell types, including hair cells, supporting cells, spiral ganglia, stria fibrocytes, and immune cells. Our hair cell scRNA-seq datasets are consistent with published transcripts from bulk RNA-seq. We also mapped known deafness genes to corresponding cochlear cell types. Importantly, pseudotime trajectory analysis revealed that inner hair cell maturation peaks at P14 while outer hair cells continue development until P28. We further identified and confirmed a long non-coding RNA gene Miat to be expressed during maturation in cochlear hair cells and spiral ganglia neurons, and Pcp4 to be expressed during maturation in cochlear hair cells. Our transcriptomes of juvenile and mature mouse cochlear cells provide the sequel to those previously published at late embryonic and early postnatal ages and will be valuable resources to investigate cochlear maturation at the single-cell resolution.
Collapse
Affiliation(s)
- Zhenhang Xu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Shu Tu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Caroline Pass
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yan Zhang
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Jack Diers
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Yusi Fu
- Lynch Comprehensive Cancer Research Center, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z. Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
- *Correspondence: Jian Zuo,
| |
Collapse
|
33
|
Lewis MA, Schulte BA, Dubno JR, Steel KP. Investigating the characteristics of genes and variants associated with self-reported hearing difficulty in older adults in the UK Biobank. BMC Biol 2022; 20:150. [PMID: 35761239 PMCID: PMC9238072 DOI: 10.1186/s12915-022-01349-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Age-related hearing loss is a common, heterogeneous disease with a strong genetic component. More than 100 loci have been reported to be involved in human hearing impairment to date, but most of the genes underlying human adult-onset hearing loss remain unknown. Most genetic studies have focussed on very rare variants (such as family studies and patient cohort screens) or very common variants (genome-wide association studies). However, the contribution of variants present in the human population at intermediate frequencies is hard to quantify using these methods, and as a result, the landscape of variation associated with adult-onset hearing loss remains largely unknown. RESULTS Here we present a study based on exome sequencing and self-reported hearing difficulty in the UK Biobank, a large-scale biomedical database. We have carried out variant load analyses using different minor allele frequency and impact filters, and compared the resulting gene lists to a manually curated list of nearly 700 genes known to be involved in hearing in humans and/or mice. An allele frequency cutoff of 0.1, combined with a high predicted variant impact, was found to be the most effective filter setting for our analysis. We also found that separating the participants by sex produced markedly different gene lists. The gene lists obtained were investigated using gene ontology annotation, functional prioritisation and expression analysis, and this identified good candidates for further study. CONCLUSIONS Our results suggest that relatively common as well as rare variants with a high predicted impact contribute to age-related hearing impairment and that the genetic contributions to adult hearing difficulty may differ between the sexes. Our manually curated list of deafness genes is a useful resource for candidate gene prioritisation in hearing loss.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK.
| | | | - Judy R Dubno
- The Medical University of South Carolina, Charleston, SC, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| |
Collapse
|
34
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
35
|
Keithley EM. Inner ear immunity. Hear Res 2022; 419:108518. [DOI: 10.1016/j.heares.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
36
|
Hertzano R, Mahurkar A. Advancing discovery in hearing research via biologist-friendly access to multi-omic data. Hum Genet 2022; 141:319-322. [PMID: 35235019 PMCID: PMC9034999 DOI: 10.1007/s00439-022-02445-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023]
Abstract
High-throughput cell type-specific multi-omic analyses have advanced our understanding of inner ear biology in an unprecedented way. The full benefit of these data, however, is reached from their re-use. Successful re-use of data requires identifying the natural users and ensuring proper data democratization and federation for their seamless and meaningful access. Here we discuss universal challenges in access and re-use of multi-omic data, possible solutions, and introduce the gEAR (the gene Expression Analysis Resource, umgear.org)-a tool for multi-omic data visualization, sharing and access for the ear field.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
37
|
Liu W, Rask-Andersen H. Na/K-ATPase Gene Expression in the Human Cochlea: A Study Using mRNA in situ Hybridization and Super-Resolution Structured Illumination Microscopy. Front Mol Neurosci 2022; 15:857216. [PMID: 35431803 PMCID: PMC9009265 DOI: 10.3389/fnmol.2022.857216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background The pervasive Na/K-ATPase pump is highly expressed in the human cochlea and is involved in the generation of the endocochlear potential as well as auditory nerve signaling and relay. Its distribution, molecular organization and gene regulation are essential to establish to better understand inner ear function and disease. Here, we analyzed the expression and distribution of the ATP1A1, ATP1B1, and ATP1A3 gene transcripts encoding the Na/K-ATPase α1, α3, and β1 isoforms in different domains of the human cochlea using RNA in situ hybridization. Materials and Methods Archival paraformaldehyde-fixed sections derived from surgically obtained human cochleae were used to label single mRNA gene transcripts using the highly sensitive multiplex RNAscope® technique. Localization of gene transcripts was performed by super-resolution structured illumination microscopy (SR-SIM) using fluorescent-tagged probes. GJB6 encoding of the protein connexin30 served as an additional control. Results Single mRNA gene transcripts were seen as brightly stained puncta. Positive and negative controls verified the specificity of the labeling. ATP1A1 and ATP1B1 gene transcripts were demonstrated in the organ of Corti, including the hair and supporting cells. In the stria vascularis, these transcripts were solely expressed in the marginal cells. A large number of ATP1B1 gene transcripts were found in the spiral ganglion cell soma, outer sulcus, root cells, and type II fibrocytes. The ATP1B1 and ATP1A3 gene transcripts were rarely detected in axons. Discussion Surgically obtained inner ear tissue can be used to identify single mRNA gene transcripts using high-resolution fluorescence microscopy after prompt formaldehyde fixation and chelate decalcification. A large number of Na/K-ATPase gene transcripts were localized in selected areas of the cochlear wall epithelium, fibrocyte networks, and spiral ganglion, confirming the enzyme’s essential role for human cochlear function.
Collapse
|
38
|
Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. Cell Rep 2022; 38:110542. [PMID: 35320729 DOI: 10.1016/j.celrep.2022.110542] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Inner ear vestibular and spiral ganglion neurons (VGNs and SGNs) are known to play pivotal roles in balance control and sound detection. However, the molecular mechanisms underlying otic neurogenesis at early embryonic ages have remained unclear. Here, we use single-cell RNA sequencing to reveal the transcriptomes of mouse otic tissues at three embryonic ages, embryonic day 9.5 (E9.5), E11.5, and E13.5, covering proliferating and undifferentiated otic neuroblasts and differentiating VGNs and SGNs. We validate the high quality of our studies by using multiple assays, including genetic fate mapping analysis, and we uncover several genes upregulated in neuroblasts or differentiating VGNs and SGNs, such as Shox2, Myt1, Casz1, and Sall3. Notably, our findings suggest a general cascaded differentiation trajectory during early otic neurogenesis. The comprehensive understanding of early otic neurogenesis provided by our study holds critical implications for both basic and translational research.
Collapse
|
39
|
Lewis MA, Ingham NJ, Chen J, Pearson S, Di Domenico F, Rekhi S, Allen R, Drake M, Willaert A, Rook V, Pass J, Keane T, Adams DJ, Tucker AS, White JK, Steel KP. Identification and characterisation of spontaneous mutations causing deafness from a targeted knockout programme. BMC Biol 2022; 20:67. [PMID: 35296311 PMCID: PMC8928630 DOI: 10.1186/s12915-022-01257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mice carrying targeted mutations are important for investigating gene function and the role of genes in disease, but off-target mutagenic effects associated with the processes of generating targeted alleles, for instance using Crispr, and culturing embryonic stem cells, offer opportunities for spontaneous mutations to arise. Identifying spontaneous mutations relies on the detection of phenotypes segregating independently of targeted alleles, and having a broad estimate of the level of mutations generated by intensive breeding programmes is difficult given that many phenotypes are easy to miss if not specifically looked for. Here we present data from a large, targeted knockout programme in which mice were analysed through a phenotyping pipeline. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. Results Twenty-five lines out of 1311 displayed different deafness phenotypes that did not segregate with the targeted allele. We observed a variety of phenotypes by Auditory Brainstem Response (ABR) and behavioural assessment and isolated eight lines showing early-onset severe progressive hearing loss, later-onset progressive hearing loss, low frequency hearing loss, or complete deafness, with vestibular dysfunction. The causative mutations identified include deletions, insertions, and point mutations, some of which involve new genes not previously associated with deafness while others are new alleles of genes known to underlie hearing loss. Two of the latter show a phenotype much reduced in severity compared to other mutant alleles of the same gene. We investigated the ES cells from which these lines were derived and determined that only one of the 8 mutations could have arisen in the ES cell, and in that case, only after targeting. Instead, most of the non-segregating mutations appear to have occurred during breeding of mutant mice. In one case, the mutation arose within the wildtype colony used for expanding mutant lines. Conclusions Our data show that spontaneous mutations with observable effects on phenotype are a common side effect of intensive breeding programmes, including those underlying targeted mutation programmes. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01257-8.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England. .,Wellcome Sanger Institute, Hinxton, CB10 1SA, England.
| | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | | | - Francesca Di Domenico
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Sohinder Rekhi
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Rochelle Allen
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Matthew Drake
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Annelore Willaert
- Research Group of Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Victoria Rook
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England
| | - Johanna Pass
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Thomas Keane
- Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, England
| | | | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, England.,Wellcome Sanger Institute, Hinxton, CB10 1SA, England
| |
Collapse
|
40
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Li M, Min Q, Banton MC, Dun X. Single-Cell Regulatory Network Inference and Clustering Identifies Cell-Type Specific Expression Pattern of Transcription Factors in Mouse Sciatic Nerve. Front Cell Neurosci 2021; 15:676515. [PMID: 34955748 PMCID: PMC8693779 DOI: 10.3389/fncel.2021.676515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in single-cell RNA sequencing technologies and bioinformatics methods allow for both the identification of cell types in a complex tissue and the large-scale gene expression profiling of various cell types in a mixture. In this report, we analyzed a single-cell RNA sequencing (scRNA-seq) dataset for the intact adult mouse sciatic nerve and examined cell-type specific transcription factor expression and activity during peripheral nerve homeostasis. In total, we identified 238 transcription factors expressed in nine different cell types of intact mouse sciatic nerve. Vascular smooth muscle cells have the lowest number of transcription factors expressed with 17 transcription factors identified. Myelinating Schwann cells (mSCs) have the highest number of transcription factors expressed, with 61 transcription factors identified. We created a cell-type specific expression map for the identified 238 transcription factors. Our results not only provide valuable information about the expression pattern of transcription factors in different cell types of adult peripheral nerves but also facilitate future studies to understand the function of key transcription factors in the peripheral nerve homeostasis and disease.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Matthew C Banton
- School of Biomedical Science, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xinpeng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
42
|
Spankovich C, Walters BJ. Mild Therapeutic Hypothermia and Putative Mechanisms of Hair Cell Survival in the Cochlea. Antioxid Redox Signal 2021; 36:1203-1214. [PMID: 34619988 PMCID: PMC9221161 DOI: 10.1089/ars.2021.0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
Significance: Sensorineural hearing loss has significant implications for quality of life and risk for comorbidities such as cognitive decline. Noise and ototoxic drugs represent two common risk factors for acquired hearing loss that are potentially preventable. Recent Advances: Numerous otoprotection strategies have been postulated over the past four decades with primary targets of upstream redox pathways. More recently, the application of mild therapeutic hypothermia (TH) has shown promise for otoprotection for multiple forms of acquired hearing loss. Critical Issues: Systemic antioxidant therapy may have limited application for certain ototoxic drugs with a therapeutic effect on redox pathways and diminished efficacy of the primary drug's therapeutic function (e.g., cisplatin for tumors). Future Directions: Mild TH likely targets multiple mechanisms, contributing to otoprotection, including slowed metabolics, reduced oxidative stress, and involvement of cold shock proteins. Further work is needed to identify the mechanisms of mild TH at play for various forms of acquired hearing loss.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Bradley J. Walters
- Department of Otolaryngology-Head and Neck Surgery and University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
43
|
Nelson L, Johns JD, Gu S, Hoa M. Utilizing Single Cell RNA-Sequencing to Implicate Cell Types and Therapeutic Targets for SSNHL in the Adult Cochlea. Otol Neurotol 2021; 42:e1410-e1421. [PMID: 34510123 PMCID: PMC8595752 DOI: 10.1097/mao.0000000000003356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify genes implicated in sudden sensorineural hearing loss (SSNHL) and localize their expression in the cochlea to further explore potential pathogenic mechanisms and therapeutic targets. STUDY DESIGN Systematic literature review and bioinformatics analysis. DATA SOURCES The following sources were searched from inception through July 2, 2020: PubMed-NCBI, MEDLINE, Embase, CINAHL, Cochrane Library, ClinicalTrials.gov, OpenGrey, GreyNet, GreyLiterature Report, and European Union Clinical Trials Registry. PubMed-NCBI and MEDLINE were additionally searched for human temporal bone histopathologic studies related to SSNHL. METHODS Literature review of candidate SSNHL genes was conducted according to PRISMA guidelines. Existing temporal bone studies from SSNHL patients were analyzed to identify the most commonly affected inner ear structures. Previously published single-cell and single-nucleus RNA-Seq datasets of the adult mouse stria vascularis, as well as postnatal day 7 and 15 mouse cochlear hair cells and supporting cells, were utilized for localization of the SSNHL-related genes curated through literature review. CONCLUSIONS We report 92 unique single nucleotide polymorphisms (SNPs) in 76 different genes that have been investigated in relation to SSNHL in the literature. We demonstrate that a subset of these genes are expressed by cell types in the adult mouse stria vascularis and organ of Corti, consistent with findings from temporal bone studies in human subjects with SSNHL. We highlight several potential genetic targets relevant to current and possible future SSNHL treatments.
Collapse
Affiliation(s)
- Lacey Nelson
- Georgetown University School of Medicine, Washington, D.C
| | - J. Dixon Johns
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Michael Hoa
- Department of Otolaryngology–Head and Neck Surgery, Georgetown University Medical Center, Washington, DC
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| |
Collapse
|
44
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL, Sperber M, Sellon JB, Sarlus H, Pregernig G, Shuster B, Song Y, Mitra S, Orvis J, Margulies Z, Ogawa Y, Shults C, Depireux DA, Palermo AT, Canlon B, Burns J, Elkon R, Hertzano R. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 2021; 36:109758. [PMID: 34592158 PMCID: PMC8709734 DOI: 10.1016/j.celrep.2021.109758] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 01/26/2023] Open
Abstract
Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.
Collapse
Affiliation(s)
- Beatrice Milon
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eldad D Shulman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kathy S So
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Christopher R Cederroth
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Heela Sarlus
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden; Applied Immunology & Immunotherapy, Neuroimmunology Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Benjamin Shuster
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunayana Mitra
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Margulies
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yoko Ogawa
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher Shults
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Barbara Canlon
- Laboratory of Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Joe Burns
- Decibel Therapeutics, Boston, MA 02215, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Taukulis IA, Olszewski RT, Korrapati S, Fernandez KA, Boger ET, Fitzgerald TS, Morell RJ, Cunningham LL, Hoa M. Single-Cell RNA-Seq of Cisplatin-Treated Adult Stria Vascularis Identifies Cell Type-Specific Regulatory Networks and Novel Therapeutic Gene Targets. Front Mol Neurosci 2021; 14:718241. [PMID: 34566577 PMCID: PMC8458580 DOI: 10.3389/fnmol.2021.718241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
The endocochlear potential (EP) generated by the stria vascularis (SV) is necessary for hair cell mechanotransduction in the mammalian cochlea. We sought to create a model of EP dysfunction for the purposes of transcriptional analysis and treatment testing. By administering a single dose of cisplatin, a commonly prescribed cancer treatment drug with ototoxic side effects, to the adult mouse, we acutely disrupt EP generation. By combining these data with single cell RNA-sequencing findings, we identify transcriptional changes induced by cisplatin exposure, and by extension transcriptional changes accompanying EP reduction, in the major cell types of the SV. We use these data to identify gene regulatory networks unique to cisplatin treated SV, as well as the differentially expressed and druggable gene targets within those networks. Our results reconstruct transcriptional responses that occur in gene expression on the cellular level while identifying possible targets for interventions not only in cisplatin ototoxicity but also in EP dysfunction.
Collapse
Affiliation(s)
- Ian A. Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal T. Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Katharine A. Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Erich T. Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Tracy S. Fitzgerald
- Mouse Auditory Testing Core Facility, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
48
|
Basile G, Kahraman S, Dirice E, Pan H, Dreyfuss JM, Kulkarni RN. Using single-nucleus RNA-sequencing to interrogate transcriptomic profiles of archived human pancreatic islets. Genome Med 2021; 13:128. [PMID: 34376240 PMCID: PMC8356387 DOI: 10.1186/s13073-021-00941-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/13/2021] [Indexed: 01/09/2023] Open
Abstract
Background Human pancreatic islets are a central focus of research in metabolic studies. Transcriptomics is frequently used to interrogate alterations in cultured human islet cells using single-cell RNA-sequencing (scRNA-seq). We introduce single-nucleus RNA-sequencing (snRNA-seq) as an alternative approach for investigating transplanted human islets. Methods The Nuclei EZ protocol was used to obtain nuclear preparations from fresh and frozen human islet cells. Such preparations were first used to generate snRNA-seq datasets and compared to scRNA-seq output obtained from cells from the same donor. Finally, we employed snRNA-seq to obtain the transcriptomic profile of archived human islets engrafted in immunodeficient animals. Results We observed virtually complete concordance in identifying cell types and gene proportions as well as a strong association of global and islet cell type gene signatures between scRNA-seq and snRNA-seq applied to fresh and frozen cultured or transplanted human islet samples. Conclusions We propose snRNA-seq as a reliable strategy to probe transcriptomic profiles of freshly harvested or frozen sources of transplanted human islet cells especially when scRNA-seq is not ideal. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00941-8.
Collapse
Affiliation(s)
- Giorgio Basile
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sevim Kahraman
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA.,Current Address: Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, 10595, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Hum Genet 2021; 141:347-362. [PMID: 34342719 PMCID: PMC9035009 DOI: 10.1007/s00439-021-02325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022]
Abstract
Sensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.
Collapse
|
50
|
Feregrino C, Tschopp P. Assessing evolutionary and developmental transcriptome dynamics in homologous cell types. Dev Dyn 2021; 251:1472-1489. [PMID: 34114716 PMCID: PMC9545966 DOI: 10.1002/dvdy.384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background During development, complex organ patterns emerge through the precise temporal and spatial specification of different cell types. On an evolutionary timescale, these patterns can change, resulting in morphological diversification. It is generally believed that homologous anatomical structures are built—largely—by homologous cell types. However, whether a common evolutionary origin of such cell types is always reflected in the conservation of their intrinsic transcriptional specification programs is less clear. Results Here, we developed a user‐friendly bioinformatics workflow to detect gene co‐expression modules and test for their conservation across developmental stages and species boundaries. Using a paradigm of morphological diversification, the tetrapod limb, and single‐cell RNA‐sequencing data from two distantly related species, chicken and mouse, we assessed the transcriptional dynamics of homologous cell types during embryonic patterning. With mouse limb data as reference, we identified 19 gene co‐expression modules with varying tissue or cell type‐restricted activities. Testing for co‐expression conservation revealed modules with high evolutionary turnover, while others seemed maintained—to different degrees, in module make‐up, density or connectivity—over developmental and evolutionary timescales. Conclusions We present an approach to identify evolutionary and developmental dynamics in gene co‐expression modules during patterning‐relevant stages of homologous cell type specification using single‐cell RNA‐sequencing data. We present an approach to identify evolutionary and developmental dynamics in gene co‐expression modules during patterning‐relevant stages of homologous cell type specification using single‐cell RNA‐sequencing data.
Collapse
Affiliation(s)
- Christian Feregrino
- DUW Zoology, University of Basel, Basel, Switzerland.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany. Hannoversche Str. 28, Berlin, Germany
| | | |
Collapse
|