1
|
Wang J, Ma Y, Xu X, Huang G, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Comparison of different longan polysaccharides during gut Bacteroides fermentation. Food Chem 2024; 461:140840. [PMID: 39154462 DOI: 10.1016/j.foodchem.2024.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The bioactivity of polysaccharide was closely related to its fermentation utilization by gut Bacteroides, and its utilization degree was determined by various gut Bacteroides species and different polysaccharides characteristics. The effects of longan polysaccharide (LP) and LP treated by ultrasonic-assisted hydrogen peroxide for 8 h (DLP-8) on gut Bacteroides growth, and their fermentation utilization were compared. The results of LP and DLP-8 on the proliferation of six Bacteroides species showed that Bacteroides uniformis had the highest proliferation index. In fermentation by B. uniformis, DLP-8 (with a lower molecular weight), the viable count of which was higher than that of LP, was degraded more and especially utilized more glucose and glucuronic acid. The microstructure of the two polysaccharides changed differently during fermentation. Moreover, DLP-8 promoted greater short-chain fatty acids production than LP. These results indicated that the fermentation properties of DLP-8 by B. uniformis were superior to those of LP.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yongxuan Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guitao Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
2
|
Xu W, Zhang J, Yang C, Ai F, Yin Y, Guo H. Differential impacts of organic and inorganic phosphorus on the growth and phosphorus utilization of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175392. [PMID: 39122037 DOI: 10.1016/j.scitotenv.2024.175392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Phytoplankton growth in freshwater is often limited by the availability of phosphorus (P), and thorough understandings of P availability are essential to prevent algal blooms. However, the differences in bioavailability and utilization mechanisms of different P forms remain unclear, especially whether organophosphorus could be used as P sources. This study investigated the effects of 0.5, 1.0, and 2.0 mg/L P on Microcystis aeruginosa, including dissolved organic P (DOP) (1-hydroxyethane 1,1-diphosphonic acid) and dissolved inorganic P (DIP) (dipotassium phosphate). Compared with DIP, intracellular P content absorbed in DOP treatment was significantly lower. DOP was more conducive to the synthesis of soluble protein and the release of extracellular polymeric substances. Alkaline phosphatase activity was generally enhanced in response to DIP deficiency. Both DIP and DOP promoted carbon uptake to the same extent. DOP groups absorbed carbon to synthesize energy and proteins in response to stress, while DIP groups were mainly used carbon for growth. They all reduced the content of microcystin releasing into the aquatic environment and therefore reduced ecological risk caused by microcystin. Compared with DIP, the expressions of photosynthesis-related genes were significantly down-regulated in DOP group, while the expressions of nucleoside phosphate catabolism, P transporter, and amino acid biosynthesis and metabolism were significantly up-regulated in response to P deficiency environment and the stress of 1.0 mg/L DOP concentration. In summary, the bioavailability of different P forms on cyanobacteria is different, so it is not sufficient to only use total P for assessing environmental risk. P forms should also be considered for risk management of freshwater ecosystems.
Collapse
Affiliation(s)
- Wenxuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengfu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
4
|
Tan X, Wang B, Zhou X, Liu C, Wang C, Bai J. Fecal fermentation behaviors of Konjac glucomannan and its impacts on human gut microbiota. Food Chem X 2024; 23:101610. [PMID: 39071938 PMCID: PMC11282934 DOI: 10.1016/j.fochx.2024.101610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Dietary fiber targets the regulation of the intestinal flora and thus affects host health, however, the complex relationship between these factors lacks direct evidence. In this study, the regulatory effects of Konjac glucomannan (KGM) on key metabolites of host intestinal flora were examined by using in vitro fermentation. The results showed that KGM could be utilized by the intestinal flora, which inhibited the relative abundance of Paeniclostridium, Lachnoclostridium, Phascolarctobacterium, and Bacteroides and enriched the relative abundance of Desulfovibrio, Sutterella, etc. Fermentation is accompanied by the production of short-chain acids, including acetic and propionic acids. Metabolomics revealed that KGM significantly promoted amino acid metabolism, lipid metabolism, and the biosynthesis of other secondary metabolites. Correlation analysis results showed that the increase of panose and N-(1-carboxy-3-carboxanilidopropyl) alanylproline content was positively correlated with the relative abundance of Megamonas. These results provide evidence that KGM affects host health by regulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong, 250000, China
| | - Xu Zhou
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400700, China
| |
Collapse
|
5
|
Liang Y, Yu J, Wu L, Cong X, Liu H, Chen X, Li S, Zhu Z. Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods. Antioxidants (Basel) 2024; 13:1251. [PMID: 39456504 PMCID: PMC11505448 DOI: 10.3390/antiox13101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The residues from selenium-enriched Cardamine violifolia after the extraction of protein were still rich in polysaccharides. Thus, the recovery of selenium polysaccharides (SePSs) was compared using hot water extraction and ultrasonic-assisted extraction techniques. The yield, extraction rate, purity, specific energy consumption, and content of total and organic selenium from different SePS extracts were determined. The results indicated that at conditions of 250 W (ultrasonic power), 30 °C, and a liquid-to-material ratio of 30:1 extracted for 60 min, the yield of SePSs was 3.97 ± 0.07%, the extraction rate was 22.76 ± 0.40%, and the purity was 65.56 ± 0.35%, while the total and organic selenium content was 749.16 ± 6.91 mg/kg and 628.37 ± 5.93 mg/kg, respectively. Compared to traditional hot water extraction, ultrasonic-assisted extraction significantly improves efficiency, reduces energy use, and boosts both total and organic selenium content in the extract. Measurements of particle size, molecular weight, and monosaccharide composition, along with infrared and ultraviolet spectroscopy, revealed that ultrasonic-assisted extraction breaks down long-chain structures, decreases particle size, and changes monosaccharide composition in SePSs, leading to lower molecular weight and reduced dispersity. The unique structure of SePSs, which integrates selenium with polysaccharide groups, results in markedly improved antioxidant activity and reducing power, even at low concentrations, due to the synergistic effects of selenium and polysaccharides. This study establishes a basis for using SePSs in functional foods.
Collapse
Affiliation(s)
- Yong Liang
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Jiali Yu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Lulu Wu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Haiyuan Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Xu Chen
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, Wuhan 430023, China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, Wuhan 430023, China
| |
Collapse
|
6
|
Wang Z, Wu S, Wang J, Yang C, Wang Y, Hu Z, Cai W, Liu L. Optimization of Polysaccharide Extraction from Polygonatum cyrtonema Hua by Freeze-Thaw Method Using Response Surface Methodology. Molecules 2024; 29:4879. [PMID: 39459247 PMCID: PMC11510550 DOI: 10.3390/molecules29204879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Polygonatum cyrtonema polysaccharides have a variety of pharmacological effects. The commonly used extraction methods include traditional hot water extraction, alkaline extraction, enzymatic hydrolysis method, ultrasonic-assisted extraction, etc., but there are problems such as low yield, high temperature, high cost, strict extraction conditions, and insufficient environmental protection. In this study, crude polysaccharide extraction from the Polygonatum cyrtonema Hua was performed using the freeze-thaw method. Response surface methodology (RSM), based on a three-level, three-variable Box-Behnken design (BBD), was employed to obtain the best possible combination of water-to-raw material ratio (A: 30-50), freezing time (B: 2-10 h), and thawing temperature (C: 40-60 °C) for maximum polysaccharide extraction. Using the multiple regression analysis and analysis of variance (ANOVA), the experimental data were fitted to a second-order polynomial equation and were used to generate the mathematical model of optimization experiments. The optimum extraction conditions were as follows: a water-to-raw material ratio of 36.95:1, a freezing time of 4.8 h, and a thawing temperature of 55.99 °C. Under the optimal extraction conditions, the extraction rate of Polygonatum cyrtonema Hua polysaccharide (PCP) was 65.76 ± 0.32%, which is well in close agreement with the value predicted by the model, 65.92%. In addition, PCP has significant antioxidant activity. This result shows that the freeze-thaw method can improve the extraction efficiency, maintain the structural integrity of polysaccharides, simplify the extraction process, promote the dispersion of polysaccharides, and is suitable for large-scale industrial production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Cai
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China; (Z.W.); (S.W.); (J.W.); (C.Y.); (Y.W.); (Z.H.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, China; (Z.W.); (S.W.); (J.W.); (C.Y.); (Y.W.); (Z.H.)
| |
Collapse
|
7
|
Shi XZ, Zhang XY, Wang YY, Zhao YM, Wang J. Polysaccharides from Hericium erinaceus and its immunomodulatory effects on RAW 264.7 macrophages. Int J Biol Macromol 2024; 278:134947. [PMID: 39173803 DOI: 10.1016/j.ijbiomac.2024.134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
This study aimed to optimize the extraction of Hericium erinaceus polysaccharides (HEP) using ultrasound-assisted enzymatic extraction combined with Plackett-Burman design (PBD) and response surface methodology (RSM). The optimal extraction conditions were identified as: 33 min extraction time, 30:1 liquid to material ratio, 38 °C extraction temperature, 9 g/kg cellulase amount, pH 4, and 20 % ethanol concentration. Under these conditions, the extraction yield of HEP was 5.87 ± 0.16 %, consistent with the predicted results. Additionally, the potential immunomodulatory activity of HEP on RAW 264.7 macrophage was evaluated. The results revealed that HEP improved the immunostimulatory activity of RAW264.7 cells, evident from increased production of IL-6 and TNF-α. These findings suggest that HEP is capable of enhancing the immune activity of RAW 264.7 macrophage.
Collapse
Affiliation(s)
- Xiao-Zi Shi
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Xin-Yan Zhang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China; Tianjin Beichen Traditional Chinese Medicine Hospital
| | - Yin-Yue Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Yong-Ming Zhao
- Department of Pharmacy, Hebei North University, Zhangjiakou, China.
| | - Jin Wang
- Department of Pharmacy, Hebei North University, Zhangjiakou, China; Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, China.
| |
Collapse
|
8
|
Nan Z, Chen L, Li G, Li H, Li Y, Ma J, Ding J, Yang J. A method for the quantitative analysis of Lycium barbarum polysaccharides (LBPs) using Fourier-transform infrared spectroscopy (FTIR): From theoretical computation to experimental application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125204. [PMID: 39342715 DOI: 10.1016/j.saa.2024.125204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Lycium barbarum polysaccharides (LBPs) is one of the most important active substances in Lycium barbarum (LB). It is a challenge to quantitatively determine the content due to their complex structures and lack of suitable reference standard in practice. In this study, a quantitative analysis method of LBPs in LB was established based on Fourier-transform infrared spectroscopy (FTIR). The stretching vibration of CO on the pyranose ring of saccharide at 921 cm-1 was selected as the characteristic absorption band by theoretical calculation, which can't be impacted by the preparation methods and interfered by the component monosaccharides. The molecular weight CRM of dextran (Mw 63.3 kDa) served as the reference standard. The introducing internal standard (KSCN) can obtain a good precision (RSD = 1.10 %) and effectively compensate for the analysis errors caused by the environment, quality loss and uneven distribution during the tablet pressing processes. The methodological verification suggested that the method had good accuracy according to the recovery rate (96.61 %-105.45 %) and the blank recovery (92.39 %-99.37 %), respectively. The LOD and LOQ of CRMD were 0.10 mg and 0.32 mg, respectively. The polysaccharide content of LB from 24 different regions (0.50-2.54 %) and 10 batches of LB extracts (7.09-10.56 %) determined by the developed method less than the ones using phenol-sulfuric acid assay (1.95 %-4.83 % for LB and 9.83-15.53 % for extracts, respectively). The established method based on FTIR could be served as a supplement to phenol-sulfuric acid assay and a rapid quantitative assay for polysaccharides products. In additional, this study provided a new idea for the quantitative analysis of plant polysaccharides.
Collapse
Affiliation(s)
- Zhuan Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Lulu Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Guangxia Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yanping Li
- Ningxia Wuxing Science and Technology Co. Ltd., Yinchuan 750002, China
| | - Jianlong Ma
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
| | - Jianbao Ding
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Wuxing Science and Technology Co. Ltd., Yinchuan 750002, China; Zhejiang Skyherb Biotechnology Inc., Huzhou 313000, China.
| | - Jin Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China.
| |
Collapse
|
9
|
Sun Y, Wei T, Ma T, Fan Z, Song J. Dellaglioa Algida Cell-Free Supernatant Inhibits Pseudomonas Fluorescence and Pseudomonas Fragi by Destroying Cell Membranes. Foods 2024; 13:2986. [PMID: 39335914 PMCID: PMC11431788 DOI: 10.3390/foods13182986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to examine the components of the cell-free supernatant (CFS) derived from a novel strain of psychrophilic Lactobacillus, Dellaglioa algida, and to further elucidate the impact of this CFS on various cellular processes. Specifically, we sought to understand its effects on the cell membrane, protein and DNA release, protease activity, and metabolites of Pseudomonas fluorescens and Pseudomonas fragi, thereby clarifying the antibacterial mechanism involved. The CFS components were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS), the Coomassie Brilliant Blue method, and the phenol-sulfuric acid method. The inhibitory effect of the CFS on Pseudomonas fluorescens and Pseudomonas fragi was assessed using the ethidium bromide (EB) assay, Oxford cup assay, and ultramicroassay. Additionally, we analyzed the metabolites produced by Pseudomonas fluorescens and Pseudomonas fragi when treated with the CFS. The findings reveal that the CFS of Dellaglioa algida contains 94 volatile components, with protein and sugar concentrations of 32.857 ± 0.9705 mg/mL and 98.250 ± 4.210 mg/L, respectively. The CFS induces varying degrees of damage to the cell membranes of both Pseudomonas fluorescens and Pseudomonas fragi, leading to the release of intracellular proteins and DNA. Furthermore, the CFS reduced the protease activity and metabolic capacity of Pseudomonas fluorescens and Pseudomonas fragi. These results enhance our understanding of the mechanism by which psychrophilic Dellaglioa algida inhibits Pseudomonas fluorescens and Pseudomonas fragi, confirming that its inhibitory effect predominantly occurs through damage to the biological cell membranes of Pseudomonas. Dellaglioa algida is a newly identified cold-adapted inhibitor of Pseudomonas, indicating that its CFS is an effective microbial inhibitor in cold environments. This discovery suggests potential applications in inhibiting the growth and reproduction of Pseudomonas fluorescens and Pseudomonas fragi in food, pharmaceuticals, perfumes, and other chemicals, providing a valuable new reference for industrial preservation.
Collapse
Affiliation(s)
| | | | | | | | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (Y.S.); (T.W.); (T.M.); (Z.F.)
| |
Collapse
|
10
|
Zhang C, Ding J, Bian Z, Liu X, Wang D, Cao G, Zhu L, Zhang J, Liu Q, Liu Y. Multi-level fingerprinting and immune activity evaluation for polysaccharides from Dioscorea opposita Thunb. Int J Biol Macromol 2024; 280:135767. [PMID: 39299425 DOI: 10.1016/j.ijbiomac.2024.135767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To establish the quality control method of Dioscorea opposita Thunb., the multi-level fingerprinting of polysaccharides was established and the relationship between fingerprint and immune activity was analyzed. The two molecular weight segments Mw1 (1.38 × 105-1.63 × 106 Da) and Mw2 (3.27 × 103-4.37 × 103 Da), thirteen infrared absorption peaks (3399.26 cm-1, 2929.32 cm-1, 1631.78 cm-1, 1400.39 cm-1, 1351.80 cm-1, 1123.58 cm-1, 1024.76 cm-1, 931.53 cm-1, 854.76 cm-1, 760.43 cm-1, 708.14 cm-1, 616.47 cm-1, and 526.78 cm-1), and four monosaccharides (Man, Rha, GalA, and Glc) were used to evaluate the quality of Dioscorea opposita Thunb. The molecular weight fragments of Mw1, FT-IR absorption peaks of 1631.78 cm-1, and two monosaccharides (Man and Glc) would be used to identify Dioscorea opposita Thunb. polysaccharide (DOP) from different origins. The relationship of spectrum-effect showed that polysaccharides with features such as higher Mw1, a lower peak height of 1631.78 cm-1, higher content of Man, and lower content of Glc exerted stronger immune activity. In conclusion, this study established a polysaccharide-based quality evaluation method for Dioscorea opposita Thunb. and explored the relationship between polysaccharide fingerprints and in vitro immune activity, which provided a basis for further research on Dioscorea opposita Thunb.
Collapse
Affiliation(s)
- Chuanxiang Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jie Ding
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Zhiying Bian
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Di Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd, Jinan 250109, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Qian Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250000, China.
| |
Collapse
|
11
|
Khan IU, Jamil Y, Shams F, Farsi S, Humayun M, Hussain A, Ahmad A, Iqbal A, Alrefaei AF, Ali S. Unlocking the in vitro and in vivo antioxidant and anti-inflammatory activities of polysaccharide fractions from Lepidium sativum seed-coat mucilage. Heliyon 2024; 10:e36797. [PMID: 39319123 PMCID: PMC11419874 DOI: 10.1016/j.heliyon.2024.e36797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation coupled with oxidative stress contribute to the pathogenicity of various clinical disorders. Oxidative stress arises from an imbalance between production of reactive oxygen species (ROS) and antioxidant defense system, leading to cellular damages. The study investigated the antioxidant and anti-inflammatory effects of polysaccharides isolated from Lepidium sativum seed-coat mucilage. The water-soluble polysaccharides were extracted from mucilage and fractionated using gel permeation chromatography. The radical scavenging potential of various fractions was determined using DPPH, H2O2, and lipid peroxidation assays. The most effective EC50 was recorded for F53 (57.41 ± 1.34 μg/mL), followed by F20 (69.19 ± 0.61 μg/mL) and F52 (75.06 ± 0.45 μg/mL). In vitro anti-inflammatory effect was determined through human membrane stabilization assay while the in vivo effect was evaluated using a carrageenan-induced paw edema in mouse model where F53 demonstrated significant (P = 0.05) anti-inflammatory potential (92.60 % compared to diclofenac sodium 91.46 %). GC-MS analysis revealed the presence of galacturonic acid and glucuronic acid as main acidic monosaccharides along with varying quantities of rhamnose, arabinose, and maltose as prominent neutral monosaccharides. The study concludes that cress seed mucilage contains potent antioxidant and anti-inflammatory polysaccharides. Further studies on the mode of action of these polysaccharides could provide deeper insights into their potential use as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Fareeha Shams
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Salman Farsi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Humayun
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
12
|
Yan L, Huang B, Wang X, Jiang Y, Liu J, Jia X, Feng L, Yang B. The carrier function and inhibition effect on benign prostatic hyperplasia of a glucan from Epimedium brevicornu Maxim. Carbohydr Polym 2024; 340:122316. [PMID: 38858029 DOI: 10.1016/j.carbpol.2024.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Epimedium, a traditional Chinese medicine commonly used as a dietary supplement, contains polysaccharides and flavonoids as its main bioactive ingredients. In this study, a neutral homogeneous polysaccharide (EPSN-1) was isolated from Epimedium brevicornu Maxim. EPSN-1 was identified as a glucan with a backbone of →4)-α-D-Glcp-(1→, branched units comprised α-D-Glcp-(1→6)-α-D-Glcp-(1→, β-D-Glcp-(1→6)-β-D-Glcp-(1→ and α-D-Glcp-(1→ connected to the C6 position of backbone. The conformation of EPSN-1 in aqueous solution indicated its potential to form nanoparticles. This paper aims to investigate the carrier and pharmacodynamic activity of EPSN-1. The findings demonstrated that, on the one hand, EPSN-1, as a functional ingredient, may load Icariin (ICA) through non-covalent interactions, improving its biopharmaceutical properties such as solubility and stability, thereby improving its intestinal absorption. Additionally, as an effective ingredient, EPSN-1 could help maintain the balance of the intestinal environment by increasing the abundance of Parabacteroides, Lachnospiraceae UGG-001, Anaeroplasma, and Eubacterium xylanophilum group, while decreasing the abundance of Allobaculum, Blautia, and Adlercreutzia. Overall, this dual action of EPSN-1 sheds light on the potential applications of natural polysaccharides, highlighting their dual role as carriers and contributors to biological activity.
Collapse
Affiliation(s)
- Lingling Yan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xueqing Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yuchen Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jialing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Liang Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Bing Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
13
|
Zhu J, Cai Y, Li X, Yang L, Zhang Y. Integrated multi-omic analysis reveals the carbon metabolism-mediated regulation of polysaccharide biosynthesis by suitable light intensity in Bletilla striata leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108872. [PMID: 38964087 DOI: 10.1016/j.plaphy.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Bletilla striata, valued for its medicinal and ornamental properties, remains largely unexplored in terms of how light intensity affects its physiology, biochemistry, and polysaccharide formation. In this 5-month study, B. striata plants were exposed to three different light intensities: low light (LL) (5-20 μmol m-2·s-1), middle light (ML) (200 μmol m-2·s-1), and high light (HL) (400 μmol m-2·s-1). The comprehensive assessment included growth, photosynthetic apparatus, chlorophyll fluorescence electron transport, and analysis of differential metabolites based on the transcriptome and metabolome data. The results indicated that ML resulted in the highest plant height and total polysaccharide content, enhanced photosynthetic apparatus performance and light energy utilization, and stimulated carbon metabolism and carbohydrate accumulation. HL reduced Chl content and photosynthetic apparatus functionality, disrupted OEC activity and electron transfer, stimulated carbon metabolism and starch and glucose accumulation, and hindered energy metabolism related to carbohydrate degradation and oxidation. In contrast, LL facilitated leaf growth and increased chlorophyll content but decreased plant height and total polysaccharide content, compromised the photosynthetic apparatus, hampered light energy utilization, stimulated energy metabolism related to carbohydrate degradation and oxidation, and inhibited carbon metabolism and carbohydrate synthesis. Numerous genes in carbon metabolism were strongly related to polysaccharide metabolites. The katE and cysK genes in carbon metabolism were strongly related not only to polysaccharide metabolites, but also to genes involved in polysaccharide biosynthesis. Our results highlight that light intensity plays a crucial role in affecting polysaccharide biosynthesis in B. striata, with carbon metabolism acting as a mediator under suitable light intensity conditions.
Collapse
Affiliation(s)
- Jiao Zhu
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Youming Cai
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xin Li
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liuyan Yang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Yongchun Zhang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
14
|
Bian H, Qiao Y, Li Y, Wang Z, Zhao L, Li Z, Cheng B, Ding G. The Growth Performance and Nutrient Composition of Black Soldier Fly ( Hermetia illucens) Larvae Fed Slaughtered Bovine Blood. INSECTS 2024; 15:635. [PMID: 39336603 PMCID: PMC11432165 DOI: 10.3390/insects15090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The disposal of slaughterhouse blood poses significant environmental challenges due to its biological instability and high nutrient content. We used a gradient of 10% blood increments (0-100%) to feed BSFL, and the correlation between the proportion of bovine blood and the BSFL weight gain, mortality rate, fatty acid content, and amino acid content was researched. Results indicate a positive correlation between the bovine blood content and BSFL mortality, with survival rates above 95% for blood proportions below 60%. Larval weight exhibited a negative correlation as the bovine blood content increased. Nutritional analysis revealed that the crude protein content in BSFL increased proportionally with bovine blood (14.75-25.45 g/100 g), while the crude fat content decreased correspondingly (10.70-4.66 g/100 g). The sugar content remained relatively constant across groups. Fatty acid analysis showed increased levels of C16:0, C14:0, and C16:1 and decreased levels of C18:1, C18:2, and C18:3 with higher bovine blood contents. The amino acid content generally increased with higher blood proportions. This study highlights the bioconversion potential of BSFL for bovine blood and underscores the impact of protein, lipid, and sugar concentrations in feed on BSFL growth. These findings provide valuable insights for utilizing slaughterhouse waste in BSFL rearing, contributing to the development of more sustainable waste management and animal feed production methods.
Collapse
Affiliation(s)
- Hao Bian
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (H.B.); (Y.L.); (Z.W.); (L.Z.)
| | - Yuting Qiao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yantong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (H.B.); (Y.L.); (Z.W.); (L.Z.)
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (H.B.); (Y.L.); (Z.W.); (L.Z.)
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (H.B.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhiqiang Li
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China;
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (H.B.); (Y.L.); (Z.W.); (L.Z.)
| |
Collapse
|
15
|
Li J, Yin W, Liang Y, Yang Z, Li L, Mai Z, Yu X, Lu Y, Zhang Z, Abula S, Wu Y, Wusiman A, Guo Q. Pomegranate flower polysaccharide improves mastitis in mice by regulating intestinal flora and restoring the blood-milk barrier. Front Pharmacol 2024; 15:1427355. [PMID: 39211783 PMCID: PMC11357933 DOI: 10.3389/fphar.2024.1427355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
This study explored the inhibitory effect of pomegranate flower polysaccharide (PFPS) on mastitis through in vitro and in vivo models. PFPS is a new type of polysaccharide isolated and extracted from pomegranate flowers. The result revealed that PFPS consists of GalA, Ara, and Gal, and the residues consist of 1,4-GalpA, 1,4-Galp, and 1,3,6-Galp, which contain HG-type and RG-I-type pectin structural domains. In vitro studies showed that PFPS could inhibit LPS-enhanced phagocytosis of RAW 264.7 cells and the release of IL-1β, IL-10, and TNF-α. In vivo, studies showed that PFPS improved xylene-induced mouse ear swelling and carrageenan-induced mouse paw edema by inhibiting inflammatory factors. In the mouse mastitis model, PFPS significantly improved LPS-induced inflammation and oxidative stress in mammary tissue. Intestinal flora sequencing results showed that PFPS could effectively regulate the intestinal flora of mice, reduce the relative abundance of pathogenic bacteria Oscillospira and AF12, and increase the probiotics Blautia, Parabacteroides, Allobaculum, and Clostridiaceae_Clostridium. Therefore, PFPS ultimately played a role in preventing mastitis by regulating the intestinal flora and further improving the blood-milk barrier. This study provides a scientific basis for PFPS as a potential candidate drug for the treatment of mastitis.
Collapse
Affiliation(s)
- Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhaoran Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Liangliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, United States
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhenping Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
16
|
Zhang S, Wang A, Lu Z, Lu F, Zhao H. Fermentation of millet bran with Bacillus natto: enhancement of bioactivity levels and the bioactivity of bran extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6196-6207. [PMID: 38459922 DOI: 10.1002/jsfa.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Millet bran (MB), a byproduct of millet production, is rich in functional components but it is underutilized. In recent years, researchers have shown that fermentation can improve the biological activity of cereals and their byproducts. This study used Bacillus natto to ferment millet bran to improve its added value and broaden the application of MB. The bioactive component content, physicochemical properties, and functional activity of millet bran extract (MBE) from fermented millet bran were determined. RESULTS After fermentation, the soluble dietary fiber (SDF) content increased by 92.0%, the β-glucan content by 164.4%, the polypeptide content by 111.4%, the polyphenol content by 32.5%, the flavone content by 16.4%, and the total amino acid content by 95.4%. Scanning electron microscopy revealed that the microscopic morphology of MBE changed from complete and dense blocks to loosely porous shapes after fermentation. After fermentation, the solubility, water-holding capacity, and viscosity significantly increased and the particle size decreased. Moreover, the glucose adsorption capacity (2.1 mmol g-1), glucose dialysis retardation index (75.3%), and α-glucosidase inhibitory (71.4%, mixed reversible inhibition) activity of the fermented MBE (FMBE) were greater than those of the unfermented MBE (0.99 mmol g-1, 32.1%, and 35.1%, respectively). The FMBE presented better cholesterol and sodium cholate (SC) adsorption properties and the adsorption was considered inhomogeneous surface adsorption. CONCLUSION Fermentation increased the bioactive component content and improved the physicochemical properties of MBE, thereby improving its hypoglycemic and hypolipidemic properties. This study not only resolves the problem of millet bran waste but also encourages the development of higher value-added application methods for millet bran. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shimei Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - An Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
17
|
Xu X, Ding Z, Pu C, Kong C, Chen S, Lu W, Zhang J. The structural characterization and UV-protective properties of an exopolysaccharide from a Paenibacillus isolate. Front Pharmacol 2024; 15:1434136. [PMID: 39185320 PMCID: PMC11341463 DOI: 10.3389/fphar.2024.1434136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Overexposure to ultraviolet (UV) light is known to cause damage to the skin, leading to sunburn and photo-aging. Chemical sunscreen products may give rise to health risks including phototoxicity, photosensitivity, and photosensitivity. Natural polysaccharides have attracted considerable interests due to diverse biological activities. Methods A novel polysaccharide isolated was purified and structurally characterized using chemical methods followed by HPLC, GLC-MS, as well as 1D and 2D NMR spectroscopy. The photoprotective effect of the EPS on UVB-induced damage was assessed in vitro using cultured keratinocytes and in vivo using C57BL/6 mouse models. Results The average molecular weight of the EPS was 5.48 × 106 Da, composed of glucose, mannose and galactose residues at a ratio of 2:2:1. The repeating units of the EPS were →3)-β-D-Glcp (1→3) [β-D-Galp (1→2)-α-D-Glcp (1→2)]-α-D-Manp (1→3)-α-D-Manp (1→. In cultured keratinocytes, the EPS reduced cytotoxicity and excessive ROS production induced by UVB irradiation. The EPS also exhibits an inhibitory effect on oxidative stress, inflammation, and collagen degradation found in the photodamage in mice. 1H NMR-based metabolomics analysis for skin suggested that the EPS partly reversed the shifts of metabolic profiles of the skin in UVB-exposed mice. Conclusion The EPS exhibits skin photoprotective effects through regulating oxidative stress both in vivo and in vitro. Our findings highlight that the EPS is a potential candidate in sunscreen formulations for an efficient solution to UVB radiation.
Collapse
Affiliation(s)
- Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Chunlin Pu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| |
Collapse
|
18
|
Zhu J, Liu M, Kang J, Wang S, Zha Z, Zhan Y, Wang Z, Li J, Cai D, Chen S. Engineering Bacillus licheniformis as industrial chassis for efficient bioproduction from starch. BIORESOURCE TECHNOLOGY 2024; 406:131061. [PMID: 38960005 DOI: 10.1016/j.biortech.2024.131061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Starch is an attractive feedstock in biorefinery processes, while the low natural conversion rate of most microorganisms limits its applications. Herein, starch metabolic pathway was systematically investigated using Bacillus licheniformis DW2 as the host organism. Initially, the effects of overexpressing amylolytic enzymes on starch hydrolysis were evaluated. Subsequently, the transmembrane transport system and intracellular degradation module were modified to accelerate the uptake of hydrolysates and their further conversion to glucose-6-phosphate. The DW2-derived strains exhibited robust growth in starch medium, and productivity of bacitracin and subtilisin were improved by 38.5% and 32.6%, with an 32.3% and 22.9% increase of starch conversion rate, respectively. Lastly, the employment of engineering strategies enabled another B. licheniformis WX-02 to produce poly-γ-glutamic acid from starch with a 2.1-fold increase of starch conversion rate. This study not only provided excellent B. licheniformis chassis for sustainable bioproduction from starch, but shed light on researches of substrate utilization.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jianling Kang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Ziyan Zha
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, Hubei, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
19
|
Wang Y, Huang G, Huang H. Ultrasonic/enzymatic extraction, characteristics and comparison of leechee peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2024; 108:106948. [PMID: 38878717 PMCID: PMC11227029 DOI: 10.1016/j.ultsonch.2024.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
In this study, the process conditions, physicochemical properties, structural composition and activity of polysaccharides isolated from leechee peel (LPP) by ultrasound-assisted extraction (UAE) with enzyme and alkali solution extraction (ASE) were compared. The results showed that the total sugar content of LPP extracted by UAE accounted for 75.65 %, which was significantly higher than that extracted by alkali solution. The optimum conditions were as follows: extraction temperature of 68.78 ℃, ultrasonic enzymolysis time of 39.68 min, pectinase dosage of 4.03 %, solid-liquid ratio of 1:30 g/mL, and ultrasonic power of 360 W. The antioxidant activities and structure of leechee peel polysaccharide (LPP) prepared under different conditions were compared. It was found that UAE-LPP was an α-type polysaccharide containing 15.83 % uronic acid. Moreover, LPP extracted by UAE showed strong activity in anti-lipid peroxidation and reducing ability. Ultrasound-assisted enzymatic method is an effective means to improve the content and activity of natural plant polysaccharides, and this method has the advantages of short time-consuming, simple process and easy operation, which can greatly improve the utilization rate of polysaccharides and lay a theoretical and scientific basis for the development and utilization of LPP.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
20
|
Wu X, Ge J, Song G, Liu Y, Gao P, Tian T, Li X, Xu J, Chu Y, Zheng F. The GE296_RS03820 and GE296_RS03830 genes are involved in capsular polysaccharide biosynthesis in Riemerella anatipestifer. FASEB J 2024; 38:e23763. [PMID: 38954404 DOI: 10.1096/fj.202302694rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.
Collapse
Affiliation(s)
- Xiaoni Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiazhen Ge
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guodong Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yijian Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tongtong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Fuying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
21
|
Li X, Zou Y, Shrivastava N, Bao J, Lin FC, Wang H. A rho-type GTPase activating protein affects the growth and development of Cordyceps cicadae. Arch Microbiol 2024; 206:339. [PMID: 38958759 DOI: 10.1007/s00203-024-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.
Collapse
Affiliation(s)
- Xueqian Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, UP, 201303, India
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Zhang J, Lin Z, Ai F, Du W, Yin Y, Guo H. Effect of ultraviolet aged polytetrafluoroethylene microplastics on copper bioavailability and Microcystis aeruginosa growth. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106967. [PMID: 38833998 DOI: 10.1016/j.aquatox.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zihan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Yu MY, Sun JP, Li SF, Sun J, Liu XM, Wang AQ. Effect of microwaves combined with peracetic acid to improve the dewatering performance of residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44885-44899. [PMID: 38954344 DOI: 10.1007/s11356-024-33931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.
Collapse
Affiliation(s)
- Ming-Yuan Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jian-Ping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Shao-Feng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Jian Sun
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiao-Ming Liu
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Ao-Qian Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
24
|
Wang YD, Zhang HE, Han LS, Li GY, Yang KL, Zhao Y, Wang JQ, Lai YB, Chen CB, Wang EP. Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process. Molecules 2024; 29:3092. [PMID: 38999042 PMCID: PMC11243613 DOI: 10.3390/molecules29133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Steamed ginseng water (SGW) is a by-product of the repeated thermal processing of red ginseng, which is characterized by a high bioactive content, better skin care activity, and a large output. However, its value has been ignored, resulting in environmental pollution and resource waste. In this study, UHPLC-Q-Exactive-MS/MS liquid chromatography-mass spectrometry and multivariate statistical analysis were conducted to characterize the compositional features of the repeated thermal-treated SGW. The antioxidant activity (DPPH, ABTS, FRAP, and OH) and chemical composition (total sugars, total saponins, and reducing and non-reducing sugars) were comprehensively evaluated based on the entropy weighting method. Four comparison groups (groups 1 and 3, groups 1 and 5, groups 1 and 7, and groups 1 and 9) were screened for 37 important common difference markers using OPLS-DA analysis. The entropy weight method was used to analyze the weights of the indicators; the seventh SGW sample was reported to have a significant weight. The results of this study suggest that heat treatment time and frequency can be an important indicator value for the quality control of SGW cycling operations, which have great potential in antioxidant products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chang-Bao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - En-Peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
25
|
Jen CI, Ng LT. Physicochemical Properties of Different Sulfated Polysaccharide Components from Laetiporus sulphureus and Their Anti-Proliferative Effects on MDA-MB-231 Breast Cancer Cells. J Fungi (Basel) 2024; 10:457. [PMID: 39057342 PMCID: PMC11278346 DOI: 10.3390/jof10070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Laetiporus sulphureus is an edible and medicinal mushroom widely used in folk medicine for treating cancer and gastric diseases. This study aimed to investigate the physicochemical properties of different sulfated polysaccharide (SPS) components (F1, F2, and F3) isolated from L. sulphureus and evaluate their activity against MDA-MB-231 breast cancer cell proliferation. Compared with F1 and F3, the results showed that F2 exhibited the most potent anti-proliferative activity on MDA-MB-231 cells, which could be attributed to the sulfate and protein contents, molecular weight, and monosaccharide composition. F2 inhibited breast cancer cell proliferation by blocking the cell cycle at the G0/G1 phase but not triggering cell apoptosis. In addition, F2 also showed selective cytotoxicity on breast cancer cells. It modulated the expression of proteins involved in G0/G1 phase progression, cell cycle checkpoints, DNA replication, and the TGFβ signaling pathway in MDA-MB-231 cells. This study demonstrated that F2, the medium-molecular-weight SPS component of L. sulphureus, possessed the most potent inhibitory effect on MDA-MB-231 cell proliferation by arresting the cell cycle at the G0/G1 phase. The main factors contributing to the differences in the potency of anti-breast cancer activity between F1, F2, and F3 could be the sulfate and protein contents, molecular weight, and monosaccharide composition of SPS.
Collapse
Affiliation(s)
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| |
Collapse
|
26
|
Wen Y, Chen J. Optimization of Ultrasound-Assisted Deep Eutectic Solvent Extraction, Characterization, and Bioactivities of Polysaccharide from Pericarpium Citri Reticulatae. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04990-8. [PMID: 38904917 DOI: 10.1007/s12010-024-04990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The ultrasonic-assisted deep eutectic solvent method was used to extract the polysaccharides of Pericarpium Citri Reticulatae (PCRP), and the ultrasound-assisted DES extraction process was optimized by Box-Behnken response surface test using the extraction rate of the PCRP as an index; the in vitro activities of purified the PCRP(PCRPs-1) were investigated by determining the scavenging rate of DPPH• and ABTS•+ as well as by enzyme inhibition assay. The monosaccharide composition was analyzed by HPLC. The best process conditions for response surface optimization were a material-liquid ratio of 1:37 g/mL, water content of 44%, time of 89 min, and power of 320 W. The polysaccharide extraction rate was measured to be 5.41%, which was well optimized when compared with that of the ordinary aqueous extraction method of 3.92%. By α-glucosidase and α-amylase inhibition activity test, it showed that the PCRPs-1 had hypoglycemic activity. The DPPH radical scavenging activity test and ABTS + scavenging activity test indicated that the PCRPs-1 had good biological activity. Analysis of the monosaccharide fractions showed that the PCRPs-1 consisted of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and arabinose, with molar ratios of 1:39.24:4.41:8.91:7.83:86.00:1.02:9.17. The activity studies showed that PCRPs-1 possessed certain hypoglycaemic and antioxidant activities.
Collapse
Affiliation(s)
- Yao Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiawen Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Tang YJ, He WW, Wang X, Jia RQ, Song XX, Yin JY. Ascorbic acid-mediated reduction of arabinoxylan viscosity through free radical reactions. Int J Biol Macromol 2024; 271:132291. [PMID: 38816296 DOI: 10.1016/j.ijbiomac.2024.132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Arabinoxylan (AX) is a potential natural food additive that can enhance the textural properties of food. However, the addition of ascorbic acid (AA) can easily lead to a decrease in the viscosity of AX, which poses a challenge in the development of AX-rich foods. Therefore, the purpose of this study is to elucidate the mechanisms behind the reduction in AX viscosity in the presence of AA. The results indicated that AA could reduce the apparent viscosity and molecular weight of AX without significantly affecting the monosaccharide composition, suggesting a potential mechanism related to the cleavage of AX glycosidic bonds. Interestingly, free radicals were present in the reaction system, and the generation of free radicals under different conditions was consistent with the reduction in apparent viscosity of AX. Furthermore, the reduction in AX apparent viscosity by AA was influenced by various factors including AA concentration, reaction time, temperature, pH, and metal ions. These findings suggested that the mechanism of AX degradation may be due to AA-induced free radical generation, leading to non-selective attacks on glycosidic bonds. Therefore, this study revealed that the potential mechanism behind the reduction in AX viscosity induced by AA involved the generation of ascorbic acid radicals.
Collapse
Affiliation(s)
- Yu-Jie Tang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Run-Qi Jia
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
| |
Collapse
|
28
|
Zhang R, Yang X, Liu Y, Hu J, Hu K, Liu Y, Deng Q, Yang S, Hao F, Wen X. Investigation of natural deep eutectic solvent for the extraction of crude polysaccharide from Polygonatum kingianum and influence of metal elements on its immunomodulatory effects. Talanta 2024; 271:125721. [PMID: 38325042 DOI: 10.1016/j.talanta.2024.125721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
In this study, natural deep eutectic solvent (NADES) was used to extract Polygonatum kingianum crude polysaccharide (PKCP) and response surface methodology (RSM) was designed to optimize the extraction procedure. The immunomodulatory effect of PKCP and the influence of metal elements on its immunomodulatory effect were further discussed. The optimum conditions for PKCP extraction were obtained by RSM optimization: NADES were synthesized with a 1:2 choline chloride-glycerol molar ratio, then extracted at a liquid-solid ratio of 16.6 mL g-1 and water content of 31.2 % for 60 min at 60 °C. This method was used for the extraction of PKCP, and the extraction efficiency was 29.69 %, which was 2.5 times greater than the conventional method of water extraction. In the concentration range of 200-800 μg mL-1, PKCP could activate macrophages, promoting NO secretion and mRNA expression of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) in a dose-dependent way. NO secretion and cytokine expression were not affected when the metal elements were spiked to the equivalent of the metal elements contained in Polygonatum kingianum. When the content of metal elements was higher, the secretion of NO and the gene expression of iNOS were both decreased, which may affect the immunomodulatory effect of Polygonatum kingianum.
Collapse
Affiliation(s)
- Rui Zhang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Xiaofang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ya Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Jiayi Hu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Kan Hu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Yong Liu
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Qingwen Deng
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Shengchun Yang
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Fangfang Hao
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| | - Xiaodong Wen
- College of Pharmacy, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
29
|
Wen Y, Li Z, Ning Y, Yan Y, Li Z, Wang N, Wang H. Portable Raman spectroscopy coupled with PLSR analysis for monitoring and predicting of the quality of fresh-cut Chinese yam at different storage temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123956. [PMID: 38301571 DOI: 10.1016/j.saa.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Portable Raman spectroscopy coupled with partial least squares regression (PLSR) model was performed for monitoring and predicting four quality indicators, moisture content, water activity, polysaccharide content and microbial content of the fresh-cut Chinese yam at different storage temperatures. The variations in the four key indicators were first depicted through a spider web diagram as the storage temperature changed. More importantly, the four key indicators can be accurately monitored and predicted through optimized PLSR models combining with Raman spectroscopy. Among all of the PLSR models for the four indicators, the regression model for moisture content was relatively the best. In addition, storage temperature played a significant role on the model performance of PLSR. The model performance for all indicators at room temperature and high temperature was better than the corresponding PLSR models at refrigeration and freezing conditions. Especially at 25 ℃, the R2 in the calibration set basically reached 0.9. These observations indicated that portable Raman spectroscopy, a simple and easy-to-use detection technique, can monitor and predict the multiple quality indicators of fresh-cut Chinese yam combined with effectively PLSR model, which would be conducive to their applications in food industry.
Collapse
Affiliation(s)
- Youqing Wen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiyao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Ning
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
30
|
Zhang Z, Wang L, Zheng B, Zhang Y, Pan L. In vitro digestive properties of Dictyophora indusiata polysaccharide by steam explosion pretreatment methods. Int J Biol Macromol 2024; 265:131116. [PMID: 38522704 DOI: 10.1016/j.ijbiomac.2024.131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dictyophora indusiata is medicinal and edible fungi containing various nutrients. The aim of this study was to investigate the efficient extraction and structural evolution of Dictyophora indusiata polysaccharide during the vitro digestion based on steam explosion pretreatment methods. In this study, the extraction rate of Dictyophora indusiata polysaccharide was optimized by steam explosion pretreatment methods, which was 2.46 folds that of the water extraction method. In addition, the digestion and fermentation properties of Dictyophora indusiata polysaccharide before and after steam explosion were evaluated in vitro by the changes of molecular weights, total and reducing sugars levels, surface morphology and functional groups, which showed that the structure of Dictyophora indusiata polysaccharide remained stable after salivary-gastric digestion, and partially entered the large intestine, where it could be utilized by gut microbiota. Dictyophora indusiata polysaccharide promoted the increase of beneficial bacteria Megamonas and increased the content of acetic acid, propionic acid and butyric acid, which was 2.17, 2.81, 2.43 folds that of the CON group after fermentation for 24 h, and 1.87, 2.77, 1.90 folds that of the CON group after fermentation for 48 h, respectively. This study will provide theoretical basis for the high value utilization of Dictyophora indusiata polysaccharide.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
31
|
Moon SH, Park TY, Cha HJ, Yang YJ. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting. Mater Today Bio 2024; 25:100973. [PMID: 38322663 PMCID: PMC10844750 DOI: 10.1016/j.mtbio.2024.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Tae Yoon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science, Pohang, 37673, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Inha University Hospital, Incheon, 22332, Republic of Korea
| |
Collapse
|
32
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Li S, Liu X, Zhang X, Fan L, Wang F, Zhou J, Zhang H. Preparation and characterization of zein-tannic acid nanoparticles/chitosan composite films and application in the preservation of sugar oranges. Food Chem 2024; 437:137673. [PMID: 37913708 DOI: 10.1016/j.foodchem.2023.137673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Chitosan-based food packaging film was prepared by incorporating zein-tannic acid nanoparticles (ZTNPs) into chitosan and was evaluated in terms of structure, physical, mechanical and functional properties. Results showed that there were hydrogen bonding interactions between ZTNPs and chitosan matrix, which is conductive to mechanical enhancements of chitosan films. Compared with the pure chitosan film, the composite films with 10% ZTNPs at pH 4 showed the increased tensile strength by 196.58%, increased elongation at break by 161.37%, decreased water vapor permeability by 70.76% and decreased oxygen permeability by 40.68%. The highest inhibition rates of this composite film-forming fluid against Escherichia coli and Staphylococcus aureus reached 83.32% and 72.35%, respectively. The composite film forming solution formed by adding 10% ZTNPs was used for sugar orange preservation. The weight loss rate of oranges was reduced and the nutrient retention rate was improved. This study expanded the application of chitosan-based packaging materials in fruit preservation.
Collapse
Affiliation(s)
- Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Xiaoqian Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fan Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jianzhong Zhou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Hongzhi Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
34
|
Jen CI, Lu MK, Lai MN, Ng LT. Sulfated polysaccharides of Laetiporus sulphureus fruiting bodies exhibit anti-breast cancer activity through cell cycle arrest, apoptosis induction, and inhibiting cell migration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117546. [PMID: 38061441 DOI: 10.1016/j.jep.2023.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laetiporus sulphureus has long been used as an edible and medicinal mushroom in Asia, America, and Europe. Its fruiting bodies are widely used in folk medicine for treating cancer, gastric diseases, cough, and rheumatism. Polysaccharides are an important bioactive component of mushrooms. In nature, sulfated polysaccharides have never been reported in mushrooms. Furthermore, there is no information on differences in physicochemical properties and anti-breast cancer activities between polysaccharides (PS) and sulfated polysaccharides (SPS) of L. sulphureus. AIM OF THE STUDY This study aimed to investigate the physicochemical properties of PS and SPS isolated from fruiting bodies of L. sulphureus and examine their anti-proliferative effects and mechanism(s) of action on MDA-MB-231 breast cancer cells. METHODS Polysaccharides (PS) were isolated using hot water and ethanol precipitation methods. Sulfated polysaccharides (SPS) were isolated by the papain-assisted hydrolysis method. Physicochemical properties comprising sugar, protein, uronic acid, and sulfate contents, and molecular weight, monosaccharide composition, and structural conformation were analyzed on PS and SPS. In the anti-cancer study, a triple-negative breast cancer cell line (MDA-MB-231) and a normal human mammary epithelial cell line (H184B5F5/M10) were used to evaluate the anti-proliferative activity of PS and SPS, and their mechanism(s) of action. RESULTS The results showed that SPS, which had higher sulfate and protein contents and diversified monosaccharide composition, exhibited more potent anti-proliferative activity against MDA-MB-231 cells than PS. Furthermore, it had a selective cytotoxic effect on breast cancer cells but not the normal cells. SPS induced cell cycle arrest at G0/G1 phase via down-regulating CDK4 and cyclin D1 and up-regulating p21 protein expression. Breast cancer cell apoptosis was not observed until 72 h after SPS treatment. In addition, SPS also markedly inhibited breast cancer cell migration. CONCLUSION This study demonstrates that SPS exhibited selective cytotoxicity and was more potent than PS in inhibiting MDA-MB-231 cell proliferation. The contents of sulfate and protein, and monosaccharide composition could be the main factors affecting the anti-breast cancer activity of L. sulphureus SPS.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Ming-Nan Lai
- Kang Jian Biotech Co., Ltd., Nantou 54245, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
35
|
Amiri Z, Molavi AM, Amani A, Moqadam KH, Vatanchian M, Hashemi SA, Oroojalian F. Fabrication, Characterization and Wound-Healing Properties of Core-Shell SF@chitosan/ZnO/ Astragalus Arbusculinus Gum Nanofibers. Nanomedicine (Lond) 2024; 19:499-518. [PMID: 38293919 DOI: 10.2217/nnm-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
AIM Silk fibroin/chitosan/ZnO/Astragalus arbusculinus (Ast) gum fibrous scaffolds along with adipose-derived mesenchymal stem cells (ADSCs) were investigated for accelerating diabetic wound healing. METHODS Scaffolds with a core-shell structure and different compositions were synthesized using the electrospinning method. Biological in vitro investigations included antibacterial testing, cell viability analysis and cell attachment evaluation. In vivo experiments, including the chicken chorioallantoic membrane (CAM) test, were conducted to assess wound-healing efficacy and histopathological changes. RESULTS The incorporation of Ast to the silk fibroin@ chitosan/ZnO scaffold improved wound healing in diabetic mice. In addition, seeding of ADSCs on the scaffold accelerated wound healing. CONCLUSION These findings suggest that the designed scaffold can be useful for skin regeneration applications.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Amir Mahdi Molavi
- Department of Materials Research, Iranian Academic Center for Education, Culture & Research (ACECR), Khorasan Razavi Branch, Mashhad, 9177-948974, Iran
| | - Amir Amani
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | | | - Mehran Vatanchian
- Department of Anatomical Sciences School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Seyyed Ahmad Hashemi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 74877-94149, Iran
| |
Collapse
|
36
|
Zhou Y, Sun Q, Teng C, Zhou M, Fan G, Qu P. Preparation and Improvement of Physicochemical and Functional Properties of Dietary Fiber from Corn Cob Fermented by Aspergillus niger. J Microbiol Biotechnol 2024; 34:330-339. [PMID: 38073331 PMCID: PMC10940746 DOI: 10.4014/jmb.2308.08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 03/01/2024]
Abstract
Corn cobs were fermented with Aspergillus niger to produce soluble dietary fiber (SDF) of high quality and excellent food safety. In this work, the fermentation process was optimized by single-factor test and response surface methodology (RSM). The optimal fermentation conditions were determined to be a material-liquid ratio of 1:30, an inoculum concentration of 11%, a temperature of 32°C, a time of 6 days, and a shaking speed of 200 r/min. Under these conditions, the SDF yield of corn cob increased from 2.34% to 11.92%, and the ratio of soluble dietary fiber to total dietary fiber (SDF/TDF) reached 19.08%, meeting the requirements for high-quality dietary fiber (SDF/TDF of more than 10%). Scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR) analysis revealed that the fermentation effectively degraded part of cellulose and hemicellulose, resulting in the formation of a loose and porous structure. After fermentation the water swelling capacity, water-holding capacity, and oil-holding capacity of the corn cob SDF were significantly improved and the adsorption capacity of glucose, cholesterol, and nitrite ions all increased by more than 20%. Moreover, the total phenolic content increased by 20.96%, which correlated with the higher antioxidant activity of SDF. Overall, the fermentation of corn cobs by A. niger increased the yield and enhanced the functional properties of dietary fiber (DF) as well.
Collapse
Affiliation(s)
- Yadi Zhou
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Qijie Sun
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Chao Teng
- Key Laboratory of Green Manufacturing and Synthetic Biology of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Mingchun Zhou
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Guangsen Fan
- Key Laboratory of Green Manufacturing and Synthetic Biology of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Penghui Qu
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| |
Collapse
|
37
|
Jia X, Liu G, Huang Y, Li Z, Liu X, Wang Z, Li R, Song B, Zhong S. Ultrasonic-Assisted Extraction, Structural Characteristics, and Antioxidant Activities of Polysaccharides from Alpinia officinarum Hance. Foods 2024; 13:333. [PMID: 38275700 PMCID: PMC10815092 DOI: 10.3390/foods13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Alpinia officinarum Hance, a well known agricultural product in the Lei Zhou peninsula, is generally rich in polysaccharides. In order to enhance the use of A. officinarum Hance polysaccharides (AOP) in functional food, AOP was extracted using an ultrasonic-assisted extraction method, and the ultrasonic extraction parameters of AOP was optimized. Furthermore, this study investigated the physicochemical and antioxidant activities of AOPs. In addition, the structural properties were preliminarily determined using Fourier-transform infrared spectroscopy (FTIR), high performance size exclusion chromatography, and a Zetasizer. Ultimately, this study explored the mechanism underlying the antioxidant activities of AOP. The results showed that the optimal ultrasonic-assisted extraction parameters were as follows: ultrasonic time, 6 min; ratio of water to material, 12 mL/g; and ultrasonic power, 380 W. Under these conditions, the maximum yield of AOPs was 5.72%, indicating that ultrasonic-assisted extraction technology is suitable for extracting AOPs due to the reduced time and water usage. Additionally, AOPs were purified using graded alcohol precipitation, resulting in three fractions (AOP30, AOP50, and AOP70). AOP30 had the lowest molecular weight of 11.07 kDa and mainly consisted of glucose (89.88%). The half inhibitory concentration (IC50) value of AOP30 and AOP70 was lower than that of AOP50 in the ability to scavenge the ABTS radical, while a reverse trend was observed in reducing ferric ions. Notably, the antioxidant activities of AOPs were highly correlated with their polydispersity index (Mw/Mn) and Zeta potential. AOP30, a negatively charged acidic polysaccharide fraction, exhibited electron donating capacities. Additionally, it displayed strong antioxidant abilities through scavenging 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals and reducing ferric ions. In conclusion, the present study suggests that AOP30 could be developed as an antioxidant ingredient for the food industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.J.); (G.L.); (Y.H.); (Z.L.); (X.L.); (Z.W.); (R.L.); (B.S.)
| |
Collapse
|
38
|
Moheteer A, Li J, Abulikemu X, Lakho SA, Meng Y, Zhang J, Khand FM, Leghari A, Abula S, Guo Q, Liu D, Mai Z, Tuersong W, Wusiman A. Preparation and activity study of Ruoqiang jujube polysaccharide copper chelate. Front Pharmacol 2024; 14:1347817. [PMID: 38273828 PMCID: PMC10809154 DOI: 10.3389/fphar.2023.1347817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Polysaccharide metal chelate exhibit both immunoregulatory activity and metal element supplementation effects. Methods: In this study, Ruoqiang jujube polysaccharide copper chelate (RJP-Cu) was prepared and the preparation conditions were optimized using the response surface method. Subsequently, RJP-Cu was administered to lambs to evaluate its impact on growth performance, copper ion (Cu2+) supplementation, immune enhancement, and intestinal flora was evaluated. Results: The results indicated that optimal RJP-Cu chelation conditions included a sodium citrate content of 0.5 g, a reaction temperature of 50°C, and a solution pH of 8.0, resulting in a Cu2+ concentration of 583°mg/kg in RJP-Cu. Scanning electron microscopy (SEM) revealed significant structural changes in RJP before and after chelation. RJP-Cu displaying characteristic peaks of both polysaccharides and Cu2+ chelates. Blood routine indexes showed no significant differences among the RJP-Cu-High dose group (RJP-Cu-H), RJP-Cu-Medium dose group (RJP-Cu-M), RJP-Cu-low dose group (RJP-Cu-L) and the control group (p > 0.05). However, compared with the control group, the RJP-Cu-H, M, and L dose groups significantly enhanced lamb production performance (p < 0.05). Furthermore, RJP-Cu-H, M, and L dose groups significantly increased serum Cu2+ concentration, total antioxidant capacity (T-AOC), catalase (CAT), and total superoxide dismutase (T-SOD) contents compared with control group (p < 0.05). The RJP-Cu-H group exhibited significant increases in serum IgA and IgG antibodies, as well as the secretion of cytokines IL-2, IL-4, and TNF-α compared to the control group (p < 0.05). Furthermore, RJP-Cu-H group increased the species abundance of lamb intestinal microbiota, abundance and quantity of beneficial bacteria, and decrease the abundance and quantity of harmful bacteria. The RJP-Cu-H led to the promotion of the synthesis of various Short Chain Fatty Acids (SCFAs), improvements in atrazine degradation and clavulanic acid biosynthesis in lambs, while reducing cell apoptosis and lipopolysaccharide biosynthesis. Conclusion: Thus, these findings demonstrate that RJP-Cu, as a metal chelate, could effectively promote lamb growth performance, increase Cu2+ content, and potentially induce positive immunomodulatory effects by regulating antioxidant enzymes, antibodies, cytokines, intestinal flora, and related metabolic pathways.
Collapse
Affiliation(s)
- Aierpati Moheteer
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jianlong Li
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xireli Abulikemu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shakeel Ahmed Lakho
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Yan Meng
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jiayi Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Faiz Muhammad Khand
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Ambreen Leghari
- Veterinary and Animal Sciences Sakrand, Shaheed Benazir Bhutto University, Sakrand, Pakistan
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Dandan Liu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhanhai Mai
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Waresi Tuersong
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Adelijiang Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Laboratory of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
39
|
Ye C, Zhang Z, Zhang ZH, He R, Zhao X, Gao X. Improving the Flavour of Enzymatically Hydrolysed Beef Liquid by Sonication. Foods 2023; 12:4460. [PMID: 38137264 PMCID: PMC10742968 DOI: 10.3390/foods12244460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Beef potentiator is an important flavour enhancer in the food industry, while it is prone to generating insufficient compounds with umami and sweet tastes and compounds with a fishy odour during enzymatic hydrolysis of beef, resulting in poor flavour of beef potentiator. It has been extensively reported that sonication is capable of improving food flavour. However, the effect of sonication on the flavour of enzymatically hydrolysed beef liquid (EHBL) was scarcely reported. Herein, we investigated the effect of sonication on the flavour of EHBL using quantitative descriptive analysis (QDA), physicochemical analysis and SPME-GC-olfactometry/MS. QDA showed that sonication had a significant effect on taste improvement and off-odour removal of EHBL. Compared with the control, sonication (40 kHz, 80 W/L) increased the contents of total nitrogen, formaldehyde nitrogen, total sugars, reducing sugars, free amino acids (FAAs) and hydrolysis degree of EHBL by 19.25%, 19.80%, 11.83%, 9.52%, 14.37% and 20.45%. Notably, sonication markedly enhanced the contents of sweet FAAs, umami FAAs and bitter FAAs of EHBL by 19.66%, 14.04% and 9.18%, respectively, which contributed to the taste improvement of EHBL. SPME-GC-olfactometry/MS analysis showed that aldehydes and alcohols were the main contributors to aroma compounds of EHBL, and sonication significantly increased the contents of key aroma compounds and alcohols (115.88%) in EHBL. Notably, sonication decreased the contents of fishy odorants, hexanoic acid and nonanal markedly by 35.29% and 26.03%, which was responsible for the aroma improvement of EHBL. Therefore, sonication could become a new potential tool to improve the flavour of EHBL.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (C.Y.); (Z.Z.); (Z.-H.Z.); (R.H.); (X.Z.)
| |
Collapse
|
40
|
Wang T, Jia Z, An C, Ren P, Yang Y, Wang W, Su L. The Protective Effect of Auricularia cornea var. Li. Polysaccharide on Alcoholic Liver Disease and Its Effect on Intestinal Microbiota. Molecules 2023; 28:8003. [PMID: 38138493 PMCID: PMC10745760 DOI: 10.3390/molecules28248003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
This study's objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.
Collapse
Affiliation(s)
- Tianci Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Zikun Jia
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Canghai An
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Ping Ren
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiting Yang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wanting Wang
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Z.J.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
41
|
Li Y, He Y, Zhang H, Ma X. Effects of ultrasonic-enzymatic-assisted ethanol precipitation method on the physicochemical characteristics, antioxidant and hypoglycemic activities of Tremella fuciformis polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106682. [PMID: 37952470 PMCID: PMC10665963 DOI: 10.1016/j.ultsonch.2023.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This investigation involved the extraction of a novel polysaccharide from the spore fermentation broth of Tremella fuciformis using a method that combined ultrasonic and enzymatic assistance with ethanol precipitation. It was then compared with enzymatic and ultrasonic extraction methods. The objective of this research is to offer a reference point for expanding the application of ultrasonic-assisted enzymatic extraction technology in T. fuciformis polysaccharides (TFPs). Based on single-factor experiments, Box-Behnken was used to optimize the extraction conditions of TFPs by ultrasonic-enzymatic-assisted ethanol precipitation extraction. The results revealed an optimal combination of enzymes, with a cellulase-to-papain ratio of 2:1, an enzyme addition of 4000U/100 mL, an enzymolysis temperature of 49 °C, ultrasonicpower at 3 W/mL and an ultrasonictime of 20 min. The extraction rate of TFPs and α- amylase inhibition rates were 23.94 % and 61.44 %, respectively. Comparing the physicochemical properties, structural characterization and in vitro activity of TFPs extracted through different methods, the results showed that ultrasonic treatment significantly influences the apparent morphology of polysaccharide and could enhance its in vitro biological activity. However, different extraction techniques exhibit insubstantial impact on the chemical composition, glycosidic bonds or glycosidic ring configurations within the polysaccharides. Among them, ultrasonic-enzymatic-assisted ethanol precipitation extraction of polysaccharide has the highest extraction rate and the lowest viscosity. It has significant effects on ABTS+ scavenging activity, α- amylase inhibition rate and glucose dialysis retardation index, polysaccharide treated with ultrasonic-enzymatic showed the best performance. These findings suggest that ultrasonic-enzymatic-assisted ethanol precipitation extraction can enhance the activities of TFPs, thereby providing a valuable insight for their future development and application.
Collapse
Affiliation(s)
- Yixuan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Hua Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
42
|
Ogura I, Sugiyama M, Tai R, Mano H, Matsuzawa T. Optimization of microplate-based phenol-sulfuric acid method and application to the multi-sample measurements of cellulose nanofibers. Anal Biochem 2023; 681:115329. [PMID: 37722523 DOI: 10.1016/j.ab.2023.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The phenol-sulfuric acid (PSA) method is a widely used colorimetric method for determining the total saccharides. Microplate-based PSA methods have been developed to handle a large number of samples and reduce the use of hazardous chemicals. However, the optimal procedures and measurement conditions for this method have not yet been fully established. To address this gap, we investigated the optimal procedure for microplate-based PSA. In addition to glucose (Glc), two types of cellulose nanofibers (CNFs) were also evaluated as they are a new type of nanomaterial, and a technique to quantify the concentration of CNFs is required in their safety assessment. The results showed that the thermal reaction with sulfuric acid before the addition of phenol resulted in a higher coloration than was shown after the addition of phenol. Furthermore, the longer the resting time after shaking with phenol, the greater the coloration and smaller the variation, with a resting time of 60 min or longer being optimal. This research provides valuable insights into improving the reliability and efficiency of the PSA method, which can facilitate the analysis of saccharides and other substances in a range of applications.
Collapse
Affiliation(s)
- Isamu Ogura
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Miyuki Sugiyama
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Rie Tai
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroyuki Mano
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
43
|
El Aamri M, Khalki Y, Mohammadi H, Amine A. Development of an Innovative Colorimetric DNA Biosensor Based on Sugar Measurement. BIOSENSORS 2023; 13:853. [PMID: 37754087 PMCID: PMC10526849 DOI: 10.3390/bios13090853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The development of biosensors for target detection plays a crucial role in advancing various fields of bioscience. This work presents the development of a genosensor that exploits the colorimetric phenol-sulfuric acid sugar reaction for the detection of DNA, and RNA as specific targets, and DNA intercalator molecules. The biosensor combines simplicity and reliability to create a novel bioassay for accurate and rapid analysis. A 96-well microplate based on a polystyrene polymer was used as the platform for an unmodified capture DNA immobilization via a silanization process and with (3-Aminopropyl) triethoxysilane (APTES). After that, a hybridization step was carried out to catch the target molecule, followed by adding phenol and sulfuric acid to quantify the amount of DNA or RNA sugar backbone. This reaction generated a yellow-orange color on the wells measured at 490 nm, which was proportional to the target concentration. Under the optimum conditions, a calibration curve was obtained for each target. The developed biosensor demonstrated high sensitivity, good selectivity, and linear response over a wide concentration range for DNA and RNA targets. Additionally, the biosensor was successfully employed for the detection of DNA intercalator agents that inhibited the hybridization of DNA complementary to the immobilized capture DNA. The developed biosensor offers a potential tool for sensitive and selective detection in various applications, including virus diagnosis, genetic analysis, pathogenic bacteria monitoring, and drug discovery.
Collapse
Affiliation(s)
| | | | | | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II, University of Casablanca, B.P.146, Mohammedia 28806, Morocco; (M.E.A.); (Y.K.); (H.M.)
| |
Collapse
|
44
|
Ali SS, Elgibally E, Khalil MA, Sun J, El-Shanshoury AERR. Characterization and bioactivities of exopolysaccharide produced from Azotobacter salinestris EPS-AZ-6. Int J Biol Macromol 2023; 246:125594. [PMID: 37390994 DOI: 10.1016/j.ijbiomac.2023.125594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
This study involved the extraction of an exopolysaccharide (EPS) from Azotobacter salinestris AZ-6, which was isolated from soil cultivated with leguminous plants. In a medium devoid of nitrogen, the AZ-6 strain displayed a maximum EPS yield of 1.1 g/l and the highest relative viscosity value of 3.4. The homogeneity of the polymer was demonstrated by the average molecular weight of 1.61 × 106 Da and a retention time of 17.211 min for levan. The presence of characteristic functional groups and structural units of carbohydrate polymers has been confirmed through spectroscopic analyses utilizing Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) techniques. Thermogravimetric analysis (TGA) revealed a noteworthy decrease in weight (74 %) in the temperature range spanning from 260 to 350 °C. X-ray diffraction (XRD) was utilized to verify the crystalline and amorphous characteristics of EPS-AZ-6. The EPS-AZ-6 exhibited significant cytotoxicity against the MCF-7 tumor cell line, as evidenced by an IC50 value of 6.39 ± 0.05 μg/ml. It also demonstrated a moderate degree of cytotoxicity towards HepG-2 cell line, as indicated by an IC50 value of 29.79 ± 0.41 μg/ml. EPS-AZ-6 exhibited potent antioxidant and in vitro antibacterial properties. These characteristics suggest the potential application value of EPS-AZ-6 in the food industry and pharmaceutical applications.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Eman Elgibally
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | |
Collapse
|
45
|
Lin B, Wang S, Zhou A, Hu Q, Huang G. Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106507. [PMID: 37406540 PMCID: PMC10422119 DOI: 10.1016/j.ultsonch.2023.106507] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this study, Shatian pomelo peel was used as the raw material for extracting polysaccharides using hot water extraction (HW) and ultrasonic-assisted enzyme (UVE) methods, respectively. The optimal parameters for extractingShatian pomelo peel polysaccharides (StPP) using the ultrasound-assisted enzymatic method were determined using response surface methodology (RSM). The optimal conditions for the extraction of StPP were as follows: ultrasound power 350 W, ultrasound time 50 min, enzymatic digestion time 50 min, compound enzyme addition 1.5%, and enzymatic digestion temperature 55 °C. The yield of StPP was found to be 30.1310% under these conditions. Comparing the physicochemical properties and antioxidant activity of StPP extracted using different methods, it was observed that ultrasound-assisted enzyme extraction resulted in higher yield, sugar content and glucuronic acid content of StPP compared to traditional hot water extraction. Additionally, StPP extracted by ultrasound-assisted enzyme extraction showed better antioxidant activity. These results suggest that ultrasound-assisted enzymatic extraction is an effective method to enhance the activity of natural polysaccharides.
Collapse
Affiliation(s)
- Bobo Lin
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Shasha Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Anqi Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Qiurui Hu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
46
|
Gao N, Zhang W, Hu D, Lin G, Wang J, Xue F, Wang Q, Zhao H, Dou X, Zhang L. Study on Extraction, Physicochemical Properties, and Bacterio-Static Activity of Polysaccharides from Phellinus linteus. Molecules 2023; 28:5102. [PMID: 37446762 DOI: 10.3390/molecules28135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
We optimized an ultrasound-assisted extraction process of Phellinus linteus mycelium polysaccharides (PLPs) and studied their monosaccharide composition and bacteriostatic properties. Based on a single-factor experiment, a three-factor, three-level Box-Behnken design was used to optimize the ultrasound-assisted extraction process of PLP, using the yield of PLP as the index. The chemical composition and monosaccharide composition of PLP were determined by chemical analysis and HPLC analysis, respectively. Microscopic morphological analysis of the surface of PLP was performed via swept-surface electron microscopy. The bacteriostatic properties of PLP were determined using the spectrophotometric turbidimetric method. The results showed that the best extraction process of PLP with ultrasonic assistance achieved a result of 1:42 g/mL. In this method, the ultrasonic temperature was 60 °C, ultrasonic extraction was performed for 20 min, and the yield of PLP was 12.98%. The monosaccharide composition of PLP mainly contains glucose (Glc), mannose (Man), galactose (Gal), and glucuronic acid (GlcA). The intracellular polysaccharide of Phellinus igniarius Mycelia (PIP) is an irregular spherical accumulation, the surface is rough and not smooth, and the extracellular polysaccharide (PEP) is a crumbly accumulation. PIP has a stronger inhibitory ability for S. aureus and E. coli and a slightly weaker inhibitory effect for B. subtilis; the inhibitory effect of PEP on S. aureus, E. coli, and B. subtilis is slightly inferior to that of PIP.
Collapse
Affiliation(s)
- Nengbin Gao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Weijia Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Dianjie Hu
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Guo Lin
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Jingxuan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Feng Xue
- Jilin Province Changbai Forest Management Bureau, Baishan 134499, China
| | - Qian Wang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Hongfei Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Xin Dou
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130012, China
| |
Collapse
|
47
|
Chen L, Yang S, Nan Z, Li Y, Ma J, Ding J, Lv Y, Yang J. Detection of dextran, maltodextrin and soluble starch in the adulterated Lycium barbarum polysaccharides (LBPs) using Fourier-transform infrared spectroscopy (FTIR) and machine learning models. Heliyon 2023; 9:e17115. [PMID: 37360083 PMCID: PMC10285174 DOI: 10.1016/j.heliyon.2023.e17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Due to the similar chemical structures and physicochemical properties, it is challenging to distinguish dextran, maltodextrin, and soluble starch from the polysaccharide products of plant origin, such as Lycium barbarum polysaccharides (LBPs). Using the first-order derivatives of Fourier-transformed infrared spectroscopy (FTIR, wave range 1800-400 cm-1), this study proposed a two-step pipeline to identify dextran, maltodextrin, and soluble starch from adulterated LBPs samples qualitatively and quantitatively. We applied principal component analysis (PCA) to reduce the dimensionality of FTIR features. For the qualitative step, a set of machine learning models, including logistic regression, support vector machine (SVM), Naïve Bayes, and partial least squares (PLS), were used to classify the adulterants. For the quantitative step, linear regression, LASSO, random forest, and PLS were used to predict the concentration of LBPs adulterants. The results showed that logistic regression and SVM are suitable for classifying adulterants, and random forests is superior for predicting adulterant concentrations. This would be the first attempt to discriminate the adulterants from the polysaccharide's product of plant origin. The proposed two-step methods can be easily extended to other applications for the quantitative and qualitative detection of samples from adulterants with similar chemical structures.
Collapse
Affiliation(s)
- Lulu Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Siyue Yang
- Department of Statistical Sciences, University of Toronto, Toronto M5T 1P5, Canada
| | - Zhuan Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Yanping Li
- Ningxia Wuxing Science and Technology Co. Ltd, Yinchuan 750021, China
| | - Jianlong Ma
- Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianbao Ding
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Wuxing Science and Technology Co. Ltd, Yinchuan 750021, China
| | - Yi Lv
- Ningxia Food Testing and Research Institute (Key Laboratory of Quality and Safety of Wolfberry and Wine for State Administration for Market Regulation), Yinchuan 750001, China
| | - Jin Yang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Research Center for Natural Medicine Engineering and Technology, Yinchuan 750021, China
| |
Collapse
|
48
|
Li S, Liu F, Wu M, Li Y, Song X, Yin J. Effects of Drying Treatments on Nutritional Compositions, Volatile Flavor Compounds, and Bioactive Substances of Broad Beans. Foods 2023; 12:foods12112160. [PMID: 37297405 DOI: 10.3390/foods12112160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, different drying methods, including hot air drying, sun drying, and freeze drying were employed to dry fresh broad beans. The nutritional composition, volatile organic components and bioactive substances of the dried broad beans were systematically compared. The results indicated significant differences (p < 0.05) in nutritional composition, such as protein and soluble sugar content. Among the 66 identified volatile organic compounds, freeze drying and hot air drying significantly promote the production of alcohols and aldehydes, while sun drying effectively preserves esters. In terms of bioactive substances, broad beans dried by freeze drying exhibit the highest total phenol content as well as the strongest antioxidant capacity and gallic acid, followed by sun drying. The chemometric analysis revealed that the bioactive compounds in broad beans dried by three different methods were primarily composed of flavonoids, organic acids, and amino acids with significant differentiation. Notably, freeze-dried and sun-dried broad beans exhibited a higher concentration of differential substances.
Collapse
Affiliation(s)
- Si Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Fangwei Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Mulan Wu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
49
|
Li Z, Wu M, Wei W, An Y, Li Y, Wen Q, Zhang D, Zhang J, Yao C, Bi Q, Guo D. Fingerprinting Evaluation and Gut Microbiota Regulation of Polysaccharides from Jujube ( Ziziphus jujuba Mill.) Fruit. Int J Mol Sci 2023; 24:ijms24087239. [PMID: 37108402 PMCID: PMC10138826 DOI: 10.3390/ijms24087239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Jujube fruit was well-loved and praised by the broad masses due to its delicious taste, abundant nutritional value, and medicinal properties. Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides of jujube fruits from different producing areas. In the present study, multi-level fingerprint profiling, including polysaccharides, oligosaccharides, and monosaccharides, was established for the quality evaluation of polysaccharides from jujube fruits. For polysaccharides, the total content in jujube fruits ranged from 1.31% to 2.22%, and the molecular weight distribution (MWD) ranged from 1.14 × 105 to 1.73 × 106 Da. The MWD fingerprint profiling of polysaccharides from eight producing areas was similar, but the profile of infrared spectroscopy (IR) showed differentiation. The characteristic signals were screened and used to establish a discrimination model for the identification of jujube fruits from different areas, and the accuracy of identification reached 100.00%. For oligosaccharides, the main components were galacturonic acid polymers (DP, 2-4), and the profile of oligosaccharides exhibited high similarity. The monosaccharides, GalA, Glc, and Ara, were the primary monosaccharides. Although the fingerprint of monosaccharides was semblable, the composing proportion of monosaccharides revealed significant differences. In addition, the polysaccharides of jujube fruits could regulate the gut microbiota composition and possess potential therapeutic effects on dysentery and nervous system diseases.
Collapse
Affiliation(s)
- Zhenwei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Menglei Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuyi Wen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Daidi Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De'an Guo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
50
|
Zhang P, Xu Y, Qu F, Zhou P, Zhang J, Bi X, Xiao Y, Liu Y. Rapid quality evaluation of four kinds of Polygoni Multiflori Radix Praeparata by electronic eye combined with chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:301-316. [PMID: 36697250 DOI: 10.1002/pca.3208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Polygonum multiflorum Thunb., a widely used herbal medicine, has trouble with the hepatic adverse effect. Processing is an effective method to increase potency and reduce the adverse effects of herbal medicines. Polygoni Multiflori Radix Praeparata (PMRP), the decoction pieces processed from raw material, is widely consumed in clinical practice in many countries. The quality control of PMRP has attracted more and more attention worldwide. OBJECTIVE A simple and rapid quality evaluation method using an electronic eye (E-eye) combined with chemometrics was proposed for controlling the quality of PMRP. MATERIALS AND METHODS The semi-quantitative and quantitative data of 105 major components in 128 batches of PMRP samples obtained by three different analysis instruments were fused to investigate the correlation with the dynamic exterior colour determined by E-eye. The correlation between exterior colour and chemical fusion dataset was investigated by orthogonal partial least squares discriminant analysis (OPLS-DA) and partial least squares regression (PLSR). According to the results of correlation analysis, the color parameters of high-quality PMRP was set. RESULTS Correlation studies by chemometrics revealed that the exterior colour depth was significantly correlated with 32 components [variable importance in the projection (VIP) > 1.0, p < 0.05]. The colour parameter of E * ab located in the range of 46.69-51.66 can be used easily, rapidly, and in an environment-friendly way to determine whether the PMRP sample has reached sufficient processing time with good quality. CONCLUSION This study adds some scientific information to our understanding of traditional medicine while contributing an alternative method for assessing the quality of other decoction pieces.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudi Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fanna Qu
- Heilongjiang Institute for drug control, Harbin, Nangang District, China
| | - Ping Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueyan Bi
- Heilongjiang Institute for drug control, Harbin, Nangang District, China
| | - Yongqing Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|