1
|
Kaya B, Gholam Azad M, Suleymanoglu M, Harmer JR, Wijesinghe TP, Richardson V, Zhao X, Bernhardt PV, Dharmasivam M, Richardson DR. Isosteric Replacement of Sulfur to Selenium in a Thiosemicarbazone: Promotion of Zn(II) Complex Dissociation and Transmetalation to Augment Anticancer Efficacy. J Med Chem 2024; 67:12155-12183. [PMID: 38967641 DOI: 10.1021/acs.jmedchem.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.
Collapse
Affiliation(s)
- Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Mediha Suleymanoglu
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Vera Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Ramadoss GN, Namaganda SJ, Hamilton JR, Sharma R, Chow KG, Macklin BL, Sun M, Liu JC, Fellmann C, Watry HL, Jin J, Perez BS, Sandoval Espinoza CR, Matia MP, Lu SH, Judge LM, Nussenzweig A, Adamson B, Murthy N, Doudna JA, Kampmann M, Conklin BR. Neuronal DNA repair reveals strategies to influence CRISPR editing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600517. [PMID: 38979269 PMCID: PMC11230251 DOI: 10.1101/2024.06.25.600517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Genome editing is poised to revolutionize treatment of genetic diseases, but poor understanding and control of DNA repair outcomes hinders its therapeutic potential. DNA repair is especially understudied in nondividing cells like neurons, which must withstand decades of DNA damage without replicating. This lack of knowledge limits the efficiency and precision of genome editing in clinically relevant cells. To address this, we used induced pluripotent stem cells (iPSCs) and iPSC-derived neurons to examine how postmitotic human neurons repair Cas9-induced DNA damage. We discovered that neurons can take weeks to fully resolve this damage, compared to just days in isogenic iPSCs. Furthermore, Cas9-treated neurons upregulated unexpected DNA repair genes, including factors canonically associated with replication. Manipulating this response with chemical or genetic perturbations allowed us to direct neuronal repair toward desired editing outcomes. By studying DNA repair in postmitotic human cells, we uncovered unforeseen challenges and opportunities for precise therapeutic editing.
Collapse
Affiliation(s)
- Gokul N Ramadoss
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | | | - Jennifer R Hamilton
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Rohit Sharma
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | | | | | - Mengyuan Sun
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Jia-Cheng Liu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Christof Fellmann
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | | | - Julianne Jin
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
| | - Barbara S Perez
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Cindy R Sandoval Espinoza
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Serena H Lu
- Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
3
|
Podolski-Renić A, Čipak Gašparović A, Valente A, López Ó, Bormio Nunes JH, Kowol CR, Heffeter P, Filipović NR. Schiff bases and their metal complexes to target and overcome (multidrug) resistance in cancer. Eur J Med Chem 2024; 270:116363. [PMID: 38593587 DOI: 10.1016/j.ejmech.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | | | - Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Óscar López
- Departamento de Química Organica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Nenad R Filipović
- Department of Chemistry and Biochemistry, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
4
|
Srishti K, Negi O, Hota PK. Recent Development on Copper-Sensor and its Biological Applications: A Review. J Fluoresc 2024:10.1007/s10895-024-03587-y. [PMID: 38416283 DOI: 10.1007/s10895-024-03587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/29/2024]
Abstract
Metal ion recognition is one of the most prospective research topics in the field of chemical sensors due to its wide range of clinical, biological and environmental applications. In this context, hydrazones are well known compounds that exhibit metal sensing and several biological properties due to the presence of N=CH- bond. Some of the biological properties includes anti-cancer, anti-tumor, anti-oxidant, anti-microbial activities. Hydrazones are also used as a ligand to detect metal ion as well as to generate metal complexes that exhibit medicinal properties. Thus, in recent years, many attempts were made to develop novel ligands with enhanced metal sensing and medicinal properties. In this review, some of the recent development on the hydrazones and their copper complexes are covered from the last few years from 2015-2023. These includes significance of copper ions, synthesis, biological properties, mechanism and metal sensing properties of some of the copper complexes were discussed.
Collapse
Affiliation(s)
- Km Srishti
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Oseen Negi
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Prasanta Kumar Hota
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
5
|
Hong W, Zhang Y, Wang S, Zheng D, Hsu S, Zhou J, Fan J, Zeng Z, Wang N, Ding Z, Yu M, Gao Q, Du S. Deciphering the immune modulation through deep transcriptomic profiling and therapeutic implications of DNA damage repair pattern in hepatocellular carcinoma. Cancer Lett 2024; 582:216594. [PMID: 38135208 DOI: 10.1016/j.canlet.2023.216594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
AIMS DNA damage repair (DDR) plays a pivotal role in hepatocellular carcinoma (HCC), driving oncogenesis, progression, and therapeutic response. However, the mechanisms of DDR mediated immune cells and immuno-modulatory pathways in HCC are yet ill-defined. METHODS Our study introduces an innovative deep machine learning framework for precise DDR assessment, utilizing single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data. Single-cell RNA sequencing data were obtained and in total 85,628 cells of primary or post-immunotherapy cases were analyzed. Large-scale HCC datasets, including 1027 patients in house together with public datasets, were used for 101 machine-learning models and a novel DDR feature was derived at single-cell resolution (DDRscore). Druggable targets were predicted using the reverse phase protein array (RPPA) proteomic profiling of 169 HCC patients and RNA-seq data from 22 liver cancer cell lines. RESULTS Our investigation reveals a dynamic interplay of DDR with natural killer cells and B cells in the primary HCC microenvironment, shaping a tumor-promoting immune milieu through metabolic programming. Analysis of HCC post-immunotherapy demonstrates elevated DDR levels that induces epithelial-mesenchymal transition and fibroblast-like transformation, reshaping the fibrotic tumor microenvironment. Conversely, attenuated DDR promotes antigen cross-presentation by dendritic cells and CD8+ T cells, modulating the inflammatory tumor microenvironment. Regulatory network analysis identifies the CXCL10-CXCR3 axis as a key determinant of immunotherapeutic response in low DDR HCC, potentially regulated by transcription factors GATA3, REL, and TBX21. Using machine learning techniques by combining bulk RNA-seq data in house together with public datasets, we introduce DDRscore, a robust consensus DDR scoring system to predict overall survival and resistance to PD-1 therapy in HCC patients. Finally, we identify BRAF as a potential therapeutic target for high DDRscore patients. CONCLUSION Our comprehensive findings advance our understanding of DDR and the tumor microenvironment in HCC, providing insights into immune regulatory mechanisms mediated via DDR pathways.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Siwei Wang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Shujung Hsu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, Shandong, 250000, China
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510000, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
6
|
Yadav G, Srinivasan G, Jain A. Cervical cancer: Novel treatment strategies offer renewed optimism. Pathol Res Pract 2024; 254:155136. [PMID: 38271784 DOI: 10.1016/j.prp.2024.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Cervical cancer poses a significant global public health issue, primarily affecting women, and stands as one of the four most prevalent cancers affecting woman globally, which includes breast cancer, colorectal cancer, lung cancer and cervical cancer. Almost every instance of cervical cancer is associated with infections caused by the human papillomavirus (HPV). Prevention of this disease hinges on screening and immunization of the patients, yet disparities in cervical cancer occurrence exist between developed and developing nations. Multiple factors contribute to cervical cancer, including sexually transmitted diseases (STDs), reproductive and hormonal influences, genetics, and host-related factors. Preventive programs, lifestyle improvements, smoking cessation, and prompt precancerous lesion treatment can reduce the occurrence of cervical cancer. The persistency and recurrence of the cases are inherited even after the innovative treatments available for cervical cancer. For patient's ineligible for curative surgery or radiotherapy, palliative chemotherapy remains the standard treatment. Novel treatment strategies are emerging to combat the limited effectiveness of chemotherapy. Nanocarriers offer the promise of concurrent chemotherapeutic drug delivery as a beacon of hope in cervical cancer research. The primary aim of this review study is to contribute to a thorough understanding of cervical cancer, fostering awareness and informed decision-making and exploring novel treatment methods such as nanocarriers for the treatment of cervical cancer. This manuscript delves into cutting-edge approaches, exploring the potential of nanocarriers and other innovative treatments. Our study underscores the critical need for global awareness, early intervention, and enhanced treatment options. Novel strategies, such as nanocarriers, offer renewed optimism in the battle against cervical cancer. This research provides compelling evidence for the investigation of these novel therapeutic approaches within the medical field. Cervical cancer remains a formidable adversary, but with ongoing advancements and unwavering commitment, we move closer to a future where it is a preventable and treatable disease, even in the most underserved regions.
Collapse
Affiliation(s)
- Gangotri Yadav
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India.
| | - Ganga Srinivasan
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| | - Ashish Jain
- Vivekanand Education Society college of Pharmacy, Chembur, Maharashtra 400074, India; Principal, Shri D. D. Vispute college of Pharmacy and Research Centre, New Panvel, Maharashtra 410221, India
| |
Collapse
|
7
|
Mahieu CI, Mancini AG, Vikram EP, Planells-Palop V, Joseph NM, Tward AD. ORAOV1, CCND1, and MIR548K Are the Driver Oncogenes of the 11q13 Amplicon in Squamous Cell Carcinoma. Mol Cancer Res 2024; 22:152-168. [PMID: 37930255 PMCID: PMC10831340 DOI: 10.1158/1541-7786.mcr-23-0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
11q13 amplification is a frequent event in human cancer and in particular in squamous cell carcinomas (SCC). Despite almost invariably spanning 10 genes, it is unclear which genetic components of the amplicon are the key driver events in SCC. A combination of computational, in vitro, ex vivo, and in vivo models leveraging efficient primary human keratinocyte genome editing by Cas9-RNP electroporation, identified ORAOV1, CCND1, and MIR548K as the critical drivers of the amplicon in head and neck SCC. CCND1 amplification drives the cell cycle in a CDK4/6/RB1-independent fashion and may confer a novel dependency on RRM2. MIR548K contributes to epithelial-mesenchymal transition. Finally, we identify ORAOV1 as an oncogene that acts likely via its ability to modulate reactive oxygen species. Thus, the 11q13 amplicon drives SCC through at least three independent genetic elements and suggests therapeutic targets for this morbid and lethal disease. IMPLICATIONS This work demonstrates novel mechanisms and ways to target these mechanisms underlying the most common amplification in squamous cell carcinoma, one of the most prevalent and deadly forms of human cancer.
Collapse
Affiliation(s)
- Céline I. Mahieu
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | | | - Ellee P. Vikram
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Vicente Planells-Palop
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| | - Nancy M. Joseph
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Aaron D. Tward
- Department of Otolaryngology, Head and Neck Surgery, University of California San Francisco, San Francisco, Calfornia
| |
Collapse
|
8
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
Herrero JM, Fabra D, Matesanz AI, Hernández C, Sánchez-Pérez I, Quiroga AG. Dithiobiureas Palladium(II) complexes' studies: From their synthesis to their biological action. J Inorg Biochem 2023; 246:112261. [PMID: 37271620 DOI: 10.1016/j.jinorgbio.2023.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Dithiobiureas coordination chemistry towards palladium (II) ions and their possible application is presented and discussed. 1,6-(4-Methoxyphenyl)-2,5-dithiobiurea and 1,6-(4-chlorophenyl)-2,5-dithiobiurea afford two Pd(II) complexes with the general formula [Pd2(H2L)Cl2(PPh3)2]. The metal ion forms one chelate ring with the dithiobiurea, and binds to a triphenylphosphine and an additional leaving group cisplatin like. One of the complexes (1) is endowed not only with stability in DMSO and aqua solutions containing a biological buffer but also with cytotoxicity versus gastric cancer cell lines. Complex 1 does not interact covalently to DNA models, neither activates p53 or Checkpoint Kinase 1 key proteins for DNA damage response. Thus, we propose that complex 1 exerts its action by activating Mitogen-Activated Protein Kinases [p38, Extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs)] as cell death inductors.
Collapse
Affiliation(s)
- Jorge M Herrero
- Departamento de Bioquímica, Facultad de Medicina and Instituto de Investigaciones Biomédicas Albert Sols, Universidad Autónoma de Madrid, 28029 Madrid, Spain; Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - David Fabra
- Departamento de Química Inorgánica, Facultad de Ciencias and IadChem, Calle Francisco Tomas y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana I Matesanz
- Departamento de Química Inorgánica, Facultad de Ciencias and IadChem, Calle Francisco Tomas y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carolina Hernández
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias del Medio Ambiente, Avd. Carlos III s/n, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Isabel Sánchez-Pérez
- Departamento de Bioquímica, Facultad de Medicina and Instituto de Investigaciones Biomédicas Albert Sols, Universidad Autónoma de Madrid, 28029 Madrid, Spain; Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3 -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Adoracion G Quiroga
- Departamento de Química Inorgánica, Facultad de Ciencias and IadChem, Calle Francisco Tomas y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
11
|
Tomat E. Targeting iron to contrast cancer progression. Curr Opin Chem Biol 2023; 74:102315. [PMID: 37187095 PMCID: PMC10225354 DOI: 10.1016/j.cbpa.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing research in cancer biology is delineating a complex iron-trafficking program involving both malignant cells and their support network of cancer stem cells, immune cells, and other stromal components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery are being pursued in clinical trials and in multiple programs at various levels of development. Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers and companion diagnostics, are poised to offer new therapeutic options. By targeting a fundamental player in cancer progression, iron-binding drug candidates (either alone or in combination therapy) have the potential to impact a broad range of cancer types and to address the major clinical problems of recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| |
Collapse
|
12
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
13
|
The Role of P16, P53, KI-67 and PD-L1 Immunostaining in Primary Vaginal Cancer. Cancers (Basel) 2023; 15:cancers15041046. [PMID: 36831389 PMCID: PMC9954710 DOI: 10.3390/cancers15041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND To analyze clinical, pathological and immunohistochemical correlates of survival in vaginal cancer patients. METHODS Retrospective analysis of primary vaginal cancer patients, treated at the Department of Gynecology and Gynecological Oncology of the University Hospital Bonn between 2007 and 2021. RESULTS The study cohort comprised 22 patients. The median age was 63 years (range: 32-87 years). Squamous cell histology was present in 20 patients. Five-year OS in Stage I, II, III and IV was 100%, 56.25%, 0% and 41.67%, respectively (p = 0.147). Five-year DFS was 100%, 50%, 0% and 20.83%, respectively (p = 0.223). The 5-year OS was significantly reduced in the presence of nodal metastasis (p = 0.004), lymphangiosis (p = 0.009), hemangiosis (p = 0.002) and an age above 64 years (p = 0.029). Positive p 16 staining was associated with significantly improved OS (p = 0.010). Tumoral and immune cell PD-L1 staining was positive in 19 and in 16 patients, respectively, without significant impact on OS; 2 patients with metastastic disease are long-term survivors treated with either bevacizumab or pembrolizumab. CONCLUSION P16 expression, absence of lymph- or hemangiosis, nodal negative disease and an age below 64 years show improved survival rates in PVC. Tumoral PD-L1 expression as well as PD-L1 expression on immune cells is frequent in PVC, without impacting survival. Within our study cohort, long-term survivors with recurrent PVC are treated with anti-VEGF and immunotherapy.
Collapse
|
14
|
Wang G, Wang JJ, Zhi-Min Z, Xu XN, Shi F, Fu XL. Targeting critical pathways in ferroptosis and enhancing antitumor therapy of Platinum drugs for colorectal cancer. Sci Prog 2023; 106:368504221147173. [PMID: 36718538 PMCID: PMC10450309 DOI: 10.1177/00368504221147173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) can be resistant to platinum drugs, possibly through ferroptosis suppression, albeit the need for further work to completely understand this mechanism. This work aimed to sum up current findings pertaining to oxaliplatin resistance (OR) or resistance to ascertain the potential of ferroptosis to regulate oxaliplatin effects. In this review, tumor development relating to iron homeostasis, which includes levels of iron that ascertain cells' sensitivity to ferroptosis, oxidative stress, or lipid peroxidation in colorectal tumor cells that are connected with ferroptosis initiation, especially the role of c-Myc/NRF2 signaling in regulating iron homeostasis, coupled with NRF2/GPX4-mediated ferroptosis are discussed. Importantly, ferroptosis plays a key role in OR and ferroptotic induction may substantially reverse OR in CRC cells, which in turn could inhibit the imbalance of intracellular redox induced by oxaliplatin and ferroptosis, as well as cause chemotherapeutic resistance in CRC. Furthermore, fundamental research of small molecules, ferroptosis inducers, GPX4 inhibitors, or natural products for OR coupled with their clinical applications in CRC have also been summarized. Also, potential molecular targets and mechanisms of small molecules or drugs are discussed as well. Suggestively, OR of CRC cells could significantly be reversed by ferroptosis induction, wherein this result is discussed in the current review. Prospectively, the existing literature discussed in this review will provide a solid foundation for scientists to research the potential use of combined anticancer drugs which can overcome OR via targeting various mechanisms of ferroptosis. Especially, promising therapeutic strategies, challenges ,and opportunities for CRC therapy will be discussed.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Zhu Zhi-Min
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiao-Na Xu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
15
|
Markovina S, Rendle KA, Cohen AC, Kuroki LM, Grover S, Schwarz JK. Improving cervical cancer survival-A multifaceted strategy to sustain progress for this global problem. Cancer 2022; 128:4074-4084. [PMID: 36239006 PMCID: PMC10042221 DOI: 10.1002/cncr.34485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Cervical cancer is associated with profound socioeconomic and racial disparities in incidence, mortality, morbidity, and years of life lost. The last standard-of-care treatment innovation for locally advanced cervical cancer occurred in 1999, when cisplatin chemotherapy was added to pelvic radiation therapy (chemoradiation therapy). Chemoradiation therapy is associated with a 30%-50% failure rate, and there is currently no cure for recurrent or metastatic disease. The enormity of the worldwide clinical problem of cervical cancer morbidity and mortality as well as the egregiously unchanged mortality rate over the last several decades are recognized by the National Institutes of Health as urgent priorities. This is reflected within the Office of Research on Women's Health effort to advance National Institutes of Health research on the health of women, as highlighted in a recent symposium. In the current review, the authors address the state of the science and opportunities to improve cervical cancer survival with an emphasis on improving access, using technology in innovative and widely implementable ways, and improving current understanding of cervical cancer biology. LAY SUMMARY: Cervical cancer is associated with profound socioeconomic and racial disparities in incidence, mortality, morbidity, and years of life lost. In this review, the state of the science and opportunities to improve cervical cancer survival are presented with an emphasis on improving access, using technology in innovative and widely implementable ways, and improving current understanding of cervical cancer biology.
Collapse
Affiliation(s)
- Stephanie Markovina
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis
- Siteman Cancer Center, Washington University School of Medicine in St. Louis
| | - Katharine A. Rendle
- Departments of Family Medicine & Community Health and of Biostatistics, Informatics, and Epidemiology, Perelman School of Medicine, University of Pennsylvania
- Abramson Cancer Center, University of Pennsylvania
| | - Alexander C. Cohen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis
| | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis
| | - Surbhi Grover
- Abramson Cancer Center, University of Pennsylvania
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis
- Siteman Cancer Center, Washington University School of Medicine in St. Louis
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis
| |
Collapse
|
16
|
Gutierrez WR, Scherer A, Rytlewski JD, Laverty EA, Sheehan AP, McGivney GR, Brockman QR, Knepper-Adrian V, Roughton GA, Quelle DE, Gordon DJ, Monga V, Dodd RD. Augmenting chemotherapy with low-dose decitabine through an immune-independent mechanism. JCI Insight 2022; 7:e159419. [PMID: 36227698 PMCID: PMC9746804 DOI: 10.1172/jci.insight.159419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA methyltransferase inhibitor decitabine has classically been used to reactivate silenced genes and as a pretreatment for anticancer therapies. In a variation of this idea, this study explores the concept of adding low-dose decitabine (DAC) following administration of chemotherapy to bolster therapeutic efficacy. We find that addition of DAC following treatment with the chemotherapy agent gemcitabine improves survival and slows tumor growth in a mouse model of high-grade sarcoma. Unlike prior studies in epithelial tumor models, DAC did not induce a robust antitumor T cell response in sarcoma. Furthermore, DAC synergizes with gemcitabine independently of the immune system. Mechanistic analyses demonstrate that the combination therapy induces biphasic cell cycle arrest and apoptosis. Therapeutic efficacy was sequence dependent, with gemcitabine priming cells for treatment with DAC through inhibition of ribonucleotide reductase. This study identifies an apparently unique application of DAC to augment the cytotoxic effects of conventional chemotherapy in an immune-independent manner. The concepts explored in this study represent a promising paradigm for cancer treatment by augmenting chemotherapy through addition of DAC to increase tolerability and improve patient response. These findings have widespread implications for the treatment of sarcomas and other aggressive malignancies.
Collapse
Affiliation(s)
- Wade R. Gutierrez
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Amanda Scherer
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | | | | | - Alexa P. Sheehan
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | - Gavin R. McGivney
- Cancer Biology Graduate Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Department of Molecular Physiology and Biophysics
| | - Qierra R. Brockman
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | | | | | - Dawn E. Quelle
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Molecular Medicine Graduate Program
- Department of Neuroscience and Pharmacology
- Department of Pathology, and
| | - David J. Gordon
- Holden Comprehensive Cancer Center
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Varun Monga
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Rebecca D. Dodd
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| |
Collapse
|
17
|
Qin X, Wang C, Gong G, Wang L, Su Y, Yin Y. Functional MRI radiomics-based assessment of pelvic bone marrow changes after concurrent chemoradiotherapy for cervical cancer. BMC Cancer 2022; 22:1149. [PMID: 36348290 PMCID: PMC9644624 DOI: 10.1186/s12885-022-10254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives To quantify the dose-response relationship of changes in pelvic bone marrow (PBM) functional MR radiomic features (RF) during concurrent chemoradiotherapy (CCRT) for patients with cervical cancer and establish the correlation with hematologic toxicity to provide a basis for PBM sparing. Methods A total of 54 cervical cancer patients who received CCRT were studied retrospectively. Patients underwent MRI IDEAL IQ and T2 fat suppression (T2fs) scanning pre- and post-CCRT. The PBM RFs were extracted from each region of interest at dose gradients of 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and > 50 Gy, and changes in peripheral blood cell (PBC) counts during radiotherapy were assessed. The dose-response relationship of RF changes and their correlation with PBC changes were investigated. Results White blood cell, neutrophils (ANC) and lymphocyte counts during treatment were decreased by 49.4%, 41.4%, and 76.3%, respectively. Most firstorder features exhibited a significant dose-response relationship, particularly FatFrac IDEAL IQ, which had a maximum dose-response curve slope of 10.09, and WATER IDEAL IQ had a slope of − 7.93. The firstorder-Range in FAT IDEAL IQ and firstorder-10Percentile in T2fs, showed a significant correlation between the changes in ANC counts under the low dose gradient of 5–10 Gy (r = 0.744, -0.654, respectively, p < 0.05). Conclusion Functional MR radiomics can detect microscopic changes in PBM at various dose gradients and provide an objective reference for bone marrow sparing and dose limitation in cervical cancer CCRT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10254-7.
Collapse
|
18
|
Tsymbal S, Li G, Agadzhanian N, Sun Y, Zhang J, Dukhinova M, Fedorov V, Shevtsov M. Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules 2022; 27:7066. [PMID: 36296659 PMCID: PMC9611640 DOI: 10.3390/molecules27207066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 08/19/2023] Open
Abstract
Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Ge Li
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang’an Road East, Xiamen 361101, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Nikol Agadzhanian
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Yuhao Sun
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiazhennan Zhang
- Day-Care Department, Xinjiang Medical University, Urumqi 830011, China
| | - Marina Dukhinova
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
19
|
Wang C, Qin X, Gong G, Wang L, Su Y, Yin Y. Correlation between changes of pelvic bone marrow fat content and hematological toxicity in concurrent chemoradiotherapy for cervical cancer. Radiat Oncol 2022; 17:70. [PMID: 35392934 PMCID: PMC8991809 DOI: 10.1186/s13014-022-02029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To quantify the pelvic bone marrow (PBM) fat content changes receiving different radiation doses of concurrent chemoradiotherapy for cervical cancer and to determine association with peripheral blood cell counts. Methods The data of 54 patients were prospectively collected. Patients underwent MRI iterative decomposition of water and fat with echo asymmetrical and least squares estimation (IDEAL IQ) scanning at RT-Pre, RT mid-point, RT end, and six months. The changes in proton density fat fraction (PDFF%) at 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, 40–50 Gy, and > 50 Gy doses were analyzed. Spearman’s rank correlations were performed between peripheral blood cell counts versus the differences in PDFF% at different dose gradients before and after treatment. Results The lymphocytes (ALC) nadirs appeared at the midpoint of radiotherapy, which was only 27.6% of RT-Pre; the white blood cells (WBC), neutrophils (ANC), and platelets (PLT) nadirs appeared at the end of radiotherapy which was 52.4%, 65.1%, and 69.3% of RT-Pre, respectively. At RT mid-point and RT-end, PDFF% increased by 46.8% and 58.5%, respectively. Six months after radiotherapy, PDFF% decreased by 4.71% under 5–30 Gy compared to RT-end, while it still increased by 55.95% compared to RT-Pre. There was a significant positive correlation between PDFF% and ANC nadirs at 5–10 Gy (r = 0.62, P = 0.006), and correlation was observed between PDFF% and ALC nadirs at 5–10 Gy (r = 0.554, P = 0.017). Conclusion MRI IDEAL IQ imaging is a non-invasive approach to evaluate and track the changes of PBM fat content with concurrent chemoradiotherapy for cervical cancer. The limitation of low-dose bone marrow irradiation volume in cervical cancer concurrent chemoradiotherapy should be paid more attention to.
Collapse
Affiliation(s)
- Cong Wang
- Department of Fourth Ward of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaohang Qin
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Lizhen Wang
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Ya Su
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China
| | - Yong Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji Yan Road No.440, Jinan, 250117, Shandong, China.
| |
Collapse
|
20
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
21
|
Tseng M, Ngoi NYL, Tan DSP, Tong PSY. Combined modality management of advanced cervical cancer including novel sensitizers. Int J Gynecol Cancer 2022; 32:246-259. [DOI: 10.1136/ijgc-2021-003137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022] Open
Abstract
The management of advanced cervical cancer has evolved with time. Combined modality treatments for cervical cancer have been shown to improve clinical outcomes for these patients. The role of surgery is reviewed in this article for specific situations such as the treatment of bulky lymph nodes and even in the metastatic setting. External beam radiotherapy and brachytherapy techniques have improved which has decreased patient toxicity. Systemic therapy such as chemotherapy, immunotherapy, and novel sensitizing agents have been extensively studied and have shown promising results. The combination of these three different modalities of treatment can be tailored to each specific patient to achieve the best outcomes. We review the recent advances and various international guidelines for the management of cervical cancer in this article.
Collapse
|
22
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
23
|
Girma B, Makonnen E, Shibeshi W. Characteristics of recent clinical investigations into systemic therapy against cervical cancer: systematic analysis of trial details from Clinicaltrials.gov. J OBSTET GYNAECOL 2021; 42:793-801. [PMID: 34907843 DOI: 10.1080/01443615.2021.1980507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A review that systematically assessed the current state of clinical research into systematic therapy-based interventions against invasive cervical cancer. It analysed registry details of 59 systemic therapy-based cervical cancer trials on ClinicalTrials.gov with study start dates between January 2010 and June 2018. The review characterised the present cervical cancer trial landscape in terms of trial design features, systemic therapy (chemotherapy, targeted therapy, immunotherapy, and repurposed therapy), and disease stages of interest. It also made an attempt to qualitatively synthesise the trial landscape in terms of the nature and trend of research focus, alignment with existing clinical needs, novelty of treatments or concepts pursued, and promise of new treatments.
Collapse
Affiliation(s)
- Biniyam Girma
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Workineh Shibeshi
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Ribeiro M, Sousa CA, Simões M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J Adv Res 2021; 39:89-101. [PMID: 35777919 PMCID: PMC9263657 DOI: 10.1016/j.jare.2021.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
Microbial iron chelators as a new route to develop inspiring antimicrobials. Siderophore-mimicking antibiotics as a pathogen-targeted strategy. Effectiveness of iron chelators on antibiotic-resistant Gram-negative bacteria. Iron chelators and the treatment of iron overload diseases. Iron chelators as powerful tools for cancer therapy.
Background Aim of Review Key Scientific Concepts of Review
Collapse
|
25
|
Safiarian MS, Watson RA, Lieberman RL, Barry BA, Offenbacher AR. E. coli Ribonucleotide Reductase β2 Subunit Inactivation by Triapine Occurs through Binding of a Triapine-Fe(II) Adduct. J Phys Chem Lett 2021; 12:9020-9025. [PMID: 34516127 DOI: 10.1021/acs.jpclett.1c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ribonucleotide reductase (RNR), which supplies the building blocks for DNA biosynthesis and its repair, has been linked to human diseases and is emerging as a therapeutic target. Here, we present a mechanistic investigation of triapine (3AP), a clinically relevant small molecule that inhibits the tyrosyl radical within the RNR β2 subunit. Solvent kinetic isotope effects reveal that proton transfer is not rate-limiting for inhibition of Y122· of E. coli RNR β2 by the pertinent 3AP-Fe(II) adduct. Vibrational spectroscopy further demonstrates that unlike inhibition of the β2 tyrosyl radical by hydroxyurea, a carboxylate containing proton wire is not at play. Binding measurements reveal a low nanomolar affinity (Kd ∼ 6 nM) of 3AP-Fe(II) for β2. Taken together, these data should prompt further development of RNR inactivators based on the triapine scaffold for therapeutic applications.
Collapse
Affiliation(s)
- Mohammad S Safiarian
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - R Atlee Watson
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raquel L Lieberman
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
26
|
Khusnutdinova E, Petrova A, Zileeva Z, Kuzmina U, Zainullina L, Vakhitova Y, Babkov D, Kazakova O. Novel A-Ring Chalcone Derivatives of Oleanolic and Ursolic Amides with Anti-Proliferative Effect Mediated through ROS-Triggered Apoptosis. Int J Mol Sci 2021; 22:9796. [PMID: 34575964 PMCID: PMC8465963 DOI: 10.3390/ijms22189796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose-response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.
Collapse
Affiliation(s)
- Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| | - Zulfia Zileeva
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Ulyana Kuzmina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Liana Zainullina
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Yulia Vakhitova
- Institute of Biochemistry and Genetics UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (Z.Z.); (U.K.); (L.Z.); (Y.V.)
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 39 Novorossiyskaya St., 400087 Volgograd, Russia;
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, 71 pr. Oktyabrya, 450054 Ufa, Russia; (E.K.); (A.P.)
| |
Collapse
|
27
|
Chen F, Han B, Meng Y, Han Y, Liu B, Zhang B, Chang Y, Cao P, Fan Y, Tan K. Ceruloplasmin correlates with immune infiltration and serves as a prognostic biomarker in breast cancer. Aging (Albany NY) 2021; 13:20438-20467. [PMID: 34413268 PMCID: PMC8436892 DOI: 10.18632/aging.203427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Breast-invasive carcinoma (BRCA) is the most frequent and malignant tumor in females. Ceruloplasmin (CP) is a multifunctional molecule involved in iron metabolism, but its expression profile, prognostic potential and relationship with immune cell infiltration in BRCA are unknown. Ceruloplasmin mRNA and protein expression was significantly decreased in BRCA patients according to the Oncomine, UALCAN, GEPIA and TCGA databases. Ceruloplasmin expression was strongly correlated with various clinicopathological features of BRCA patients. BRCA patients with high ceruloplasmin expression exhibited shorter survival times than those with low ceruloplasmin expression based on the Kaplan-Meier plotter and PrognoScan databases. GO and KEGG analyses and GSEA revealed a strong correlation between ceruloplasmin and various immune-related pathways. Ceruloplasmin expression was significantly associated with the infiltration of immune cells into tumor sites by analyzing the TIMER and CIBERSORT. Additionally, ceruloplasmin was positively correlated with immune checkpoints in BRCA. These findings suggest that low ceruloplasmin expression correlates with a favorable prognosis and tumor immune cell infiltration in BRCA patients. Ceruloplasmin may serve as a therapeutic target and predict the efficacy of immunotherapy for BRCA.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bihui Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanxiu Meng
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yu Han
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bing Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bo Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanzhong Chang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
28
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
29
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
30
|
Crowley FJ, O'Cearbhaill RE, Collins DC. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev 2021; 98:102225. [PMID: 34082256 DOI: 10.1016/j.ctrv.2021.102225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023]
Abstract
It is estimated that 604,127 patients were diagnosed with cervical cancer worldwide in 2020. While a small percentage of patients will have metastatic disease at diagnosis, a large percentage (15-61%) later develop advanced disease. For this cohort, treatment with systemic chemotherapy remains the standard of care, with a static 5-year survival rate over the last thirty years. Data on targetable molecular alterations in cervical cancer have lagged behind other more common tumor types thus stunting the development of targeted agents. In recent years, tumor genomic testing has been increasingly incorporated into our clinical practice, opening the door for a potential new era of personalized treatment for advanced cervical cancer. The interim results from the NCI-MATCH study reported an actionability rate of 28.4% for the cervical cancer cohort, suggesting a subset of patients may harbor mutations which that are targetable. This review sets out to summarize the key targeted agents currently under exploration either alone or in combination with existing treatments for cervical cancer.
Collapse
Affiliation(s)
- F J Crowley
- Department of Internal Medicine, Mount Sinai Morningside and Mount Sinai West, NY, USA.
| | - R E O'Cearbhaill
- Department of Medicine, Memorial Sloan Kettering Cancer Centre and Weill Cornell Medical College, NY, USA.
| | - D C Collins
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland; Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland.
| |
Collapse
|
31
|
Lin ZP, Al Zouabi NN, Xu ML, Bowen NE, Wu TL, Lavi ES, Huang PH, Zhu YL, Kim B, Ratner ES. In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer. Sci Rep 2021; 11:8042. [PMID: 33850183 PMCID: PMC8044145 DOI: 10.1038/s41598-021-87325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are promising targeted therapy for epithelial ovarian cancer (EOC) with BRCA mutations or defective homologous recombination (HR) repair. However, reversion of BRCA mutation and restoration of HR repair in EOC lead to PARP inhibitor resistance and reduced clinical efficacy of PARP inhibitors. We have previously shown that triapine, a small molecule inhibitor of ribonucleotide reductase (RNR), impaired HR repair and sensitized HR repair-proficient EOC to PARP inhibitors. In this study, we performed in silico screening of small molecule libraries to identify novel compounds that bind to the triapine-binding pocket on the R2 subunit of RNR and inhibit RNR in EOC cells. Following experimental validation of selected top-ranking in silico hits for inhibition of dNTP and DNA synthesis, we identified, DB4, a putative RNR pocket-binding inhibitor markedly abrogated HR repair and sensitized BRCA-wild-type EOC cells to the PARP inhibitor olaparib. Furthermore, we demonstrated that the combination of DB4 and olaparib deterred the progression of BRCA-wild type EOC xenografts and significantly prolonged the survival time of tumor-bearing mice. Herein we report the discovery of a putative small molecule inhibitor of RNR and HR repair for combination with PARP inhibitors to treat PARP inhibitor-resistant and HR repair-proficient EOC.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Nour N Al Zouabi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mark L Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, 06516, USA
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yong-Lian Zhu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
32
|
Gennigens C, De Cuypere M, Hermesse J, Kridelka F, Jerusalem G. Optimal treatment in locally advanced cervical cancer. Expert Rev Anticancer Ther 2021; 21:657-671. [PMID: 33472018 DOI: 10.1080/14737140.2021.1879646] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Locally advanced cervical cancer (LACC) (International Federation of Gynecology and Obstetrics (FIGO) 2009/2018 - stages IB2-IVA/IB3-IVA, respectively) is treated using a multimodal approach that includes chemoradiotherapy followed by brachytherapy.Areas covered: This review provides an overview of the progress made over the past decade in the treatment of LACC. Prognostic factors, FIGO classification and the role of imaging staging will be discussed. Efficacy of external-beam radiotherapy, brachytherapy and chemotherapy will be detailed. Indications for para-aortic staging lymphadenectomy and adjuvant hysterectomy, as well as follow-up and special population, will be covered.Expert opinion: The initial workup is one of the most crucial steps in the optimal care of patients, which should be realized by a multidisciplinary expert team. With the implementation of modern conformal radiotherapy techniques, the local control rate has been optimized. Nevertheless, 40% of patients experience recurrence with distant metastasis and a dismal prognosis. Currently, a clear benefit of neo- and adjuvant chemotherapy has not been established. The future likely involves (1) improved selection of patients for whom treatment intensification is justified, (2) a combination of new drugs with chemoradiation that are currently being tested in trials, and (3) the development of tailored treatment based on molecular characteristics.
Collapse
Affiliation(s)
| | | | | | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU Liège and Liège University, Liège, Belgium
| | - Guy Jerusalem
- Department of Medical Oncology, CHU Liège and Liège University, Liège, Belgium
| |
Collapse
|
33
|
Shen L, Zhou Y, He H, Chen W, Lenahan C, Li X, Deng Y, Shao A, Huang J. Crosstalk between Macrophages, T Cells, and Iron Metabolism in Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865791. [PMID: 33628389 PMCID: PMC7889336 DOI: 10.1155/2021/8865791] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Leukocytes, including macrophages and T cells, represent key players in the human immune system, which plays a considerable role in the development and progression of tumors by immune surveillance or immune escape. Boosting the recruitment of leukocytes into the tumor microenvironment and promoting their antitumor responses have been hot areas of research in recent years. Although immunotherapy has manifested a certain level of success in some malignancies, the overall effectiveness is far from satisfactory. Iron is an essential trace element required in multiple, normal cellular processes, such as DNA synthesis and repair, cellular respiration, metabolism, and signaling, while dysregulated iron metabolism has been declared one of the metabolic hallmarks of malignant cancer cells. Furthermore, iron is implicated in the modulation of innate and adaptive immune responses, and elucidating the targeted regulation of iron metabolism may have the potential to benefit antitumor immunity and cancer treatment. In the present review, we briefly summarize the roles of leukocytes and iron metabolism in tumorigenesis, as well as their crosstalk in the tumor microenvironment. The combination of immunotherapy with targeted regulation of iron and iron-dependent regulated cell death (ferroptosis) may be a focus of future research.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Haifei He
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wuzhen Chen
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Xiaoyi Li
- Department of Nuclear Medicine and PET-CT Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian Huang
- Department of Breast Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
34
|
Abstract
Cancer cells accumulate iron to supplement their aberrant growth and metabolism. Depleting cells of iron by iron chelators has been shown to be selectively cytotoxic to cancer cells in vitro and in vivo. Iron chelators are effective at combating a range of cancers including those which are difficult to treat such as androgen insensitive prostate cancer and cancer stem cells. This review will evaluate the impact of iron chelation on cancer cell survival and the underlying mechanisms of action. A plethora of studies have shown iron chelators can reverse some of the major hallmarks and enabling characteristics of cancer. Iron chelators inhibit signalling pathways that drive proliferation, migration and metastasis as well as return tumour suppressive signalling. In addition to this, iron chelators stimulate apoptotic and ER stress signalling pathways inducing cell death even in cells lacking a functional p53 gene. Iron chelators can sensitise cancer cells to PARP inhibitors through mimicking BRCAness; a feature of cancers trademark genomic instability. Iron chelators target cancer cell metabolism, attenuating oxidative phosphorylation and glycolysis. Moreover, iron chelators may reverse the major characteristics of oncogenic transformation. Iron chelation therefore represent a promising selective mode of cancer therapy.
Collapse
|
35
|
Zhao B, Zhang X, Yu T, Liu Y, Zhang X, Yao Y, Feng X, Liu H, Yu D, Ma L, Qin S. Discovery of thiosemicarbazone derivatives as effective New Delhi metallo- β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Acta Pharm Sin B 2021; 11:203-221. [PMID: 33532189 PMCID: PMC7838035 DOI: 10.1016/j.apsb.2020.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is capable of hydrolyzing nearly all β-lactam antibiotics, posing an emerging threat to public health. There are currently less effective treatment options for treating NDM-1 positive “superbug”, and no promising NDM-1 inhibitors were used in clinical practice. In this study, structure–activity relationship based on thiosemicarbazone derivatives was systematically characterized and their potential activities combined with meropenem (MEM) were evaluated. Compounds 19bg and 19bh exhibited excellent activity against 10 NDM-positive isolate clinical isolates in reversing MEM resistance. Further studies demonstrated compounds 19bg and 19bh were uncompetitive NDM-1 inhibitors with Ki = 0.63 and 0.44 μmol/L, respectively. Molecular docking speculated that compounds 19bg and 19bh were most likely to bind in the allosteric pocket which would affect the catalytic effect of NDM-1 on the substrate meropenem. Toxicity evaluation experiment showed that no hemolysis activities even at concentrations of 1000 mg/mL against red blood cells. In vivo experimental results showed combination of MEM and compound 19bh was markedly effective in treating infections caused by NDM-1 positive strain and prolonging the survival time of sepsis mice. Our finding showed that compound 19bh might be a promising lead in developing new inhibitor to treat NDM-1 producing superbug.
Collapse
Key Words
- (Boc)2O, di-tert-butyl decarbonate
- 3-AP, 3-aminopyridine carboxaldehyde thiosemicarbazone
- AcOH, acetic acid
- Antibiotic resistance
- Boc, tert-butoxycarbonyl
- CLSI, Clinical and Laboratory Standards Institute
- DMAP, 4-dimethylaminopyridine
- DpC, di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone
- E. coli, Escherichia coli
- EDTA, ethylene diamine tetraacetic acid
- ESI, electrospray ionization
- HR-MS, high-resolution mass spectra
- IC50, half-maximal inhibitory concentrations
- Inhibitor
- K. pneumoniae, Klebsiella pneumoniae
- LQTS, long QT syndrome
- MBLs, metallo-β-lactamases class B
- MEM, meropenem
- MHA, Mueller-Hinton Agar
- MHB, Mueller-Hinton Broth
- MIC, minimum inhibitory concentration
- NDM-1, New Delhi metallo-β-lactamase-1
- New Delhi metallo-β-lactamase-1
- PBS, phosphate-buffered saline
- PK, pharmacokinetic
- RBCs, red blood cells
- SAR, structure–activity relationship
- THF, tetrahydrofuran
- TLC, thin layer chromatography
- TMS, tetramethylsilane
- Thiosemicarbazone derivatives
- UPLC, ultra-performance liquid chromatography
- conc. HCl, concentrated hydrochloric acid
- r.t., room temperature
Collapse
|
36
|
Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020; 9:cells9122591. [PMID: 33287315 PMCID: PMC7761773 DOI: 10.3390/cells9122591] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells undergo considerable metabolic changes to foster uncontrolled proliferation in a hostile environment characterized by nutrient deprivation, poor vascularization and immune infiltration. While metabolic reprogramming has been recognized as a hallmark of cancer, the role of micronutrients in shaping these adaptations remains scarcely investigated. In particular, the broad electron-transferring abilities of iron make it a versatile cofactor that is involved in a myriad of biochemical reactions vital to cellular homeostasis, including cell respiration and DNA replication. In cancer patients, systemic iron metabolism is commonly altered. Moreover, cancer cells deploy diverse mechanisms to increase iron bioavailability to fuel tumor growth. Although iron itself can readily participate in redox reactions enabling vital processes, its reactivity also gives rise to reactive oxygen species (ROS). Hence, cancer cells further rely on antioxidant mechanisms to withstand such stress. The present review provides an overview of the common alterations of iron metabolism occurring in cancer and the mechanisms through which iron promotes tumor growth.
Collapse
Affiliation(s)
- Myriam Y. Hsu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Erica Mina
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, AOU San Luigi Gonzaga, 10043 Orbassano, Italy
- Correspondence: (A.R.); (P.E.P.)
| | - Paolo E. Porporato
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy; (M.Y.H.); (E.M.)
- Correspondence: (A.R.); (P.E.P.)
| |
Collapse
|
37
|
Abstract
Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.
Collapse
|
38
|
Ngoi NY, Sundararajan V, Tan DS. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Int J Gynecol Cancer 2020; 30:1224-1238. [PMID: 32571890 PMCID: PMC7418601 DOI: 10.1136/ijgc-2020-001277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated levels of replicative stress in gynecological cancers arising from uncontrolled oncogenic activation, loss of key tumor suppressors, and frequent defects in the DNA repair machinery are an intrinsic vulnerability for therapeutic exploitation. The presence of replication stress activates the DNA damage response and downstream checkpoint proteins including ataxia telangiectasia and Rad3 related kinase (ATR), checkpoint kinase 1 (CHK1), and WEE1-like protein kinase (WEE1), which trigger cell cycle arrest while protecting and restoring stalled replication forks. Strategies that increase replicative stress while lowering cell cycle checkpoint thresholds may allow unrepaired DNA damage to be inappropriately carried forward in replicating cells, leading to mitotic catastrophe and cell death. Moreover, the identification of fork protection as a key mechanism of resistance to chemo- and poly (ADP-ribose) polymerase inhibitor therapy in ovarian cancer further increases the priority that should be accorded to the development of strategies targeting replicative stress. Small molecule inhibitors designed to target the DNA damage sensors, such as inhibitors of ataxia telangiectasia-mutated (ATM), ATR, CHK1 and WEE1, impair smooth cell cycle modulation and disrupt efficient DNA repair, or a combination of the above, have demonstrated interesting monotherapy and combinatorial activity, including the potential to reverse drug resistance and have entered developmental pipelines. Yet unresolved challenges lie in balancing the toxicity profile of these drugs in order to achieve a suitable therapeutic index while maintaining clinical efficacy, and selective biomarkers are urgently required. Here we describe the premise for targeting of replicative stress in gynecological cancers and discuss the clinical advancement of this strategy.
Collapse
Affiliation(s)
| | | | - David Sp Tan
- National University Cancer Institute, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
| |
Collapse
|
39
|
Thiosemicarbazone-based lead optimization to discover high-efficiency and low-toxicity anti-gastric cancer agents. Eur J Med Chem 2020; 199:112349. [PMID: 32438199 DOI: 10.1016/j.ejmech.2020.112349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
In this paper, a series of thiosemicarbazone derivatives containing different aromatic heterocyclic groups were synthesized and the tridentate donor system of the lead compound was optimized. Most of the target compounds showed improved antiproliferative activity against MGC803 cells. SAR studies revealed that compound 5d displayed significant advantages in inhibition effect with an IC50 value of 0.031 μM, and better selectivity between cancer and normal cells than 3-AP and DpC (about 15- and 5-fold improved respectively). Besides, compound 5d showed selective antiproliferative activity in not only other cancer cells but also different gastric cancer cell lines. In-depth mechanism studies showed that compound 5d could induce mitochondria-related apoptosis which might be related to the elevation of intracellular ROS level, and cause cell cycle arrest at S phase. Moreover, 5d could evidently suppress the cell migration and invasion by blocking the EMT (epithelial-mesenchymal transition) process. Consequently, our studies provided a lead optimization strategy of thiosemicarbazone derivatives which would contribute to discover high-efficiency and low-toxicity agents for the treatment of gastric cancer.
Collapse
|
40
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|