1
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. Nat Commun 2024; 15:8336. [PMID: 39333151 PMCID: PMC11437063 DOI: 10.1038/s41467-024-52664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
Affiliation(s)
- Sudiksha Sridhar
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Howard J Gritton
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer Freire
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Pharmacology, Boston University, Boston, MA, USA
| | - Chengqian Zhou
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Florence Liang
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xue Han
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602408. [PMID: 39026712 PMCID: PMC11257482 DOI: 10.1101/2024.07.07.602408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
|
3
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity during expression of goal-directed vs. habit-like cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2024; 11:100149. [PMID: 38957402 PMCID: PMC11218864 DOI: 10.1016/j.addicn.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking that is goal-directed but not habit-like. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry in rats trained to self-administer cocaine paired with an audiovisual cue to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habit-like cue-induced cocaine seeking and how it is impacted by cue extinction. After minimal fixed-ratio training, rats showed enhanced DMS and DLS calcium responses to cue-reinforced compared to unreinforced lever presses. After rats were trained on goal-promoting fixed ratio schedules or habit-promoting second-order schedules of reinforcement, different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses emerged. Rats trained on habit-promoting second-order schedules showed reduced DMS calcium responses and enhanced DLS dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habit-like behavior and the DLS are unaffected.
Collapse
Affiliation(s)
- Brooke N. Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Sierra J. Stringfield
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Mary M. Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15213, United States
| |
Collapse
|
4
|
Yin Y, Haggerty DL, Zhou S, Atwood BK, Sheets PL. Converging Effects of Chronic Pain and Binge Alcohol Consumption on Anterior Insular Cortex Neurons Projecting to the Dorsolateral Striatum in Male Mice. J Neurosci 2024; 44:e1287232024. [PMID: 38453466 PMCID: PMC11026341 DOI: 10.1523/jneurosci.1287-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.
Collapse
Affiliation(s)
- Yuexi Yin
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David L Haggerty
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shudi Zhou
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brady K Atwood
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Patrick L Sheets
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
5
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586152. [PMID: 38585753 PMCID: PMC10996534 DOI: 10.1101/2024.03.21.586152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J. Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Sofia E. Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Arlene J. George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
6
|
Gonzalo-Martín E, Alonso-Martínez C, Sepúlveda LP, Clasca F. Micropopulation mapping of the mouse parafascicular nucleus connections reveals diverse input-output motifs. Front Neuroanat 2024; 17:1305500. [PMID: 38260117 PMCID: PMC10800635 DOI: 10.3389/fnana.2023.1305500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction In primates, including humans, the centromedian/parafascicular (CM-Pf) complex is a key thalamic node of the basal ganglia system. Deep brain stimulation in CM-Pf has been applied for the treatment of motor disorders such as Parkinson's disease or Tourette syndrome. Rodents have become widely used models for the study of the cellular and genetic mechanisms of these and other motor disorders. However, the equivalence between the primate CM-Pf and the nucleus regarded as analogous in rodents (Parafascicular, Pf) remains unclear. Methods Here, we analyzed the neurochemical architecture and carried out a brain-wide mapping of the input-output motifs in the mouse Pf at micropopulation level using anterograde and retrograde labeling methods. Specifically, we mapped and quantified the sources of cortical and subcortical input to different Pf subregions, and mapped and compared the distribution and terminal structure of their axons. Results We found that projections to Pf arise predominantly (>75%) from the cerebral cortex, with an unusually strong (>45%) Layer 5b component, which is, in part, contralateral. The intermediate layers of the superior colliculus are the main subcortical input source to Pf. On its output side, Pf neuron axons predominantly innervate the striatum. In a sparser fashion, they innervate other basal ganglia nuclei, including the subthalamic nucleus (STN), and the cerebral cortex. Differences are evident between the lateral and medial portions of Pf, both in chemoarchitecture and in connectivity. Lateral Pf axons innervate territories of the striatum, STN and cortex involved in the sensorimotor control of different parts of the contralateral hemibody. In contrast, the mediodorsal portion of Pf innervates oculomotor-limbic territories in the above three structures. Discussion Our data thus indicate that the mouse Pf consists of several neurochemically and connectively distinct domains whose global organization bears a marked similarity to that described in the primate CM-Pf complex.
Collapse
Affiliation(s)
| | | | | | - Francisco Clasca
- Department of Anatomy and Neuroscience, Autónoma de Madrid University, Madrid, Spain
| |
Collapse
|
7
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
8
|
Zhu J, Jiao Y, Chen R, Wang XH, Han Y. Aberrant dynamic and static functional connectivity of the striatum across specific low-frequency bands in patients with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111749. [PMID: 37977097 DOI: 10.1016/j.pscychresns.2023.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Dysfunctions of the striatum have been repeatedly observed in autism spectrum disorder (ASD). However, previous studies have explored the static functional connectivity (sFC) of the striatum in a single frequency band, ignoring the dynamics and frequency specificity of brain FC. Therefore, we investigated the dynamic FC (dFC) and sFC of the striatum in the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) frequency bands. METHODS Data of 47 ASD patients and 47 typically developing (TD) controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. A seed-based approach was used to compute the dFC and sFC. Then, a two-sample t-test was performed. For regions showing abnormal sFC and dFC, we performed clinical correlation analysis and constructed support vector machine (SVM) models. RESULTS The middle frontal gyrus (MFG), precuneus, and medial superior frontal gyrus (mPFC) showed both dynamic and static alterations. The reduced striatal dFC in the right MFG was associated with autism symptoms. The dynamic‒static FC model had a great performance in ASD classification, with 95.83 % accuracy. CONCLUSIONS The striatal dFC and sFC were altered in ASD, which were frequency specific. Examining brain activity using dynamic and static FC provides a comprehensive view of brain activity.
Collapse
Affiliation(s)
- Junsa Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Ran Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunyan Han
- Public Health School of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
9
|
Srinivasan A, Srinivasan A, Riceberg JS, Goodman MR, Guise KG, Shapiro ML. Hippocampal and medial prefrontal ensemble spiking represents episodes and rules in similar task spaces. Cell Rep 2023; 42:113296. [PMID: 37858467 PMCID: PMC10842596 DOI: 10.1016/j.celrep.2023.113296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Episodic memory requires the hippocampus and prefrontal cortex to guide decisions by representing events in spatial, temporal, and personal contexts. Both brain regions have been described by cognitive theories that represent events in context as locations in maps or memory spaces. We query whether ensemble spiking in these regions described spatial structures as rats performed memory tasks. From each ensemble, we construct a state-space with each point defined by the coordinated spiking of single and pairs of units in 125-ms bins and investigate how state-space locations discriminate task features. Trajectories through state-spaces correspond with behavioral episodes framed by spatial, temporal, and internal contexts. Both hippocampal and prefrontal ensembles distinguish maze locations, task intervals, and goals by distances between state-space locations, consistent with cognitive mapping and relational memory space theories of episodic memory. Prefrontal modulation of hippocampal activity may guide choices by directing memory representations toward appropriate state-space goal locations.
Collapse
Affiliation(s)
- Aditya Srinivasan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| | - Arvind Srinivasan
- College of Health Sciences, California Northstate University, Rancho Cordova, CA 95670, USA
| | - Justin S Riceberg
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY 10029, USA
| | - Michael R Goodman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Kevin G Guise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY 10029, USA
| | - Matthew L Shapiro
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
10
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
11
|
Klavinskis-Whiting S, Bitzenhofer S, Hanganu-Opatz I, Ellender T. Generation and propagation of bursts of activity in the developing basal ganglia. Cereb Cortex 2023; 33:10595-10613. [PMID: 37615347 PMCID: PMC10560579 DOI: 10.1093/cercor/bhad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
The neonatal brain is characterized by intermittent bursts of oscillatory activity interspersed by relative silence. Although well-characterized for many cortical areas, to what extent these propagate and interact with subcortical brain areas is largely unknown. Here, early network activity was recorded from the developing basal ganglia, including motor/somatosensory cortex, dorsal striatum, and intralaminar thalamus, during the first postnatal weeks in mice. An unsupervised detection and classification method revealed two main classes of bursting activity, namely spindle bursts and nested gamma spindle bursts, characterized by oscillatory activity at ~ 10 and ~ 30 Hz frequencies, respectively. These were reliably identified across all three brain regions and exhibited region-specific differences in their structural, spectral, and developmental characteristics. Bursts of the same type often co-occurred in different brain regions and coherence and cross-correlation analyses reveal dynamic developmental changes in their interactions. The strongest interactions were seen for cortex and striatum, from the first postnatal week onwards, and cortex appeared to drive burst events in subcortical regions. Together, these results provide the first detailed description of early network activity within the developing basal ganglia and suggest that cortex is one of the main drivers of activity in downstream nuclei during this postnatal period.
Collapse
Affiliation(s)
| | - Sebastian Bitzenhofer
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ileana Hanganu-Opatz
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX13QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
12
|
Bender BN, Stringfield SJ, Torregrossa MM. Changes in dorsomedial striatum activity mediate expression of goal-directed vs. habit-like cue-induced cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550364. [PMID: 37546826 PMCID: PMC10402009 DOI: 10.1101/2023.07.24.550364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A preclinical model of cue exposure therapy, cue extinction, reduces cue-induced cocaine seeking when drug seeking is goal-directed but not habitual. Goal-directed and habitual behaviors differentially rely on the dorsomedial striatum (DMS) and dorsolateral striatum (DLS), but the effects of cue extinction on dorsal striatal responses to cue-induced drug seeking are unknown. We used fiber photometry to examine how dorsal striatal intracellular calcium and extracellular dopamine activity differs between goal-directed and habitual cue-induced cocaine seeking and how it is impacted by cue extinction. Rats trained to self-administer cocaine paired with an audiovisual cue on schedules of reinforcement that promote goal-directed or habitual cocaine seeking had different patterns of dorsal striatal calcium and dopamine responses to cue-reinforced lever presses. Cue extinction reduced calcium and dopamine responses during subsequent drug seeking in the DMS, but not in the DLS. Therefore, cue extinction may reduce goal-directed behavior through its effects on the DMS, whereas habitual behavior and the DLS are unaffected.
Collapse
|
13
|
Benarroch E. What Is the Role of the Intralaminar Thalamic Input to the Striatum and Its Potential Implications in Parkinson Disease? Neurology 2023; 101:118-123. [PMID: 37460225 DOI: 10.1212/wnl.0000000000207610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 07/20/2023] Open
|
14
|
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the Granger causality analysis. Neuroimage Clin 2023; 37:103295. [PMID: 36549233 PMCID: PMC9795532 DOI: 10.1016/j.nicl.2022.103295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is the leading mental disorder and afflicts more than 350 million people worldwide. The underlying neural mechanisms of MDD remain unclear, hindering the accurate treatment. Recent brain imaging studies have observed functional abnormalities in multiple brain regions in patients with MDD, identifying core brain regions is the key to locating potential therapeutic targets for MDD. The Granger causality analysis (GCA) measures directional effects between brain regions and, therefore, can track causal hubs as potential intervention targets for MDD. We reviewed literature employing GCA to investigate abnormal brain connections in patients with MDD. The total degree of effective connections in the thalamus (THA) is more than twice that in traditional targets such as the superior frontal gyrus and anterior cingulate cortex. Altered causal connections in patients with MDD mainly included enhanced bottom-up connections from the thalamus to various cortical and subcortical regions and reduced top-down connections from these regions to the THA, indicating excessive uplink sensory information and insufficient downlink suppression information for negative emotions. We suggest that the thalamus is the most crucial causal hub for MDD, which may serve as the downstream target for non-invasive brain stimulation and medication approaches in MDD treatment.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Kunchen Xiao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
15
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Yoo T, Joshi S, Prajapati S, Cho YS, Kim J, Park PH, Bae YC, Kim E, Kim SY. A Deficiency of the Psychiatric Risk Gene DLG2/PSD-93 Causes Excitatory Synaptic Deficits in the Dorsolateral Striatum. Front Mol Neurosci 2022; 15:938590. [PMID: 35966008 PMCID: PMC9370999 DOI: 10.3389/fnmol.2022.938590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2–/– mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2–/– dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2–/– mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Shambhu Joshi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | | | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Soo Young Kim,
| |
Collapse
|
17
|
Smith JB, Smith Y, Venance L, Watson GDR. Editorial: Thalamic Interactions With the Basal Ganglia: Thalamostriatal System and Beyond. Front Syst Neurosci 2022; 16:883094. [PMID: 35401130 PMCID: PMC8991277 DOI: 10.3389/fnsys.2022.883094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jared B. Smith
- Target Discovery, REGENXBIO Inc., Rockville, MD, United States
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, GA, United States
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
- LivaNova, Neuromodulation Unit, Houston, TX, United States
- *Correspondence: Glenn D. R. Watson
| |
Collapse
|
18
|
La Terra D, Rosier M, Bjerre AS, Masuda R, Ryan TJ, Palmer LM. The role of higher order thalamus during learning and correct performance in goal-directed behavior. eLife 2022; 11:77177. [PMID: 35259091 PMCID: PMC8937217 DOI: 10.7554/elife.77177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The thalamus is a gateway to the cortex. Cortical encoding of complex behavior can therefore only be understood by considering the thalamic processing of sensory and internally generated information. Here, we use two-photon Ca2+ imaging and optogenetics to investigate the role of axonal projections from the posteromedial nucleus of the thalamus (POm) to the forepaw area of the mouse primary somatosensory cortex (forepaw S1). By recording the activity of POm axonal projections within forepaw S1 during expert and chance performance in two tactile goal-directed tasks, we demonstrate that POm axons increase activity in the response and, to a lesser extent, reward epochs specifically during correct HIT performance. When performing at chance level during learning of a new behavior, POm axonal activity was decreased to naive rates and did not correlate with task performance. However, once evoked, the Ca2+ transients were larger than during expert performance, suggesting POm input to S1 differentially encodes chance and expert performance. Furthermore, the POm influences goal-directed behavior, as photoinactivation of archaerhodopsin-expressing neurons in the POm decreased the learning rate and overall success in the behavioral task. Taken together, these findings expand the known roles of the higher-thalamic nuclei, illustrating the POm encodes and influences correct action during learning and performance in a sensory-based goal-directed behavior.
Collapse
Affiliation(s)
- Danilo La Terra
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Marius Rosier
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Ann-Sofie Bjerre
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Rei Masuda
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Lucy Maree Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Animal models of action control and cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:227-255. [PMID: 35248196 DOI: 10.1016/bs.pbr.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) has historically been considered a motor disorder induced by a loss of dopaminergic neurons in the substantia nigra pars compacta. More recently, it has been recognized to have significant non-motor symptoms, most prominently cognitive symptoms associated with a dysexecutive syndrome. It is common in the literature to see motor and cognitive symptoms treated separately and, indeed, there has been a general call for specialized treatment of the latter, particularly in the more severe cases of PD with mild cognitive impairment and dementia. Animal studies have similarly been developed to model the motor or non-motor symptoms. Nevertheless, considerable research has established that segregating consideration of cognition from the precursors to motor movement, particularly movement associated with goal-directed action, is difficult if not impossible. Indeed, on some contemporary views cognition is embodied in action control, something that is particularly prevalent in theory and evidence relating to the integration of goal-directed and habitual control processes. The current paper addresses these issues within the literature detailing animal models of cognitive dysfunction in PD and their neural and neurochemical bases. Generally, studies using animal models of PD provide some of the clearest evidence for the integration of these action control processes at multiple levels of analysis and imply that consideration of this integrative process may have significant benefits for developing new approaches to the treatment of PD.
Collapse
|
20
|
Time coding in rat dorsolateral striatum. Neuron 2021; 109:3663-3673.e6. [PMID: 34508666 DOI: 10.1016/j.neuron.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
To assess the role of dorsolateral striatum (DLS) in time coding, we recorded neuronal activity in rats tasked with comparing the durations of two sequential vibrations. Bayesian decoding of population activity revealed a representation of the unfolding of the trial across time. However, further analyses demonstrated a distinction between the encoding of trial time and perceived time. First, DLS did not show a privileged representation of the stimulus durations compared with other time spans. Second, higher intensity vibrations were perceived as longer; however, time decoded from DLS was unaffected by vibration intensity. Third, DLS did not encode stimulus duration differently on correct versus incorrect trials. Finally, in rats trained to compare the intensities of two sequential vibrations, stimulus duration was encoded even though it was a perceptually irrelevant feature. These findings lead us to posit that temporal information is inherent to DLS activity irrespective of the rat's ongoing percept.
Collapse
|
21
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
22
|
Tödt I, Baumann A, Knutzen A, Granert O, Tzvi E, Lindert J, Wolff S, Witt K, Zeuner KE. Abnormal effective connectivity in the sensory network in writer's cramp. Neuroimage Clin 2021; 31:102761. [PMID: 34298476 PMCID: PMC8378794 DOI: 10.1016/j.nicl.2021.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Writer's cramp (WC), a task specific form of dystonia, is considered to be a motor network disorder, but abnormal sensory tactile processing has also been acknowledged. The sensory spatial discrimination threshold (SDT) can be determined with a spatial acuity test (JVP domes). In addition to increased SDT, patients with WC exhibited dysfunctional sensory processing in the sensory cortex, insula, basal ganglia and cerebellum in a functional magnetic resonance imaging (fMRI) study while performing the spatial acuity test. OBJECTIVES To assess whether effective connectivity (EC) in the sensory network including cortical, basal ganglia, thalamic and cerebellar regions of interest in WC patients is abnormal. METHODS We used fMRI and applied a block design, while 19 WC patients and 13 age-matched healthy controls performed a spatial discrimination task. Before we assessed EC using dynamic causal modelling, we compared three model structures based on the current literature. We enclosed regions of interest that are established for sensory processing during right hand stimulation: Left thalamus, somatosensory, parietal and insular cortex, posterior putamen, and right cerebellum. RESULTS The EC analysis revealed task-dependent decreased unidirectional connectivity between the insula and the posterior putamen. The connectivity involving the primary sensory cortex, parietal cortex and cerebellum were not abnormal in WC. The two groups showed no differences in their behavioural data. CONCLUSIONS Perception and integration of sensory information requires the exchange of information between the insula cortex and the putamen, a sensory process that was disturbed in WC patients.
Collapse
Affiliation(s)
- Inken Tödt
- Department of Neurology, Kiel University, Germany.
| | | | - Arne Knutzen
- Department of Neurology, Kiel University, Germany
| | | | - Elinor Tzvi
- Department of Neurology, Leipzig University, Germany
| | - Julia Lindert
- Brighton and Sussex University Hospitals NHS Trust, UK
| | | | - Karsten Witt
- Department of Neurology and Research Center Neurosensory Science, School of Medicine and Health Sciences - European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | | |
Collapse
|
23
|
Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Raz A, Haun AM, Saalmann YB. Consciousness depends on integration between parietal cortex, striatum, and thalamus. Cell Syst 2021; 12:363-373.e11. [PMID: 33730543 PMCID: PMC8084606 DOI: 10.1016/j.cels.2021.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 11/19/2022]
Abstract
The neural substrates of consciousness remain elusive. Competing theories that attempt to explain consciousness disagree on the contribution of frontal versus posterior cortex and omit subcortical influences. This lack of understanding impedes the ability to monitor consciousness, which can lead to adverse clinical consequences. To test substrates and measures of consciousness, we recorded simultaneously from frontal cortex, parietal cortex, and subcortical structures, the striatum and thalamus, in awake, sleeping, and anesthetized macaques. We manipulated consciousness on a finer scale using thalamic stimulation, rousing macaques from continuously administered anesthesia. Our results show that, unlike measures targeting complexity, a measure additionally capturing neural integration (Φ∗) robustly correlated with changes in consciousness. Machine learning approaches show parietal cortex, striatum, and thalamus contributed more than frontal cortex to decoding differences in consciousness. These findings highlight the importance of integration between parietal and subcortical structures and challenge a key role for frontal cortex in consciousness.
Collapse
Affiliation(s)
- Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | - Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Andrew M Haun
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, Madison, WI 53705, USA.
| |
Collapse
|
24
|
Effects of Optogenetic Stimulation of Primary Somatosensory Cortex and Its Projections to Striatum on Vibrotactile Perception in Freely Moving Rats. eNeuro 2021; 8:ENEURO.0453-20.2021. [PMID: 33593733 PMCID: PMC7986534 DOI: 10.1523/eneuro.0453-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022] Open
Abstract
Tactile sensation is one of our primary means to collect information about the nearby environment and thus crucial for daily activities and survival. Therefore, it is of high importance to restore sensory feedback after sensory loss. Optogenetic manipulation allows local or pathway-specific write-in of information. However, it remains elusive whether optogenetic stimulation can be interpreted as tactile sensation to guide operant behavior and how it is integrated with tactile stimuli. To address these questions, we employed a vibrotactile detection task combined with optogenetic neuromodulation in freely moving rats. By bidirectionally manipulating the activity of neurons in primary somatosensory cortex (S1), we demonstrated that optical activation as well as inhibition of S1 reduced the detection rate for vibrotactile stimuli. Interestingly, activation of corticostriatal terminals improved the detection of tactile stimuli, while inhibition of corticostriatal terminals did not affect the performance. To manipulate the corticostriatal pathway more specifically, we employed a dual viral system. Activation of corticostriatal cell bodies disturbed the tactile perception while activation of corticostriatal terminals slightly facilitated the detection of vibrotactile stimuli. In the absence of tactile stimuli, both corticostriatal cell bodies as well as terminals caused a reaction. Taken together, our data confirmed the possibility to restore sensation using optogenetics and demonstrated that S1 and its descending projections to striatum play differential roles in the neural processing underlying vibrotactile detection.
Collapse
|
25
|
Grillner S, Robertson B, Kotaleski JH. Basal Ganglia—A Motion Perspective. Compr Physiol 2020; 10:1241-1275. [DOI: 10.1002/cphy.c190045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Cognitive Capacity Limits Are Remediated by Practice-Induced Plasticity between the Putamen and Pre-Supplementary Motor Area. eNeuro 2020; 7:ENEURO.0139-20.2020. [PMID: 32817195 PMCID: PMC7458802 DOI: 10.1523/eneuro.0139-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/10/2023] Open
Abstract
Humans show striking limitations in information processing when multitasking yet can modify these limits with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning multitasking in 100 human individuals and the plasticity caused by practice. We observed that multitasking costs, and their practice-induced remediation, are best explained by modulations in information transfer between the striatum and the cortical areas that represent stimulus-response mappings. Specifically, our results support the view that multitasking stems at least in part from taxation in information sharing between the putamen and pre-supplementary motor area (pre-SMA). Moreover, we propose that modulations to information transfer between these two regions leads to practice-induced improvements in multitasking.
Collapse
|
27
|
Ansorge J, Humanes‐Valera D, Pauzin FP, Schwarz MK, Krieger P. Cortical layer 6 control of sensory responses in higher‐order thalamus. J Physiol 2020; 598:3973-4001. [DOI: 10.1113/jp279915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Josephine Ansorge
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - Desire Humanes‐Valera
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - François P. Pauzin
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| | - Martin K. Schwarz
- Institute of Experimental Epileptology and Cognition Research University of Bonn Medical School Bonn Germany
| | - Patrik Krieger
- Faculty of Medicine, Department of Systems Neuroscience Ruhr University Bochum Bochum Germany
| |
Collapse
|
28
|
Balleine BW. The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron 2020; 104:47-62. [PMID: 31600515 DOI: 10.1016/j.neuron.2019.09.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
The ability to establish behaviorally what psychological capacity an animal is deploying-to discern accurately what an animal is doing-is key to functional analyses of the brain. Our current understanding of these capacities suggests, however, that this task is complex; there is evidence that multiple capacities are engaged simultaneously and contribute independently to the control of behavior. As such, establishing the contribution of a cell, circuit, or neural system to any one function requires careful dissection of that role from its influence on other functions and, therefore, the careful selection and design of behavioral tasks fit for that purpose. Here I describe recent research that has sought to utilize behavioral tools to investigate the neural bases of instrumental conditioning, particularly the circuits and systems supporting the capacity for goal-directed action, as opposed to conditioned reflexes and habits, and how these sources of action control interact to generate adaptive behavior.
Collapse
|
29
|
Abstract
Background:Tics, defined as quick, rapid, sudden, recurrent, non-rhythmic motor movements or vocalizations are required components of Tourette Syndrome (TS) - a complex disorder characterized by the presence of fluctuating, chronic motor and vocal tics, and the presence of co-existing neuropsychological problems. Despite many advances, the underlying pathophysiology of tics/TS remains unknown.Objective:To address a variety of controversies surrounding the pathophysiology of TS. More specifically: 1) the configuration of circuits likely involved; 2) the role of inhibitory influences on motor control; 3) the classification of tics as either goal-directed or habitual behaviors; 4) the potential anatomical site of origin, e.g. cortex, striatum, thalamus, cerebellum, or other(s); and 5) the role of specific neurotransmitters (dopamine, glutamate, GABA, and others) as possible mechanisms (Abstract figure).Methods:Existing evidence from current clinical, basic science, and animal model studies are reviewed to provide: 1) an expanded understanding of individual components and the complex integration of the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit - the pathway involved with motor control; and 2) scientific data directly addressing each of the aforementioned controversies regarding pathways, inhibition, classification, anatomy, and neurotransmitters.Conclusion:Until a definitive pathophysiological mechanism is identified, one functional approach is to consider that a disruption anywhere within CBGTC circuitry, or a brain region inputting to the motor circuit, can lead to an aberrant message arriving at the primary motor cortex and enabling a tic. Pharmacologic modulation may be therapeutically beneficial, even though it might not be directed toward the primary abnormality.
Collapse
Affiliation(s)
- Harvey S. Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
30
|
Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism 2020; 11:19. [PMID: 32164788 PMCID: PMC7069029 DOI: 10.1186/s13229-020-00324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. Methods Mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. Results Dlg2–/– mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2–/– mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2–/– dorsolateral striatum was significantly reduced. Conclusion These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.
Collapse
Affiliation(s)
- Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea.
| |
Collapse
|
31
|
Ossowska K. Zona incerta as a therapeutic target in Parkinson's disease. J Neurol 2020; 267:591-606. [PMID: 31375987 PMCID: PMC7035310 DOI: 10.1007/s00415-019-09486-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
The zona incerta has recently become an important target for deep-brain stimulation (DBS) in Parkinson's disease (PD). The present review summarizes clinical, animal and anatomical data which have indicated an important role of this structure in PD, and discusses potential mechanisms involved in therapeutic effects of DBS. Animal studies have suggested initially some role of neurons as well as GABAergic and glutamatergic receptors of the zona incerta in locomotion and generation of PD signs. Anatomical data have indicated that thanks to its multiple interconnections with the basal ganglia, thalamus, cerebral cortex, brainstem, spinal cord and cerebellum, the zona incerta is an important link in a neuronal chain transmitting impulses involved in PD pathology. Finally, clinical studies have shown that DBS of this structure alleviates parkinsonian bradykinesia, muscle rigidity and tremor. DBS of caudal zona incerta seemed to be the most effective therapeutic intervention, especially with regard to reduction of PD tremor as well as other forms of tremor.
Collapse
Affiliation(s)
- Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
| |
Collapse
|
32
|
Lee K, Masmanidis SC. Aberrant features of in vivo striatal dynamics in Parkinson's disease. J Neurosci Res 2019; 97:1678-1688. [PMID: 31502290 PMCID: PMC6801089 DOI: 10.1002/jnr.24519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022]
Abstract
The striatum plays an important role in learning, selecting, and executing actions. As a major input hub of the basal ganglia, it receives and processes a diverse array of signals related to sensory, motor, and cognitive information. Aberrant neural activity in this area is implicated in a wide variety of neurological and psychiatric disorders. It is therefore important to understand the hallmarks of disrupted striatal signal processing. This review surveys literature examining how in vivo striatal microcircuit dynamics are impacted in animal models of one of the most widely studied movement disorders, Parkinson's disease. The review identifies four major features of aberrant striatal dynamics: altered relative levels of direct and indirect pathway activity, impaired information processing by projection neurons, altered information processing by interneurons, and increased synchrony.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| | - Sotiris C. Masmanidis
- Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA USA
| |
Collapse
|
33
|
Lee K, Bakhurin KI, Claar LD, Holley SM, Chong NC, Cepeda C, Levine MS, Masmanidis SC. Gain Modulation by Corticostriatal and Thalamostriatal Input Signals during Reward-Conditioned Behavior. Cell Rep 2019; 29:2438-2449.e4. [PMID: 31747611 PMCID: PMC6907740 DOI: 10.1016/j.celrep.2019.10.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 11/30/2022] Open
Abstract
The cortex and thalamus send excitatory projections to the striatum, but little is known about how these inputs, either individually or collectively, regulate striatal dynamics during behavior. The lateral striatum receives overlapping input from the secondary motor cortex (M2), an area involved in licking, and the parafascicular thalamic nucleus (PF). Using neural recordings, together with optogenetic terminal inhibition, we examine the contribution of M2 and PF projections on medium spiny projection neuron (MSN) activity as mice performed an anticipatory licking task. Each input has a similar contribution to striatal activity. By comparing how suppressing single or multiple projections altered striatal activity, we find that cortical and thalamic input signals modulate MSN gain and that this effect is more pronounced in a temporally specific period of the task following the cue presentation. These results demonstrate that cortical and thalamic inputs synergistically regulate striatal output during reward-conditioned behavior.
Collapse
Affiliation(s)
- Kwang Lee
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konstantin I Bakhurin
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Leslie D Claar
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie C Chong
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Brain Research Institute, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Abstract
Tics are sudden, rapid, recurrent, nonrhythmic motor movements or vocalizations (phonic productions) that are commonly present in children and are required symptoms for the diagnosis of Tourette syndrome. Despite their frequency, the underlying pathophysiology of tics/Tourette syndrome remains unknown. In this review, we discuss a variety of controversies surrounding the pathophysiology of tics, including the following: Are tics voluntary or involuntary? What is the role of the premonitory urge? Are tics due to excess excitatory or deficient inhibition? Is it time to adopt the contemporary version of the cortico-basal ganglia-thalamocortical (CBGTC) circuit? and Do we know the primary abnormal neurotransmitter in Tourette syndrome? Data from convergent clinical and animal model studies support complex interactions among the various CBGTC sites and neurotransmitters. Advances are being made; however, numerous pathophysiologic questions persist.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
35
|
Borra E, Luppino G, Gerbella M, Rozzi S, Rockland KS. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol 2019; 528:453-467. [PMID: 31483857 DOI: 10.1002/cne.24768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive, or compact. Here, we report that in macaque monkeys, deep and superficial cortical white matter neurons (WMNs), peri-claustral WMNs, and the claustrum proper project to the putamen. WMNs retrogradely labeled by injections in the putamen (four injections in three macaques) were widely distributed, up to 10 mm antero-posterior from the injection site, mainly dorsal to the putamen in the external capsule, and below the premotor cortex. Striatally projecting labeled WMNs (WMNsST) were heterogeneous in size and shape, including a small GABAergic component. We compared the number of WMNsST with labeled claustral and cortical neurons and also estimated their proportion in relation to total WMNs. Since some WMNsST were located adjoining the claustrum, we wanted to compare results for density and distribution of striatally projecting claustral neurons (ClaST). ClaST neurons were morphologically heterogeneous and mainly located in the dorsal and anterior claustrum, in regions known to project to frontal, motor, and cingulate cortical areas. The ratio of ClaST to WMNsST was about 4:1 averaged across the four injections. These results provide new specifics on the connectional networks of WMNs in nonhuman primates, and delineate additional loops in the corticostriatal architecture, consisting of interconnections across cortex, claustralstriatal and striatally projecting WMNs.
Collapse
Affiliation(s)
- Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
36
|
Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev 2019; 100:271-320. [PMID: 31512990 DOI: 10.1152/physrev.00015.2019] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
37
|
Aoki S, Smith JB, Li H, Yan X, Igarashi M, Coulon P, Wickens JR, Ruigrok TJH, Jin X. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. eLife 2019; 8:e49995. [PMID: 31490123 PMCID: PMC6731092 DOI: 10.7554/elife.49995] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023] Open
Abstract
Cortico-basal ganglia-thalamocortical loops are largely conceived as parallel circuits that process limbic, associative, and sensorimotor information separately. Whether and how these functionally distinct loops interact remains unclear. Combining genetic and viral approaches, we systemically mapped the limbic and motor cortico-basal ganglia-thalamocortical loops in rodents. Despite largely closed loops within each functional domain, we discovered a unidirectional influence of the limbic over the motor loop via ventral striatum-substantia nigra (SNr)-motor thalamus circuitry. Slice electrophysiology verifies that the projection from ventral striatum functionally inhibits nigro-thalamic SNr neurons. In vivo optogenetic stimulation of ventral or dorsolateral striatum to SNr pathway modulates activity in medial prefrontal cortex (mPFC) and motor cortex (M1), respectively. However, whereas the dorsolateral striatum-SNr pathway exerts little impact on mPFC, activation of the ventral striatum-SNr pathway effectively alters M1 activity. These results demonstrate an open cortico-basal ganglia loop whereby limbic information could modulate motor output through ventral striatum control of M1.
Collapse
Affiliation(s)
- Sho Aoki
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Department of NeuroscienceErasmus Medical Center RotterdamRotterdamNetherlands
- Japan Society for the Promotion of SciencesTokyoJapan
| | - Jared B Smith
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Hao Li
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Xunyi Yan
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| | - Masakazu Igarashi
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
- Japan Society for the Promotion of SciencesTokyoJapan
| | - Patrice Coulon
- Institut des Neurosciences de la TimoneCentre National de la Recherche Scientifique (CNRS), Aix-Marseille UniversitéMarseilleFrance
| | - Jeffery R Wickens
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOkinawaJapan
| | - Tom JH Ruigrok
- Department of NeuroscienceErasmus Medical Center RotterdamRotterdamNetherlands
| | - Xin Jin
- Molecular Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
38
|
Winokur SB, Lopes KL, Moparthi Y, Pereira M. Depression-related disturbances in rat maternal behaviour are associated with altered monoamine levels within mesocorticolimbic structures. J Neuroendocrinol 2019; 31:e12766. [PMID: 31265182 DOI: 10.1111/jne.12766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022]
Abstract
The ability of mothers to sensitively attune their maternal responses to the needs of their developing young is fundamental to a healthy mother-young relationship. The biological mechanisms that govern how mothers adjust caregiving to the dynamic changes in the demands of the young remain an open question. In the present study, we examined whether changes in monoamine levels, within discrete mesocorticolimbic structures involved in cognitive and motivational processes key to parenting, modulate this flexibility in caregiving across the postpartum period. The present study used a Wistar-Kyoto (WKY) animal model of depression and control Sprague-Dawley (SD) rats, which differ dramatically in their cognitive, motivational, and parenting performance. Levels of the monoamine neurotransmitters, dopamine, noradrenaline and serotonin, as well as their major metabolites, were measured within the medial prefrontal cortex, striatum, nucleus accumbens and medial preoptic area of SD and WKY mothers at early (postpartum day [PPD]7-8), late (PPD15-16) and weaning (PPD25) postpartum stages using high-performance liquid chromatography with electrochemical detection. Consistent with our prior work, we find that caregiving of SD mothers declined as the postpartum period progressed. Relative to nulliparous females, early postpartum mothers had lower intracellular concentrations of monoamines, as well as lower noradrenaline turnover, and an elevated serotonin turnover within most structures. Postpartum behavioural trajectories subsequently corresponded to a progressive increase in all three monoamine levels within multiple structures. Compared to SD mothers, WKY mothers were inconsistent and disorganised in caring for their offspring and exhibit profound deficits in maternal behaviour. Additionally, WKY mothers had generally lower levels of all three monoamines, as well as different patterns of change across the postpartum period, compared to SD mothers, suggesting dysfunctional central monoamine pathways in WKY mothers as they transition and experience motherhood. Taken together, the results of the present study suggest a role for monoamines at multiple mesocorticolimbic structures with repect to modulating caregiving behaviours attuned to the changing needs of the young.
Collapse
Affiliation(s)
- Sarah B Winokur
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Keianna L Lopes
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yashaswani Moparthi
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
39
|
Schneider MA, Spritzer PM, Minuzzi L, Frey BN, Syan SK, Fighera TM, Schwarz K, Costa ÂB, da Silva DC, Garcia CCG, Fontanari AMV, Real AG, Anes M, Castan JU, Cunegatto FR, Lobato MIR. Effects of Estradiol Therapy on Resting-State Functional Connectivity of Transgender Women After Gender-Affirming Related Gonadectomy. Front Neurosci 2019; 13:817. [PMID: 31440128 PMCID: PMC6692765 DOI: 10.3389/fnins.2019.00817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
An extreme incongruence between sex and gender identity leads individuals with gender dysphoria (GD) to seek cross-sex hormone therapy (CSHT), and gender-affirming surgery (GAS). Although few studies have investigated the effects of CSHT on the brain prior to GAS, no studies in the extant literature have evaluated its impact during hypogonadism in post-GAS individuals. Here, we aimed to evaluate the effects of estradiol on resting-state functional connectivity (rs-FC) of the sensorimotor cortex (SMC) and basal ganglia following surgical hypogonadism. Eighteen post-GAS (male-to-female) participants underwent functional magnetic resonance imaging (fMRI) and neuropsychiatric and hormonal assessment at two time points (t1, hormonal washout; t2, CSHT reintroduction). Based on the literature, the thalamus was selected as a seed, while the SMC and the dorsolateral striatum were targets for seed-based functional connectivity (sbFC). A second sbFC investigation consisted of a whole-brain voxel exploratory analysis again using the thalamus as a seed. A final complementary data-driven approach using multivoxel pattern analysis (MVPA) was conducted to identify a potential seed for further sbFC analyses. An increase in the rs-FC between the left thalamus and the left SCM/putamen followed CSHT. MVPA identified a cluster within the subcallosal cortex (SubCalC) representing the highest variation in peak activation between time points. Setting the SubCalC as a seed, whole-brain analysis showed a decoupling between the SubCalC and the medial frontal cortex during CSHT. These results indicate that CSHT with estradiol post-GAS, modulates rs-FC in regions engaged in cognitive, emotional, and sensorimotor processes.
Collapse
Affiliation(s)
- Maiko A Schneider
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Poli M Spritzer
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Endocrinoloy, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luciano Minuzzi
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Sabrina K Syan
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada
| | - Tayane M Fighera
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Division of Endocrinoloy, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Karine Schwarz
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ângelo B Costa
- Graduate Program in Psychology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dhiordan C da Silva
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Cláudia C G Garcia
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Anna M V Fontanari
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - André G Real
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Maurício Anes
- Medical Physics and Radiation Protection Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana U Castan
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Psychology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Maria I R Lobato
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil.,Psychiatric and Forensic Medical Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
40
|
Abstract
A recent study (Audette et al., 2019) demonstrates that thalamic input from the posterior medial (POm) nucleus to somatosensory cortex plays an unexpected role in plasticity resulting from associative sensory learning. POm-mediated plasticity may be critical for coordinating learning-related sensorimotor circuitry.
Collapse
Affiliation(s)
- Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
41
|
Cromwell HC. Translating striatal activity from brain slice to whole animal neurophysiology: A guide for neuroscience research integrating diverse levels of analysis. J Neurosci Res 2019; 97:1528-1545. [PMID: 31257656 DOI: 10.1002/jnr.24480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
An important goal of this review is highlighting research in neuroscience as examples of multilevel functional and anatomical analyses addressing basic science issues and applying results to the understanding of diverse disorders. The research of Dr. Michael Levine, a leader in neuroscience, exemplifies this approach by uncovering fundamental properties of basal ganglia function and translating these findings to clinical applications. The review focuses on neurophysiological research connecting results from in vitro and in vivo recordings. A second goal is to utilize these research connections to produce novel, accurate descriptions for corticostriatal processing involved in varied, complex functions. Medium spiny neurons in striatum act as integrators combining input with baseline activity creating motivational "events." Basic research on corticostriatal synapses is described and links developed to issues with clinical relevance such as inhibitory gating, self-injurious behavior, and relative reward valuation. Work is highlighted on dopamine-glutamate interactions. Individual medium spiny neurons express both D1 and D2 receptors and encode information in a bivalent manner depending upon the mix of receptors involved. Current work on neurophysiology of reward processing has taken advantage of these basic approaches at the cellular and molecular levels. Future directions in studying physiology of reward processing and action sequencing could profit by incorporating the divergent ways dopamine modulates incoming neurochemical signals. Primary investigators leading research teams should mirror Mike Levine's efforts in "climbing the mountain" of scientific inquiry by performing analyses at different levels of inquiry, integrating the findings, and building comprehensive answers to problems unsolvable without this bold approach.
Collapse
Affiliation(s)
- Howard Casey Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio
| |
Collapse
|
42
|
Lee CR, Yonk AJ, Wiskerke J, Paradiso KG, Tepper JM, Margolis DJ. Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior. Curr Biol 2019; 29:1313-1323.e5. [PMID: 30982651 DOI: 10.1016/j.cub.2019.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here, we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Joost Wiskerke
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Kenneth G Paradiso
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Chen L, Wang X, Ge S, Xiong Q. Medial geniculate body and primary auditory cortex differentially contribute to striatal sound representations. Nat Commun 2019; 10:418. [PMID: 30679433 PMCID: PMC6346050 DOI: 10.1038/s41467-019-08350-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/15/2018] [Indexed: 01/24/2023] Open
Abstract
The dorsal striatum has emerged as a key region in sensory-guided, reward-driven decision making. A posterior sub-region of the dorsal striatum, the auditory striatum, receives convergent projections from both auditory thalamus and auditory cortex. How these pathways contribute to auditory striatal activity and function remains largely unknown. Here we show that chemogenetic inhibition of the projections from either the medial geniculate body (MGB) or primary auditory cortex (ACx) to auditory striatum in mice impairs performance in an auditory frequency discrimination task. While recording striatal sound responses, we find that transiently silencing the MGB projection reduced sound responses across a wide-range of frequencies in striatal medium spiny neurons. In contrast, transiently silencing the primary ACx projection diminish sound responses preferentially at the best frequencies in striatal medium spiny neurons. Together, our findings reveal that the MGB projection mainly functions as a gain controller, whereas the primary ACx projection provides tuning information for striatal sound representations.
Collapse
Affiliation(s)
- Liang Chen
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
44
|
Augustine F, Singer HS. Merging the Pathophysiology and Pharmacotherapy of Tics. Tremor Other Hyperkinet Mov (N Y) 2019; 8:595. [PMID: 30643668 PMCID: PMC6329776 DOI: 10.7916/d8h14jtx] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background Anatomically, cortical-basal ganglia-thalamo-cortical (CBGTC) circuits have an essential role in the expression of tics. At the biochemical level, the proper conveyance of messages through these circuits requires several functionally integrated neurotransmitter systems. In this manuscript, evidence supporting proposed pathophysiological abnormalities, both anatomical and chemical is reviewed. In addition, the results of standard and emerging tic-suppressing therapies affecting nine separate neurotransmitter systems are discussed. The goal of this review is to integrate our current understanding of the pathophysiology of Tourette syndrome (TS) with present and proposed pharmacotherapies for tic suppression. Methods For this manuscript, literature searches were conducted for both current basic science and clinical information in PubMed, Google-Scholar, and other scholarly journals to September 2018. Results The precise primary site of abnormality for tics remains undetermined. Although many pathophysiologic hypotheses favor a specific abnormality of the cortex, striatum, or globus pallidus, others recognize essential influences from regions such as the thalamus, cerebellum, brainstem, and ventral striatum. Some prefer an alteration within direct and indirect pathways, whereas others believe this fails to recognize the multiple interactions within and between CBGTC circuits. Although research and clinical evidence supports involvement of the dopaminergic system, additional data emphasizes the potential roles for several other neurotransmitter systems. Discussion A greater understanding of the primary neurochemical defect in TS would be extremely valuable for the development of new tic-suppressing therapies. Nevertheless, recognizing the varied and complex interactions that exist in a multi-neurotransmitter system, successful therapy may not require direct targeting of the primary abnormality.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harvey S. Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Plantone D. Striatum Involvement in LGI1 Limbic Encephalitis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2018; 16:508-509. [PMID: 30466226 PMCID: PMC6245290 DOI: 10.9758/cpn.2018.16.4.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 11/18/2022]
|
46
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
47
|
To move or to sense? Incorporating somatosensory representation into striatal functions. Curr Opin Neurobiol 2018; 52:123-130. [DOI: 10.1016/j.conb.2018.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
|
48
|
Florio TM, Scarnati E, Rosa I, Di Censo D, Ranieri B, Cimini A, Galante A, Alecci M. The Basal Ganglia: More than just a switching device. CNS Neurosci Ther 2018; 24:677-684. [PMID: 29879292 DOI: 10.1111/cns.12987] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
The basal ganglia consist of a variety of subcortical nuclei engaged in motor control and executive functions, such as motor learning, behavioral control, and emotion. The striatum, a major basal ganglia component, is particularly useful for cognitive planning of purposive motor acts owing to its structural features and the neuronal circuitry established with the cerebral cortex. Recent data indicate emergent functions played by the striatum. Indeed, cortico-striatal circuits carrying motor information are paralleled by circuits originating from associative and limbic territories, which are functionally integrated in the striatum. Functional integration between brain areas is achieved through patterns of coherent activity. Coherence belonging to cortico-basal ganglia circuits is also present in Parkinson's disease patients. Excessive synchronization occurring in this pathology is reduced by dopaminergic therapies. The mechanisms through which the dopaminergic effects may be addressed are the object of several ongoing investigations. Overall, the bulk of data reported in recent years has provided new vistas concerning basal ganglia role in the organization and control of movement and behavior, both in physiological and pathological conditions. In this review, basal ganglia functions involved in the organization of main movement categories and behaviors are critically discussed. Comparatively, the multiplicity of Parkinson's disease symptomatology is also revised.
Collapse
Affiliation(s)
- Tiziana Marilena Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Rosa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Brigida Ranieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, L'Aquila, Italy.,Istituto SPIN-CNR, c/o Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, L'Aquila, Italy.,Istituto SPIN-CNR, c/o Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy
| |
Collapse
|
49
|
Watson GDR, Alloway KD. Opposing collicular influences on the parafascicular (Pf) and posteromedial (POm) thalamic nuclei: relationship to POm-induced inhibition in the substantia nigra pars reticulata (SNR). Brain Struct Funct 2017; 223:535-543. [DOI: 10.1007/s00429-017-1534-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|