1
|
Chen Y, Guo Q, Sun Y, Ni Y, Ma T, Xie T, Li C, Li H, Xing Z. Development of prebiotic steamed buns and their influence on gut microbiota and the glycemic index in simulated digestion. Lebensm Wiss Technol 2024; 212:116978. [DOI: 10.1016/j.lwt.2024.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
da Silva VG, Smith NW, Mullaney JA, Wall C, Roy NC, McNabb WC. Food-breastmilk combinations alter the colonic microbiome of weaning infants: an in silico study. mSystems 2024; 9:e0057724. [PMID: 39191378 PMCID: PMC11406890 DOI: 10.1128/msystems.00577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The introduction of solid foods to infants, also known as weaning, is a critical point for the development of the complex microbial community inhabiting the human colon, impacting host physiology in infancy and later in life. This research investigated in silico the impact of food-breastmilk combinations on growth and metabolite production by colonic microbes of New Zealand weaning infants using the metagenome-scale metabolic model named Microbial Community. Eighty-nine foods were individually combined with breastmilk, and the 12 combinations with the strongest influence on the microbial production of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were identified. Fiber-rich and polyphenol-rich foods, like pumpkin and blackcurrant, resulted in the greatest increase in predicted fluxes of total SCFAs and individual fluxes of propionate and acetate when combined, respectively, with breastmilk. Identified foods were further combined with other foods and breastmilk, resulting in 66 multiple food-breastmilk combinations. These combinations altered in silico the impact of individual foods on the microbial production of SCFAs and BCFAs, suggesting that the interaction between the dietary compounds composing a meal is the key factor influencing colonic microbes. Blackcurrant combined with other foods and breastmilk promoted the greatest increase in the production of acetate and total SCFAs, while pork combined with other foods and breastmilk decreased the production of total BCFAs.IMPORTANCELittle is known about the influence of complementary foods on the colonic microbiome of weaning infants. Traditional in vitro and in vivo microbiome methods are limited by their resource-consuming concerns. Modeling approaches represent a promising complementary tool to provide insights into the behavior of microbial communities. This study evaluated how foods combined with other foods and human milk affect the production of short-chain fatty acids and branched-chain fatty acids by colonic microbes of weaning infants using a rapid and inexpensive in silico approach. Foods and food combinations identified here are candidates for future experimental investigations, helping to fill a crucial knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor G da Silva
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nick W Smith
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
3
|
Liedike B, Khatib M, Tabarsi B, Harris M, Wilson SL, Ortega-Santos CP, Mohr AE, Vega-López S, Whisner CM. Evaluating the Effects of Corn Flour Product Consumption on Cardiometabolic Outcomes and the Gut Microbiota in Adults with Elevated Cholesterol: A Randomized Crossover. J Nutr 2024; 154:2437-2447. [PMID: 38880174 DOI: 10.1016/j.tjnut.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Consumption of whole grains is associated with a reduction in chronic diseases and offers benefits for cardiovascular health and metabolic regulation. The relationship between whole-grain corn and corn bran with the gut microbiota (GM) remains an area of growing interest, particularly regarding their influence on cardiometabolic health. OBJECTIVES To investigate the effects of different corn flours on cardiometabolic outcomes and GM changes in adults with elevated low-density lipoprotein cholesterol (LDL cholesterol) concentrations. METHODS In this crossover study, 36 adults with LDL cholesterol above 110 mg/dL consumed 48 g/d of 3 corn flour types for 4 wk: whole-grain corn meal, refined corn meal (RCM), and a blend of RCM and corn bran (RCM + B). We assessed the impact on cardiometabolic markers [LDL cholesterol, high-density lipoprotein cholesterol (HDL cholesterol), total cholesterol, and triglycerides)] and GM composition and estimated function. Statistical analyses included mixed-effects modeling and responder (>5% decrease in LDL cholesterol) analysis to evaluate changes in GM related to lipid profile improvements. RESULTS Of the 3 corn flour types, only RCM + B significantly decreased LDL cholesterol over time (-10.4 ± 3.6 mg/dL, P = 0.005) and marginally decreased total cholesterol (-9.2 ± 3.9 mg/dL, P = 0.072) over time. There were no significant effects on HDL cholesterol or triglyceride concentrations. No significant changes were observed in GM alpha diversity, whereas beta diversity metrics indicated individual variability. Two genera, unclassified Lachnospiraceae and Agathobaculum (Padj ≤ 0.096), differed significantly by treatment, but only Agathobaculum remained significantly elevated in the whole-grain corn meal, compared to RCM and RCM + B, after adjustment for multiple comparisons. CONCLUSIONS The type of corn flour, particularly RCM + B, notably influenced LDL cholesterol concentrations in adults with elevated LDL cholesterol. This study suggests that incorporating milled fractions (e.g., bran) of whole-grain corn with refined corn flour may be a viable alternative to supplementing manufactured grain products with isolated or synthetic fibers for improved metabolic health. This trial was registered at clinicaltrials.gov as NCT03967990.
Collapse
Affiliation(s)
- Bethany Liedike
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Maissa Khatib
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Baharak Tabarsi
- Community Health Center, Valleywise Health, Phoenix, AZ, United States
| | - Michelle Harris
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Shannon L Wilson
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Carmen P Ortega-Santos
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States; Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States; Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sonia Vega-López
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States; Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ, United States.
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States; Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
4
|
Klaassens ES, Baak ML, Mekkes NJ, Bongoni R, Schaubeck M. Effect of protein modification in synbiotic infant formula on probiotic metabolic activity and bacterial composition in an infant gut-model. MICROBIOME RESEARCH REPORTS 2024; 3:38. [PMID: 39421252 PMCID: PMC11480727 DOI: 10.20517/mrr.2024.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 10/19/2024]
Abstract
Aim: Microbial colonization of the neonatal gut is pivotal in priming the infant's immune system. Human milk (HM) is the best nutrition for infants and supports the development of the microbiota due to prebiotic compounds and probiotic microorganisms. When exclusive breastfeeding is not possible, infant formula (IF) with probiotics is a strategy to support the infant's microbiome development. However, knowledge about the effects of the infant gut microbiota and different compounds in IF on individual probiotic strains is limited, as strain-level detection in a complex ecosystem is challenging. The aim of the present study was to show the effects of IF with different protein forms on the metabolic activity of two probiotic strains isolated from HM in a complex ecosystem. Methods: By using an ex-vivo infant gut model containing infant donor-microbiota, the effects of IF with either intact or extensively hydrolyzed protein on the metabolic activity of the donor microbiota, as well as two probiotic strains [Limosilactobacillus fermentum (L. fermentum) CECT 5716 (Lf) and Bifidobacterium breve (B. breve) DSM 32583 (Bb)], were analyzed. A new bioinformatic pipeline combined with a specific infant microbiome database was used to explore shotgun metagenome datasets (1200 Megabases) for taxonomic identification and strain-level tracking. Results: Both protein forms (i.e., intact or extensively hydrolyzed protein) in IF supported infant gut microbial metabolic activity equally, as evidenced by similar levels of short-chain fatty acids (SCFAs). Interestingly, gut microbial metabolic activity was found to be differently activated in a strain-dependent manner. Taxonomic profiling of the microbiome at the strain level enabled monitoring of the prevalence and abundance of both probiotic strains, even in a complex ecosystem. Conclusion: Food matrix and host microbiota interactions should be considered when evaluating strain-specific probiotic effects in the future.
Collapse
Affiliation(s)
| | | | | | | | - Monika Schaubeck
- Research & Development, HiPP GmbH & Co. Vertrieb KG, Pfaffenhofen 85276, Germany
| |
Collapse
|
5
|
Whitman JA, Doherty LA, Pantoja-Feliciano de Goodfellow IG, Racicot K, Anderson DJ, Kensil K, Karl JP, Gibson GR, Soares JW. In Vitro Fermentation Shows Polyphenol and Fiber Blends Have an Additive Beneficial Effect on Gut Microbiota States. Nutrients 2024; 16:1159. [PMID: 38674850 PMCID: PMC11053737 DOI: 10.3390/nu16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols and fermentable fibers have shown favorable effects on gut microbiota composition and metabolic function. However, few studies have investigated whether combining multiple fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here, an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB blends independently led to significant increases in the absolute abundance of select beneficial taxa, namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and PPFB supplementation but not PP alone while increased antioxidant capacity was only evident with both PP and PPFB supplementation. These findings demonstrated that, while the independent blends displayed selective positive impacts on gut states, the combination of both blends provided an additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive influence on gut microbial composition and function to build resiliency toward dysbiosis.
Collapse
Affiliation(s)
- Jordan A. Whitman
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Laurel A. Doherty
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Ida G. Pantoja-Feliciano de Goodfellow
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Kenneth Racicot
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| | - Danielle J. Anderson
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - Katherine Kensil
- Combat Feeding Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (D.J.A.); (K.K.)
| | - J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA;
| | - Glenn R. Gibson
- Food and Nutritional Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Jason W. Soares
- Soldier Performance Division, U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA 01760, USA; (J.A.W.); (L.A.D.); (I.G.P.-F.d.G.); (K.R.)
| |
Collapse
|
6
|
Deng M, Ye J, Zhang R, Zhang S, Dong L, Huang F, Jia X, Su D, Ma Q, Zhao D, Zhang M. Shatianyu dietary fiber (Citrus grandis L. Osbeck) promotes the production of active metabolites from its flavonoids during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3139-3146. [PMID: 38072776 DOI: 10.1002/jsfa.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Recent studies reveal that dietary fiber (DF) might play a critical role in the metabolism and bioactivity of flavonoids by regulating gut microbiota. We previously found that Shatianyu (Citrus grandis L. Osbeck) pulp was rich in flavonoids and DF, and Shatianyu pulp flavonoid extracts (SPFEs) were dominated by melitidin, obviously different from other citrus flavonoids dominated by naringin. The effects of Shatianyu pulp DF (SPDF) on the microbial metabolism and bioactivity of SPFEs is unknown. RESULTS An in vitro colonic fermentation model was used to explore the effects of SPDF on the microbial metabolism and antioxidant activity of SPFEs in the present study. At the beginning of fermentation, SPDF promoted the microbial degradation of SPFEs. After 24 h-fermentation, the supplemented SPFEs were almost all degraded in SPFEs group, and the main metabolites detected were the dehydrogenation, hydroxylation and acetylation products of naringenin, the aglycone of the major SPFEs components. However, when SPFEs fermented with SPDF for 24 h, 60.7% of flavonoid compounds were retained, and SPFEs were mainly transformed to the ring fission metabolites, such as 3-(4-hydroxyphenyl) propionic acid, 3-phenylpropionic acid and 3-(3-hydroxy-phenyl) propionic acid. The fermentation metabolites of SPFEs showed stronger antioxidant activity than the original ones, with a further increase in SPDF supplemented group. Furthermore, SPFEs enriched microbiota participating in the deglycosylation and dehydrogenation of flavonoids, while co-supplementation of SPDF and SPFEs witnessed the bloom of Lactobacillaceae and Lactobacillus, contributing to the deglycosylation and ring fission of flavonoids. CONCLUSION SDPF promote SPFEs to transform to active metabolites probably by regulating gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Jiamin Ye
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Shuai Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dong Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key laboratory of Functional Foods, Ministry of Agriculture//Guangdong Key laboratory of Agricultural Products Processing, Guangzhou, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
7
|
Li X, Petrov MS. Dietary Fibre for the Prevention of Post-Pancreatitis Diabetes Mellitus: A Review of the Literature and Future Research Directions. Nutrients 2024; 16:435. [PMID: 38337719 PMCID: PMC10857198 DOI: 10.3390/nu16030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Post-pancreatitis diabetes mellitus-the most common sequela of pancreatitis-leads to poorer glycaemic control compared with type 2 diabetes. Because post-pancreatitis diabetes mellitus is an exemplar of secondary diabetes (with a clear underlying cause), much post-pancreatitis diabetes mellitus is preventable or treatable early. Earlier literature established the important role of dietary fibre in reducing plasma glucose in individuals with type 2 diabetes. The present review benchmarks available evidence on the role of habitual dietary fibre intake in pancreatitis and post-pancreatitis diabetes mellitus. It also paves the way for future research on the use of dietary fibre in the post-pancreatitis setting.
Collapse
Affiliation(s)
| | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
8
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Sayegh M, Ni QQ, Ranawana V, Raikos V, Hayward NJ, Hayes HE, Duncan G, Cantlay L, Farquharson F, Solvang M, Horgan GW, Louis P, Russell WR, Clegg M, Thies F, Neacsu M. Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers. Br J Nutr 2023; 130:1521-1536. [PMID: 36847278 PMCID: PMC10551484 DOI: 10.1017/s0007114523000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.
Collapse
Affiliation(s)
- Marietta Sayegh
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Qian Qian Ni
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Viren Ranawana
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Vassilios Raikos
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Helen E. Hayes
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Gary Duncan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Michael Solvang
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Graham W. Horgan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
- BIOSS Aberdeen, Aberdeen, UK
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Wendy R. Russell
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Miriam Clegg
- Institute for Food, Nutrition and Health and Department of Food and Nutritional Sciences, University of Reading, Whiteknights, UK
| | - Frank Thies
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| |
Collapse
|
10
|
Heidt C, Pons-Kühnemann J, Kämmerer U, Marquardt T, Reuss-Borst M. MCT-Induced Ketosis and Fiber in Rheumatoid Arthritis (MIKARA)-Study Protocol and Primary Endpoint Results of the Double-Blind Randomized Controlled Intervention Study Indicating Effects on Disease Activity in RA Patients. Nutrients 2023; 15:3719. [PMID: 37686750 PMCID: PMC10490289 DOI: 10.3390/nu15173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Fatty acids, such as medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), both important components of a normal diet, have been reported to play a role in bone-related diseases such as rheumatoid arthritis (RA). However, the role of medium-chain triglycerides (MCTs) has not been investigated in RA to date. The aim of this study was to investigate the effect of supplementation of regular diet with MCT with and without fiber on disease activity as measured with the SDAI (Simplified Disease Activity Index) in RA patients. A total of 61 RA patients on stable drug treatment were randomly assigned to a twice-daily control regimen or to a twice-daily regimen of a formulation containing medium-chain triglycerides (MCTs) 30 g/day for 8 weeks followed by a second twice-daily regimen of combining MCT (30 g/day) plus fiber (30 g/day) for an additional 8 weeks. The control group received a formulation containing long-chain triglycerides (LCTs) instead of MCTs. The preliminary results showed a significant reduction in SDAI from baseline to week 16 in the test group and a significant increase in β-hydroxybutyrate (BHB) levels, while no improvement in SDAI was observed in the control group.
Collapse
Affiliation(s)
- Christina Heidt
- Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, 48149 Muenster, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, Justus Liebig University, 35392 Giessen, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, 48149 Muenster, Germany
| | - Monika Reuss-Borst
- Hescuro Clinics Bad Bocklet, 97708 Bad Bocklet, Germany
- Department of Nephrology and Rheumatology, Georg-August University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
11
|
Wongsurawat T, Sutheeworapong S, Jenjaroenpun P, Charoensiddhi S, Khoiri AN, Topanurak S, Sutthikornchai C, Jintaridth P. Microbiome analysis of thai traditional fermented soybeans reveals short-chain fatty acid-associated bacterial taxa. Sci Rep 2023; 13:7573. [PMID: 37165206 PMCID: PMC10172314 DOI: 10.1038/s41598-023-34818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
Thua Nao is a Thai traditional fermented soybean food and low-cost protein supplement. This study aimed to evaluate the bacterial community in Thua Nao from northern Thailand and assess potentially active short-chain fatty acids (SCFAs)-related bacteria. Sixty-five Thua Nao consisting of 30 wet and 35 dried samples were collected from six provinces: Chiang Rai, Chiang Mai, Mae Hong Son, Lampang, Lamphun, and Phayao. Bacterial diversity was significantly higher in the wet samples than in the dried samples. The dominant phyla were Firmicutes (92.7%), Proteobacteria (6.7%), Actinobacteriota (0.42%), and Bacteroidota (0.26%). The genus Bacillus (67%) was the most represented in all samples. Lactobacillus, Enterococcus, and Globicatella were enriched in the wet samples. Assessment of the SCFA-microbiota relationships revealed that high butyrate and propionate concentrations were associated with an increased Clostridiales abundance, and high acetate concentrations were associated with an increased Weissella abundance. Wet products contained more SCFAs, including acetate (P = 2.8e-08), propionate (P = 0.0044), butyrate (P = 0.0021), and isovalerate (P = 0.017), than the dried products. These results provide insight into SCFA-microbiota associations in Thua Nao, which may enable the development of starter cultures for SCFA-enriched Thua Nao production.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Bangkok, 10700, Thailand.
| | - Sawannee Sutheeworapong
- Systems Biology and Bioinformatics Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine Siriraj Hospital, Bangkok, 10700, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chantira Sutthikornchai
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pornrutsami Jintaridth
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
13
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
14
|
Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl Environ Microbiol 2023; 89:e0188022. [PMID: 36840551 PMCID: PMC10056957 DOI: 10.1128/aem.01880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Collapse
|
15
|
Zhang H, Zhang Y, Mu T, Cao J, Liu X, Yang X, Ren D, Zhao K. Response of gut microbiota and ileal transcriptome to inulin intervention in HFD induced obese mice. Int J Biol Macromol 2023; 225:861-872. [PMID: 36402387 DOI: 10.1016/j.ijbiomac.2022.11.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Inulin, as a dietary fiber, exerted prominent anti-obesity effects by modulating gut microbiota. However, the possible relationship and interplay of gut microbiome and function of distal intestine is still unclear now. This study aimed to investigate the possible targets of microbes and the related intestinal genes mediated by inulin. C57 BL/6 male mice were randomly allocated to chow diet (Chow) group, high-fat diet (HFD) group, and HFD supplemented with 3 % inulin (Inulin) group. Compared with HFD treatment, inulin supplementation significantly decreased the body weight, fat deposition, and fasting blood glucose level. In addition, mice treated with inulin had a remarkable alteration in the structure of cecal microbiota and transcriptomic profiling of ileum. In particular, inulin supplementation significantly reversed the HFD induced expression of Bacteroides, Allobaculum and nonrank_f_Bacteroidates_S24-7_group, and reversed the expression of genes belonging to phospholipase A2 (PLA2) family and cytochrome P450 (CYP450) family. In summary, inulin might alleviate HFD-induced fat deposition and metabolic disorders via regulating lipid metabolism of ileum, while the interaction between the sPLA2s and gut microbes might play important roles in the process.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Yunhui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Tong Mu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Jianxin Cao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xiaoxia Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
16
|
Couture G, Luthria DL, Chen Y, Bacalzo NP, Tareq FS, Harnly J, Phillips KM, Pehrsson PR, McKillop K, Fukagawa NK, Lebrilla CB. Multi-Glycomic Characterization of Fiber from AOAC Methods Defines the Carbohydrate Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14559-14570. [PMID: 36382383 DOI: 10.1021/acs.jafc.2c06191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary fiber has long been known to be an essential component of a healthy diet, and recent investigations into the gut microbiome-health paradigm have identified fiber as a prime determinant in this interaction. Further, fiber is now known to impact the gut microbiome in a structure-specific manner, conferring differential bioactivities to these specific structures. However, current analytical methods for food carbohydrate analysis do not capture this important structural information. To address this need, we utilized rapid-throughput LC-MS methods to develop a novel analytical pipeline to determine the structural composition of soluble and insoluble fiber fractions from two AOAC methods (991.43 and 2017.16) at the total monosaccharide, glycosidic linkage, and free saccharide level. Two foods were chosen for this proof-of-concept study: oats and potato starch. For oats, both AOAC methods gave similar results. Insoluble fiber was found to be comprised of linkages corresponding to β-glucan, arabinoxylan, xyloglucan, and mannan, while soluble fiber was found to be mostly β-glucan, with small amounts of arabinogalactan. For raw potato starch, each AOAC method gave markedly different results in the soluble fiber fractions. These observed differences are attributable to the resistant starch content of potato starch and the different starch digestion conditions used in each method. Together, these tools are a means to obtain the complex structures present within dietary fiber while retaining "classical" determinations such as soluble and insoluble fiber. These efforts will provide an analytical framework to connect gravimetric fiber determinations with their constituent structures to better inform gut microbiome and clinical nutrition studies.
Collapse
Affiliation(s)
- Garret Couture
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California Davis, Davis, California 95616, United States
| | - Devanand L Luthria
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California Davis, Davis, California 95616, United States
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California Davis, Davis, California 95616, United States
| | - Fakir S Tareq
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - James Harnly
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Katherine M Phillips
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Pamela R Pehrsson
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Kyle McKillop
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Naomi K Fukagawa
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
17
|
Xu L, Yang CS, Liu Y, Zhang X. Effective Regulation of Gut Microbiota With Probiotics and Prebiotics May Prevent or Alleviate COVID-19 Through the Gut-Lung Axis. Front Pharmacol 2022; 13:895193. [PMID: 35548347 PMCID: PMC9081431 DOI: 10.3389/fphar.2022.895193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can disrupt the gut microbiota balance, and patients usually have intestinal disorders. The intestine is the largest immune organ of the human body, and gut microbes can affect the immune function of the lungs through the gut-lung axis. Many lines of evidence support the role of beneficial bacteria in enhancing human immunity, preventing pathogen colonization, and thereby reducing the incidence and severity of infection. In this article, we review the possible approach of modulating microbiota to help prevent and treat respiratory tract infections, including COVID-19, and discuss the possibility of using probiotics and prebiotics for this purpose. We also discuss the mechanism by which intestinal micro-flora regulate immunity and the effects of probiotics on the intestinal micro-ecological balance. Based on this understanding, we propose the use of probiotics and prebiotics to modulate gut microbiota for the prevention or alleviation of COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| |
Collapse
|
18
|
Mah E, Chen O, Liska DJ, Blumberg JB. Dietary Supplements for Weight Management: A Narrative Review of Safety and Metabolic Health Benefits. Nutrients 2022; 14:nu14091787. [PMID: 35565754 PMCID: PMC9099655 DOI: 10.3390/nu14091787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Dietary supplements for weight management include myriad ingredients with thermogenic, lipotropic, satiety, and other metabolic effects. Recently, the safety of this product category has been questioned. In this review, we summarize the safety evidence as well as relevant clinical findings on weight management and metabolic effects of six representative dietary supplement ingredients: caffeine, green tea extract (GTE), green coffee bean extract (GCBE), choline, glucomannan, and capsaicinoids and capsinoids. Of these, caffeine, GTE (specifically epigallocatechin gallate [EGCG]), and choline have recommended intake limits, which appear not to be exceeded when used according to manufacturers’ instructions. Serious adverse events from supplements with these ingredients are rare and typically involve unusually high intakes. As with any dietary component, the potential for gastrointestinal intolerance, as well as possible interactions with concomitant medications/supplements exist, and the health status of the consumer should be considered when consuming these components. Most of the ingredients reviewed also improved markers of metabolic health, such as glucose, lipids, and blood pressure, although the data are limited for some. In summary, weight management supplements containing caffeine, GTE, GCBE, choline, glucomannan, and capsaicinoids and capsinoids are generally safe when taken as directed and demonstrate metabolic health benefits for overweight and obese people.
Collapse
Affiliation(s)
- Eunice Mah
- Biofortis Research, Addison, IL 60101, USA
- Correspondence:
| | - Oliver Chen
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (O.C.); (J.B.B.)
| | | | - Jeffrey B. Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA; (O.C.); (J.B.B.)
| |
Collapse
|