1
|
Georgiou GD, Antoniou K, Antoniou S, Michelekaki EA, Zare R, Ali Redha A, Prokopidis K, Christodoulides E, Clifford T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2024; 34:397-412. [PMID: 39032921 DOI: 10.1123/ijsnem.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Reza Zare
- Meshkat Sports Complex, Karaj, Iran
- Arses Sports Complex, Karaj, Iran
| | - Ali Ali Redha
- University of Exeter, Exeter, United Kingdom
- The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Tom Clifford
- Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Zhou HY, Ding WQ, Zhang X, Zhang HY, Hu ZC, Liu ZQ, Zheng YG. Fine and combinatorial regulation of key metabolic pathway for enhanced β-alanine biosynthesis with non-inducible Escherichia coli. Biotechnol Bioeng 2024; 121:3297-3310. [PMID: 38978393 DOI: 10.1002/bit.28799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
β-Alanine is the only β-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible β-alanine producer with enhanced metabolic flux towards β-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the β-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L β-alanine was achieved at 80 h. This is the highest titer of β-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wen-Qing Ding
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xi Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hong-Yu Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Park I, Nam H, Lee Y, Smith A, Rehberger T, Lillehoj H. Effect of β-Alanine Metabolite on Gut Integrity and Immunity in Commercial Broiler Chickens Infected with Eimeria maxima. Animals (Basel) 2024; 14:2558. [PMID: 39272343 PMCID: PMC11393982 DOI: 10.3390/ani14172558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: In a metabolomics analysis conducted to investigate the mechanisms behind the growth-promoting effects of probiotics in broilers, β-alanine was found to be significantly elevated. This led to the hypothesis that β-alanine could also contribute to growth-promoting effects in infected broilers. (2) Methods: An in vitro culture system was developed to assess β-alanine's impact on proinflammatory cytokine response in chicken macrophage cells, gut integrity in chicken intestinal epithelial cells, and muscle differentiation in quail muscle cells and primary chicken embryonic muscle cells. In vivo animal feeding studies were then conducted to investigate the effects of dietary β-alanine on various disease parameters in Eimeria maxima-infected broiler chickens. (3) Results: In vitro, β-alanine treatment significantly decreased the gene expression of cytokines in chicken macrophage cells and increased occuldin expression in chicken intestinal epithelial cells. Dietary β-alanine increased the body weight of chickens following Eimeria maxima infection in the H-ALA group. Dietary β-alanine also suppressed cytokines and increased JAM-2 and occludin expression in the H-ALA group compared to the infected group without β-alanine supplementation. (4) Conclusions: These results strongly support the positive effects of dietary β-alanine on intestinal immune responses and gut barrier function in broiler chickens infected with Eimeria maxima.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Alexandra Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Thomas Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Cimadevilla-Fernández-Pola E, Martínez-Roldán C, Maté-Muñoz JL, Guodemar-Pérez J, Sánchez-Calabuig MA, García-Fernández P, Hervás-Pérez JP, Hernández-Lougedo J. Effects of β-Alanine Supplementation on Subjects Performing High-Intensity Functional Training. Nutrients 2024; 16:2340. [PMID: 39064783 PMCID: PMC11280034 DOI: 10.3390/nu16142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND β-alanine, a non-essential amino acid found in the diet and produced through nucleotide catabolism, is significant for muscle performance due to its role in carnosine synthesis. This study aims to assess the impact of a 4-week β-alanine supplementation on neuromuscular fatigue in individuals engaging in High-Intensity Functional Training (HIFT) and its subsequent effect on sports performance, distinguishing between central fatigue from the CNS and peripheral fatigue from the muscular system. MATERIALS AND METHODS This study (a randomized controlled trial) comprised a total of 27 subjects, who were divided into two groups. Group A (the control group) was administered sucrose powder, while Group B (the experimental group) was given β-alanine powder. The subjects were randomly assigned to either the experimental or control groups. This study lasted four weeks, during which both groups participated in high-intensity interval training (HIFT) on the first day to induce fatigue and work close to their VO2 max. RESULTS Statistically significant changes were in the sports performance variables, specifically vertical jump and jumping power (p = 0.027). These changes were observed only in the group that had been supplemented with β-alanine. Nevertheless, no alterations were observed in any other variables, including fatigue, metabolic intensity of exercise, or perceived intensity (p > 0.05). CONCLUSIONS A four-week β-alanine intake program demonstrated an improvement in the capacity of subjects, as evidenced by enhanced vertical jump and power performance. Nevertheless, it does result in discernible alterations in performance.
Collapse
Affiliation(s)
- Eduardo Cimadevilla-Fernández-Pola
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| | - Cristina Martínez-Roldán
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| | - Jose Luis Maté-Muñoz
- Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain; (J.L.M.-M.); (P.G.-F.)
| | - Jesús Guodemar-Pérez
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| | - Maria Aránzazu Sánchez-Calabuig
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| | - Pablo García-Fernández
- Faculty of Nursing, Physiotherapy and Podiatry, Complutense University of Madrid, 28040 Madrid, Spain; (J.L.M.-M.); (P.G.-F.)
| | - Juan Pablo Hervás-Pérez
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| | - Juan Hernández-Lougedo
- Physiotherapy and Health Research Group (FYSA), Faculty of Health Sciences-HM Hospitals, University Camilo José Cela, Urb. Villafranca del Castillo, 49. Villanueva de la Cañada, 28692 Madrid, Spain; (E.C.-F.-P.); (C.M.-R.); (J.G.-P.); (M.A.S.-C.); (J.H.-L.)
- Instituto de Investigación Sanitaria HM Hospitales, 28692 Madrid, Spain
| |
Collapse
|
5
|
Siachos N, Tsiamadis V, Oikonomou G, Panousis N, Banos G, Sampsonidis I, Kalogiannis S, Arsenos G, Valergakis GE. Variation in protein metabolism biomarkers during the transition period and associations with health, colostrum quality, reproduction, and milk production traits in Holstein cows. J Dairy Sci 2024; 107:4056-4074. [PMID: 38246542 DOI: 10.3168/jds.2023-24168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
The aims of this study were to assess (1) the variation of protein metabolism biomarkers and factors affecting them during the transition period, (2) the association of each biomarker with skeletal muscle reserves and their changes, and (3) the association of these biomarkers with postpartum health, colostrum quality, reproduction, and milk production. For this purpose, 238 multiparous Holstein cows from 6 herds were used in a prospective cohort study. Plasma concentrations of 3-methylhistidine (3-MH) and 1-methylhistidine (1-MH) and serum concentrations of total protein (TP), albumin (ALB), urea nitrogen (BUN), and creatinine (SCR) were determined for each cow at -21, -7, 7, 21, and 28 d relative to calving. Clinical diseases were recorded during the first 28 d postcalving, and presence of subclinical ketosis (scKET) was investigated at 7 and 21 d. Colostrum quality was estimated by Brix refractometry. Reproduction data by 150 d in milk (DIM) and milk production records were also available. Linear mixed models including the fixed effects of time point, herd, parity, body condition score (-21 d), duration of dry period and postparturient diseases were fitted to assess the variation in each biomarker's concentration. The association between the biomarkers' concentration during the prepartum period with the odds for each postparturient disease and for a combined trait (CD_1-28), defined as the presence of at least one clinical condition during the first 28 d after calving, were assessed with separate binary logistic models for time points -21 d and -7 d. The relationship of each biomarker's concentration with longissimus dorsi thickness (LDT) and the changes in LDT (ΔLDT) was assessed with pairwise correlations. Separate general linear models were used to assess the association of each biomarker with colostrum Brix values and milk production traits. Finally, the associated hazard for first artificial insemination (AI) and for pregnancy by 150 DIM (PREG_150DIM) was assessed with Cox proportional hazard models, whereas odds for pregnancy to the first AI (PREG_1stAI) were assessed with binary logistic models. The level of 3-MH was affected mainly by herd, time points, and their interaction. Higher 3-MH was associated with increased odds for metritis and CD_1-28, increased hazard for PREG_150 DIM and with increased milk production. 1-Methylhistidine was affected mainly by herd, scKET and occurrence of displaced abomasum. Higher 1-MH was associated with better colostrum quality, increased odds for scKET, increased hazard for first AI by 150 DIM and with decreased milk production. Both 3-MH and 1-MH were weakly to moderately negatively correlated with LDT and moderately to strongly negatively correlated with ΔLDT at the corresponding time periods. Additionally, higher TP was associated with increased odds for metritis and CD_1-28 and increased milk production, while higher ALB was associated with increased odds for scKET and increased milk production. Moreover, higher BUN was associated with decreased odds for scKET, increased odds for PREG_1stAI and increased milk production. Higher SCR was associated with decreased odds for retained fetal membranes, metritis, and CD_1-28. Periparturient protein metabolism is significantly associated with postpartum health, colostrum quality, reproduction, and milk production; mechanisms involved require further investigation.
Collapse
Affiliation(s)
- N Siachos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Neston CH64 7TE, United Kingdom.
| | - V Tsiamadis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Neston CH64 7TE, United Kingdom
| | - N Panousis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G Banos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; Scotland's Rural College, Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| | - I Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, GR-57400 Thessaloniki, Greece
| | - S Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, GR-57400 Thessaloniki, Greece
| | - G Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - G E Valergakis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Oliveira TM, Ferreira TJ, Franca PAP, da Cruz RR, Bara-Filho MG, Cahuê FLC, Valente AP, Pierucci APTR. A Decrease in Branched-Chain Amino Acids after a Competitive Male Professional Volleyball Game-A Metabolomic-Based Approach. Metabolites 2024; 14:115. [PMID: 38393007 PMCID: PMC10890579 DOI: 10.3390/metabo14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A competitive volleyball game is a highly metabolic and physically demanding event for professional players. This study aimed to investigate whether a single game at the end of a preseason promotes changes in the biochemical markers of physical exercise responses and the metabolomic profile of professional volleyball players. This cross-sectional study included 13 male Brazilian professional volleyball players. Food intake, body composition, heart rate, physical movement variables, and blood biochemical indicators were evaluated. For non-target metabolomic analysis, serum samples were subjected to 500 MHz Nuclear Magnetic Resonance. Data analysis showed no significant difference in the biochemical indicators after the game (p > 0.05). The level of metabolites present in the groups of the main components (β-hydroxybutyrate, arginine/lysine, isoleucine, leucine, and valine) had decreased after the game. However, formic acid and histidine levels increased. Among the compounds not part of the main components, hypoxanthine and tyrosine increased, whereas low-density lipoprotein and very low-density lipoprotein levels decreased. After the game, the metabolomic profiles of players showed significant negative variations in essential amino acids (leucine, valine, and isoleucine). These decreases might be influenced by athlete diet and reduced glycogen storage due to lower carbohydrate intake, potentially impacting serum-essential amino acid levels via oxidation in skeletal muscle. The study provides insights for developing metabolic compensation strategies in athletes.
Collapse
Affiliation(s)
- Taillan Martins Oliveira
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Tathiany Jéssica Ferreira
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Paula Albuquerque Penna Franca
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Rudson Ribeiro da Cruz
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | | | - Fábio Luiz Candido Cahuê
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- Medical Biochemistry Institute, National Center for Nuclear Magnetic Resonance, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Pușcaș A, Ștefănescu R, Vari CE, Ősz BE, Filip C, Bitzan JK, Buț MG, Tero-Vescan A. Biochemical Aspects That Lead to Abusive Use of Trimetazidine in Performance Athletes: A Mini-Review. Int J Mol Sci 2024; 25:1605. [PMID: 38338885 PMCID: PMC10855343 DOI: 10.3390/ijms25031605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Trimetazidine (TMZ), used for treating stable angina pectoris, has garnered attention in the realm of sports due to its potential performance-enhancing properties, and the World Anti-Doping Agency (WADA) has classified TMZ on the S4 list of prohibited substances since 2014. The purpose of this narrative mini-review is to emphasize the biochemical aspects underlying the abusive use of TMZ among athletes as a metabolic modulator of cardiac energy metabolism. The myocardium's ability to adapt its energy substrate utilization between glucose and fatty acids is crucial for maintaining cardiac function under various conditions, such as rest, moderate exercise, and intense effort. TMZ acts as a partial inhibitor of fatty acid oxidation by inhibiting 3-ketoacyl-CoA thiolase (KAT), shifting energy production from long-chain fatty acids to glucose, reducing oxygen consumption, improving cardiac function, and enhancing exercise capacity. Furthermore, TMZ modulates pyruvate dehydrogenase (PDH) activity, promoting glucose oxidation while lowering lactate production, and ultimately stabilizing myocardial function. TMZs role in reducing oxidative stress is notable, as it activates antioxidant enzymes like glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). In conclusion, TMZs biochemical mechanisms make it an attractive but controversial option for athletes seeking a competitive edge.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Cristina Filip
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Jana Karlina Bitzan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Campus Hamburg—UMCH, 22761 Hamburg, Germany;
| | - Mădălina-Georgiana Buț
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| |
Collapse
|
8
|
Carr AJ, McKay AKA, Burke LM, Smith ES, Urwin CS, Convit L, Jardine WT, Kelly MK, Saunders B. Use of Buffers in Specific Contexts: Highly Trained Female Athletes, Extreme Environments and Combined Buffering Agents-A Narrative Review. Sports Med 2023; 53:25-48. [PMID: 37878211 PMCID: PMC10721675 DOI: 10.1007/s40279-023-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 10/26/2023]
Abstract
This narrative review evaluated the evidence for buffering agents (sodium bicarbonate, sodium citrate and beta-alanine), with specific consideration of three discrete scenarios: female athletes, extreme environments and combined buffering agents. Studies were screened according to exclusion and inclusion criteria and were analysed on three levels: (1) moderating variables (supplement dose and timing, and exercise test duration and intensity), (2) design factors (e.g., use of crossover or matched group study design, familiarisation trials) and (3) athlete-specific factors (recruitment of highly trained participants, buffering capacity and reported performance improvements). Only 19% of the included studies for the three buffering agents reported a performance benefit, and only 10% recruited highly trained athletes. This low transferability of research findings to athletes' real-world practices may be due to factors including the small number of sodium citrate studies in females (n = 2), no studies controlling for the menstrual cycle (MC) or menstrual status using methods described in recently established frameworks, and the limited number of beta-alanine studies using performance tests replicating real-world performance efforts (n = 3). We recommend further research into buffering agents in highly trained female athletes that control or account for the MC, studies that replicate the demands of athletes' heat and altitude camps, and investigations of highly trained athletes' use of combined buffering agents. In a practical context, we recommend developing evidence-based buffering protocols for individual athletes which feature co-supplementation with other evidence-based products, reduce the likelihood of side-effects, and optimise key moderating factors: supplement dose and timing, and exercise duration and intensity.
Collapse
Affiliation(s)
- Amelia J Carr
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ella S Smith
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Charles S Urwin
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Lilia Convit
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - William T Jardine
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Monica K Kelly
- Centre for Sport Research, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de São Paulo, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Promkhun K, Suwanvichanee C, Tanpol N, Katemala S, Thumanu K, Molee W, Kubota S, Uimari P, Molee A. Effect of carnosine synthesis precursors in the diet on jejunal metabolomic profiling and biochemical compounds in slow-growing Korat chicken. Poult Sci 2023; 102:103123. [PMID: 37832192 PMCID: PMC10568557 DOI: 10.1016/j.psj.2023.103123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the β-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% β-alanine, 0.5% L-histidine, and a mix of 1.0% β-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of β-alanine alone in the diet increased the β-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the β-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that β-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.
Collapse
Affiliation(s)
- Kasarat Promkhun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chanadda Suwanvichanee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nathawat Tanpol
- Department of Animal Production Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Sasikan Katemala
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
10
|
Maestre-Hernández AB, Pérez-Piñero S, López-Román FJ, Andreu-Caravaca L, Luque-Rubia AJ, Ramos-Campo DJ, Díaz-Silvestre MJ, Ávila-Gandía V. Effect of a sustained-release formulation of β-alanine on laboratory parameters and paresthesia in recreational trained men: a randomized double-blind placebo-controlled study. Front Nutr 2023; 10:1213105. [PMID: 37766731 PMCID: PMC10520961 DOI: 10.3389/fnut.2023.1213105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Beta-alanine is a non-essential amino acid that has been a focus of increasing research by its role as ergogenic aid to improve muscle performance. Methods A randomized, double-blind and controlled trial was conducted to determine the effect of a nutritional supplement of a sustained-release formulation of β-alanine in recreational trained men. The active product was an innovative sustained-release β-alanine microgranules powder blend, administered at high doses (15 g/day) divided into 3 intakes during 30 days. There were 10 participants in the experimental group and 9 in the placebo group, with a mean age of 22.5 ± 3.3 years. Participants were testing at baseline and at the end of study. Results In the β-alanine group, there were statistically increases in serum triglycerides, LDL-cholesterol, and urea nitrogen at the end of the study as compared with baseline, although there were no differences with the control group. The occurrence of paresthesia, described above all as tickling, was the majority but presented VAS score less than 3/10 in almost all subjects. Discussion More studies are required to evaluate the changes in blood parameters that can be caused by high intake of β-alanine during a long period of time. Clinical trial registration ClinicalTrials.gov, identifier (NCT05334121).
Collapse
Affiliation(s)
- Ana Belén Maestre-Hernández
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Francisco Javier López-Román
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
- Primary Care Research Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Luis Andreu-Caravaca
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
- Facultad de Deporte. UCAM, Universidad Católica de Murcia, Guadalupe, Spain
| | - Antonio J. Luque-Rubia
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Domingo J. Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Madrid, Spain
| | - María José Díaz-Silvestre
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| |
Collapse
|
11
|
Fernández-Lázaro D, Fiandor EM, García JF, Busto N, Santamaría-Peláez M, Gutiérrez-Abejón E, Roche E, Mielgo-Ayuso J. β-Alanine Supplementation in Combat Sports: Evaluation of Sports Performance, Perception, and Anthropometric Parameters and Biochemical Markers-A Systematic Review of Clinical Trials. Nutrients 2023; 15:3755. [PMID: 37686787 PMCID: PMC10490143 DOI: 10.3390/nu15173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
β-alanine does not have an ergogenic effect by itself, but it does as a precursor for the synthesis of carnosine in human skeletal muscle. β-alanine and carnosine together help improve the muscles' functionality, especially in high-intensity exercises such as combat sports. Therefore, β-alanine could be considered a nutritional ergogenic aid to improve sports performance in combat athletes. We aimed to critically review clinical trial evidence on the impact of β-alanine supplementation on sports performance, perception, and anthropometric parameters, as well as circulating biochemical markers in combat athletes. This systematic review was conducted following the specific methodological guidelines of the Preferred Report Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA), the PICOS question model, the Critical Review Form of McMaster, and the PEDro scale. Furthermore, the Cochrane risk-of-bias assessment tool was used. The search was carried out in the SCOPUS, Web of Science (WOS), and Medline (PubMed) databases for studies published from the beginning of the database until July 31, 2023. Of the 41 registers identified, only 7 met the established criteria and were included in this systematic review. Overall, performance parameters related to strength, power, total exercise work capacity, and combat-specific parameters were significantly improved (p < 0.05). Perception parameters increased non-significantly (p > 0.05). Regarding biochemical parameters, carnosine increased significantly (p < 0.05), pH decreased non-significantly (p > 0.05), and the results for blood bicarbonate and blood lactate were heterogeneous. Finally, there was a non-significant (p > 0.05) improvement in the anthropometric parameters of lean mass and fat mass. β-alanine supplementation appears to be safe and could be a suitable nutritional ergogenic aid for combat athletes.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
| | - Emma Marianne Fiandor
- Faculty of Physical Activity and Sport Sciences, European University, 28670 Villaviciosa de Odón, Spain;
| | - Juan F. García
- Department of Mechanical, Informatics and Aerospatial Engineering, University of Leon, 24071 Leon, Spain
| | - Natalia Busto
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Mirian Santamaría-Peláez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Eduardo Gutiérrez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castilla y León Health Council, 47007 Valladolid, Spain
| | - Enrique Roche
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan Mielgo-Ayuso
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain; (E.R.); (J.M.-A.)
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
12
|
The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutrients 2023; 15:nu15041039. [PMID: 36839397 PMCID: PMC9961614 DOI: 10.3390/nu15041039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
β-alanine is a nonessential amino acid that combines with the amino acid histidine to form the intracellular dipeptide carnosine, an important intracellular buffer. Evidence has been well established on the ability of β-alanine supplementation to enhance anaerobic skeletal muscle performance. As a result, β-alanine has become one of the more popular supplements used by competitive athletes. These same benefits have also been reported in soldiers. Evidence accumulated over the last few years has suggested that β-alanine can result in carnosine elevations in the brain, which appears to have broadened the potential effects that β-alanine supplementation may have on soldier performance and health. Evidence suggests that β-alanine supplementation can increase resilience to post-traumatic stress disorder, mild traumatic brain injury and heat stress. The evidence regarding cognitive function is inconclusive but may be more of a function of the stressor that is applied during the assessment period. The potential benefits of β-alanine supplementation on soldier resiliency are interesting but require additional research using a human model. The purpose of this review is to provide an overview of the physiological role of β-alanine and why this nutrient may enhance soldier performance.
Collapse
|
13
|
Ojeda ÁH, Barahona-Fuentes G, Galdames Maliqueo S, Guzmán Solis M, Cabrera MMY, Jorquera-Aguilera C. Acute Supplementation with Beta-Alanine Improves Performance in Aerobic-Anaerobic Transition Zones in Endurance Athletes. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:187-194. [PMID: 35512767 DOI: 10.1080/07315724.2021.2020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To determine the acute effect of low and high-dose BA trials on maximal aerobic speed (MAS) in endurance athletes. We hypothesized that high doses of BA have a greater effect than low doses, both compared to baseline. Twelve male endurance athletes volunteered for the study (age = 21.8 ± 2.37 years, weight = 69.8 ± 4.36 kg, height = 174 ± 5.45 cm, maximal oxygen uptake = 59.6 ± 3.77 mLO2·kg-1·min-1). The experimental design applied was randomized cross-over, double-blind. Treatment included three 6-minute run tests (6-MRT), the first as a baseline, then randomized 6-MRT with low (30 mg·kg-1) and high (45 mg·kg-1) dose BA trials. The 6-MRTs were separated by 72 hours. The main variable of the study was the distance (m) performed in the 6-MRT. Differences between tests were established through ANOVA and Tukey's multiple comparison tests (p < 0.05). The analysis showed significant differences between baseline and both doses (p < 0.001). No significant differences were observed between low and high-dose BA trials (p > 0.05). Both 30 and 45 mg·kg-1 of BA increased physical performance at maximal aerobic speed in endurance athletes. The acute intake formats described in the present investigation may be helpful for endurance athletes training and competing in aerobic-anaerobic transition zones.
Collapse
Affiliation(s)
- Álvaro Huerta Ojeda
- Grupo de Investigación en Salud, Actividad Física y Deporte ISAFYD, Universidad de Las Américas, sede Viña del Mar, Chile
| | - Guillermo Barahona-Fuentes
- Grupo de Investigación en Salud, Actividad Física y Deporte ISAFYD, Universidad de Las Américas, sede Viña del Mar, Chile
| | - Sergio Galdames Maliqueo
- Grupo de Investigación en Salud, Actividad Física y Deporte ISAFYD, Universidad de Las Américas, sede Viña del Mar, Chile
| | - Marcela Guzmán Solis
- Facultad de Educación Física y Deporte, Escuela Naval "Arturo Prat", Valparaíso, Chile
| | | | | |
Collapse
|
14
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
15
|
De Brandt J, Derave W, Vandenabeele F, Pomiès P, Blancquaert L, Keytsman C, Barusso-Grüninger MS, de Lima FF, Hayot M, Spruit MA, Burtin C. Efficacy of 12 weeks oral beta-alanine supplementation in patients with chronic obstructive pulmonary disease: a double-blind, randomized, placebo-controlled trial. J Cachexia Sarcopenia Muscle 2022; 13:2361-2372. [PMID: 35977911 PMCID: PMC9530565 DOI: 10.1002/jcsm.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Beta-alanine (BA) supplementation increases muscle carnosine, an abundant endogenous antioxidant and pH buffer in skeletal muscle. Carnosine loading promotes exercise capacity in healthy older adults. As patients with chronic obstructive pulmonary disease (COPD) suffer from elevated exercise-induced muscle oxidative/carbonyl stress and acidosis, and from reduced muscle carnosine stores, it was investigated whether BA supplementation augments muscle carnosine and induces beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress in patients with COPD. METHODS In this double-blind, randomized, placebo (PL)-controlled trial (clinicaltrials.gov identifier: NCT02770417), 40 patients (75% male) with COPD (mean ± standard deviation: age 65 ± 6 years; FEV1 % predicted 55 ± 14%) were assigned to 12 weeks oral BA or PL supplementation (3.2 g/day). The primary outcome, i.e. muscle carnosine, was quantified from m. vastus lateralis biopsies obtained before and after intervention. Co-primary outcomes, i.e. incremental and constant work rate cycle capacity, were also assessed. Linear mixed model analyses were performed. Compliance with and side effects of supplement intake and secondary outcomes (quadriceps strength and endurance, and muscle oxidative/carbonyl stress) were also assessed. RESULTS Beta-alanine supplementation increased muscle carnosine in comparison with PL in patients with COPD (mean difference [95% confidence interval]; +2.82 [1.49-4.14] mmol/kg wet weight; P < 0.001). Maximal incremental cycling capacity (VO2 peak: +0.5 [-0.7 to 1.7] mL/kg/min; P = 0.384, Wpeak: +5 [-1 to 11] W; P = 0.103) and time to exhaustion on the constant work rate cycle test (+28 [-179 to 236] s; P = 0.782) did not change significantly. Compliance with supplement intake was similar in BA (median (quartile 1-quartile 3); 100 (98-100)%) and PL (98 (96-100)%) (P = 0.294) groups, and patients did not report side effects possibly related to supplement intake. No change was observed in secondary outcomes. CONCLUSIONS Beta-alanine supplementation is efficacious in augmenting muscle carnosine (+54% from mean baseline value) without side effects in patients with COPD in comparison with PL. However, accompanied beneficial changes in exercise capacity, quadriceps function, and muscle oxidative/carbonyl stress were not observed.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Frank Vandenabeele
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Charly Keytsman
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Marina S Barusso-Grüninger
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,LEFiR - Spirometry and Respiratory Laboratory, São Carlos Federal University - UFSCar, São Carlos, São Paulo, Brazil
| | - Fabiano F de Lima
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,Faculty of Science and Technology, Department of Physical Therapy, Postgraduate Program in Physical Therapy, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Maurice Hayot
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Martijn A Spruit
- Department of Research and Education, CIRO+, Horn, The Netherlands.,Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chris Burtin
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium.,BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
16
|
Rodas G, Ferrer E, Reche X, Sanjuan-Herráez JD, McCall A, Quintás G. A targeted metabolic analysis of football players and its association to player load: Comparison between women and men profiles. Front Physiol 2022; 13:923608. [PMID: 36246100 PMCID: PMC9561103 DOI: 10.3389/fphys.2022.923608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Professional athletes undertake a variety of training programs to enhance their physical performance, technical-tactical skills, while protecting their health and well-being. Regular exercise induces widespread changes in the whole body in an extremely complex network of signaling, and evidence indicates that phenotypical sex differences influence the physiological adaptations to player load of professional athletes. Despite that there remains an underrepresentation of women in clinical studies in sports, including football. The objectives of this study were twofold: to study the association between the external load (EPTS) and urinary metabolites as a surrogate of the adaptation to training, and to assess the effect of sex on the physiological adaptations to player load in professional football players. Targeted metabolic analysis of aminoacids, and tryptophan and phenylalanine metabolites detected progressive changes in the urinary metabolome associated with the external training load in men and women’s football teams. Overrepresentation analysis and multivariate analysis of metabolic data showed significant differences of the effect of training on the metabolic profiles in the men and women teams analyzed. Collectively, our results demonstrate that the development of metabolic models of adaptation in professional football players can benefit from the separate analysis of women and men teams, providing more accurate insights into how adaptation to the external load is related to changes in the metabolic phenotypes. Furthermore, results support the use of metabolomics to understand changes in specific metabolic pathways provoked by the training process.
Collapse
Affiliation(s)
- Gil Rodas
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
- *Correspondence: Gil Rodas,
| | - Eva Ferrer
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
- Sports and Exercise Medicine Unit, Hospital Clinic and Sant Joan de Deu, Barcelona, Spain
| | - Xavier Reche
- Medical and Performance Department, Barça Innovation Hub, Futbol Club Barcelona, Barcelona, Spain
| | | | - Alan McCall
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | | |
Collapse
|
17
|
Yuan SF, Nair PH, Borbon D, Coleman SM, Fan PH, Lin WL, Alper HS. Metabolic engineering of E. coli for β-alanine production using a multi-biosensor enabled approach. Metab Eng 2022; 74:24-35. [PMID: 36067877 DOI: 10.1016/j.ymben.2022.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
β-alanine is an important biomolecule used in nutraceuticals, pharmaceuticals, and chemical synthesis. The relatively eco-friendly bioproduction of β-alanine has recently attracted more interest than petroleum-based chemical synthesis. In this work, we developed two types of in vivo high-throughput screening platforms, wherein one was utilized to identify a novel target ribonuclease E (encoded by rne) as well as a redox-cofactor balancing module that can enhance de novo β-alanine biosynthesis from glucose, and the other was employed for screening fermentation conditions. When combining these approaches with rational upstream and downstream module engineering, an engineered E. coli producer was developed that exhibited 3.4- and 6.6-fold improvement in β-alanine yield (0.85 mol β-alanine/mole glucose) and specific β-alanine production (0.74 g/L/OD600), respectively, compared to the parental strain in a minimal medium. Across all of the strains constructed, the best yielding strain exhibited 1.08 mol β-alanine/mole glucose (equivalent to 81.2% of theoretic yield). The final engineered strain produced 6.98 g/L β-alanine in a batch-mode bioreactor and 34.8 g/L through a whole-cell catalysis. This approach demonstrates the utility of biosensor-enabled high-throughput screening for the production of β-alanine.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Priya H Nair
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Dominic Borbon
- Biology, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Po-Hsun Fan
- Department of Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Wen-Ling Lin
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
18
|
Gonzalez DE, McAllister MJ, Waldman HS, Ferrando AA, Joyce J, Barringer ND, Dawes JJ, Kieffer AJ, Harvey T, Kerksick CM, Stout JR, Ziegenfuss TN, Zapp A, Tartar JL, Heileson JL, VanDusseldorp TA, Kalman DS, Campbell BI, Antonio J, Kreider RB. International society of sports nutrition position stand: tactical athlete nutrition. J Int Soc Sports Nutr 2022; 19:267-315. [PMID: 35813846 PMCID: PMC9261739 DOI: 10.1080/15502783.2022.2086017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 10/26/2022] Open
Abstract
This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). General Recommendations Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. Military Recommendations Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. First Responder Recommendations Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| | - Matthew J. McAllister
- Texas State University, Metabolic and Applied Physiology Laboratory, Department of Health & Human Performance, San Marcos, TX, USA
| | - Hunter S. Waldman
- University of North Alabama, Department of Kinesiology, Florence, AL, USA
| | - Arny A. Ferrando
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, AR, USA
| | - Jill Joyce
- Oklahoma State University, Department of Nutritional Sciences, Stillwater, OK, USA
| | - Nicholas D. Barringer
- US. Army-Baylor Master’s Program in Nutrition, Department of Nutrition, San Antonio, TX, USA
| | - J. Jay Dawes
- Oklahoma State University, Department of Kinesiology, Applied Health, and Recreation, Stillwater, OK, USA
| | - Adam J. Kieffer
- Brooke Army Medical Center, Department of Nutritional Medicine, San Antonio, TX, USA
| | - Travis Harvey
- United States Special Operations Command, Preservation of the Force and Family, Tampa, FL, USA
| | - Chad M. Kerksick
- Lindenwood University, Exercise and Performance Nutrition Laboratory, College of Science, Technology, and Health, St. Charles, MO, USA
| | - Jeffrey R. Stout
- University of Central Florida, Institute of Exercise Physiology and Rehabilitation Sciences, School of Kinesiology and Physical Therapy, Orlando, FL, USA
| | | | | | - Jamie L. Tartar
- Nova Southeastern University, Department of Psychology and Neuroscience, Fort Lauderdale, FL, USA
| | - Jeffery L. Heileson
- Baylor University, Department of Health, Human Performance, and Recreation, Waco, TX, USA
| | | | - Douglas S. Kalman
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Nutrition Department, Davie, FL, USA
| | - Bill I. Campbell
- University of South Florida, Performance & Physique Enhancement Laboratory, Exercise Science Program, Tampa, FL, USA
| | - Jose Antonio
- Fight Science Laboratory, Nova Southeastern University, Department of Health and Human Performance, Davie, FL, USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
de Salazar L, Segarra I, López-Román FJ, Torregrosa-García A, Pérez-Piñero S, Ávila-Gandía V. Increased Bioavailability of β-Alanine by a Novel Controlled-Release Powder Blend Compared to a Slow-Release Tablet. Pharmaceutics 2021; 13:1517. [PMID: 34575593 PMCID: PMC8467909 DOI: 10.3390/pharmaceutics13091517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND β-Alanine is a sport supplement with increasing popularity due to its consistent ability to improve physical performance, with the downside of requiring several weeks of supplementation as imposed to the maximum daily and single dose tolerated without side effects (i.e., paresthesia). To date, the only alternative to overcome this problem has been use of a sustained-release tablet, while powders are the most commonly used format to deliver several grams of amino acids in a single dose. In this study we assessed the bioavailability, pharmacokinetics and paresthesia effect of β-alanine after administration in a novel controlled-released powder blend (test) versus a sustained-release tablet (reference). METHODS Twelve subjects (25.6 ± 3.2 y, 50% female) participated in a randomized, single-blind, crossover study. Each participant was administered orally the test (β-alanine 8 g, l-histidine 300 mg, carnosine 100 mg) or the reference product (10 tablets to reach β-alanine 8 g, Zinc 20 mg) with a 1-week washout period. β-Alanine plasma concentrations (0-8 h) were determined by LC-MS/MS and model-independent pharmacokinetic analysis was carried out. Paresthesia intensity was evaluated using a Visual Analog Score (VAS) and the categorical Intensity Sensory Score (ISS). RESULTS The CMAX and AUC0→∞ increased 1.6- and 2.1-fold (both p < 0.001) in the test product, respectively, which yielded 2.1-fold higher bioavailability; Ka decreased in the test (0.0199 ± 0.0107 min-1) versus the reference (0.0299 ± 0.0121 min-1) product (p = 0.0834) as well as V/F and Cl/F (both p < 0.001); MRT0→last increased in the test (143 ± 19 min) versus reference (128 ± 16 min) formulation (p = 0.0449); t1/2 remained similar (test: 63.5 ± 8.7 min, reference: 68.9 ± 9.8 min). Paresthesia EMAX increased 1.7-fold using the VAS (p = 0.086) and the ISS (p = 0.009). AUEC increased 1.9-fold with the VAS (p = 0.107) and the ISS (p = 0.019) reflecting scale intrinsic differences. Pharmacokinetic-pharmacodynamic analysis showed a clockwise hysteresis loop without prediction ability between CMAX, AUC0→∞ and EMAX or AUEC. No side effects were reported (except paresthesia). CONCLUSIONS The novel controlled-release powder blend shows 100% higher bioavailability of β-alanine, opening a new paradigm that shifts from chronic to short or mid-term supplementation strategies to increase carnosine stores in sports nutrition.
Collapse
Affiliation(s)
- Lydia de Salazar
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Ignacio Segarra
- Department of Pharmacy, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Pharmacokinetics, Patient Care and Translational Bioethics Research Group, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain
| | - Francisco Javier López-Román
- Health Sciences Department, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Antonio Torregrosa-García
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
- Health Sciences PhD Program, Campus de los Jerónimos N° 135, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Murcia, Spain
| | - Silvia Pérez-Piñero
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| | - Vicente Ávila-Gandía
- Sports Physiology Department, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, 30107 Guadalupe, Spain; (L.d.S.); (S.P.-P.); (V.Á.-G.)
| |
Collapse
|
20
|
Lobo RR, Correia BSB, Peña-Bermúdez YA, Vincenzi R, da Silva CM, Panosso LL, Ceribeli C, Colnago LA, Cardoso DR, Berndt A, Pinheiro RSB, Bueno ICDS, Faciola AP. Effects of dietary inclusion of yerba mate (Ilex paraguariensis) extract on lamb muscle metabolomics and physicochemical properties in meat. J Anim Sci 2021; 99:6353549. [PMID: 34402901 DOI: 10.1093/jas/skab244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to evaluate the effect of dietary yerba mate (Ilex paraguariensis) extract (YME) on muscle metabolomics and physicochemical properties of lamb meat. Thirty-six uncastrated male lambs (90 d old) were fed experimental diets, which treatments consisted of 0%, 1%, 2%, and 4% inclusion of YME. Animals were fed for 50 d before slaughter. Muscle and meat samples were collected for metabolomics and meat quality analysis, respectively. The experiment was carried out in a randomized block design and analyzed using orthogonal contrasts. There was a quadratic effect of YME inclusion in tenderness (P < 0.05) and a positive linear effect on meat lightness (P < 0.05). No qualitative changes (P > 0.05) on individual metabolites were observed; however, changes in the quantitative metabolic profile were observed, showing that animals fed 1% and 2% of YME have a greater concentration of desirable endogenous muscle antioxidants, with direct impact on metabolic pathways related to beta-alanine metabolism and glutathione metabolism. Therefore, YME dietary supplementation up to 2% of the diet to lambs had little to no effects on the majority of meat quality traits evaluated; moreover, 4% of YME inclusion negatively affected feed intake and meat quality traits.
Collapse
Affiliation(s)
- Richard R Lobo
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil.,Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Banny S B Correia
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Yuli A Peña-Bermúdez
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafaela Vincenzi
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Caroline M da Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leticia L Panosso
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Caroline Ceribeli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Luiz A Colnago
- Embrapa Instrumentation, Brazilian Agricultural Research Corporation, São Carlos, São Paulo, Brazil
| | - Daniel R Cardoso
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Alexandre Berndt
- Embrapa Southeast Livestock, Brazilian Agricultural Research Corporation, São Carlos, São Paulo, Brazil
| | - Rafael S B Pinheiro
- *Department of Biology and Animal Science, College of Engineering, São Paulo State University, Ilha Solteira, São Paulo, Brazil
| | - Ives C da S Bueno
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
21
|
One-Week High-Dose β-Alanine Loading Improves World Tour Cyclists' Time-Trial Performance. Nutrients 2021; 13:nu13082543. [PMID: 34444703 PMCID: PMC8401416 DOI: 10.3390/nu13082543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Supplementation with β-alanine is becoming a common practice in high-performance athletes. The purpose of the present study was to investigate the effects of a one-week high-dose β-alanine loading phase employing a sustained-release powder on preserving the time-trial performance capacity of world tour cyclists during overreaching training. Per day, 20 g of sustained-release β-alanine was administered during one week (7 days) of intensive team training camp in a randomised balanced placebo-controlled parallel trial design, with six participants in each β-alanine (BA) or placebo (PLA) group. A 10-min time trial (10′ TT) was carried out to analyse performance and biochemical variables. Anthropometry, paresthesia, and adverse event data were also collected. Power-based relative training load was quantified. Compared to placebo, the BA improved mean power (6.21%, 37.23 W; 95% CI: 3.98–70.48 W, p = 0.046), distance travelled (2.16%, p = 0.046) and total work (4.85%, p = 0.046) without differences in cadence (p = 0.506) or RPE. Lactate (p = 0.036) and anion gap (p = 0.047) were also higher in the BA group, without differences in pH or Bicarbonate. High daily and single doses were well tolerated. One-week high-dose β-alanine loading with a sustained-release powder blend can help attenuate 10′ TT performance losses of world tour cyclists due to intensive training.
Collapse
|
22
|
Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, Selthofer-Relatić K, Kibel A, Lukinac A, Kolar L, Kralik G, Kralik Z, Széchenyi A, Jozanović M, Galović O, Medvidović-Kosanović M, Drenjančević I. Carnosine, Small but Mighty-Prospect of Use as Functional Ingredient for Functional Food Formulation. Antioxidants (Basel) 2021; 10:1037. [PMID: 34203479 PMCID: PMC8300828 DOI: 10.3390/antiox10071037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Carnosine is a dipeptide synthesized in the body from β-alanine and L-histidine. It is found in high concentrations in the brain, muscle, and gastrointestinal tissues of humans and is present in all vertebrates. Carnosine has a number of beneficial antioxidant properties. For example, carnosine scavenges reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes created by peroxidation of fatty acid cell membranes during oxidative stress. Carnosine can oppose glycation, and it can chelate divalent metal ions. Carnosine alleviates diabetic nephropathy by protecting podocyte and mesangial cells, and can slow down aging. Its component, the amino acid beta-alanine, is particularly interesting as a dietary supplement for athletes because it increases muscle carnosine, and improves effectiveness of exercise and stimulation and contraction in muscles. Carnosine is widely used among athletes in the form of supplements, but rarely in the population of cardiovascular or diabetic patients. Much less is known, if any, about its potential use in enriched food. In the present review, we aimed to provide recent knowledge on carnosine properties and distribution, its metabolism (synthesis and degradation), and analytical methods for carnosine determination, since one of the difficulties is the measurement of carnosine concentration in human samples. Furthermore, the potential mechanisms of carnosine's biological effects in musculature, metabolism and on immunomodulation are discussed. Finally, this review provides a section on carnosine supplementation in the form of functional food and potential health benefits and up to the present, neglected clinical use of carnosine.
Collapse
Affiliation(s)
- Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Dermatology and Venereology, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska 57, HR-32100 Vinkovci, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anamarija Lukinac
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Rheumatology, Clinical Immunology and Allergology, Clinical Hospital Center Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, Vukovar General Hospital, HR-32000 Vukovar, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Marija Jozanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Martina Medvidović-Kosanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| |
Collapse
|
23
|
Perim P, Gobbi N, Duarte B, Farias de Oliveira L, Costa LAR, Sale C, Gualano B, Dolan E, Saunders B. Beta-alanine did not improve high-intensity performance throughout simulated road cycling. Eur J Sport Sci 2021; 22:1240-1249. [PMID: 34092191 DOI: 10.1080/17461391.2021.1940304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study investigated the effect of beta-alanine supplementation on short-duration sprints and final 4-km simulated uphill cycling time-trial performance during a comprehensive and novel exercise protocol representative of the demands of road-race cycling, and determined if changes were related to increases in muscle carnosine content. Seventeen cyclists (age 38 ± 9 y, height 1.76 ± 0.07 m, body mass 71.4 ± 8.8 kg, V̇O2max 52.4 ± 8.3 ml·kg-1·min-1) participated in this placebo-controlled, double-blind study. Cyclists undertook a prolonged intermittent cycling protocol lasting 125 min, with a 10-s sprint every 20 min, finishing with a 4-km time-trial at 5% simulated incline. Participants completed two familiarization sessions, and two main sessions, one pre-supplementation and one post-supplementation following 28 days of 6.4 g·day-1 of beta-alanine (N=11) or placebo (N=6; maltodextrin). Muscle biopsies obtained pre- and post-supplementation were analysed for muscle carnosine content. There were no main effects on sprint performance throughout the intermittent cycling test (all P>0.05). There was no group (P=0.69), time (P=0.50) or group x time interaction (P=0.26) on time-to-complete the 4-km time-trial. Time-to-completion did not change from pre- to post-supplementation for BA (-19.2 ± 45.6 s, P=0.43) or PL (+2.8 ± 31.6 s, P=0.99). Beta-alanine supplementation increased muscle carnosine content from pre- to post-supplementation (+9.4 ± 4.0 mmol·kg-1dm; P<0.0001) but was not related to performance changes (r=0.320, P=0.37). Chronic beta-alanine supplementation increased muscle carnosine content but did not improve short-duration sprint performance throughout simulated road race cycling, nor 4-km uphill time-trial performance conducted at the end of this cycling test.Highlights Performance during prolonged cycling events often depends on the ability to maintain an increased power output during higher intensity periods. Thus, cyclists are likely heavily dependent on their ability to resist fatigue during these periods of high-intensity activity.Meta-analytical data show beta-alanine to be an effective supplement to improve exercise outcomes, but little work exists on its efficacy during dynamic actions that are common during prolonged cycling.Beta-alanine supplementation increased muscle carnosine content but did not generate improvements in the performance of high-intensity cycling (10-s sprints or 4-km uphill time-trial) during a simulated road race cycling protocol.These data suggest that short duration sprints (≤10 s) and longer duration (>10 min) high-intensity activity throughout endurance cycling may not be improved with beta-alanine supplementation despite increases in muscle carnosine content.
Collapse
Affiliation(s)
- Pedro Perim
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Nathan Gobbi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Breno Duarte
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Luana Farias de Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Luiz Augusto Riani Costa
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, United Kingdom
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil.,Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport; Rheumatology Division; Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, BR, University of São Paulo, Brazil.,Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, Brazil
| |
Collapse
|
24
|
Feehan J, de Courten M, Apostolopoulos V, de Courten B. Nutritional Interventions for COVID-19: A Role for Carnosine? Nutrients 2021; 13:nu13051463. [PMID: 33925783 PMCID: PMC8146193 DOI: 10.3390/nu13051463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
As COVID-19 continues to take an enormous toll on global health, the effort to find effective preventive and treatment strategies has been unparalleled in recent history [...].
Collapse
Affiliation(s)
- Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia;
- Department of Medicine—Western Health, The University of Melbourne, Melbourne, VIC 3021, Australia
| | - Maximilian de Courten
- Mitchell Institute for Education and Health Policy, Victoria University, Melbourne, VIC 3011, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia;
- Correspondence: (V.A.); (B.d.C.)
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
- Correspondence: (V.A.); (B.d.C.)
| |
Collapse
|
25
|
Grgic J. Effects of beta-alanine supplementation on Yo-Yo test performance: A meta-analysis. Clin Nutr ESPEN 2021; 43:158-162. [PMID: 34024507 DOI: 10.1016/j.clnesp.2021.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this meta-analysis was to explore the effects of beta-alanine supplementation on Yo-Yo test performance. METHODS Nine databases were searched to find relevant studies. A random-effects meta-analysis of standardized mean differences (SMD) was performed for data analysis. Subgroup meta-analyses were conducted to explore the effects of beta-alanine supplementation duration on Yo-Yo test performance, and the effects of beta-alanine supplementation on performance only in Yo-Yo level 2 test variants. RESULTS Ten study groups were included in the meta-analysis. All studies included athletes as study participants. When considering all available studies, there was no significant difference between the placebo/control and beta-alanine groups (SMD: 0.68; 95% confidence interval [CI]: -0.30, 1.67). When considering only the studies that used supplementation protocols lasting between 6 and 12 weeks, there was a significant ergogenic effect of beta-alanine (SMD: 1.02; 95% CI: 0.01, 2.05). When considering only the studies that used the level 2 variants of the Yo-Yo test, there was a significant ergogenic effect of beta-alanine (SMD: 1.41; 95% CI: 0.35, 2.48). CONCLUSIONS This meta-analysis found that beta-alanine is ergogenic for Yo-Yo test performance in athletes when the supplementation protocol lasts between 6 and 12 weeks and when using the level 2 variants of the Yo-Yo test.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| |
Collapse
|
26
|
Shbib S, Rashidlamir A, Hakak Dokht E. The effects of plyometric training and β-alanine supplementation on anaerobic power and serum level of carnosine in handball players. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00709-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Franco GS, Noronha NY, Oliveira BA, Ferreira FC, Pinto AP, Brandao CF, Papoti M, Nonino CB. Beta-alanine fails to improve on 5000 m running time despite increasing PAT1 expression in long-distance runners. J Sports Med Phys Fitness 2020; 61:1605-1612. [PMID: 33305552 DOI: 10.23736/s0022-4707.20.11946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Beta-alanine has become a dietary supplement widely used by athletes due to its ergogenic effect. However, there is still no consensus on the performance benefit of beta-alanine on exercise lasting longer than ten minutes. The present study aimed to evaluate the effect of beta-alanine supplementation on running performance and the expression of TauT and PAT1. METHODS This double-blind, randomized study enrolled 16 long-distance runners (37±8 years) who were randomly allocated to two groups: placebo (PLA) and beta-alanine (BA) (4.8 g/day 1) for four weeks. Maximal oxygen consumption, anthropometry, body composition, and food intake were determined. Before and after the intervention, the athletes undertook a 5000 m running time trial. Venous blood (TauT and PAT1 expressions) and ear lobe capillary blood (lactate) collected before and after exercise. Between tests, we monitored the training variables. RESULTS The results were analyzed by t-tests and an ANOVA of repeated measures, with Sidak's post hoc (P<0.05). PLA exhibited lower body fat than BA (8.7±2.2 vs. 11.5±2.8%, P=0.04). After supplementation, there was an increase in PAT1 expression in BA when compared to PLA (1.17±0.47 vs. 0.77±0.18, P=0.04). No significant differences were shown for the 5000 m running time in PLA (PRE: 1128±72; POST: 1123±72s) and BA (PRE: 1107±95; POST: 1093±86s). CONCLUSIONS Although beta-alanine supplementation increased PAT1 expression, there was no statistically significant improvement in 5000 m running performance. However, individual responses should be considered as the BA showed a higher delta than the PLA.
Collapse
Affiliation(s)
- Gabriel S Franco
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil - .,Departament of Nutrition, University of Franca, Franca, Brazil -
| | - Natália Y Noronha
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno A Oliveira
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávia C Ferreira
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana P Pinto
- Ribeirão Preto School of Physical Education and Sport, Laboratory of Exercise Physiology and Metabolism, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila F Brandao
- Division of Nutrology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,State University of Minas Gerais, Divinópolis, Brazil
| | - Marcelo Papoti
- Ribeirão Preto School of Physical Education and Sport, Laboratory of Water Activities, University of São Paulo, Ribeirão Preto, Brazil
| | - Carla B Nonino
- Department of Internal Medicine, Laboratory of Nutrigenomics Studies, Faculty of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
28
|
|
29
|
Meys R, Stoffels AAF, de Brandt J, van Hees HWH, Franssen FME, Sillen MJH, Wouters EFM, Burtin C, Klijn P, Bij de Vaate E, van den Borst B, Otker JM, Donkers J, Schleich FN, Hayot M, Pomiès P, Everaert I, Derave W, Spruit MA. Beta-alanine supplementation in patients with COPD receiving non-linear periodised exercise training or neuromuscular electrical stimulation: protocol of two randomised, double-blind, placebo-controlled trials. BMJ Open 2020; 10:e038836. [PMID: 32928863 PMCID: PMC7488791 DOI: 10.1136/bmjopen-2020-038836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Exercise intolerance is common in patients with chronic obstructive pulmonary disease (COPD) and, although multifactorial, it is largely caused by lower-limb muscle dysfunction. Research has shown that patients with severe to very severe COPD have significantly lower levels of muscle carnosine, which acts as a pH buffer and antioxidant. Beta-alanine (BA) supplementation has been shown to consistently elevate muscle carnosine in a variety of populations and may therefore improve exercise tolerance and lower-limb muscle function. The primary objective of the current studies is to assess the beneficial effects of BA supplementation in enhancing exercise tolerance on top of two types of exercise training (non-linear periodised exercise (NLPE) training or neuromuscular electrical stimulation (NMES)) in patients with COPD. METHODS AND ANALYSIS Two randomised, double-blind, placebo-controlled trials have been designed. Patients will routinely receive either NLPE (BASE-TRAIN trial) or NMES (BASE-ELECTRIC trial) as part of standard exercise-based care during their 8-to-10 week pulmonary rehabilitation (PR) programme. A total of 222 patients with COPD (2×77 = 154 patients in the BASE-TRAIN trial and 2×34 = 68 patients in the BASE-ELECTRIC trial) will be recruited from two specialised PR centres in The Netherlands. For study purposes, patients will receive 3.2 g of oral BA supplementation or placebo per day. Exercise tolerance is the primary outcome, which will be assessed using the endurance shuttle walk test (BASE-TRAIN) or the constant work rate cycle test (BASE-ELECTRIC). Furthermore, quadriceps muscle strength and endurance, cognitive function, carnosine levels (in muscle), BA levels (in blood and muscle), markers of oxidative stress and inflammation (in blood, muscles and lungs), physical activity and quality of life will be measured. ETHICS AND DISSEMINATION Both trials were approved by CMO Regio Arnhem-Nijmegen, The Netherlands (NL70781.091.19. and NL68757.091.19). TRIAL REGISTRATION NUMBER NTR8427 (BASE-TRAIN) and NTR8419 (BASE-ELECTRIC).
Collapse
Affiliation(s)
- Roy Meys
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Anouk A F Stoffels
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Department of Pulmonary Diseases, Radboud UMC Dekkerswald, Nijmegen, The Netherlands
| | - Jana de Brandt
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| | | | - Frits M E Franssen
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | | | - Emiel F M Wouters
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Chris Burtin
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| | - Peter Klijn
- Department of Pulmonology, Merem Pulmonary Rehabilitation Centre, Hilversum, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline Bij de Vaate
- Department of Pulmonology, Merem Pulmonary Rehabilitation Centre, Hilversum, The Netherlands
| | - Bram van den Borst
- Department of Pulmonary Diseases, Radboud UMC Dekkerswald, Nijmegen, The Netherlands
| | - Jacqueline M Otker
- Patient Advisory Council, Lung Foundation Netherlands, Amersfoort, The Netherlands
- Client Council, CIRO, Horn, The Netherlands
| | | | - Florence N Schleich
- Department of Respiratory Medicine, CHU Sart-Tilman Liege, GIGA I3, Liege, Belgium
| | - Maurice Hayot
- PhyMedExp, INSERM - CNRS, University of Montpellier - Montpellier CHU, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM - CNRS, University of Montpellier - Montpellier CHU, Montpellier, France
| | - Inge Everaert
- Department of Movement and Sport Sciences, University Ghent, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, University Ghent, Ghent, Belgium
| | - Martijn A Spruit
- Department of Research and Development, CIRO, Horn, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Reval Rehabilitation Research, Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, DIepenbeek, Belgium
| |
Collapse
|
30
|
Rezende NS, Swinton P, de Oliveira LF, da Silva RP, da Eira Silva V, Nemezio K, Yamaguchi G, Artioli GG, Gualano B, Saunders B, Dolan E. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front Physiol 2020; 11:913. [PMID: 32922303 PMCID: PMC7456894 DOI: 10.3389/fphys.2020.00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Beta-alanine (BA) supplementation increases muscle carnosine content (MCarn), and has many proven, and purported, ergogenic, and therapeutic benefits. Currently, many questions on the nature of the MCarn response to supplementation are open, and the response to these has considerable potential to enhance the efficacy and application of this supplementation strategy. To address these questions, we conducted a systematic review with Bayesian-based meta-analysis of all published aggregate data using a dose response (Emax) model. Meta-regression was used to consider the influence of potential moderators (including dose, sex, age, baseline MCarn, and analysis method used) on the primary outcome. The protocol was designed according to PRISMA guidelines and a three-step screening strategy was undertaken to identify studies that measured the MCarn response to BA supplementation. Additionally, we conducted an original analysis of all available individual data on the MCarn response to BA supplementation from studies conducted within our lab (n = 99). The Emax model indicated that human skeletal muscle has large capacity for non-linear MCarn accumulation, and that commonly used BA supplementation protocols may not come close to saturating muscle carnosine content. Neither baseline values, nor sex, appeared to influence subsequent response to supplementation. Analysis of individual data indicated that MCarn is relatively stable in the absence of intervention, and effectually all participants respond to BA supplementation (99.3% response [95%CrI: 96.2–100]).
Collapse
Affiliation(s)
- Nathália Saffioti Rezende
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Paul Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Luana Farias de Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Pires da Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius da Eira Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Kleiner Nemezio
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Yamaguchi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Leucine-Rich Diet Modulates the Metabolomic and Proteomic Profile of Skeletal Muscle during Cancer Cachexia. Cancers (Basel) 2020; 12:cancers12071880. [PMID: 32668598 PMCID: PMC7408981 DOI: 10.3390/cancers12071880] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Cancer-cachexia induces a variety of metabolic disorders, including skeletal muscle imbalance. Alternative therapy, as nutritional supplementation with leucine, shows a modulatory effect over tumour damage in vivo and in vitro. Method: Adult rats distributed into Control (C), Walker tumour-bearing (W), control fed a leucine-rich diet (L), and tumour-bearing fed a leucine-rich diet (WL) groups had the gastrocnemius muscle metabolomic and proteomic assays performed in parallel to in vitro assays. Results: W group presented an affected muscle metabolomic and proteomic profile mainly related to energy generation and carbohydrates catabolic processes, but leucine-supplemented group (WL) recovered the energy production. In vitro assay showed that cell proliferation, mitochondria number and oxygen consumption were higher under leucine effect than the tumour influence. Muscle proteomics results showed that the main affected cell component was mitochondria, leading to an impacted energy generation, including impairment in proteins of the tricarboxylic cycle and carbohydrates catabolic processes, which were modulated and improved by leucine treatment. Conclusion: In summary, we showed a beneficial effect of leucine upon mitochondria, providing information about the muscle glycolytic pathways used by this amino acid, where it can be associated with the preservation of morphometric parameters and consequent protection against the effects of cachexia.
Collapse
|
32
|
Fragmented Dosing of β-alanine Induces A Body Weight-Independent Pharmacokinetic Response. Nutrients 2019; 11:nu11122869. [PMID: 31771148 PMCID: PMC6950400 DOI: 10.3390/nu11122869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Personalised dosing of performance-enhancing food supplements is a hot topic. β-alanine is currently dosed using a fixed dose; however, evidence suggests that this might favour light compared to heavy subjects. A weight-relative dose seems to reverse this problem. In the present study, a novel dosing strategy was tested. A fragmented dose, composed of a fixed fragment of 800 mg and a weight-relative fragment of 10 mg/kg body weight, was compared to a fixed dose of 1600 mg and a weight-relative dose of 20 mg/kg body weight in a cohort of 20 subjects with a body weight ranging 48–139 kg (79.9 ± 24.4 kg). The results show that, following a fragmented dose, the influence of body weight on the pharmacokinetic response (iAUC) over a 210 min period was absent (r = −0.168; p = 0.478), in contrast to the fixed or weight-relative dose. The pharmacokinetic response also seemed more homogenous (CV% = 26%) following a fragmented dose compared to the fixed (33%) and the weight-relative dose (31%). The primary advantage of the easy-to-calculate fragmented dosing strategy is that it does not systematically favour or impair a certain weight group. Thorough dosage studies are lacking in the current field of sports and food supplements, therefore similar considerations can be made towards other (ergogenic) food supplements.
Collapse
|