1
|
Sola-Leyva A, Jabalera Y, Jimenez-Carretero M, Lázaro M, Pozo-Gualda T, García-Vargas PJ, Luque-Navarro PM, Fasiolo A, López-Cara LC, Iglesias GR, Paz Carrasco-Jiménez M, Jiménez-López C. Directing novel ChoKα1 inhibitors using MamC-mediated biomimetic magnetic nanoparticles: a way to improve specificity and efficiency. Bioorg Chem 2024; 151:107693. [PMID: 39116523 DOI: 10.1016/j.bioorg.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity. Two of them have been chosen in this study as representatives of different structural families: a biscationic biphenyl derivative of thieno[3,2-d]pyrimidinium substituted with a cyclic amine (here referred to as Fa22) and a biscationic biphenyl thioethano derivative of 7-chloro-quinolinium substituted with a pyrrolidinic moiety (here referred to as PL48). However, the potential use of these types of compounds in systemic treatments is hampered because of their low specificity. In fact, to enter the cell and reach their target, these inhibitors use choline transporters and inhibit choline uptake, being that one of the causes of their toxicity. One way to solve this problem could be allowing their entrance into the cells by alternative ways. With this goal, MamC-mediated magnetic nanoparticles (BMNPs), already proven effective drug nanocarriers, have been used to immobilize Fa22 and PL48. The idea is to let BMNPs enter the cell (they enter the cell by endocytosis) carrying these molecules, and, therefore, offering another way in for these compounds. In the present study, we demonstrate that the coupling of Fa22 and PL48 to BMNPs allows these molecules to enter the tumoral cell without completely inhibiting choline uptake, so, therefore, the use of Fa22 and PL48 in these nanoformulations reduces the toxicity compared to that of the soluble drugs. Moreover, the nanoassemblies Fa22-BMNPs and PL48-BMNPs allow the combination of chemotherapy and local hyperthermia therapies for a enhanced cytotoxic effect on the tumoral HepG2 cell line. The consistency of the results, independently of the drug structure, may indicate that this behavior could be extended to other ChoKα1 inhibitors, opening up a possibility for their potential use in clinics.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain.
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | | - Marina Lázaro
- NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain
| | - Tamara Pozo-Gualda
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pedro J García-Vargas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Pilar M Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Alberto Fasiolo
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain
| | - Luisa C López-Cara
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada 18071, Spain.
| | - Guillermo R Iglesias
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada 18014, Spain; NanoMag Lab. Department of Applied Physic, Faculty of Science, University of Granada, Granada 18071, Spain; MNat Unit of Excellence, University of Granada, Granada 18071, Spain.
| | - María Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | | |
Collapse
|
2
|
Iqbal Z, Albuquerque K, Chan KL. Magnetic Resonance Spectroscopy for Cervical Cancer: Review and Potential Prognostic Applications. Cancers (Basel) 2024; 16:2141. [PMID: 38893260 PMCID: PMC11171343 DOI: 10.3390/cancers16112141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
This review article investigates the utilization of MRS in the setting of cervical cancer. A variety of different techniques have been used in this space including single-voxel techniques such as point-resolved spectroscopy (PRESS) and stimulated echo acquisition mode spectroscopy (STEAM). Furthermore, the experimental parameters for these acquisitions including field strength, repetition times (TR), and echo times (TE) vary greatly. This study critically examines eleven MRS studies that focus on cervical cancer. Out of the eleven studies, ten studies utilized PRESS acquisition, while the remaining study used STEAM acquisition. These studies generally showed that the choline signal is altered in cervical cancer (4/11 studies), the lipid signal is generally increased in cervical cancer or the lipid distribution is changed (5/11 studies), and that diffusion-weighted imaging (DWI) can quantitatively detect lower apparent diffusion coefficient (ADC) values in cervical cancer (2/11 studies). Two studies also investigated the role of MRS for monitoring treatment response and demonstrated mixed results regarding choline signal, and one of these studies showed increased lipid signal for non-responders. There are several new MRS technologies that have yet to be implemented for cervical cancer including advanced spectroscopic imaging and artificial intelligence, and those technologies are also discussed in the article.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kevin Albuquerque
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Kimberly L. Chan
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75235, USA;
| |
Collapse
|
3
|
Wang C, Liu ZY, Huang WG, Yang ZJ, Lan QY, Fang AP, Hou MJ, Luo XL, Zhang YJ, Chen S, Zhu HL. Choline suppresses hepatocellular carcinoma progression by attenuating AMPK/mTOR-mediated autophagy via choline transporter SLC5A7 activation. Hepatobiliary Surg Nutr 2024; 13:393-411. [PMID: 38911213 PMCID: PMC11190510 DOI: 10.21037/hbsn-22-476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 06/25/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated death. Emerging evidence suggests that autophagy plays a critical role in HCC tumorigenesis, metastasis, and prognosis. Choline is an essential nutrient related to prolonged survival and reduced risk of HCC. However, it remains unclear whether this phenomenon is mediated by autophagy. Methods Two HCC cell lines (HUH-7 and Hep3B) were used in the present study. Cell growth was evaluated by cell counting kit 8 (CCK-8), colony formation, and in vivo mouse xenografts assays. Cell motility was calculated by wound healing and transwell assays. Autophagosomes were measured by transmission electron microscope (TEM), and autophagy flux was detected by mRFP-GFP-labeled LC3 protein. The mRNA level of genes was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels were detected by Western blotting (WB). Results We found that choline inhibited the proliferation, migration, and invasion of HCC cells by downregulating autophagy in vitro and in vivo. Upregulated expression of the solute carrier family 5 member 7 (SLC5A7), a specific choline transporter, correlated with better HCC prognosis. We further discovered that choline could promote SLC5A7 expression, upregulate cytoplasm p53 expression to impair the AMPK/mTOR pathway, and attenuate autophagy. Finally, we found that choline acted synergistically with sorafenib to attenuate HCC development in vitro and in vivo. Conclusions Our findings provide novel insights into choline-mediated autophagy in HCC, providing the foothold for its future application in HCC treatment.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-Ge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jun Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ye Lan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meng-Jun Hou
- Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Lin Luo
- Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yao-Jun Zhang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Hipólito A, Xavier R, Brito C, Tomás A, Lemos I, Cabaço LC, Silva F, Oliva A, Barral DC, Vicente JB, Gonçalves LG, Pojo M, Serpa J. BRD9 status is a major contributor for cysteine metabolic remodeling through MST and EAAT3 modulation in malignant melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166983. [PMID: 38070581 DOI: 10.1016/j.bbadis.2023.166983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Renato Xavier
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cheila Brito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Tomás
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal; Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
5
|
Li W, Li C, Liu T, Song Y, Chen P, Liu L, Wang B, Qu J. The association of serum choline concentrations with the risk of cancers: a community-based nested case-control study. Sci Rep 2023; 13:22144. [PMID: 38092871 PMCID: PMC10719238 DOI: 10.1038/s41598-023-49610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Few studies have been designed to investigate the effect of serum choline on the risk of incident cancer. This study aims to explore the association between serum choline and the risk of new-onset cancer. We conducted a case-control study, including 199 patients with incident cancer and 199 matched controls during a median of 3.9 years of follow-up, nested within the China Stroke Primary Prevention Trial. Cubic spline regression (RCS) and conditional logistic regression analysis was used to assess the association of serum choline and incident cancer risk. We observed a positive dose-response association between serum choline levels and the risk of overall (p for overall = 0.046) and digestive system cancer (p for overall = 0.039). Compared with patients with the lowest choline levels (Q1 group), patients in the highest levels of choline (Q4) had a 3.69-fold and 6.01-fold increased risk of overall (OR = 3.69, 95% CI 1.17-11.63) and digestive system cancer (OR = 6.01, 95% CI 1.14-31.67). Elevated choline levels (per SD, 11.49 μg/mL) were associated with a higher risk of overall cancer among participants who were older, male, and smokers in the subgroup analyses. We found a positive association between elevated levels of serum choline with increased risk of incident cancer. Our findings have critical clinical implications for cancer prevention and diagnosis.Trial registration CSPPT, NCT00794885. Registered: November 20, 2008. https://www.clinicaltrials.gov/ct2/show/study/NCT00794885 https://www.clinicaltrials.gov/ct2/show/study/NCT00794885.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China
| | - Chong Li
- Department of Oncology, Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, 518000, China.
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, 100038, China.
| |
Collapse
|
6
|
Vimal J, George NA, Kumar RR, Kattoor J, Kannan S. Identification of salivary metabolic biomarker signatures for oral tongue squamous cell carcinoma. Arch Oral Biol 2023; 155:105780. [PMID: 37586141 DOI: 10.1016/j.archoralbio.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To identify the salivary metabolites associated with squamous cell carcinoma of the tongue to develop easy and non-invasive potential biomarkers for disease diagnosis. DESIGN Initially, the study utilized untargeted metabolomics to analyze 20 samples of tongue squamous cell carcinoma and 10 control samples. The objective was to determine the salivary metabolites that exhibited differential expression in tongue squamous cell carcinoma. Then the selected metabolites were validated using targeted metabolomics in saliva samples of 100 patients diagnosed with squamous cell carcinoma of the tongue, as well as 30 healthy control individuals. RESULTS From the analysis of untargeted metabolomics, 10 metabolites were selected as potential biomarkers. In the subsequent targeted metabolomics study on these selected metabolites, it was observed that N-Acetyl-D-glucosamine, L-Pipecolic acid, L-Carnitine, Phosphorylcholine, and Deoxyguanosine exhibited significant differences. The receiver operating characteristic curve analysis indicates a combination of three important metabolites such as N-Acetyl-D-glucosamine, L-Pipecolic acid and L-Carnitine provided the best prediction with an area under the curve of 0.901. CONCLUSIONS The present result reveals that the N-Acetyl-D-glucosamine, L-Pipecolic acid and L-Carnitine are the signature diagnostic biomarkers for oral tongue squamous cell carcinoma. These findings can be used to develop a rapid and non-invasive method for disease monitoring and prognosis in oral tongue cancer.
Collapse
Affiliation(s)
- Joseph Vimal
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India
| | - Nebu A George
- Division of Surgical Oncology (Head and Neck Clinic), Regional Cancer Centre, Thiruvananthapuram, India
| | - R Rejnish Kumar
- Division of Radiation Oncology (Head and Neck Clinic), Regional Cancer Centre, Thiruvananthapuram, India
| | - Jayasree Kattoor
- Division of Pathology, Regional Cancer Centre, Thiruvananthapuram, India
| | - S Kannan
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, India.
| |
Collapse
|
7
|
Guerra G, Segrado F, Pasanisi P, Bruno E, Lopez S, Raspagliesi F, Bianchi M, Venturelli E. Circulating choline and phosphocholine measurement by a hydrophilic interaction liquid chromatography-tandem mass spectrometry. Heliyon 2023; 9:e21921. [PMID: 38027764 PMCID: PMC10665723 DOI: 10.1016/j.heliyon.2023.e21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Given the growing interest in studying the role of choline and phosphocholine in the development and progression of tumor pathology, in this study we describe the development and validation of a fast and robust method for the simultaneous analysis of choline and phosphocholine in human plasma. Methods Choline and phosphocholine quantification in human plasma was obtained using a hydrophilic interaction liquid chromatography-tandem mass spectrometry technique. Assay performance parameters were evaluated using EMA guidelines. Results Calibration curve ranged from 0.60 to 38.40 μmol/L (R2 = 0.999) and 0.08-5.43 μmol/L (R2 = 0.998) for choline and phosphocholine, respectively. The Limit Of Detection of the method was 0.06 μmol/L for choline and 0.04 μmol/L for phosphocholine. The coefficient of variation range for intra-assay precision is 2.2-4.1 % (choline) and 3.2-15 % (phosphocholine), and the inter-assay precision range is < 1-6.5 % (choline) and 6.2-20 % (phosphocholine). The accuracy of the method was below the ±20 % benchmarks at all the metabolites concentration levels. In-house plasma pool of apparently healthy adults was tested, and a mean concentration of 15.97 μmol/L for Choline and 0.34 μmol/L for Phosphocholine was quantified. Conclusions The developed method shows good reliability in quantifying Choline and Phosphocholine in human plasma for clinical purposes.
Collapse
Affiliation(s)
- Giulia Guerra
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Segrado
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Bruno
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Lopez
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Bianchi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Venturelli
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Yao N, Li W, Xu G, Duan N, Yu G, Qu J. Choline metabolism and its implications in cancer. Front Oncol 2023; 13:1234887. [PMID: 38023163 PMCID: PMC10646347 DOI: 10.3389/fonc.2023.1234887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Choline, a quintessential quaternary ammonium compound, plays a cardinal role in several pivotal biological mechanisms, chiefly in safeguarding cell membrane integrity, orchestrating methylation reactions, and synthesizing vital neurotransmitters. This systematic review meticulously dissects the complex interplay between choline metabolism and its profound implications in oncology. The exposition is stratified into three salient dimensions: Initially, we delve into the intricacies of choline metabolism, accentuating its indispensability in cellular physiology, the enzymatic labyrinth governing its flux, and the pivotal cellular import mechanisms. Subsequently, we elucidate the contemporary comprehension of choline metabolism in the cancer paradigm, traversing its influence from inception to the intricate metamorphosis during oncogenic progression, further compounded by dysregulated enzyme activities and aberrant signaling cascades. Conclusively, we illuminate the burgeoning potential of choline-centric metabolic imaging modalities, notably magnetic resonance spectroscopy (MRS) and positron emission tomography (PET), as avant-garde tools for cancer diagnostics and therapeutic trajectory monitoring. Synoptically, the nuanced perturbations in choline metabolism in neoplastic entities unfurl critical insights, potentially heralding paradigm shifts in diagnostic and therapeutic oncological stratagems. A deeper foray into this realm is anticipated to fortify our molecular understanding and refine intervention modalities in cancer theranostics.
Collapse
Affiliation(s)
- Nan Yao
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Ning Duan
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Guoyong Yu
- Department of Nephrology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
9
|
Ueno H, Sano M, Hara M, Noji H. Digital Cascade Assays for ADP- or ATP-Producing Enzymes Using a Femtoliter Reactor Array Device. ACS Sens 2023; 8:3400-3407. [PMID: 37590841 PMCID: PMC10521141 DOI: 10.1021/acssensors.3c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Digital enzyme assays are emerging biosensing methods for highly sensitive quantitative analysis of biomolecules with single-molecule detection sensitivity. However, current digital enzyme assays require a fluorogenic substrate for detection, which limits the applicability of this method to certain enzymes. ATPases and kinases are representative enzymes for which fluorogenic substrates are not available; however, these enzymes form large domains and play a central role in biology. In this study, we implemented a fluorogenic cascade reaction in a femtoliter reactor array device to develop a digital bioassay platform for ATPases and kinases. The digital cascade assay enabled quantitative measurement of the single-molecule activity of F1-ATPase, the catalytic portion of ATP synthase. We also demonstrated a digital assay for human choline kinase α. Furthermore, we developed a digital cascade assay for ATP-synthesizing enzymes and demonstrated a digital assay for pyruvate kinase. These results show the high versatility of this assay platform. Thus, the digital cascade assay has great potential for the highly sensitive detection and accurate characterization of various ADP- and ATP-producing enzymes, such as kinases, which may serve as disease biomarkers.
Collapse
Affiliation(s)
| | - Mio Sano
- Department of Applied Chemistry,
Graduate School of Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Digital Bioanalysis Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mayu Hara
- Department of Applied Chemistry,
Graduate School of Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Digital Bioanalysis Laboratory, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
10
|
Eurtivong C, Leung E, Sharma N, Leung IKH, Reynisson J. Phosphatidylcholine-Specific Phospholipase C as a Promising Drug Target. Molecules 2023; 28:5637. [PMID: 37570610 PMCID: PMC10420013 DOI: 10.3390/molecules28155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Phosphatidylcholine-specific phospholipase C (PC-PLC) is an enzyme that catalyzes the formation of the important secondary messengers phosphocholine and diacylglycerol (DAG) from phosphatidylcholine. Although PC-PLC has been linked to the progression of many pathological conditions, including cancer, atherosclerosis, inflammation and neuronal cell death, studies of PC-PLC on the protein level have been somewhat neglected with relatively scarce data. To date, the human gene expressing PC-PLC has not yet been found, and the only protein structure of PC-PLC that has been solved was from Bacillus cereus (PC-PLCBc). Nonetheless, there is evidence for PC-PLC activity as a human functional equivalent of its prokaryotic counterpart. Additionally, inhibitors of PC-PLCBc have been developed as potential therapeutic agents. The most notable classes include 2-aminohydroxamic acids, xanthates, N,N'-hydroxyureas, phospholipid analogues, 1,4-oxazepines, pyrido[3,4-b]indoles, morpholinobenzoic acids and univalent ions. However, many medicinal chemistry studies lack evidence for their cellular and in vivo effects, which hampers the progression of the inhibitors towards the clinic. This review outlines the pathological implications of PC-PLC and highlights current progress and future challenges in the development of PC-PLC inhibitors from the literature.
Collapse
Affiliation(s)
- Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Si Ayutthaya Road, Ratchathewi, Bangkok 10400, Thailand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Nabangshu Sharma
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Scion (New Zealand Forest Research Institute), Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua 3010, New Zealand
| | - Ivanhoe K. H. Leung
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3052, Australia;
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme ST5 5BG, UK;
| |
Collapse
|
11
|
Stoica C, Ferreira AK, Hannan K, Bakovic M. Bilayer Forming Phospholipids as Targets for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23095266. [PMID: 35563655 PMCID: PMC9100777 DOI: 10.3390/ijms23095266] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Phospholipids represent a crucial component for the structure of cell membranes. Phosphatidylcholine and phosphatidylethanolamine are two phospholipids that comprise the majority of cell membranes. De novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine occurs via the Kennedy pathway, and perturbations in the regulation of this pathway are linked to a variety of human diseases, including cancer. Altered phosphatidylcholine and phosphatidylethanolamine membrane content, phospholipid metabolite levels, and fatty acid profiles are frequently identified as hallmarks of cancer development and progression. This review summarizes the research on how phospholipid metabolism changes over oncogenic transformation, and how phospholipid profiling can differentiate between human cancer and healthy tissues, with a focus on colorectal cancer, breast cancer, and non-small cell lung cancer. The potential for phospholipids to serve as biomarkers for diagnostics, or as anticancer therapy targets, is also discussed.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
| | - Adilson Kleber Ferreira
- Department of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil;
- Department of Oncology, Alchemypet—Veterinary Dignostic Medicine, São Paulo 05024-000, Brazil
| | - Kayleigh Hannan
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
| | - Marica Bakovic
- Department of Human Health and Nutritional Science, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (C.S.); (K.H.)
- Correspondence:
| |
Collapse
|
12
|
Saito RDF, Andrade LNDS, Bustos SO, Chammas R. Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells. Front Immunol 2022; 13:768606. [PMID: 35250970 PMCID: PMC8889569 DOI: 10.3389/fimmu.2022.768606] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 01/16/2023] Open
Abstract
To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Jaswal A, Hazari PP, Prakash S, Sethi P, Kaushik A, Roy BG, Kathait S, Singh B, Mishra AK. [ 99mTc]Tc-DTPA-Bis(cholineethylamine) as an Oncologic Tracer for the Detection of Choline Transporter (ChT) and Choline Kinase (ChK) Expression in Cancer. ACS OMEGA 2022; 7:12509-12523. [PMID: 35474820 PMCID: PMC9025991 DOI: 10.1021/acsomega.1c04256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The elevated choline transporters (ChT), choline kinase (ChK), choline uptake, and phosphorylation in certain tumor cells have influenced the development of radiolabeled choline derivatives as diagnostic probes for imaging cell membrane proliferation. We, therefore, aimed to develop a choline-based moiety for imaging choline kinase-overexpressed tumors by single-photon emission tomography (SPECT). A novel choline-based diagnostic probe was synthesized and evaluated preclinically in various ChT- and ChK-overexpressed tumor models for SPECT imaging applications. METHODS The synthesis of diethylenetriaminepentaacetic acid-bis-choline ethylamine [DTPA-bis(ChoEA)] featured the conjugation of dimethylaminoethanol to a bifunctional chelator DTPA anhydride. [99mTc]Tc-DTPA-bis(ChoEA) was prepared, and its in vivo characteristics were evaluated in BALB/c mice and tumor-xenografted PC3, A549, and HCT116 athymic mouse models. The in vitro parameters, including cell binding and cytotoxicity, were assessed in PC3, A549, and HCT116 cell lines. To evaluate the specificity of the radioprobe, competitive binding studies were performed. Small-animal SPECT/CT diagnostic imaging was performed for in vivo evaluation. The mouse biodistribution data was further investigated to estimate the radiation dose in humans. RESULTS In silico studies suggested high binding with enhanced specificity. A standard radiolabeling procedure using stannous chloride as a reducing agent showed a labeling yield of 99.5 ± 0.5%. The in silico studies suggested high binding with enhanced specificity. [99mTc]Tc-DTPA-bis(ChoEA) showed high in vitro stability and specificity. The pharmacokinetic studies of [99mTc]Tc-DTPA-bis(ChoEA) in mice showed an increased tumor-to-background ratio after few minutes of intravenous administration. The first-in-human trial was also conducted. The effective dose was estimated to be 0.00467 mSv/MBq (4.67 mSv/GBq), resulting in a radiation dose of up to 1.73 mSv for the 370 MBq injection of [99mTc]Tc-DTPA-bis(ChoEA). CONCLUSIONS The synthesized radioprobe [99mTc]Tc-DTPA-bis(ChoEA) accumulates specifically in choline kinase-overexpressed tumors with a high signal-to-noise ratio. The preclinical and first-in-man data suggested that [99mTc]Tc-DTPA-bis(ChoEA) could potentially be used as a diagnostic SPECT tracer in the monitoring and staging of cancer.
Collapse
Affiliation(s)
- Ambika
Parmar Jaswal
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Puja Panwar Hazari
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Surbhi Prakash
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Pallavi Sethi
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Aruna Kaushik
- Department
of Nuclear Medicine, Institute of Nuclear
Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Bal G. Roy
- Experimental
Animal Facility, Institute of Nuclear Medicine
and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Swati Kathait
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Baljinder Singh
- Post
Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anil Kumar Mishra
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
14
|
Network medicine for disease module identification and drug repurposing with the NeDRex platform. Nat Commun 2021; 12:6848. [PMID: 34824199 PMCID: PMC8617287 DOI: 10.1038/s41467-021-27138-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.
Collapse
|
15
|
Su C, Huang K. LncRNA TCF7 Promotes Epithelial Ovarian Cancer Viability, Mobility and Stemness via Regulating ITGB8. Front Oncol 2021; 11:649655. [PMID: 34868900 PMCID: PMC8635800 DOI: 10.3389/fonc.2021.649655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
This study aimed to investigate the carcinogenic role of long non-coding RNA T-cell factor 7 (lnc-TCF7) in epithelial ovarian cancer (EOC). Lnc-TCF7 overexpression and shRNA plasmids were transfected into SKOV3 and OVCAR3 cells, followed by measurement of cell proliferation, migration, invasion, apoptosis, stemness, and mRNA profile (via microarray). Besides, lnc-TCF7 expression was measured in tumor and adjacent tissues from 76 EOC patients. Lnc-TCF7 was upregulated in EOC cell lines; its overexpression increased cell proliferation, migration, invasion, but decreased apoptosis and promoted CD44, CD133 expressions, CD44+CD133+ cell proportion, spheres formation efficiency and drug resistance to cisplatin in SKOV3 and OVCAR3 cells. Besides, lnc-TCF7 ShRNA exhibited opposite effects comparing with its overexpression. Microarray analysis revealed 267 mRNAs were modulated by lnc-TCF7 dysregulation, among which ITGB8 was the most dysregulated one, which was validated by subsequent western blot and RT-qPCR. Furthermore, ITGB8 overexpression not only induced proliferation, migration, invasion and stemness, but also attenuated the effect of lnc-TCF7 ShRNA on these functions in SKOV3 and OVCAR3 cells. In addition, lnc-TCF7 was upregulated in tumor tissues and correlated with higher pathological grade, tumor size, International Federation of Gynecology and Obstetrics (FIGO) stage and worse overall survival in EOC patients. Conclusively, lnc-TCF7 regulates multiple oncogenic pathways, promotes proliferation, migration, invasion, stemness via upregulating ITGB8. It also correlates with advanced tumor features and poor prognosis in EOC, implying its potential as a target for EOC treatment.
Collapse
Affiliation(s)
- Changlei Su
- Department of General Surgery, The Second Hospital of Harbin Medical University, Harbin, China
| | - Kejin Huang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Quartieri F, Nesi M, Avanzi NR, Borghi D, Casale E, Corti E, Cucchi U, Donati D, Fasolini M, Felder ER, Galvani A, Giorgini ML, Lomolino A, Menichincheri M, Orrenius C, Perrera C, Re Depaolini S, Riccardi-Sirtori F, Salsi E, Isacchi A, Gnocchi P. Identification of unprecedented ATP-competitive choline kinase inhibitors. Bioorg Med Chem Lett 2021; 51:128310. [PMID: 34416377 DOI: 10.1016/j.bmcl.2021.128310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
In this article we describe the identification of unprecedented ATP-competitive ChoKα inhibitors starting from initial hit NMS-P830 that binds to ChoKα in an ATP concentration-dependent manner. This result is confirmed by the co-crystal structure of NMS-P830 in complex with Δ75-ChoKα. NMS-P830 is able to inhibit ChoKα in cells resulting in the reduction of intracellular phosphocholine formation. A structure-based medicinal chemistry program resulted in the identification of selective compounds that have good biochemical activity, solubility and metabolic stability and are suitable for further optimization. The ChoKα inhibitors disclosed in this article demonstrate for the first time the possibility to inhibit ChoKα with ATP-competitive compounds.
Collapse
Affiliation(s)
- Francesca Quartieri
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy.
| | - Marcella Nesi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Nilla R Avanzi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniela Borghi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Elena Casale
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Emiliana Corti
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Ulisse Cucchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Daniele Donati
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Marina Fasolini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Eduard R Felder
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Arturo Galvani
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Maria L Giorgini
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonio Lomolino
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | - Christian Orrenius
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Claudia Perrera
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | | | | | - Enea Salsi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Antonella Isacchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| | - Paola Gnocchi
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014 Nerviano (MI), Italy
| |
Collapse
|
17
|
Rees SWP, Rees TA, Leung E, Walker CS, Barker D, Pilkington LI. Incorporation of a Nitric Oxide Donating Motif into Novel PC-PLC Inhibitors Provides Enhanced Anti-Proliferative Activity. Int J Mol Sci 2021; 22:ijms222111518. [PMID: 34768947 PMCID: PMC8583960 DOI: 10.3390/ijms222111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of phosphatidylcholine-specific phospholipase C (PC-PLC) has previously been shown to be a potential target for novel cancer therapeutics. One downstream consequence of PC-PLC activity is the activation of NF-κB, a nuclear transcription factor responsible for transcribing genes related to oncogenic traits, such as proliferation, angiogenesis, metastasis, and cancer cell survival. Another biological pathway linked to NF-κB is the exogenous delivery of nitric oxide (NO), which decreases NF-κB activity through an apparent negative-feedback loop. In this study, we designed and synthesised 13 novel NO-releasing derivatives of our previously reported class of PC-PLC inhibitors, 2-morpholinobenzoic acids. These molecules contained a secondary benzylamine group, which was readily nitrosylated and subsequently confirmed to release NO in vitro using a DAF-FM fluorescence-based assay. It was then discovered that these NO-releasing derivatives possessed significantly improved anti-proliferative activity in both MDA-MB-231 and HCT116 cancer cell lines compared to their non-nitrosylated parent compounds. These results confirmed that the inclusion of an exogenous NO-releasing functional group onto a known PC-PLC inhibitor enhances anti-proliferative activity and that this relationship can be exploited in order to further improve the anti-proliferative activity of current/future PC-PLC inhibitors.
Collapse
Affiliation(s)
- Shaun W. P. Rees
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand;
| | - Tayla A. Rees
- School of Biological Science, University of Auckland, Auckland 1010, New Zealand; (T.A.R.); (C.S.W.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - Euphemia Leung
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Christopher S. Walker
- School of Biological Science, University of Auckland, Auckland 1010, New Zealand; (T.A.R.); (C.S.W.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand;
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand;
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- Correspondence: (D.B.); (L.I.P.)
| | - Lisa I. Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand;
- Correspondence: (D.B.); (L.I.P.)
| |
Collapse
|
18
|
Phillips-Chavez C, Coward J, Watson M, Schloss J. A Retrospective Cross-Sectional Cohort Trial Assessing the Prevalence of MTHFR Polymorphisms and the Influence of Diet on Platinum Resistance in Ovarian Cancer Patients. Cancers (Basel) 2021; 13:5215. [PMID: 34680361 PMCID: PMC8533864 DOI: 10.3390/cancers13205215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
Ovarian cancer has the lowest survival rate in gynaecologic malignancies with a 5-year survival rate of 43%. Platinum resistance is one of the main drivers of ovarian cancer mortality, of which aberrant methylation has been cited as a significant contributor. Understanding the essential role of the methylenetetrahydrofolate reductase enzyme (MTHFR) on DNA synthesis and repair, and how nutrient status can vastly affect its performance, led to the investigation of MTHFR status and dietary influence on platinum response in epithelial ovarian cancer (EOC) patients. Twenty-five adult female patients who completed first-line platinum-based chemotherapy for primary ovarian cancer were selected from Icon Cancer Centres in Australia. Participants were grouped based on platinum response. A full medical and family history, food frequency questionnaire and single blood test were completed, testing for MTHFR polymorphisms, serum folate, serum and active B12 and homocysteine levels. Nineteen of twenty-five participants had an MTHFR polymorphism. Of those, 20% were compound heterozygous, 12% were heterozygous C677T (CT), 4% homozygous C677T, 12% homozygous A1298C and 28% were heterozygous A1298C (AC). Statistically significant associations were found between dietary zinc (p = 0.0086; 0.0030; 0.0189) and B12 intakes in CT genotypes (p = 0.0157; 0.0030; 0.0068) indicating that zinc or vitamin B12 intakes below RDI were associated with this genotype. There were strong associations of vitamin B6 intakes in AC genotypes (p = 0.0597; 0.0547; 0.0610), and dietary folate in compound heterozygotes with sensitive and partially sensitive disease (p = 0.0627; 0.0510). There were also significant associations between serum folate (p = 0.0478) and dietary B12 (p = 0.0350) intakes above RDI and platinum sensitivity in wild-types as well as strong associations with homocysteine levels (p = 0.0886) and zinc intake (p = 0.0514). Associations with dietary B12 (p = 0.0514) and zinc intakes (p = 0.0731) were also strong in resistant wild types. Results indicate that dietary zinc, B12 and B6 intakes may be associated with platinum sensitivity dependent on MTHFR genotype. These results require further research to clarify the dosages necessary to elicit a response; however, they provide a novel foundation for acknowledging the role of diet on treatment response in EOC.
Collapse
Affiliation(s)
- Caitlin Phillips-Chavez
- Icon Cancer Centre, Queensland, Australia;
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
| | - Jermaine Coward
- Icon Cancer Centre, Queensland, Australia;
- School of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Michael Watson
- Endeavour College of Natural Health, Brisbane, QLD 4006, Australia;
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4006, Australia
| | - Janet Schloss
- NCNM, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
19
|
Rubtsova NI, Hart MC, Arroyo AD, Osharovich SA, Liebov BK, Miller J, Yuan M, Cochran JM, Chong S, Yodh AG, Busch TM, Delikatny EJ, Anikeeva N, Popov AV. NIR Fluorescent Imaging and Photodynamic Therapy with a Novel Theranostic Phospholipid Probe for Triple-Negative Breast Cancer Cells. Bioconjug Chem 2021; 32:1852-1863. [PMID: 34139845 DOI: 10.1021/acs.bioconjchem.1c00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.
Collapse
Affiliation(s)
- Natalia I Rubtsova
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Michael C Hart
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Alejandro D Arroyo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin K Liebov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Sanghoon Chong
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - E James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Anatoliy V Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Rees SWP, Leung E, Reynisson J, Barker D, Pilkington LI. Development of 2-Morpholino-N-hydroxybenzamides as anti-proliferative PC-PLC inhibitors. Bioorg Chem 2021; 114:105152. [PMID: 34328856 DOI: 10.1016/j.bioorg.2021.105152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/15/2022]
Abstract
Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key enzyme involved in the metabolism of the mammalian phospholipid phosphatidylcholine into secondary messengers diacylglycerol (DAG) and phosphocholine. DAG and phosphocholine have been identified to amplify various cellular processes involved in oncogenesis such as proliferation, cell-cycle activation, differentiation and motility, therefore making PC-PLC a potential target for novel anti-cancer treatments. The current literature standard for PC-PLC inhibition, tricyclodecan-9-yl-potassium xanthate (D609), has been shown to arrest proliferation in multiple cancer cell lines, however, it is not drug-like resulting in low aqueous stability, making it a poor drug candidate. 2-Morpholinobenzoic acids have been shown to have improved PC-PLC inhibitory activity compared to D609, with molecular modelling identifying chelation of the carboxylic acid to catalytic Zn2+ ions in the PC-PLC active site being a key interaction. In this study, the carboxylic acid motif was replaced with a hydroxamic acid to strengthen the Zn2+ interaction. It was found that the hydroxamic acid derivatives displayed PC-PLC inhibitory activity similar, or better, than D609. Furthermore, these novel inhibitors had potent anti-proliferative activity in MDA-MB-231 and HCT-116 cancer cell lines, far greater than D609 and previous 2-morpholinobenzoic acids.
Collapse
Affiliation(s)
- Shaun W P Rees
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.
| |
Collapse
|
21
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Rizzo A, Satta A, Garrone G, Cavalleri A, Napoli A, Raspagliesi F, Figini M, De Cecco L, Iorio E, Tomassetti A, Mezzanzanica D, Bagnoli M. Choline kinase alpha impairment overcomes TRAIL resistance in ovarian cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:5. [PMID: 33390181 PMCID: PMC7780408 DOI: 10.1186/s13046-020-01794-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Background Choline kinase-α (ChoKα/CHKA) overexpression and hyper-activation sustain altered choline metabolism conferring the cholinic phenotype to epithelial ovarian cancer (OC), the most lethal gynecological tumor. We previously proved that CHKA down-modulation reduced OC cell aggressiveness and increased sensitivity to in vitro chemotherapeutics’ treatment also affecting intracellular content of one-carbon metabolites. In tumor types other than ovary, methionine decrease was shown to increase sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 triggering. These effects were suggestive of a potential role for ChoKα in regulating susceptibility to TRAIL cytokine. Methods The relationship between ChoKα/CHKA and TRAIL-receptor 2 (TRAIL-R2) expression was investigated in silico in OC patients’ GEO datasets and in vitro in a panel of OC cell lines upon transient CHKA silencing (siCHKA). The effect of siCHKA on metabolites content was assessed by LC-MS. The triggered apoptotic signalling was studied following soluble-TRAIL or anti-TRAIL-R2 agonist antibody treatment. Lipid rafts were isolated by Triton X-100 fractionation. Preclinical ex vivo studies were performed in OC cells derived from patients’ ascites using autologous PBLs as effectors and a bispecific anti-TRAIL-R2/anti-CD3 antibody as triggering agent. Results Here we demonstrate that siCHKA specifically overcomes resistance to TRAIL-mediated apoptosis in OC cells. Upon siCHKA we detected: a significant sensitization to caspase-dependent apoptosis triggered by both soluble TRAIL and anti-TRAIL-R2 agonist antibody, a specific increase of TRAIL-R2 expression and TRAIL-R2 relocation into lipid rafts. In siCHKA-OC cells the acquired TRAIL sensitivity was completely reverted upon recovery of ChoKα expression but, at variance of other tumor cell types, TRAIL sensitivity was not efficiently phenocopied by methionine deprivation. Of note, we were also able to show that siCHKA sensitized tumor cells derived ex vivo from OC patients’ ascites to the cytotoxic activity of autologous lymphocytes redirected by a bispecific anti-TRAIL-R2/anti-CD3 antibody. Conclusions Our findings suggest that ChoKα/CHKA impairment, by restoring drug-induced or receptor-mediated cell death, could be a suitable therapeutic strategy to be used in combination with chemotherapeutics or immunomodulators to improve OC patients’ outcome.
Collapse
Affiliation(s)
- Andrea Rizzo
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Satta
- Department of Applied Research and Technical Development, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Garrone
- Department of Research, Epidemiology and prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: UNITECH OMICS Platform, Università degli Studi di Milano, Milan, Italy
| | - Adalberto Cavalleri
- Department of Research, Epidemiology and prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Napoli
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milan, Italy
| | - Francesco Raspagliesi
- Department of Gynecologic Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mariangela Figini
- Department of Applied Research and Technical Development, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Department of Applied Research and Technological Development, Integrated Biology Platform, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Egidio Iorio
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tomassetti
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Marina Bagnoli
- Department of Research, Molecular Therapies Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
23
|
Zhang XQ, Ding YW, Chen JJ, Xiao X, Zhang W, Zhou L, Kong QW, Shi MZ, Yang J, Jiang B, Guo C, Han YL. Xiaoaiping injection enhances paclitaxel efficacy in ovarian cancer via pregnane X receptor and its downstream molecules. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113067. [PMID: 32505840 DOI: 10.1016/j.jep.2020.113067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoaiping injection, a traditional Chinese medical injection extracted from root of Marsdenia tenacissima (Roxb.) Moon, has been exclusively used on curing malignant tumor in China and as adjuvant therapeutic agent for chemotherapeutics, including paclitaxel. AIM OF THE STUDY The goal of this study was to investigate the synergistic inhibitory efficacy of Xiaoaiping injection and paclitaxel on ovarian cancer. The mechanism may be associated with nuclear receptor pregnane X receptor (PXR) regulating its downstream molecules. MATERIALS AND METHODS In vitro, MTT assay, flow cytometry and Hoechst dyeing were used to evaluate the SK-OV-3 cell proliferation, apoptosis and cell cycle respectively. The mRNA and protein expression of PXR and its downstream CYP450 enzymes, transporters and Bcl-2 families were measured by qRT-PCR and Western blot. Rhodamine 123 efflux experiment was conducted to detect the P-gp efflux ability. PXR plasmid and PXR siRNA were transiently transfected into SK-OV-3 cells respectively to establish PXR-overexpressed or PXR-interfered cells. In vivo, xenograft tumor mice model was established by SK-OV-3 cells to estimate the antitumor effect of Xiaoaiping injection combined with paclitaxel. The expressions of PXR and its downstream molecules in tumor tissues were determined to further clarify the potential mechanism. RESULTS Xiaoaiping injection significantly enhanced the anti-proliferation, pro-apoptosis effect of paclitaxel on SK-OV-3 cells. The synergetic effect was displayed by Xiaoaiping injection inhibiting paclitaxel-induced PXR and CAR expression, which subsequently inhibited CYP450 enzymes CYP2C8 and CYP3A4, transporter P-gp and anti-apoptotic proteins Bcl-2 and Bcl-xl in SK-OV-3 cells. In PXR-overexpressed cells, Xiaoaiping injection down-regulated the expression of PXR and its downstream molecules. The result of xenograft tumor model showed that Xiaoaiping injection combined with paclitaxel enhanced anti-tumor effect on ovarian cancer in vivo. CONCLUSIONS Xiaoaiping injection enhances anti-tumor effect of paclitaxel by inhibiting cell proliferation, inducing apoptosis process. The mechanism may be associated with Xiaoaiping injection inhibiting PXR and its downstream metabolic enzymes CYP2C8, CYP3A4, transporter P-gp and anti-apoptosis protein Bcl-2.
Collapse
Affiliation(s)
- Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Ya-Wei Ding
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Xiao Xiao
- Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China; Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China
| | - Wei Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Li Zhou
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Qian-Wen Kong
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Mei-Zhi Shi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Bo Jiang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China.
| |
Collapse
|
24
|
Rubio-Ruiz B, Serrán-Aguilera L, Hurtado-Guerrero R, Conejo-García A. Recent advances in the design of choline kinase α inhibitors and the molecular basis of their inhibition. Med Res Rev 2020; 41:902-927. [PMID: 33103259 DOI: 10.1002/med.21746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022]
Abstract
Upregulated choline metabolism, characterized by an increase in phosphocholine (PCho), is a hallmark of oncogenesis and tumor progression. Choline kinase (ChoK), the enzyme responsible for PCho synthesis, has consequently become a promising drug target for cancer therapy and as such a significant number of ChoK inhibitors have been developed over the last few decades. More recently, due to the role of this enzyme in other pathologies, ChoK inhibitors have also been used in new therapeutic approaches against malaria and rheumatoid arthritis. Here, we review research results in the field of ChoKα inhibitors from their synthesis to the molecular basis of their binding mode. Strategies for the development of inhibitors and their selectivity on ChoKα over ChoKβ, the plasticity of the choline-binding site, the discovery of new exploitable binding sites, and the allosteric properties of this enzyme are highlighted. The outcomes summarized in this review will be a useful guide to develop new multifunctional potent drugs for the treatment of various human diseases.
Collapse
Affiliation(s)
- Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| | - Lucía Serrán-Aguilera
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.,Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.,Laboratorio de Microscopías Avanzada, University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Ana Conejo-García
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, Spain
| |
Collapse
|
25
|
Sodium-Dependent Glucose Transporter 1 (SGLT1) Stabled by HER2 Promotes Breast Cancer Cell Proliferation by Activation of the PI3K/Akt/mTOR Signaling Pathway in HER2+ Breast Cancer. DISEASE MARKERS 2020; 2020:6103542. [PMID: 32377271 PMCID: PMC7191406 DOI: 10.1155/2020/6103542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Aerobic glycolysis is a hallmark of tumor cells. SGLT1 plays a vital role in glucose metabolism. However, whether SGLT1 could promote cell growth and proliferation in breast cancer remains unclear. Here, we investigated the expression of SGLT1 in breast cancer and examined its role in malignant behavior and prognosis. Further, we examined the SGLT1 expression in breast cancer tissues and its relationship with clinicopathologic characteristics. We clarified that SGLT1 was overexpressed in HER2+ breast cancer cell lines and was affected by HER2 status. We further found that SGLT1 affected breast cancer cell proliferation and patient survival by mediating cell survival pathway activation. SGLT1 was overexpressed in HER2+ breast cancers and associated with lymph node metastasis and HER2+ status. Inhibition of HER2 decreased SGLT1 expression, and the extracellular acidification rate was also reduced in the UACC812 and SKBR3 cell lines. These changes could be reversed by proteasome inhibitor treatment. Knockdown of SGLT1 blocked PI3K/Akt/mTOR signaling, thereby inhibiting cell proliferation. Further, we demonstrated that high SGLT1 was significantly correlated with shorter survival in all breast cancer patients and specifically in HER2+ breast cancer patients. Therefore, we conclude that SGLT1 is overexpressed in HER2+ breast cancer, thereby promoting cell proliferation and shortening survival by activating PI3K/Akt/mTOR signaling. This study submits that SGLT1 is promising not only as a novel biomarker of HER2+ breast cancer subtype but also as a potential drug target.
Collapse
|
26
|
Lo Presti C, Fauvelle F, Mondet J, Mossuz P. The differential activation of metabolic pathways in leukemic cells depending on their genotype and micro-environmental stress. Metabolomics 2020; 16:13. [PMID: 31925544 DOI: 10.1007/s11306-020-1633-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is characterized by a set of malignant proliferations leading to an accumulation of blasts in the bone marrow and blood. The prognosis is pejorative due to the molecular complexity and pathways implicated in leukemogenesis. OBJECTIVES Our research was focused on comparing the metabolic profiles of leukemic cells in basal culture and deprivation conditions to investigate their behaviors under metabolic stress. METHODS We performed untargeted metabolomics using 1H HRMAS-NMR. Five human leukemic cell lines-KG1, K562, HEL, HL60 and OCIAML3-were studied in the basal and nutrient deprivation states. A multivariate analysis of the metabolic profile was performed to find over- or under- expressed metabolites in the different cell lines, depending on the experimental conditions. RESULTS In the basal state, each leukemic cell line exhibited a specific metabolic signature related to the diversity of AML subtypes represented and their phenotypes. When cultured in a serum-free medium, they showed quick metabolic adaptation and continued to proliferate and survive despite the lack of nutrients. Low apoptosis was observed. Increased phosphocholine and glutathione was a common feature of all the observed cell lines, with the maximum increase in these metabolites at 24 h of culture, suggesting the involvement of lipid metabolism and oxidative stress regulators in the survival mechanism developed by the leukemic cells. CONCLUSIONS Our study provides new insights into the metabolic mechanisms in leukemogenesis and suggests a hierarchy of metabolic pathways activated within leukemic cells, some dependent on their genotypes and others conserved among the subtypes but commonly induced under micro-environmental stress.
Collapse
Affiliation(s)
- Caroline Lo Presti
- Department of Biological Hematology, Grenoble Alpes University Hospital, Grenoble, France.
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Florence Fauvelle
- UGA/INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
- UGA/INSERM US17, Grenoble MRI Facility IRMaGe, Grenoble, France
| | - Julie Mondet
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
- Molecular Pathology Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Pascal Mossuz
- Department of Biological Hematology, Grenoble Alpes University Hospital, Grenoble, France
- UGA/INSERM U1209/CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
27
|
Adams CD, Neuhausen SL. Bi-directional Mendelian randomization of epithelial ovarian cancer and schizophrenia and uni-directional Mendelian randomization of schizophrenia on circulating 1- or 2-glycerophosphocholine metabolites. Mol Genet Metab Rep 2019; 21:100539. [PMID: 31844628 PMCID: PMC6895746 DOI: 10.1016/j.ymgmr.2019.100539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/22/2023] Open
Abstract
Most women with epithelial ovarian cancer (EOC) present with late-stage disease. As a result, globally, EOC is responsible for >150,000 deaths a year. Thus, a better understanding of risk factors for developing EOC is crucial for earlier screening and detection to improve survival. To that effort, there have been suggestions that there is an association of schizophrenia and cancer, possibly because metabolic changes are a hallmark of both cancer and schizophrenia (SZ). Perturbed choline metabolism has been documented in both diseases. Our objective was to use Mendelian randomization to evaluate whether SZ increased risk for developing EOC or the converse, and, whether SZ impacted 1- or 2-glycerophosphocholine (1- or 2-GPC) metabolites. We found that SZ conferred a weak but increased risk for EOC, but not the reverse (no evidence that EOC caused SZ). SZ was also causally associated with lower levels of two 1- or 2-GPC species and with suggestively lower levels in an additional three 1- or 2-GPCs. We postulate that perturbed choline metabolism in SZ may mimic or contribute to a "cholinic" phenotype, as observed in EOC cells.
Collapse
Affiliation(s)
- Charleen D. Adams
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | |
Collapse
|
28
|
A New Classification Method of Metastatic Cancers Using a 1H-NMR-Based Approach: A Study Case of Melanoma, Breast, and Prostate Cancer Cell Lines. Metabolites 2019; 9:metabo9110281. [PMID: 31744229 PMCID: PMC6918216 DOI: 10.3390/metabo9110281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
In this study, metastatic melanoma, breast, and prostate cancer cell lines were analyzed using a 1H-NMR-based approach in order to investigate common features and differences of aggressive cancers metabolomes. For that purpose, 1H-NMR spectra of both cellular extracts and culture media were combined with multivariate data analysis, bringing to light no less than 20 discriminant metabolites able to separate the metastatic metabolomes. The supervised approach succeeded in classifying the metastatic cell lines depending on their glucose metabolism, more glycolysis-oriented in the BRAF proto-oncogene mutated cell lines compared to the others. Other adaptive metabolic features also contributed to the classification, such as the increased total choline content (tCho), UDP-GlcNAc detection, and various changes in the glucose-related metabolites tree, giving additional information about the metastatic metabolome status and direction. Finally, common metabolic features detected via 1H-NMR in the studied cancer cell lines are discussed, identifying the glycolytic pathway, Kennedy’s pathway, and the glutaminolysis as potential and common targets in metastasis, opening up new avenues to cure cancer.
Collapse
|
29
|
Hong W, Zhao Y, Cao L, Cao D, Zhao Z, Jin J. [Metabolomics Study on the Differences of Endogenous Small Molecule
between A549/DDP and A549 Cells Based on High Solution UPLC-TOF-MS]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:571-577. [PMID: 30172262 PMCID: PMC6105355 DOI: 10.3779/j.issn.1009-3419.2018.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
背景与目的 顺铂获得性耐药是非小细胞肺癌(non-small cell lung cancer, NSCLC)化疗中至关重要并且有待进一步解决的问题。近年来通过细胞培养获得肿瘤耐药细胞,并将其作为代谢组学研究对象,寻找差异代谢物,获得潜在生物标志物,可以有效地为临床研究和治疗提供参考。本研究旨在通过代谢组学分析获取与顺铂耐药性相关的代谢物信息。 方法 培养NSCLC细胞A549与其顺铂获得性耐药细胞A549/DDP后进行代谢物提取,通过超高效液相色谱-飞行时间质谱法对两种细胞的内源性小分子进行代谢组学分析,获取代谢差异物。 结果 通过数据分析处理,获得40种差异代谢物,主要涉及磷脂、脂肪酸、氨基酸和能量代谢相关代谢物。 结论 A549/DDP细胞的耐药性可能由于细胞膜结构的改变以及相关代谢途径的变化而导致。
Collapse
Affiliation(s)
- Weipeng Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yonghua Zhao
- Clinical Lab, People's Hospital of Nanzhang County, Nanzhang 441500, China
| | - Lin Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
30
|
Lead optimization-hit expansion of new asymmetrical pyridinium/quinolinium compounds as choline kinase α1 inhibitors. Future Med Chem 2018; 10:1769-1786. [PMID: 30043647 DOI: 10.4155/fmc-2018-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Choline kinase α inhibitors represent one of the newest classes of cytotoxic drugs for cancer treatment, since aberrant choline metabolism is a characteristic shared by many human cancers. RESULTS Here, we present a new class of asymmetrical pyridinium/quinolinium derivatives developed and designed based on drug optimization. CONCLUSION Among all compounds described here, compound 8, bearing a 7-chloro-4N-methyl-p-chloroaniline quinolinium moiety, exhibited the greatest inhibitory activity at the enzyme (IC50 = 0.29 μM) and antiproliferative activity in cellular assays (GI50 = 0.29-0.92 μM). Specifically, compound 8 strongly induces a cell-cycle arrest in G1 phase, but it does not significantly induce apoptosis while causing senescence in the MDA-MB-231 cell line.
Collapse
|
31
|
One-Carbon Metabolism: Biological Players in Epithelial Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19072092. [PMID: 30029471 PMCID: PMC6073728 DOI: 10.3390/ijms19072092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Metabolism is deeply involved in cell behavior and homeostasis maintenance, with metabolites acting as molecular intermediates to modulate cellular functions. In particular, one-carbon metabolism is a key biochemical pathway necessary to provide carbon units required for critical processes, including nucleotide biosynthesis, epigenetic methylation, and cell redox-status regulation. It is, therefore, not surprising that alterations in this pathway may acquire fundamental importance in cancer onset and progression. Two of the major actors in one-carbon metabolism, folate and choline, play a key role in the pathobiology of epithelial ovarian cancer (EOC), the deadliest gynecological malignancy. EOC is characterized by a cholinic phenotype sustained via increased activity of choline kinase alpha, and via membrane overexpression of the alpha isoform of the folate receptor (FRα), both of which are known to contribute to generating regulatory signals that support EOC cell aggressiveness and proliferation. Here, we describe in detail the main biological processes associated with one-carbon metabolism, and the current knowledge about its role in EOC. Moreover, since the cholinic phenotype and FRα overexpression are unique properties of tumor cells, but not of normal cells, they can be considered attractive targets for the development of therapeutic approaches.
Collapse
|
32
|
Metabolite profiling for biomarkers in Schistosoma haematobium infection and associated bladder pathologies. PLoS Negl Trop Dis 2018; 12:e0006452. [PMID: 29708967 PMCID: PMC5945272 DOI: 10.1371/journal.pntd.0006452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/10/2018] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Metabolic fingerprinting analysis can offer insights into underlying reactions in a biological system; hence it is crucial to the understanding of disease pathogenesis and could provide useful tools for discovering biomarkers. We sought to examine the urine and plasma metabolome in individuals affected by urogenital schistosomiasis and its associated-bladder pathologies. METHODOLOGY Blood and midstream urine were obtained from volunteers who matched our inclusion criteria among residents from Eggua, southwestern Nigeria. Samples were screened by urinalysis, microscopy, PCR and ultrasonography, and categorised as advanced (urogenital schistosomiasis associated-bladder pathologies), infection-only (urogenital schistosomiasis alone) and controls (no infection and no pathology). Metabolites were extracted and data acquired with ultra high-performance liquid chromatography coupled with Thermo Q-Exactive orbitrap HRMS. Data was analysed with MetaboAnalyst, Workflow4Metabolomics, HMDB, LipidMaps and other bioinformatics tools, with univariate and multivariate statistics for metabolite selection. PRINCIPAL FINDINGS There were low levels of host sex steroids, and high levels of several benzenoids, catechols and lipids (including ganglioside, phosphatidylcholine and phosphatidylethanolamine), in infection-only and advanced cases (FDR<0.05, VIP>2, delta>2.0). Metabolites involved in biochemical pathways related to chorismate production were abundant in controls, while those related to choline and sphingolipid metabolism were upregulated in advanced cases (FDR<0.05). Some of these human host and Schistosoma haematobium molecules, including catechol estrogens, were good markers to distinguish infection-only and advanced cases. CONCLUSIONS Altered glycerophospholipid and sphingolipid metabolism could be key factors promoting the development of bladder pathologies and tumours during urogenital schistosomiasis.
Collapse
|
33
|
Knific T, Vouk K, Smrkolj Š, Prehn C, Adamski J, Rižner TL. Models including plasma levels of sphingomyelins and phosphatidylcholines as diagnostic and prognostic biomarkers of endometrial cancer. J Steroid Biochem Mol Biol 2018; 178:312-321. [PMID: 29360580 DOI: 10.1016/j.jsbmb.2018.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 01/05/2023]
Abstract
In endometrial cancer, biomarkers for preoperative identification of patients with low risk for disease progression would enable stratification according to the extent of surgery needed, and would avoid the complications that can be associated with radical surgery. A panel of proteins, amino acids, enzymes, and miRNA has been investigated as potential biomarkers for endometrial cancer. At the time of the manuscript submission targeted metabolomics/lipidomics approaches have not been applied to biomarker research in endometrial cancer. Using electrospray ionization-tandem mass spectrometry we quantified 163 metabolites in 126 plasma samples (61 patients with endometrial cancer, 65 control patients). Three single phosphatidylcholines were identified with significantly decreased levels in patients with endometrial cancer. A diagnostic model was defined as the ratio between acylcarnitine C16 and phosphatidylcholine PCae C40:1, the ratio between proline and tyrosine, and the ratio between the two phosphatidylcholines PCaa C42:0 and PCae C44:5; which provided sensitivity of 85.25%, specificity of 69.23%, and AUC of 0.837. Addition of smoking status further improved the constructed diagnostic model (AUC = 0.855). The presence of the major prognostic factors of deep myometrial invasion and lymphovascular invasion were also associated with altered metabolite concentrations. A prognostic model for deep myometrial invasion included the ratio between two hydroxysphingomyelins SMOH C14:1 and SMOH C24:1, and the ratio between two phosphatidylcholines PCaa C40:2 and PCaa C42:6, which provided sensitivity of 81.25%, specificity of 86.36%, and AUC of 0.857. The model for lymphovascular invasion included the ratio between two phosphatidylcholines PCaa C34:4 and PCae C38:3, and the ratio between acylcarnitine C16:2 and phosphatidylcholine PCaa C38:1, which provided sensitivity of 88.89%, specificity of 84.31%, and AUC of 0.935.
Collapse
Affiliation(s)
- Tamara Knific
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Katja Vouk
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Špela Smrkolj
- University Medical Centre, Department of Obstetrics and Gynaecology, 1000 Ljubljana, Slovenia
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Centre, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Centre, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising, Weihenstephan, Germany; German Center for Diabetes Research (DZD), 85764 München, Neuherberg, Germany
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
34
|
Kalshetty A, Basu S. Non- 18F-2-Fluoro-2-Deoxy-d-Glucose PET/Computed Tomography in Gynecologic Oncology: An Overview of Current Status and Future Potential. PET Clin 2018; 13:239-248. [PMID: 29482752 DOI: 10.1016/j.cpet.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current status and future potential targets of non-18F-2-fluoro-2-deoxy-d-glucose (FDG) PET/computed tomography (CT) in 3 major gynecologic malignancies are discussed. Estrogen receptor-based 16alpha-18F-fluoro-17beta-estradiol (18F-FES) PET/CT has been investigated in (a) Uterine malignancies (both endometrial and myometrial pathologies) and (b) ovarian carcinoma. For uterine tumors, FDG/FES standardized uptake value and/or uptake ratio showed a positive correlation with malignant transformation (ie, endometrial carcinoma and uterine sarcoma) and higher malignant grades, whereas higher 18F-FES uptake was documented in benign pathologies (ie, endometrial hyperplasia and leiomyoma). For epithelial ovarian carcinomas, 18F-FES PET/CT can predict the response to antiestrogen therapy in platinum-resistant cases.
Collapse
Affiliation(s)
- Ashwini Kalshetty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe Building, Jerbai Wadia Road, Parel, Mumbai 400 012, India; Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe Building, Jerbai Wadia Road, Parel, Mumbai 400 012, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
35
|
Poliaková M, Aebersold DM, Zimmer Y, Medová M. The relevance of tyrosine kinase inhibitors for global metabolic pathways in cancer. Mol Cancer 2018; 17:27. [PMID: 29455660 PMCID: PMC5817809 DOI: 10.1186/s12943-018-0798-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor metabolism is a thrilling discipline that focuses on mechanisms used by cancer cells to earn crucial building blocks and energy to preserve growth and overcome resistance to various treatment modalities. At the same time, therapies directed specifically against aberrant signalling pathways driven by protein tyrosine kinases (TKs) involved in proliferation, metastasis and growth count for several years to promising anti-cancer approaches. In this respect, small molecule inhibitors are the most widely used clinically relevant means for targeted therapy, with a rising number of approvals for TKs inhibitors. In this review, we discuss recent observations related to TKs-associated metabolism and to metabolic feedback that is initialized as cellular response to particular TK-targeted therapies. These observations provide collective evidence that therapeutic responses are primarily linked to such pathways as regulation of lipid and amino acid metabolism, TCA cycle and glycolysis, advocating therefore the development of further effective targeted therapies against a broader spectrum of TKs to treat patients whose tumors display deregulated signalling driven by these proteins.
Collapse
Affiliation(s)
- Michaela Poliaková
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland. .,Department for BioMedical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int J Mol Sci 2017; 18:ijms18102171. [PMID: 29057791 PMCID: PMC5666852 DOI: 10.3390/ijms18102171] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients.
Collapse
|
37
|
Sans M, Gharpure K, Tibshirani R, Zhang J, Liang L, Liu J, Young JH, Dood RL, Sood AK, Eberlin LS. Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Res 2017; 77:2903-2913. [PMID: 28416487 DOI: 10.1158/0008-5472.can-16-3044] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Ovarian high-grade serous carcinoma (HGSC) results in the highest mortality among gynecological cancers, developing rapidly and aggressively. Dissimilarly, serous borderline ovarian tumors (BOT) can progress into low-grade serous carcinomas and have relatively indolent clinical behavior. The underlying biological differences between HGSC and BOT call for accurate diagnostic methodologies and tailored treatment options, and identification of molecular markers of aggressiveness could provide valuable biochemical insights and improve disease management. Here, we used desorption electrospray ionization (DESI) mass spectrometry (MS) to image and chemically characterize the metabolic profiles of HGSC, BOT, and normal ovarian tissue samples. DESI-MS imaging enabled clear visualization of fine papillary branches in serous BOT and allowed for characterization of spatial features of tumor heterogeneity such as adjacent necrosis and stroma in HGSC. Predictive markers of cancer aggressiveness were identified, including various free fatty acids, metabolites, and complex lipids such as ceramides, glycerophosphoglycerols, cardiolipins, and glycerophosphocholines. Classification models built from a total of 89,826 individual pixels, acquired in positive and negative ion modes from 78 different tissue samples, enabled diagnosis and prediction of HGSC and all tumor samples in comparison with normal tissues, with overall agreements of 96.4% and 96.2%, respectively. HGSC and BOT discrimination was achieved with an overall accuracy of 93.0%. Interestingly, our classification model allowed identification of three BOT samples presenting unusual histologic features that could be associated with the development of low-grade carcinomas. Our results suggest DESI-MS as a powerful approach for rapid serous ovarian cancer diagnosis based on altered metabolic signatures. Cancer Res; 77(11); 2903-13. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Kshipra Gharpure
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Tibshirani
- Departments of Biomedical Data Sciences and Statistics, Stanford University, Stanford, California
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Li Liang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan H Young
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Robert L Dood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
38
|
Screening the active compounds of Phellodendri Amurensis cortex for treating prostate cancer by high-throughput chinmedomics. Sci Rep 2017; 7:46234. [PMID: 28383015 PMCID: PMC5382783 DOI: 10.1038/srep46234] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Screening the active compounds of herbal medicines is of importance to modern drug discovery. In this work, an integrative strategy was established to discover the effective compounds and their therapeutic targets using Phellodendri Amurensis cortex (PAC) aimed at inhibiting prostate cancer as a case study. We found that PAC could be inhibited the growth of xenograft tumours of prostate cancer. Global constituents and serum metabolites were analysed by UPLC-MS based on the established chinmedomics analysis method, a total of 54 peaks in the spectrum of PAC were characterised in vitro and 38 peaks were characterised in vivo. Among the 38 compounds characterised in vivo, 29 prototype components were absorbed in serum and nine metabolites were identified in vivo. Thirty-four metabolic biomarkers were related to prostate cancer, and PAC could observably reverse these metabolic biomarkers to their normal level and regulate the disturbed
metabolic profile to a healthy state. A chinmedomics approach showed that ten absorbed constituents, as effective compounds, were associated with the therapeutic effect of PAC. In combination with bioactivity assays, the action targets were also predicted and discovered. As an illustrative case study, the strategy was successfully applied to high-throughput screening of active compounds from herbal medicine.
Collapse
|
39
|
Guertin KA, Li XS, Graubard BI, Albanes D, Weinstein SJ, Goedert JJ, Wang Z, Hazen SL, Sinha R. Serum Trimethylamine N-oxide, Carnitine, Choline, and Betaine in Relation to Colorectal Cancer Risk in the Alpha Tocopherol, Beta Carotene Cancer Prevention Study. Cancer Epidemiol Biomarkers Prev 2017; 26:945-952. [PMID: 28077427 DOI: 10.1158/1055-9965.epi-16-0948] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background: Trimethylamine N-oxide (TMAO), a choline-derived metabolite produced by gut microbiota, and its biomarker precursors have not been adequately evaluated in relation to colorectal cancer risk.Methods: We investigated the relationship between serum concentrations of TMAO and its biomarker precursors (choline, carnitine, and betaine) and incident colorectal cancer risk in a nested case-control study of male smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We measured biomarker concentrations in baseline fasting serum samples from 644 incident colorectal cancer cases and 644 controls using LC/MS-MS. Logistic regression models estimated the ORs and 95% confidence interval (CI) for colorectal cancer by quartile (Q) of serum TMAO, choline, carnitine, and betaine concentrations.Results: Men with higher serum choline at ATBC baseline had approximately 3-fold greater risk of developing colorectal cancer over the ensuing (median ± IQR) 14 ± 10 years (in fully adjusted models, Q4 vs. Q1, OR, 3.22; 95% CI, 2.24-4.61; Ptrend < 0.0001). The prognostic value of serum choline for prediction of incident colorectal cancer was similarly robust for proximal, distal, and rectal colon cancers (all P < 0.0001). The association between serum TMAO, carnitine, or betaine and colorectal cancer risk was not statistically significant (P = 0.25, 0.71, and 0.61, respectively).Conclusions: Higher serum choline concentration (but not TMAO, carnitine, or betaine) was associated with increased risk of colorectal cancer.Impact: Serum choline levels showed strong prognostic value for prediction of incident colorectal cancer risk across all anatomical subsites, suggesting a role of altered choline metabolism in colorectal cancer pathogenesis. Cancer Epidemiol Biomarkers Prev; 26(6); 945-52. ©2017 AACR.
Collapse
Affiliation(s)
- Kristin A Guertin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland. .,Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Xinmin S Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Barry I Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|