1
|
Jahn N, Geisslitz S, Konradl U, Fleissner K, Scherf KA. Amylase/trypsin-inhibitor content and inhibitory activity of German common wheat landraces and modern varieties do not differ. NPJ Sci Food 2025; 9:24. [PMID: 39979280 PMCID: PMC11842761 DOI: 10.1038/s41538-025-00385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Amylase/trypsin-inhibitors (ATIs) are triggers for wheat-related disorders like baker's asthma and non-celiac wheat sensitivity. With the rise of wheat-related disorders among the population, the hypothesis that breeding may have resulted in changes in the protein composition of wheat was put forward. The ATI content of 14 German common wheat landraces and six modern varieties harvested in three consecutive years was analyzed by liquid chromatography-tandem mass spectrometry, and the inhibitory activity against α-amylase was measured with an enzymatic assay. The mean ATI content and proportion of crude protein of both groups did not differ. There were also only small differences in the content and proportion of single ATIs. The mean values for the inhibitory activity of both groups were also similar. These results indicate that breeding might not have led to changes in the protein composition and landraces are unlikely to be better tolerated than modern varieties.
Collapse
Affiliation(s)
- Nora Jahn
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131, Karlsruhe, Germany
| | - Sabrina Geisslitz
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Ulla Konradl
- Bavarian State Research Center for Agriculture (LfL), Kleeberg 14, 94099, Ruhstorf an der Rott, Germany
| | - Klaus Fleissner
- Bavarian State Research Center for Agriculture (LfL), Kleeberg 14, 94099, Ruhstorf an der Rott, Germany
| | - Katharina A Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131, Karlsruhe, Germany.
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
- TUM School of Life Sciences, Professorship for Food Biopolymer Systems, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
2
|
Asledottir T, Mamone G, Picariello G, Vegarud GE, Røseth A, Ferranti P, Devold TG. Lower Diversity of Amylase-Trypsin Inhibitors and Ex Vivo-Released Opioid-Containing Peptides in Ancestral Compared to Modern Wheat Varieties Assessed by Proteomics and Peptidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2373-2380. [PMID: 39813239 PMCID: PMC11783586 DOI: 10.1021/acs.jafc.4c05959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the ex vivo digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs (n = 24), while they were less represented in tetraploid emmer (n = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs. Nevertheless, digestion of Mirakel and Bastian by human gastrointestinal juices released the highest number of opioid-containing peptides, representing both gluten exorphins and gliadorphin. In conclusion, emmer had the lowest levels of ATIs, while einkorn and spelt released the fewest opioid-containing peptides after ex vivo digestion. These results point to the potential lower harmful effects of ancestral wheat compared to common hexaploid wheat varieties for wheat-sensitive individuals.
Collapse
Affiliation(s)
- Tora Asledottir
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Gianfranco Mamone
- Institute
of Food Science, National Research Council, 83100 Avellino, Italy
| | | | - Gerd E. Vegarud
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Arne Røseth
- Department
of Internal Medicine, Lovisenberg Diaconal
Hospital, 0456 Oslo, Norway
| | - Pasquale Ferranti
- Department
of Agriculture, University of Naples Federico
II, 80055 Portici, Italy
| | - Tove G. Devold
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
3
|
Kowalski S, Mikulec A, Litwinek D, Mickowska B, Skotnicka M, Oracz J, Karwowska K, Wywrocka-Gurgul A, Sabat R, Platta A. The Influence of Fermentation Technology on the Functional and Sensory Properties of Hemp Bread. Molecules 2024; 29:5455. [PMID: 39598844 PMCID: PMC11597250 DOI: 10.3390/molecules29225455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
In this work, the type of fermentation and baking technology used to make hemp bread was investigated. The physicochemical composition of flour and bread, the protein nutritional quality, fatty acids profile, texture, consumer acceptance, analysis of volatile compounds using an electronic nose and chemical compounds using an electronic tongue were determined. Differences in protein and total dietary fiber content were observed in the obtained breads. The use of sourdoughs had a minor effect on the physical properties of the bread tested (the volume and mass of the loaves, color, or crumb texture). There was no clear effect of the tested sourdoughs on the parameters of the crumb texture and its moisture, assessed physically, both on the day of baking and during storage. In this bread, the limiting amino acid was lysine (amino acid score from 56.22% to 57.63%), but the breads did not differ significantly in the value of this indicator. The n-6/n-3 ratio in breads containing hemp flour (from 3.73 to 4.48) may have a beneficial effect on human health. The best-rated bread was the HB4 with a score of 6.09. The acceptance of remaining breads were in the range from 3.91 for HB1 to 4.91 for HB2.
Collapse
Affiliation(s)
- Stanisław Kowalski
- Faculty of Food Technology, Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, 30-149 Krakow, Poland; (D.L.); (A.W.-G.); (R.S.)
| | - Anna Mikulec
- Faculty of Engineering Sciences, University of Applied Science in Nowy Sacz, 33-300 Nowy Sacz, Poland;
| | - Dorota Litwinek
- Faculty of Food Technology, Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, 30-149 Krakow, Poland; (D.L.); (A.W.-G.); (R.S.)
| | - Barbara Mickowska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Krakow, Poland;
| | - Magdalena Skotnicka
- Department of Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (K.K.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Łodz, Poland;
| | - Kaja Karwowska
- Department of Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (K.K.)
| | - Anna Wywrocka-Gurgul
- Faculty of Food Technology, Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, 30-149 Krakow, Poland; (D.L.); (A.W.-G.); (R.S.)
| | - Renata Sabat
- Faculty of Food Technology, Department of Carbohydrate Technology and Cereal Processing, University of Agriculture in Krakow, 30-149 Krakow, Poland; (D.L.); (A.W.-G.); (R.S.)
| | - Anna Platta
- Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland;
| |
Collapse
|
4
|
Müller I, Schmid B, Bosa L, Morlock GE. Screening of α-amylase/trypsin inhibitor activity in wheat, spelt and einkorn by high-performance thin-layer chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38687148 DOI: 10.1039/d4ay00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
α-Amylase/trypsin inhibitor proteins (ATI) are discussed as possible triggers for non-celiac gluten sensitivity. The potential of high-performance thin-layer chromatography (HPTLC) was studied for the first time to analyse the inhibitory properties of ATIs from flour of wheat, spelt, and einkorn. Inhibition by each flour of the digestive enzymes trypsin or α-amylase was determined by the reduction of released metabolisation products in comparison to non-digested flour, and positive (acarbose) and negative (water) controls. Firstly, amylolysis was carried out in miniaturized form on the HPTLC surface (HPTLC-nanoGIT) after in-vial pre-incubation of the amylase with the inhibitors from flour. α-Amylase inhibition was evident via the reduction of released saccharides, as analysed by normal phase HPTLC. A strong influence of the flour matrix on the assay results (individual saccharides) was evident, caused by an increased amylolysis of further polysaccharides present, making HPTLC analysis more reliable than currently used spectrophotometric sum value assays. The detection and visualization of such matrix influence helps to understand the problems associated with spectrophotometric assays. Only maltotriose was identified as a reliable marker of the amylolysis. The highest α-amylase inhibition and thus the lowest saccharide response was detected for maltotriose in refined spelt, whereas the lowest α-amylase inhibition and thus the highest saccharide response was detected for maltotriose in refined wheat. A comparison of refined and whole grain flours showed no clear trend in the responses. Secondly, trypsin inhibition and proteolysis were performed in-vial, and any inhibition was evident via the reduction of released peptides, analysed by reversed-phase HPTLC. Based on the product pattern of the proteolysis, einkorn and whole wheat showed the highest trypsin inhibition, whereas refined wheat and refined spelt showed the lowest inhibition. Advantageously, HPTLC analysis provided important information on changes in individual saccharides or peptides, which was more reliable and sustainable than spectrophotometric in-vial assays (only sum value) or liquid column chromatography analysis (targeting only the ATI proteins).
Collapse
Affiliation(s)
- Isabel Müller
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Bianca Schmid
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Loredana Bosa
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gertrud Elisabeth Morlock
- Chair of Food Science, Institute of Nutritional Science, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
5
|
de Graaf MC, Timmers E, Bonekamp B, van Rooy G, Witteman BJ, Shewry PR, Lovegrove A, America AH, Gilissen LJ, Keszthelyi D, Brouns FJ, Jonkers DMAE. Two randomized crossover multicenter studies investigating gastrointestinal symptoms after bread consumption in individuals with noncoeliac wheat sensitivity: do wheat species and fermentation type matter? Am J Clin Nutr 2024; 119:896-907. [PMID: 38373694 DOI: 10.1016/j.ajcnut.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Many individuals reduce their bread intake because they believe wheat causes their gastrointestinal (GI) symptoms. Different wheat species and processing methods may affect these responses. OBJECTIVES We investigated the effects of 6 different bread types (prepared from 3 wheat species and 2 fermentation conditions) on GI symptoms in individuals with self-reported noncoeliac wheat sensitivity (NCWS). METHODS Two parallel, randomized, double-blind, crossover, multicenter studies were conducted. NCWS individuals, in whom coeliac disease and wheat allergy were ruled out, received 5 slices of yeast fermented (YF) (study A, n = 20) or sourdough fermented (SF) (study B, n = 20) bread made of bread wheat, spelt, or emmer in a randomized order on 3 separate test days. Each test day was preceded by a run-in period of 3 d of a symptom-free diet and separated by a wash-out period of ≥7 d. GI symptoms were evaluated by change in symptom score (test day minus average of the 3-d run-in period) on a 0-100 mm visual analogue scale (ΔVAS), comparing medians using the Friedman test. Responders were defined as an increase in ΔVAS of ≥15 mm for overall GI symptoms, abdominal discomfort, abdominal pain, bloating, and/or flatulence. RESULTS GI symptoms did not differ significantly between breads of different grains [YF bread wheat median ΔVAS 10.4 mm (IQR 0.0-17.8 mm), spelt 4.9 mm (-7.6 to 9.4 mm), emmer 11.0 mm (0.0-21.3 mm), P = 0.267; SF bread wheat 10.5 mm (-3.1 to 31.5 mm), spelt 11.3 mm (0.0-15.3 mm), emmer 4.0 mm (-2.9 to 9.3 mm), P = 0.144]. The number of responders was also comparable for both YF (6 to wheat, 5 to spelt, and 7 to emmer, P = 0.761) and SF breads (9 to wheat, 7 to spelt, and 8 to emmer, P = 0.761). CONCLUSIONS The majority of NCWS individuals experienced some GI symptoms for ≥1 of the breads, but on a group level, no differences were found between different grains for either YF or SF breads. CLINICAL TRIAL REGISTRY clinicaltrials.gov, NCT04084470 (https://classic. CLINICALTRIALS gov/ct2/show/NCT04084470).
Collapse
Affiliation(s)
- Marlijne Cg de Graaf
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Emma Timmers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Bo Bonekamp
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Gonny van Rooy
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Ben Jm Witteman
- Division Gastroenterology-Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands; Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | - Antoine Hp America
- Business Unit Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Luud Jwj Gilissen
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Fred Jph Brouns
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Daisy M A E Jonkers
- Department of Gastroenterology-Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.
| |
Collapse
|
6
|
Hermans W, Geisslitz S, De Bondt Y, Langenaeken NA, Scherf KA, Courtin CM. NanoLC-MS/MS protein analysis on laser-microdissected wheat endosperm tissues: A comparison between aleurone, sub-aleurone and inner endosperm. Food Chem 2024; 437:137735. [PMID: 37924757 DOI: 10.1016/j.foodchem.2023.137735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Wheat kernel proteins are not homogeneously distributed throughout the endosperm. The goal of this study was to investigate the relative differences in protein composition between the aleurone, sub-aleurone and inner endosperm. Using laser microdissection followed by nanoLC-MS/MS, an innovative method combining high spatial specificity and analytical selectivity in sample-limited situations, 780 proteins were detected and classified by function. A higher proportion of gluten proteins was detected in the sub-aleurone than inner endosperm. Composition-wise, gluten from the sub-aleurone is relatively more enriched in ω-gliadins but impoverished in LMW-GS and γ-gliadins. While a basic set of albumins and globulins was detected in all three microdissected endosperm tissues, specific proteins, like puroindoline B, displayed a gradient. This study provides indications that both histological origin and relative positioning of the tissues drive the protein distribution. Knowledge of this protein distribution offers significant opportunities for the wheat manufacturing industry. Data available via ProteomeXchange, identifier PXD038743.
Collapse
Affiliation(s)
- Wisse Hermans
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Research unit Laboratory of Food Chemistry and Biochemistry, B-3000 Leuven, Belgium.
| | - Sabrina Geisslitz
- Karlsruhe Institute of Technology (KIT), Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, 76131 Karlsruhe, Germany.
| | - Yamina De Bondt
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Research unit Laboratory of Food Chemistry and Biochemistry, B-3000 Leuven, Belgium.
| | - Niels A Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Research unit Laboratory of Food Chemistry and Biochemistry, B-3000 Leuven, Belgium.
| | - Katharina A Scherf
- Karlsruhe Institute of Technology (KIT), Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, 76131 Karlsruhe, Germany.
| | - Christophe M Courtin
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Research unit Laboratory of Food Chemistry and Biochemistry, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Manza F, Lungaro L, Costanzini A, Caputo F, Volta U, De Giorgio R, Caio G. Gluten and Wheat in Women's Health: Beyond the Gut. Nutrients 2024; 16:322. [PMID: 38276560 PMCID: PMC10820448 DOI: 10.3390/nu16020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Since the rise of awareness of gluten/wheat-related disorders in the academic and clinical field in the last few decades, misinformation regarding the gluten-free diet (GFD) and its impact on health has been spreading among the general population. Despite the established link between gluten and celiac disease (CD), where a GFD is mandatory to reach clinical and histological remission, things are more complicated when it comes to non-celiac gluten/wheat sensitivity (NCGWS) and other autoimmune/dysimmune disorders. In the last conditions, a beneficial effect of gluten withdrawal has not been properly assessed, but still is often suggested without strong supporting evidence. In this context, women have always been exposed, more than men, to higher social pressure related to nutritional behaviors and greater engagement in controlling body weight. With this narrative review, we aim to summarize current evidence on the adherence to a GFD, with particular attention to the impact on women's health.
Collapse
Affiliation(s)
- Francesca Manza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (F.C.); (R.D.G.)
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital—Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Ding Z, Mulder J, Robinson MJ. The origins and longevity of IgE responses as indicated by serological and cellular studies in mice and humans. Allergy 2023; 78:3103-3117. [PMID: 37417548 PMCID: PMC10952832 DOI: 10.1111/all.15799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
The existence of long-lived IgE antibody-secreting cells (ASC) is contentious, with the maintenance of sensitization by the continuous differentiation of short-lived IgE+ ASC a possibility. Here, we review the epidemiological profile of IgE production, and give an overview of recent discoveries made on the mechanisms regulating IgE production from mouse models. Together, these data suggest that for most individuals, in most IgE-associated diseases, IgE+ ASC are largely short-lived cells. A subpopulation of IgE+ ASC in humans is likely to survive for tens of months, although due to autonomous IgE B cell receptor (BCR) signaling and antigen-driven IgE+ ASC apoptosis, in general IgE+ ASC probably do not persist for the decades that other ASC are inferred to do. We also report on recently identified memory B cell transcriptional subtypes that are the likely source of IgE in ongoing responses, highlighting the probable importance of IL-4Rα in their regulation. We suggest the field should look at dupilumab and other drugs that prohibit IgE+ ASC production as being effective treatments for IgE-mediated aspects of disease in most individuals.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | - Jesse Mulder
- Department of ImmunologyMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
9
|
Bobalova J, Strouhalova D, Bobal P. Common Post-translational Modifications (PTMs) of Proteins: Analysis by Up-to-Date Analytical Techniques with an Emphasis on Barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14825-14837. [PMID: 37792446 PMCID: PMC10591476 DOI: 10.1021/acs.jafc.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Post-translational modifications (PTMs) of biomacromolecules can be useful for understanding the processes by which a relatively small number of individual genes in a particular genome can generate enormous biological complexity in different organisms. The proteomes of barley and the brewing process were investigated by different techniques. However, their diverse and complex PTMs remain understudied. As standard analytical approaches have limitations, innovative analytical approaches need to be developed and applied in PTM studies. To make further progress in this field, it is necessary to specify the sites of modification, as well as to characterize individual isoforms with increased selectivity and sensitivity. This review summarizes advances in the PTM analysis of barley proteins, particularly those involving mass spectrometric detection. Our focus is on monitoring phosphorylation, glycation, and glycosylation, which critically influence functional behavior in metabolism and regulation in organisms.
Collapse
Affiliation(s)
- Janette Bobalova
- Institute
of Analytical Chemistry of the CAS, v. v. i., Veveri 97, Brno 602 00, Czech Republic
| | - Dana Strouhalova
- Institute
of Analytical Chemistry of the CAS, v. v. i., Veveri 97, Brno 602 00, Czech Republic
| | - Pavel Bobal
- Masaryk
University, Department of Chemical Drugs,
Faculty of Pharmacy, Palackeho
1946/1, Brno 612 00, Czech Republic
| |
Collapse
|
10
|
Brouns F, Van Haaps A, Keszthelyi D, Venema K, Bongers M, Maas J, Mijatovic V. Diet associations in endometriosis: a critical narrative assessment with special reference to gluten. Front Nutr 2023; 10:1166929. [PMID: 37731404 PMCID: PMC10507348 DOI: 10.3389/fnut.2023.1166929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Endometriosis is characterized by the presence of endometrium-like tissue outside the uterus. The etiology remains largely unknown. Despite adequate treatment, patients can still experience symptoms or side effects resulting in therapy incompliance and in self-management strategies such as dietary measures is increasing. A gluten free diet is thought to be contributory in reducing endometriosis-related pain, thereby optimizing quality of life. However, data is conflicting and currently provides no evidence for causality. This narrative review aims to put the effect of dietary self-management strategies on endometriosis in a balanced perspective, especially the effect of gluten and a gluten free diet. Several studies have found a strong overlap in symptoms, metabolic and immune responses associated with endometriosis and those associated with celiac disease, ulcerative colitis, Crohn's disease, irritable bowel syndrome and non-celiac wheat sensitivity. However, it remains unclear whether these diseases and/or disorders are causal to an increased risk of endometriosis. Some studies have found a positive effect on the risk of endometriosis, endometriosis-related symptoms and quality of life (QoL) when women either avoided certain nutrients or foods, or applied a specific nutrient supplementation. This includes the avoidance of red meat, an increasing intake of foods rich in anti-oxidants, omega-3, micronutrients and dietary fibers (e.g., fruit, vegetables) and the appliance of a gluten free diet. However, data from the available studies were generally graded of low quality and it was noted that placebo and/or nocebo effects influenced the reported positive effects. In addition, such effects were no longer seen when adjusting for confounders such as overweight, when a translation was made from in vitro to in vivo, or when the nutrients were not supplemented as isolated sources but as part of a mixed daily diet. Finally, some studies showed that long-term adherence to a gluten free diet is often associated with an impaired diet quality and nutrient intake, leading to negative health outcomes and reduced QoL. Concluding, scientific evidence on the efficacy of dietary interventions on well-defined clinical endpoints of endometriosis is lacking and recommending a gluten free diet to women solely diagnosed with endometriosis should therefore not be advised.
Collapse
Affiliation(s)
- Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Annelotte Van Haaps
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University, Maastricht, Netherlands
| | - Marlies Bongers
- Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, Netherlands
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Jacques Maas
- Grow-School of Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology MUMC+, Maastricht, Netherlands
| | - Velja Mijatovic
- Endometriosis Center, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
11
|
Schirmer T, Ludwig C, Scherf KA. Proteomic Characterization of Wheat Protein Fractions Taken at Different Baking Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12899-12909. [PMID: 37582505 PMCID: PMC10473044 DOI: 10.1021/acs.jafc.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Food processing conditions affect the structure, solubility, and therefore accurate detection of gluten proteins. We investigated the influence of dough, bread, and pretzel making on the composition of different wheat protein fractions obtained by Osborne fractionation. The albumin/globulin, gliadin, and glutenin fractions from flour, dough, crispbread, bread, and pretzel were analyzed using RP-HPLC, SDS-PAGE, and untargeted nanoLC-MS/MS. This approach enabled an in-depth profiling of the fractionated proteomes and related compositional changes to processing conditions (mixing, heat, and alkali treatment). Overall, heat treatment demonstrated the most pronounced effect. Label-free quantitation revealed significant changes in the relative abundances of 82 proteins within the fractions of bread crumb and crust in comparison to flour. Certain gluten proteins showed shifts or reductions in particular fractions, indicating their incorporation into the gluten network through SS and non-SS cross-links. Other gluten proteins were enriched, suggesting their limited involvement in the gluten network formation.
Collapse
Affiliation(s)
- Tanja
Miriam Schirmer
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian
Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Katharina Anne Scherf
- Leibniz-Institute
for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Department
of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20 a, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Bailey RL, Stover PJ. Precision Nutrition: The Hype Is Exceeding the Science and Evidentiary Standards Needed to Inform Public Health Recommendations for Prevention of Chronic Disease. Annu Rev Nutr 2023; 43:385-407. [PMID: 37603433 PMCID: PMC11015823 DOI: 10.1146/annurev-nutr-061021-025153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
As dietary guidance for populations shifts from preventing deficiency disorders to chronic disease risk reduction, the biology supporting such guidance becomes more complex due to the multifactorial risk profile of disease and inherent population heterogeneity in the diet-disease relationship. Diet is a primary driver of chronic disease risk, and population-based guidance should account for individual responses. Cascading effects on evidentiary standards for population-based guidance are not straightforward. Precision remains a consideration for dietary guidance to prevent deficiency through the identification of population subgroups with unique nutritional needs. Reducing chronic disease through diet requires greater precision in (a) establishing essential nutrient needs throughout the life cycle in both health and disease; (b) considering effects of nutrients and other food substances on metabolic, immunological, inflammatory, and other physiological responses supporting healthy aging; and (c) considering healthy eating behaviors. Herein we provide a template for guiding population-based eating recommendations for reducing chronic diseases in heterogenous populations.
Collapse
Affiliation(s)
- Regan L Bailey
- Institute for Advancing Health through Agriculture and Department of Nutrition Science, Texas A&M University, College Station, Texas, USA;
| | - Patrick J Stover
- Institute for Advancing Health through Agriculture and Department of Nutrition Science, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
13
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
14
|
Ahuja A, Pelton M, Raval S, Kesavarapu K. Role of Nutrition in Gastroesophageal Reflux, Irritable Bowel Syndrome, Celiac Disease, and Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2023; 2:860-872. [PMID: 39130122 PMCID: PMC11307716 DOI: 10.1016/j.gastha.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2024]
Abstract
There remains a paucity of data on the efficacy of nutritional interventions in luminal gastrointestinal disorders. This review appraises the evidence supporting dietary modification in gastroesophageal reflux disease (GERD), irritable bowel syndrome, Celiac disease, and inflammatory bowel disease. Alhough the use of elimination diets; high fat/low carb; low fermentable oligosaccharides, disaccharides, monosaccharides and polyols; and lactose-free diets in GERD have been studied, the evidence supporting their efficacy remains weak and mixed. Patients with GERD should avoid eating within 3 hours of lying recumbent. Studied dietary interventions for disorders of gut-brain interaction include low fermentable oligosaccharides, disaccharides, monosaccharides and polyols and gluten-restricted and lactose-free diets. While all can be effective in carefully, individually selected patients, the evidence for each intervention remains low. In patients with inflammatory bowel disease, enteral nutrition is established in pediatric populations as useful in reducing inflammation and partial enteral nutrition has a growing evidence base for use in adults and children. Specific carbohydrate diets and the Crohn's disease exclusion diet show promising evidence but require further study to validate their efficacy prior to recommendation. Overall, the evidence supporting nutritional therapy across luminal gastrointestinal disorders is mixed and often weak, with few well-designed randomized controlled trials (RCTs) demonstrating consistent efficacy of interventions. RCTs, particularly cross-over RCTs, show potential to compare dietary interventions.
Collapse
Affiliation(s)
- Amisha Ahuja
- Department of Gastroenterology and Hepatology, Temple University Hospital, Philadelphia, Pennsylvania
| | - Matt Pelton
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Sahil Raval
- Department of Medicine, St. Peters Hospital, New Brunswick, New Jersey
| | - Keerthana Kesavarapu
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
15
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
16
|
Wenger M, Grosse-Kathoefer S, Kraiem A, Pelamatti E, Nunes N, Pointner L, Aglas L. When the allergy alarm bells toll: The role of Toll-like receptors in allergic diseases and treatment. Front Mol Biosci 2023; 10:1204025. [PMID: 37426425 PMCID: PMC10325731 DOI: 10.3389/fmolb.2023.1204025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.
Collapse
|
17
|
Kaushik M, Mulani E, Mahendru-Singh A, Makharia G, Mohan S, Mandal PK. Comparative Expression Profile of Genes Encoding Intolerant Proteins in Bread vs. Durum Wheat During Grain Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3200-3210. [DOI: 10.1007/s00344-022-10785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/23/2022] [Indexed: 08/30/2023]
|
18
|
Afzal M, Sielaff M, Distler U, Schuppan D, Tenzer S, Longin CFH. Reference proteomes of five wheat species as starting point for future design of cultivars with lower allergenic potential. NPJ Sci Food 2023; 7:9. [PMID: 36966156 PMCID: PMC10039927 DOI: 10.1038/s41538-023-00188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Wheat is an important staple food and its processing quality is largely driven by proteins. However, there is a sizable number of people with inflammatory reactions to wheat proteins, namely celiac disease, wheat allergy and the syndrome of non-celiac wheat sensitivity. Thus, proteome profiles should be of high importance for stakeholders along the wheat supply chain. We applied liquid chromatography-tandem mass spectrometry-based proteomics to establish the flour reference proteome for five wheat species, ancient to modern, each based on 10 cultivars grown in three diverse environments. We identified at least 2540 proteins in each species and a cluster analyses clearly separated the species based on their proteome profiles. Even more, >50% of proteins significantly differed between species - many of them implicated in products' quality, grain-starch synthesis, plant stress regulation and proven or potential allergic reactions in humans. Notably, the expression of several important wheat proteins was found to be mainly driven by genetics vs. environmental factors, which enables selection and refinement of improved cultivars for the wheat supply chain as long as rapid test methods will be developed. Especially einkorn expressed 5.4 and 7.2-fold lower quantities of potential allergens and immunogenic amylase trypsin inhibitors, respectively, than common wheat, whereas potential allergen content was intermediate in tetraploid wheat species. This urgently warrants well-targeted clinical studies, where the developed reference proteomes will help to design representative test diets.
Collapse
Affiliation(s)
- Muhammad Afzal
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Malte Sielaff
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ute Distler
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Stefan Tenzer
- Institute for Immunology and Research Center for Immune Therapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To describe recent advances on nonceliac gluten sensitivity (NCGS), a recently described disorder characterized by variable symptoms and frequent irritable bowel syndrome (IBS)-like manifestations. RECENT FINDINGS The recent description of disease-triggering wheat components other than gluten, such as fructans and amylase-trypsin inhibitors (ATIs), definitely suggests that nonceliac wheat sensitivity (NCWS) is a better 'umbrella' terminology than NCGS. Self-reported NCWS is very common worldwide, particularly in patients seen at the gastroenterology clinic, but many of these diagnoses are not confirmed by standard clinical criteria. A biomarker of NCWS is still lacking, however, subtle histological features at the small intestinal biopsy may facilitate diagnosis. Treatment of NCWS is based on the gluten-free diet (GFD). The GFD has proven to be an effective treatment of a significant proportion of NCWS-related IBS patients. Dietary therapies for IBS, including the GFD, should be offered by dietitians who first assess dietary triggers and then tailor the intervention according to patient choice. Pioneer studies are under way to test the therapeutic efficacy of supplemental gluten-digesting enzyme preparations in patients with NCWS. SUMMARY Recent studies highlight interesting pathophysiological and clinical features of NCWS. Many questions remain, however, unanswered, such as the epidemiology, a biomarker(s), and the natural history of this clinical entity.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, Ancona
| | - Giulia Catassi
- Pediatric Gastroenterology and Liver Unit, Department of Maternal and Child Health, Sapienza-University of Rome, Rome, Italy
| | - Loris Naspi
- Department of Psychology, Humboldt University, Berlin, Germany
| |
Collapse
|
20
|
do Nascimento RDP, da Rocha Alves M, Noguera NH, Lima DC, Marostica Junior MR. Cereal grains and vegetables. NATURAL PLANT PRODUCTS IN INFLAMMATORY BOWEL DISEASES 2023:103-172. [DOI: 10.1016/b978-0-323-99111-7.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Shewry P. Wheat grain proteins: Past, present, and future. Cereal Chem 2023; 100:9-22. [PMID: 37064052 PMCID: PMC10087814 DOI: 10.1002/cche.10585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022]
Abstract
Background and Objectives Research on wheat grain proteins is reviewed, including achievements over the past century and priorities for future research. The focus is on three groups of proteins that have major impacts on wheat quality and utilization: the gluten proteins which determine dough viscoelasticity but also trigger celiac disease in susceptible individuals, the puroindolines which are major determinants of grain texture and the amylase/trypsin inhibitors which are food and respiratory allergens and are implicated in triggering celiac disease and nonceliac wheat sensitivity. Findings Although earlier work focused on protein structure and properties, the development of genomics and high-sensitivity proteomics has resulted in the availability of a vast amount of information on the amino acid sequences of individual wheat proteins, including allelic variants of gluten proteins which are associated with good processing quality and of puroindolines, which are associated with a hard or soft grain texture, and on protein expression and polymorphism. Conclusions However, our ability to exploit this knowledge is limited by a lack of detailed understanding of the structure:function relationships of wheat proteins. In particular, we need to understand how the three-dimensional structures of the individual proteins determine their interactions with other grain components (to determine functional properties) and with the immune systems of susceptible consumers (to trigger adverse responses), how these interactions are affected by allelic variation, and how they can be manipulated. Significance and Novelty The article, therefore, identifies priorities for future research which should enable the adoption of a more rational approach to improving the quality of wheat grain proteins.
Collapse
|
22
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
23
|
Simonetti E, Bosi S, Negri L, Dinelli G. Amylase Trypsin Inhibitors (ATIs) in a Selection of Ancient and Modern Wheat: Effect of Genotype and Growing Environment on Inhibitory Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3268. [PMID: 36501308 PMCID: PMC9738579 DOI: 10.3390/plants11233268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Wheat amylase-trypsin inhibitors (ATIs) are a family of plant defense proteins with an important role in human health for their involvement in allergies, celiac disease and non-celiac wheat sensitivity. Information about the differences in ATI activities among wheat genotypes and the influence of the growing environment is scarce. Therefore, ten selected wheat accessions with different ploidy level and year of release, previously characterized for their ATI gene sequences, were grown during three consecutive crop years at two growing areas and used for in vitro ATI activities. The contributions of the genotype and the crop year were significant for both activities. The hexaploid wheat genotypes showed the highest inhibitory activities. Einkorn had a peculiar behavior showing the lowest alpha-amylase inhibitory activity, but the highest trypsin inhibitory activity. It was not possible to observe any trend in ATI activities as a function of the release year of the wheat samples. The two inhibitory activities were differently affected by the growing conditions and were negatively correlated with the protein content. This information can be important in understanding the extent of variation of ATI inhibitory properties in relation to the wheat genotype and the growing environment and the impact of ATIs, if any, on human health and nutrition.
Collapse
Affiliation(s)
| | - Sara Bosi
- Correspondence: ; Tel.: +39-051-2096669; Fax: +39-051-2096241
| | | | | |
Collapse
|
24
|
Juhász A, Nye-Wood MG, Tanner GJ, Colgrave ML. Digestibility of wheat alpha-amylase/trypsin inhibitors using a caricain digestive supplement. Front Nutr 2022; 9:977206. [PMID: 36034932 PMCID: PMC9399795 DOI: 10.3389/fnut.2022.977206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Wheat is a major source of nutrition, though in susceptible people it can elicit inappropriate immune responses. Wheat allergy and non-celiac wheat sensitivity are caused by various wheat proteins, including alpha-amylase trypsin inhibitors (ATIs). These proteins, like the gluten proteins which can cause celiac disease, are incompletely digested in the stomach such that immunogenic epitopes reach the lower digestive system where they elicit the undesirable immune response. The only completely effective treatment for these immune reactions is to eliminate the food trigger from the diet, though inadvertent or accidental consumption can still cause debilitating symptoms in susceptible people. One approach used is to prevent the causal proteins from provoking an immune reaction by enhancing their digestion using digestive protease supplements that act in the stomach or intestine, cleaving them to prevent or quench the harmful immune response. In this study, a digestive supplement enriched in caricain, an enzyme naturally present in papaya latex originally designed to act against gluten proteins was assessed for its ability to digest wheat ATIs. The digestion efficiency was quantitatively measured using liquid chromatography-mass spectrometry, including examination of the cleavage sites and the peptide products. The peptide products were measured across a digestion time course under conditions that mimic gastric digestion in vivo, involving the use of pepsin uniquely or in combination with the supplement to test for additive effects. The detection of diverse cleavage sites in the caricain supplement-treated samples suggests the presence of several proteolytic enzymes that act synergistically. Caricain showed rapid action in vitro against known immunogenic ATIs, indicating its utility for digestion of wheat ATIs in the upper digestive tract.
Collapse
Affiliation(s)
- Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | | | - Gregory J Tanner
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
25
|
Geisslitz S, Islam S, Buck L, Grunwald-Gruber C, Sestili F, Camerlengo F, Masci S, D’Amico S. Absolute and relative quantitation of amylase/trypsin-inhibitors by LC-MS/MS from wheat lines obtained by CRISPR-Cas9 and RNAi. FRONTIERS IN PLANT SCIENCE 2022; 13:974881. [PMID: 36105703 PMCID: PMC9465248 DOI: 10.3389/fpls.2022.974881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Quantitation of wheat proteins is still a challenge, especially regarding amylase/trypsin-inhibitors (ATIs). A selection of ATIs was silenced in the common wheat cultivar Bobwhite and durum wheat cultivar Svevo by RNAi and gene editing, respectively, in order to reduce the amounts of ATIs. The controls and silenced lines were analyzed after digestion to peptides by LC-MS/MS with different approaches to evaluate changes in composition of ATIs. First, a targeted method with stable isotope dilution assay (SIDA) using labeled peptides as internal standards was applied. Additionally, four different approaches for relative quantitation were conducted, in detail, iTRAQ labeled and label free quantitation (LFQ) combined with data dependent acquisition (DDA) and data independent acquisition (DIA). Quantitation was performed manually (Skyline and MASCOT) and with different proteomics software tools (PLGS, MaxQuant, and PEAKS X Pro). To characterize the wheat proteins on protein level, complementary techniques as high-performance liquid chromatography (HPLC) and gel electrophoresis were performed. The targeted approach with SIDA was able to quantitate all ATIs, even at low levels, but an optimized extraction is necessary. The labeled iTRAQ approach revealed an indistinct performance. LFQ with low resolution equipment (IonTrap) showed similar results for major ATIs, but low abundance ATIs as CM1, were not detectable. DDA measurements with an Orbitrap system and evaluation using MaxQuant showed that the relative quantitation was dependent on the wheat species. The combination of manual curation of the MaxQuant search with Skyline revealed a very good performance. The DIA approach with analytical flow found similar results compared to absolute quantitation except for some minor ATIs, which were not detected. Comparison of applied methods revealed that peptide selection is a crucial step for protein quantitation. Wheat proteomics faces challenges due to the high genetic complexity, the close relationship to other cereals and the incomplete, redundant protein database requiring sensitive, precise and accurate LC-MS/MS methods.
Collapse
Affiliation(s)
- Sabrina Geisslitz
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lukas Buck
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens Grunwald-Gruber
- Core Facility Mass Spectrometry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Francesco Sestili
- Department of Agricultural and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Francesco Camerlengo
- Department of Agricultural and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Stefania Masci
- Department of Agricultural and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Stefano D’Amico
- Austrian Agency for Health and Food Safety, Institute for Animal Nutrition and Feed, Vienna, Austria
| |
Collapse
|
26
|
Differences in bread protein digestibility traced to wheat cultivar traits. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Barone MV, Auricchio R, Nanayakkara M, Greco L, Troncone R, Auricchio S. Pivotal Role of Inflammation in Celiac Disease. Int J Mol Sci 2022; 23:ijms23137177. [PMID: 35806180 PMCID: PMC9266393 DOI: 10.3390/ijms23137177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed. In vitro study on CD cells and organoids, shows that constant low-grade inflammation is present also in the absence of gluten. In vivo studies on a population at risk, show before the onset of the disease and before the introduction of gluten in the diet, cellular and metabolic alterations in the absence of a T cell-mediated response. Gluten exacerbates these constitutive alterations in vitro and in vivo. Inflammation, may have a main role in CD, adding this disease tout court to the big family of chronic inflammatory diseases. Nutrients can have pro-inflammatory or anti-inflammatory effects, also mediated by intestinal microbiota. The intestine function as a crossroad for the control of inflammation both locally and at distance. The aim of this review is to discuss the recent literature on the main role of inflammation in the natural history of CD, supported by cellular fragility with increased sensitivity to gluten and other pro-inflammatory agents.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence:
| | - Renata Auricchio
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Luigi Greco
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
28
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
29
|
Simonetti E, Bosi S, Negri L, Baffoni L, Masoni A, Marotti I, Benedettelli S, Dinelli G. Molecular phylogenetic analysis of amylase trypsin inhibitors (ATIs) from a selection of ancient and modern wheat. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Møller MS, Svensson B. Structure, Function and Protein Engineering of Cereal-Type Inhibitors Acting on Amylolytic Enzymes. Front Mol Biosci 2022; 9:868568. [PMID: 35402513 PMCID: PMC8990303 DOI: 10.3389/fmolb.2022.868568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous plants, including cereals, contain seed proteins able to inhibit amylolytic enzymes. Some of these inhibitors, the CM-proteins (soluble in chloroform:methanol mixtures)—also referred to as cereal-type inhibitors (CTIs)—are the topic of this review. CM-proteins were first reported 75 years ago. They are small sulfur-rich proteins of the prolamine superfamily embracing bifunctional α-amylase/trypsin inhibitors (ATIs), α-amylase inhibitors (AIs), limit dextrinase inhibitors (LDIs), and serine protease inhibitors. Phylogenetically CM-proteins are predicted across poaceae genomes and many isoforms are identified in seed proteomes. Their allergenicity and hence adverse effect on humans were recognized early on, as were their roles in plant defense. Generally, CTIs target exogenous digestive enzymes from insects and mammals. Notably, by contrast LDI regulates activity of the endogenous starch debranching enzyme, limit dextrinase, during cereal seed germination. CM-proteins are four-helix bundle proteins and form enzyme complexes adopting extraordinarily versatile binding modes involving the N-terminal and different loop regions. A number of these inhibitors have been characterized in detail and here focus will be on target enzyme specificity, molecular recognition, forces and mechanisms of binding as well as on three-dimensional structures of CM-protein–enzyme complexes. Lastly, prospects for CM-protein exploitation, rational engineering and biotechnological applications will be discussed.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Geisslitz S, Weegels P, Shewry P, Zevallos V, Masci S, Sorrells M, Gregorini A, Colomba M, Jonkers D, Huang X, De Giorgio R, Caio GP, D'Amico S, Larré C, Brouns F. Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects. Eur J Nutr 2022; 61:2873-2880. [PMID: 35235033 PMCID: PMC9363355 DOI: 10.1007/s00394-022-02841-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Amylase/trypsin inhibitors (ATIs) are widely consumed in cereal-based foods and have been implicated in adverse reactions to wheat exposure, such as respiratory and food allergy, and intestinal responses associated with coeliac disease and non-coeliac wheat sensitivity. ATIs occur in multiple isoforms which differ in the amounts present in different types of wheat (including ancient and modern ones). Measuring ATIs and their isoforms is an analytical challenge as is their isolation for use in studies addressing their potential effects on the human body. ATI isoforms differ in their spectrum of bioactive effects in the human gastrointestinal (GI), which may include enzyme inhibition, inflammation and immune responses and of which much is not known. Similarly, although modifications during food processing (exposure to heat, moisture, salt, acid, fermentation) may affect their structure and activity as shown in vitro, it is important to relate these changes to effects that may present in the GI tract. Finally, much of our knowledge of their potential biological effects is based on studies in vitro and in animal models. Validation by human studies using processed foods as commonly consumed is warranted. We conclude that more detailed understanding of these factors may allow the effects of ATIs on human health to be better understood and when possible, to be ameliorated, for example by innovative food processing. We therefore review in short our current knowledge of these proteins, focusing on features which relate to their biological activity and identifying gaps in our knowledge and research priorities.
Collapse
Affiliation(s)
| | - Peter Weegels
- Netherlands and European Bakery Innovation Centre, Sonneveld Group BV, Papendrecht, and Wageningen University and Research, Wageningen, Netherlands
| | - Peter Shewry
- Laboratory of Food Chemistry, Rothamsted Research, Harpenden, UK
| | - Victor Zevallos
- Nutrition and Food Research Group, Department of Applied and Health Sciences, University of Northumbria, Newcastle Upon Tyne, UK
| | - Stefania Masci
- Department of Agricultural and Forestry Sciences, University of Tuscia, Tuscia, Italy
| | - Mark Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, Ithaca, USA
| | - Armando Gregorini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Daisy Jonkers
- Division of Gastroenterology-Hepatology, Department Internal Medicine, School for Nutrition and Translational Research in Metabolism Maastricht, Maastricht University, Maastricht, Netherlands
| | - Xin Huang
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Giacomo P Caio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano D'Amico
- Institute for Animal Nutrition and Feed, AGES - Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Colette Larré
- INRAE UR1268 BIA, Impasse Thérèse Bertrand-Fontaine, 44000, Nantes, France
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Cammerata A, Laddomada B, Milano F, Camerlengo F, Bonarrigo M, Masci S, Sestili F. Qualitative Characterization of Unrefined Durum Wheat Air-Classified Fractions. Foods 2021; 10:foods10112817. [PMID: 34829105 PMCID: PMC8618629 DOI: 10.3390/foods10112817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
Durum wheat milling is a key process step to improve the quality and safety of final products. The aim of this study was to characterize three bran-enriched milling fractions (i.e., F250, G230 and G250), obtained from three durum wheat grain samples, by using an innovative micronization and air-classification technology. Milling fractions were characterized for main standard quality parameters and for alveographic properties, starch composition and content, phenolic acids, antioxidant activity and ATIs. Results showed that yield recovery, ash content and particle size distributions were influenced either by the operating conditions (230 or 250) or by the grain samples. While total starch content was lower in the micronized sample and air-classified fractions, the P/L ratio increased in air-classified fractions as compared to semolina. Six main individual phenolic acids were identified through HPLC-DAD analysis (i.e., ferulic acid, vanillic acid, p-coumaric acid, sinapic acid, syringic and p-hydroxybenzoic acids). Compared to semolina, higher contents of all individual phenolic components were found in all bran-enriched fractions. The highest rise of TPAs occurred in the F250 fraction, which was maintained in the derived pasta. Moreover, bran-enriched fractions showed significant reductions of ATIs content versus semolina. Overall, our data suggest the potential health benefits of F250, G230 and G250 and support their use to make durum-based foods.
Collapse
Affiliation(s)
- Alessandro Cammerata
- Council for Agricultural Research and Economics, Research Centre for Engineering and Agro-Food Processing, Via Manziana 30, 00189 Rome, Italy;
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy; (F.C.); (M.B.); (S.M.)
- Correspondence: (B.L.); (F.S.); Tel.: +39-0832-422613 (B.L.); +39-328-8866276 (F.S.)
| | - Francesco Milano
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Francesco Camerlengo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy; (F.C.); (M.B.); (S.M.)
| | - Marco Bonarrigo
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy; (F.C.); (M.B.); (S.M.)
| | - Stefania Masci
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy; (F.C.); (M.B.); (S.M.)
| | - Francesco Sestili
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy; (F.C.); (M.B.); (S.M.)
- Correspondence: (B.L.); (F.S.); Tel.: +39-0832-422613 (B.L.); +39-328-8866276 (F.S.)
| |
Collapse
|
33
|
Won S, Curtis J, Gänzle M. LC-MS/MS quantitation of α-amylase/trypsin inhibitor CM3 and glutathione during wheat sourdough breadmaking. J Appl Microbiol 2021; 133:120-129. [PMID: 34724302 DOI: 10.1111/jam.15346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
AIMS This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.
Collapse
|