1
|
Maffezzoli M, Santoni M, Mazzaschi G, Rodella S, Lai E, Maruzzo M, Basso U, Bimbatti D, Iacovelli R, Anghelone A, Fiala O, Rebuzzi SE, Fornarini G, Lolli C, Massari F, Rosellini M, Mollica V, Nasso C, Acunzo A, Silini EM, Quaini F, De Filippo M, Brunelli M, Banna GL, Rescigno P, Signori A, Buti S. External validation of a red cell-based blood prognostic score in patients with metastatic renal cell carcinoma treated with first-line immunotherapy combinations. Clin Exp Metastasis 2024; 41:117-129. [PMID: 38363410 PMCID: PMC10973030 DOI: 10.1007/s10585-024-10266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy combinations with tyrosine-kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) had significantly improved outcomes of patients with mRCC. Predictive and prognostic factors are crucial to improve patients' counseling and management. The present study aimed to externally validate the prognostic value of a previously developed red cell-based score, including hemoglobin (Hb), mean corpuscular volume (MCV) and red cell distribution width (RDW), in patients with mRCC treated with first-line immunotherapy combinations (TKI plus ICI or ICI plus ICI). We performed a sub-analysis of a multicentre retrospective observational study (ARON-1 project) involving patients with mRCC treated with first-line immunotherapy combinations. Uni- and multivariable Cox regression models were used to assess the correlation between the red cell-based score and progression-free survival (PFS), and overall survival (OS). Logistic regression were used to estimate the correlation between the score and the objective response rate (ORR). The prognostic impact of the red cell-based score on PFS and OS was confirmed in the whole population regardless of the immunotherapy combination used [median PFS (mPFS): 17.4 vs 8.2 months, HR 0.66, 95% CI 0.47-0.94; median OS (mOS): 42.0 vs 17.3 months, HR 0.60, 95% CI 0.39-0.92; p < 0.001 for both]. We validated the prognostic significance of the red cell-based score in patients with mRCC treated with first-line immunotherapy combinations. The score is easy to use in daily clinical practice and it might improve patient counselling.
Collapse
Affiliation(s)
- Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100, Macerata, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Sara Rodella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Eleonora Lai
- Department of Oncology, Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| | - Marco Maruzzo
- Department of Oncology, Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| | - Umberto Basso
- Department of Oncology, Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| | - Davide Bimbatti
- Department of Oncology, Oncology Unit, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| | - Roberto Iacovelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Annunziato Anghelone
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ondřej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Sara Elena Rebuzzi
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genova, Genoa, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristian Lolli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Cecilia Nasso
- Medical Oncology, Ospedale Santa Corona, 17027, Pietra Ligure, Italy
| | - Alessandro Acunzo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Enrico Maria Silini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Parma, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Giuseppe L Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Pasquale Rescigno
- Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Alessio Signori
- Section of biostatistics, Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy
| |
Collapse
|
2
|
Tang B, Duan R, Fan Z, Yan X, Li S, Zhou L, Li J, Xu H, Mao L, Lian B, Wang X, Bai X, Wei X, Li C, Cui C, Si L, Chi Z, Guo J, Sheng X. Natural history of bone-only metastasis in renal cell carcinoma. Urol Oncol 2024; 42:119.e17-119.e22. [PMID: 38383241 DOI: 10.1016/j.urolonc.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Bone metastasis (BM) is considered a poor prognostic factor of renal cell carcinoma (RCC). Confusion exists regarding how to deal with RCC patients with bone-only metastasis. PATIENTS AND METHODS The clinical data of consecutive RCC patients with bone-only metastasis at Peking University Cancer Hospital between 2006 and 2018 were retrospectively collected and analyzed. RESULTS Fifty-four eligible patients were screened from an RCC database of 1,878 metastatic patients. After a median follow-up of 43.6 m, 61.1% of the patients were presented with progression of prior BM or new BM. The progression-free survival (PFS) and overall survival (OS) was 16.2 m (95%CI: 11.4-21.0) and 65.2 m, respectively. For the 30 patients with oligo-metastasis (≤3 loci) and 24 ones with multiple-metastasis (>3 loci), the median OS was not reached and 42.0m (95%CI: 12.7-71.2) with statistical difference (P < 0.001). In the oligo-metastasis group, the median PFS of the 15 patients treated with local therapy and of the 13 patients treated with systemic therapy was 14.2 m (95%CI: 5.3-23.3) and 18.0 m (95%CI:15.4-20.6), respectively. In the multiple-metastasis group, the median PFS and OS of the 18 patients treated with systemic therapy was 16.6 m (95%CI: 7.5-25.7) and 63.9 m (95%CI: 21.8-106.0), respectively. Univariate analysis and multivariate analysis showed that the number of metastatic sites (oligo/multiple) and International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) score, RCC pathological subtype were significantly associated with prognosis (P < 0.05). CONCLUSION RCC patients with bone-only metastases have a favorable prognosis. The number of metastatic sites, IMDC, RCC pathological subtype could serve as survival predictors, which might provide clue of treatment modality.
Collapse
Affiliation(s)
- Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Rong Duan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zenan Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Juan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huayan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Caili Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Soft Tissue Sarcoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
3
|
Lu Q, Xi P, Xu S, Zhang Z, Gong B, Liu J, Zhu Q, Sun T, Zhu S, Chen R. A novel risk signature based on liquid-liquid phase separation-related genes reveals prognostic and tumour microenvironmental features in clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:6118-6134. [PMID: 38546385 PMCID: PMC11042959 DOI: 10.18632/aging.205691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/07/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma(ccRCC) is one of the most common malignancies. However, there are still many barriers to its underlying causes, early diagnostic techniques and therapeutic approaches. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA)- Kidney renal clear cell (KIRC) cohort differentially analysed liquid-liquid phase separation (LLPS)-related genes from the DrLLPS website. Univariate and multivariate Cox regression analyses and LASSO regression analyses were used to construct prognostic models. The E-MTAB-1980 cohort was used for external validation. Then, potential functions, immune infiltration analysis, and mutational landscapes were analysed for the high-risk and low-risk groups. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) experiments as well as single-cell analyses validated the genes key to the model. RESULTS We screened 174 LLPS-related genes in ccRCC and constructed a risk signature consisting of five genes (CLIC5, MXD3, NUF2, PABPC1L, PLK1). The high-risk group was found to be associated with worse prognosis in different subgroups. A nomogram constructed by combining age and tumour stage had a strong predictive power for the prognosis of ccRCC patients. In addition, there were differences in pathway enrichment, immune cell infiltration, and mutational landscapes between the two groups. The results of qRT-PCR in renal cancer cell lines and renal cancer tissues were consistent with the biosignature prediction. Three single-cell data of GSE159115, GSE139555, and GSE121636 were analysed for differences in the presence of these five genes in different cells. CONCLUSIONS We developed a risk signature constructed based on the five LLPS-related genes and can have a high ability to predict the prognosis of ccRCC patients, further providing a strong support for clinical decision-making.
Collapse
Affiliation(s)
- Qing Lu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, P.R. China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Suling Xu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhicheng Zhang
- Department of Surgery, Fuzhou First People’s Hospital, Fuzhou 344000, Jiangxi, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiqi Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shaoxing Zhu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, P.R. China
| | - Ru Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, P.R. China
| |
Collapse
|
4
|
Krasnov GS, Puzanov GA, Dashinimaev EB, Vishnyakova KS, Kondratieva TT, Chegodaev YS, Postnov AY, Senchenko VN, Yegorov YE. Tumor Suppressor Properties of Small C-Terminal Domain Phosphatases in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:12986. [PMID: 37629167 PMCID: PMC10455398 DOI: 10.3390/ijms241612986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 80-90% of kidney cancers worldwide. Small C-terminal domain phosphatases CTDSP1, CTDSP2, and CTDSPL (also known as SCP1, 2, 3) are involved in the regulation of several important pathways associated with carcinogenesis. In various cancer types, these phosphatases may demonstrate either antitumor or oncogenic activity. Tumor-suppressive activity of these phosphatases in kidney cancer has been shown previously, but in general case, the antitumor activity may be dependent on the choice of cell line. In the present work, transfection of the Caki-1 cell line (ccRCC morphologic phenotype) with expression constructs containing the coding regions of these genes resulted in inhibition of cell growth in vitro in the case of CTDSP1 (p < 0.001) and CTDSPL (p < 0.05) but not CTDSP2. The analysis of The Cancer Genome Atlas (TCGA) data showed differential expression of some of CTDSP genes and of their target, RB1. These results were confirmed by quantitative RT-PCR using an independent sample of primary ccRCC tumors (n = 52). We observed CTDSPL downregulation and found a positive correlation of expression for two gene pairs: CTDSP1 and CTDSP2 (rs = 0.76; p < 0.001) and CTDSPL and RB1 (rs = 0.38; p < 0.05). Survival analysis based on TCGA data demonstrated a strong association of lower expression of CTDSP1, CTDSP2, CTDSPL, and RB1 with poor survival of ccRCC patients (p < 0.001). In addition, according to TCGA, CTDSP1, CTDSP2, and RB1 were differently expressed in two subtypes of ccRCC-ccA and ccB, characterized by different survival rates. These results confirm that CTDSP1 and CTDSPL have tumor suppressor properties in ccRCC and reflect their association with the more aggressive ccRCC phenotype.
Collapse
Affiliation(s)
- George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Grigory A. Puzanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia;
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
| | - Tatiana T. Kondratieva
- Research Institute of Clinical Oncology, Blokhin National Medical Research Center of Oncology of the Ministry of Health, 115478 Moscow, Russia;
- Eurasian Federation of Oncology, 125080 Moscow, Russia
| | - Yegor S. Chegodaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia;
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia;
| | - Vera N. Senchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (G.A.P.); (K.S.V.); (Y.S.C.); (V.N.S.)
| |
Collapse
|
5
|
Zhang D, Ni Y, Wang Y, Feng J, Zhuang N, Li J, Liu L, Shen W, Zheng J, Zheng W, Qian C, Shan J, Zhou Z. Spatial heterogeneity of tumor microenvironment influences the prognosis of clear cell renal cell carcinoma. J Transl Med 2023; 21:489. [PMID: 37474942 PMCID: PMC10360235 DOI: 10.1186/s12967-023-04336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is an immunologically and histologically diverse tumor. However, how the structural heterogeneity of tumor microenvironment (TME) affects cancer progression and treatment response remains unclear. Hence, we characterized the TME architectures of ccRCC tissues using imaging mass cytometry (IMC) and explored their associations with clinical outcome and therapeutic response. METHODS Using IMC, we profiled the TME landscape of ccRCC and paracancerous tissue by measuring 17 markers involved in tissue architecture, immune cell and immune activation. In the ccRCC tissue, we identified distinct immune architectures of ccRCC tissue based on the mix score and performed cellular neighborhood (CN) analysis to subdivide TME phenotypes. Moreover, we assessed the relationship between the different TME phenotypes and ccRCC patient survival, clinical features and treatment response. RESULTS We found that ccRCC tissues had higher levels of CD8+ T cells, CD163- macrophages, Treg cells, endothelial cells, and fibroblasts than paracancerous tissues. Immune infiltrates in ccRCC tissues distinctly showed clustered and scattered patterns. Within the clustered pattern, we identified two subtypes with different clinical outcomes based on CN analysis. The TLS-like phenotype had cell communities resembling tertiary lymphoid structures, characterized by cell-cell interactions of CD8+ T cells-B cells and GZMB+CD8+ T cells-B cells, which exhibited anti-tumor features and favorable outcomes, while the Macrophage/T-clustered phenotype with macrophage- or T cell-dominated cell communities had a poor prognosis. Patients with scattered immune architecture could be further divided into scattered-CN-hot and scattered-CN-cold phenotypes based on the presence or absence of immune CNs, but both had a better prognosis than the macrophage/T-clustered phenotype. We further analyzed the relationship between the TME phenotypes and treatment response in five metastatic ccRCC patients treated with sunitinib, and found that all three responders were scattered-CN-hot phenotype while both non-responders were macrophage/T-clustered phenotype. CONCLUSION Our study revealed the structural heterogeneity of TME in ccRCC and its impact on clinical outcome and personalized treatment. These findings highlight the potential of IMC and CN analysis for characterizing TME structural units in cancer research.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Urology, The Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yuanli Ni
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Yongquan Wang
- Department of Urology, The Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Na Zhuang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jiatao Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Limei Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Wenhao Shen
- Department of Urology, The Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, The Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Wei Zheng
- Anesthesiology Department, The 80th Army Hospital of Chinese PLA, Weifang, 261021, Shandong, China
| | - Cheng Qian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Juanjuan Shan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Zhansong Zhou
- Department of Urology, The Southwest Hospital, Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
6
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Ali L, Raza AA, Zaheer AB, Alhomrani M, Alamri AS, Alghamdi SA, Almalki AA, Alghamdi AA, Khawaja I, Alhadrami M, Ramzan F, Jamil M, Ali M, Jabeen N. In vitro analysis of PI3K pathway activation genes for exploring novel biomarkers and therapeutic targets in clear cell renal carcinoma. Am J Transl Res 2023; 15:4851-4872. [PMID: 37560222 PMCID: PMC10408522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The regulation of various cellular functions such as growth, proliferation, metabolism, and angiogenesis, is dependent on the PI3K pathway. Recent evidence has indicated that kidney renal clear cell carcinoma (KIRC) can be triggered by the deregulation of this pathway. The objective of this research was to investigate 25 genes associated with activation of the PI3K pathway in KIRC and control samples to identify four hub genes that might serve as novel molecular biomarkers and therapeutic targets for treating KIRC. METHODS Multi-omics in silico and in vitro analysis was employed to find hub genes related to the PI3K pathway that may be biomarkers and therapeutic targets for KIRC. RESULTS Using STRING software, a protein-protein interaction (PPI) network of 25 PI3K pathway-related genes was developed. Based on the degree scoring method, the top four hub genes were identified using Cytoscape's Cytohubba plug-in. TCGA datasets, KIRC (786-O and A-498), and normal (HK2) cells were used to validate the expression of hub genes. Additionally, further bioinformatic analyses were performed to investigate the mechanisms by which hub genes are involved in the development of KIRC. Out of a total of 25 PI3K pathway-related genes, we developed and validated a diagnostic and prognostic model based on the up-regulation of TP53 (tumor protein 53) and CCND1 (Cyclin D1) and the down-regulation of PTEN (Phosphatase and TENsin homolog deleted on chromosome 10), and GSK3B (Glycogen synthase kinase-3 beta) hub genes. The hub genes included in our model may be a novel therapeutic target for KIRC treatment. Additionally, associations between hub genes and infiltration of immune cells can enhance comprehension of immunotherapy for KIRC. CONCLUSION We have created a new diagnostic and prognostic model for KIRC patients that uses PI3K pathway-related hub genes (TP53, PTEN, CCND1, and GSK3B). Nevertheless, further experimental studies are required to ascertain the efficacy of our model.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Urology, Institute of Kidney Diseases, Hayatabad Medical ComplexPeshawar 25000, Pakistan
| | - Abbas Ali Raza
- Surgery Department, Bacha Khan Medical College, MTI Mardan Medical ComplexMardan 23200, Pakistan
| | | | - Majid Alhomrani
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Since, Medical Genetics, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Imran Khawaja
- Department of Medicine, Ayub Teaching HospitalAbbottabad 22010, Pakistan
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Alqura UniversityMakkah 24373, Saudi Arabia
| | - Faiqah Ramzan
- Department of Animal and Poultry Production, Faculty of Veterinary and Animal Sciences, Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Mubarik Ali
- Animal Science Institute, National Agricultural Research CenterIslamabad 54000, Pakistan
| | - Norina Jabeen
- Department of Rural Sociology, University of AgricultureFaisalabad 38040, Pakistan
| |
Collapse
|
8
|
Koca D, Séraudie I, Jardillier R, Cochet C, Filhol O, Guyon L. COL7A1 Expression Improves Prognosis Prediction for Patients with Clear Cell Renal Cell Carcinoma Atop of Stage. Cancers (Basel) 2023; 15:2701. [PMID: 37345040 DOI: 10.3390/cancers15102701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) accounts for 75% of kidney cancers. Due to the high recurrence rate and treatment options that come with high costs and potential side effects, a correct prognosis of patient survival is essential for the successful and effective treatment of patients. Novel biomarkers could play an important role in the assessment of the overall survival of patients. COL7A1 encodes for collagen type VII, a constituent of the basal membrane. COL7A1 is associated with survival in many cancers; however, the prognostic value of COL7A1 expression as a standalone biomarker in ccRCC has not been investigated. With five publicly available independent cohorts, we used Kaplan-Meier curves and the Cox proportional hazards model to investigate the prognostic value of COL7A1, as well as gene set enrichment analysis to investigate genes co-expressed with COL7A1. COL7A1 expression stratifies patients in terms of aggressiveness, where the 5-year survival probability of each of the four groups was 72.4%, 59.1%, 34.15%, and 8.6% in order of increasing expression. Additionally, COL7A1 expression was successfully used to further divide patients of each stage and histological grade into groups of high and low risk. Similar results were obtained in independent cohorts. In vitro knockdown of COL7A1 expression significantly affected ccRCC cells' ability to migrate, leading to the hypothesis that COL7A1 may have a role in cancer aggressiveness. To conclude, we identified COL7A1 as a new prognosis marker that can stratify ccRCC patients.
Collapse
Affiliation(s)
- Dzenis Koca
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Irinka Séraudie
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Rémy Jardillier
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Claude Cochet
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Odile Filhol
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Laurent Guyon
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| |
Collapse
|
9
|
Brackenier C, Kinget L, Cappuyns S, Verslype C, Beuselinck B, Dekervel J. Unraveling the Synergy between Atezolizumab and Bevacizumab for the Treatment of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:348. [PMID: 36672297 PMCID: PMC9856647 DOI: 10.3390/cancers15020348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) with antiangiogenic properties, such as sorafenib, have been the standard choice to systemically treat hepatocellular carcinoma for over a decade. More recently, encouraging results were obtained using immune checkpoint inhibitors, although head-to-head comparisons with sorafenib in phase 3 trials could not demonstrate superiority in terms of overall survival. The IMbrave150 was a breakthrough study that resulted in atezolizumab/bevacizumab, a combination of an antiangiogenic and an immune checkpoint inhibitor, as a new standard of care for advanced HCC. This review discusses the mode of action, clinical efficacy, and biomarker research for both drug classes and for the combination therapy. Moreover, the synergy between atezolizumab and bevacizumab is highlighted, unraveling pathophysiological mechanisms underlying an enhanced anticancer immunity by changing the immunosuppressed to a more immunoreactive tumor microenvironment (TME). This is achieved by upregulation of antigen presentation, upregulation of T-cell proliferation, trafficking and infiltration, impairing recruitment, and proliferation of immunosuppressive cells in the TME. However, more insights are needed to identify biomarkers of response that may improve patient selection and outcome.
Collapse
Affiliation(s)
- Cedric Brackenier
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Sarah Cappuyns
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Chris Verslype
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jeroen Dekervel
- Department of Gastro-Enterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Digestive Oncology, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
10
|
GRAMMATIKAKI STAMATIKI, KATIFELIS HECTOR, FAROOQI AMMADAHMAD, STRAVODIMOS KONSTANTINOS, KARAMOUZIS MICHALISV, SOULIOTIS KYRIAKOS, VARVARAS DIMITRIOS, GAZOULI MARIA. An Overview of Epigenetics in Clear Cell Renal Cell Carcinoma. In Vivo 2023; 37:1-10. [PMID: 36593023 PMCID: PMC9843790 DOI: 10.21873/invivo.13049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.
Collapse
Affiliation(s)
- STAMATIKI GRAMMATIKAKI
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - HECTOR KATIFELIS
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - KONSTANTINOS STRAVODIMOS
- 1st Department of Urology, National & Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - MICHALIS V. KARAMOUZIS
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - KYRIAKOS SOULIOTIS
- School of Social and Education Policy, University of Peloponnese, Corinth, Greece,Health Policy Institute, Athens, Greece
| | - DIMITRIOS VARVARAS
- Health Policy Institute, Athens, Greece,Tiberia Hospital-GMV Care & Research, Rome, Italy
| | - MARIA GAZOULI
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Renal Carcinoma and Angiogenesis: Therapeutic Target and Biomarkers of Response in Current Therapies. Cancers (Basel) 2022; 14:cancers14246167. [PMID: 36551652 PMCID: PMC9776425 DOI: 10.3390/cancers14246167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the aberrant hypervascularization and the high immune infiltration of renal tumours, current therapeutic regimens of renal cell carcinoma (RCC) target angiogenic or immunosuppressive pathways or both. Tumour angiogenesis plays an essential role in tumour growth and immunosuppression. Indeed, the aberrant vasculature promotes hypoxia and can also exert immunosuppressive functions. In addition, pro-angiogenic factors, including VEGF-A, have an immunosuppressive action on immune cells. Despite the progress of treatments in RCC, there are still non responders or acquired resistance. Currently, no biomarkers are used in clinical practice to guide the choice between the different available treatments. Considering the role of angiogenesis in RCC, angiogenesis-related markers are interesting candidates. They have been studied in the response to antiangiogenic drugs (AA) and show interest in predicting the response. They have been less studied in immunotherapy alone or combined with AA. In this review, we will discuss the role of angiogenesis in tumour growth and immune escape and the place of angiogenesis-targeted biomarkers to predict response to current therapies in RCC.
Collapse
|
12
|
Sun Q, Wang Y, Ji H, Sun X, Xie S, Chen L, Li S, Zeng W, Chen R, Tang Q, Zuo J, Hou L, Hosaka K, Lu Y, Liu Y, Ye Y, Yang Y. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis 2022; 13:724. [PMID: 35985991 PMCID: PMC9391381 DOI: 10.1038/s41419-022-05171-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Nasopharyngeal carcinoma (NPC) clinical trials show that antiangiogenic drugs (AADs) fail to achieve the expected efficacy, and combining AAD with chemoradiotherapy does not show superiority over chemoradiotherapy alone. Accumulating evidence suggests the intrinsic AAD resistance in NPC patients with poorly understood molecular mechanisms. Here, we describe NPC-specific FGF-2 expression-triggered, VEGF-independent angiogenesis as a mechanism of AAD resistance. Angiogenic factors screening between AAD-sensitive cancer type and AAD-resistant NPC showed high FGF-2 expression in NPC in both xenograft models and clinical samples. Mechanistically, the FGF-2-FGFR1-MYC axis drove endothelial cell survival and proliferation as an alternative to VEGF-VEGFR2-MYC signaling. Genetic knockdown of FGF-2 in NPC tumor cells reduced tumor angiogenesis, enhanced AAD sensitivity, and reduced pulmonary metastasis. Moreover, lenvatinib, an FDA recently approved multi-kinase inhibitor targeting both VEGFR2 and FGFR1, effectively inhibits the tumor vasculature, and exhibited robust anti-tumor effects in NPC-bearing nude mice and humanized mice compared with an agent equivalent to bevacizumab. These findings provide mechanistic insights on FGF-2 signaling in the modulation of VEGF pathway activation in the NPC microenvironment and propose an effective NPC-targeted therapy by using a clinically available drug.
Collapse
Affiliation(s)
- Qi Sun
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Yujie Wang
- grid.452847.80000 0004 6068 028XDepartment of Otolaryngology, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 518035 Shenzhen, Guangdong China
| | - Hong Ji
- grid.452509.f0000 0004 1764 4566Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu China
| | - Xiaoting Sun
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China ,grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ,grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P. R. China
| | - Sisi Xie
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China ,grid.256112.30000 0004 1797 9307Longyan First Hospital Affiliated to Fujian Medical University, 364000 Longyan, Fujian China
| | - Longtian Chen
- grid.256112.30000 0004 1797 9307Longyan First Hospital Affiliated to Fujian Medical University, 364000 Longyan, Fujian China
| | - Sen Li
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Weifan Zeng
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ruibo Chen
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Qi Tang
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Ji Zuo
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| | - Likun Hou
- grid.412532.3Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Kayoko Hosaka
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yongtian Lu
- grid.452847.80000 0004 6068 028XDepartment of Otolaryngology, Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, 518035 Shenzhen, Guangdong China
| | - Ying Liu
- grid.39436.3b0000 0001 2323 5732Institute of Translational Medicine, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Ying Ye
- grid.24516.340000000123704535Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yunlong Yang
- grid.8547.e0000 0001 0125 2443Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China
| |
Collapse
|
13
|
Nixon AB, Halabi S, Liu Y, Starr MD, Brady JC, Shterev I, Luo B, Hurwitz HI, Febbo PG, Rini BI, Beltran H, Small EJ, Morris MJ, George DJ. Predictive Biomarkers of Overall Survival in Patients with Metastatic Renal Cell Carcinoma Treated with IFNα ± Bevacizumab: Results from CALGB 90206 (Alliance). Clin Cancer Res 2022; 28:2771-2778. [PMID: 34965953 PMCID: PMC9240110 DOI: 10.1158/1078-0432.ccr-21-2386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE CALGB 90206 was a phase III trial of 732 patients with metastatic renal cell carcinoma (mRCC) comparing bevacizumab plus IFNα (BEV + IFN) with IFNα alone (IFN). No difference in overall survival (OS) was observed. Baseline samples were analyzed to identify predictive biomarkers for survival benefit. PATIENTS AND METHODS A total of 32 biomarkers were assessed in 498 consenting patients randomly assigned into training (n = 279) and testing (n = 219) sets. The proportional hazards model was used to test for treatment arm and biomarker interactions of OS. The estimated coefficients from the training set were used to compute a risk score for each patient and to classify patients by risk in the testing set. The resulting model was assessed for predictive accuracy using the time-dependent area under the ROC curve (tAUROC). RESULTS A statistically significant three-way interaction between IL6, hepatocyte growth factor (HGF), and bevacizumab treatment was observed in the training set and confirmed in the testing set (P < 0.0001). The model based on IL6, HGF, and bevacizumab treatment was predictive of OS (P < 0.001), with the high- and low-risk groups having a median OS of 10.2 [95% confidence interval (CI), 8.0-13.8] and 34.3 (95% CI, 28.5-40.5) months, respectively. The average tAUROC for the final model of OS based on 100 randomly split testing sets was 0.78 (first, third quartiles = 0.77, 0.79). CONCLUSIONS IL6 and HGF are potential predictive biomarkers of OS benefit from BEV + IFN in patients with mRCC. The model based on key biological and clinical factors demonstrated predictive efficacy for OS. These markers warrant further validation in future anti-VEGF and immunotherapy in mRCC trials. See related commentaries by Mishkin and Kohn, p. 2722 and George and Bertagnolli, p. 2725.
Collapse
Affiliation(s)
- Andrew B. Nixon
- Department of Medical Oncology, Duke Cancer Institute, Duke University Medical Center; Durham, NC
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics and Alliance Statistics and Data Center, Duke University Medical Center; Durham, NC
| | - Yingmiao Liu
- Department of Medical Oncology, Duke Cancer Institute, Duke University Medical Center; Durham, NC
| | - Mark D. Starr
- Department of Medical Oncology, Duke Cancer Institute, Duke University Medical Center; Durham, NC
| | - John C. Brady
- Department of Medical Oncology, Duke Cancer Institute, Duke University Medical Center; Durham, NC
| | - Ivo Shterev
- Department of Biostatistics and Bioinformatics and Alliance Statistics and Data Center, Duke University Medical Center; Durham, NC
- Current address: Illumina, Redwood City, CA
| | - Bin Luo
- Department of Biostatistics and Bioinformatics and Alliance Statistics and Data Center, Duke University Medical Center; Durham, NC
| | | | | | - Brian I. Rini
- Department of Medicine, Cleveland Clinic Taussig Cancer Institute, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Himisha Beltran
- Department of Medicine, Dana-Farber/Partners Cancer Care, Harvard Cancer Center; Boston, MA
| | - Eric J. Small
- Department of Medicine, University of California, San Francisco; San Francisco, CA
| | - Michael J. Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel J. George
- Department of Medical Oncology, Duke Cancer Institute, Duke University Medical Center; Durham, NC
| |
Collapse
|
14
|
Sharma R, Kannourakis G, Prithviraj P, Ahmed N. Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Front Med (Lausanne) 2022; 9:766869. [PMID: 35775004 PMCID: PMC9237320 DOI: 10.3389/fmed.2022.766869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and inter-heterogeneity. Heterogeneity is displayed not only in different patients but also among RCC cells in the same tumor, which makes treatment difficult because of varying degrees of responses generated in RCC heterogeneous tumor cells even with targeted treatment. In that context, precision medicine (PM), in terms of individualized treatment catered for a specific patient or groups of patients, can shift the paradigm of treatment in the clinical management of RCC. Recent progress in the biochemical, molecular, and histological characteristics of RCC has thrown light on many deregulated pathways involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and few are already in current clinical practice in oncology, one can expect that PM will expand its way toward the robust treatment of patients with RCC. This article provides a comprehensive background on recent strategies and breakthroughs of PM in oncology and provides an overview of the potential applicability of PM in RCC. The article also highlights the drawbacks of PM and provides a holistic approach that goes beyond the involvement of clinicians and encompasses appropriate legislative and administrative care imparted by the healthcare system and insurance providers. It is anticipated that combined efforts from all sectors involved will make PM accessible to RCC and other patients with cancer, making a tremendous positive leap on individualized treatment strategies. This will subsequently enhance the quality of life of patients.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Fontes-Sousa M, Magalhães H, Oliveira A, Carneiro F, dos Reis FP, Madeira PS, Meireles S. Reviewing Treatment Options for Advanced Renal Cell Carcinoma: Is There Still a Place for Tyrosine Kinase Inhibitor (TKI) Monotherapy? Adv Ther 2022; 39:1107-1125. [PMID: 35025061 PMCID: PMC8756748 DOI: 10.1007/s12325-021-02007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Renal cell carcinoma (RCC) comprises a highly heterogeneous group of kidney tumours built upon distinct genetic- and epigenetic-driven mechanisms and molecular pathways. Therefore, responsiveness to treatment is considerably variable across patients, adding an extra layer of complexity to the already challenging therapeutic decision process. The last decade brought an unprecedented shift in the medical approach to advanced or metastatic RCC; in fact, immunotherapy-based combinations have significantly transformed the therapeutic arsenal and clinical outcomes of these patients. These strategies were quickly adopted by international guidelines committees as the new standards of care. However, this enhanced efficacy comes at the expense of tolerability, with a predictable negative impact on patients' quality of life. Moreover, subgroup and post hoc analyses of the major clinical trials have shown that not all patients benefit equally from these innovative approaches. In this context, a group of experts on kidney cancer met and discussed the state of the art in the field, with a special emphasis on the appropriateness of using monotherapy with an anti-angiogenesis tyrosine kinase inhibitor (TKI) to treat specific subgroups of patients with RCC. This article reviews the main topics that were considered to be pertinent for that discussion and establishes the profile of patients for whom TKI monotherapy remains a sensible frontline option by avoiding overtreatment and an unnecessary exposure to treatment-related toxicity.
Collapse
Affiliation(s)
| | - Helena Magalhães
- Hospital Pedro Hispano (Unidade Local de Saúde de Matosinhos), Rua Dr. Eduardo Torres, 4464-513 Senhora da Hora, Portugal
| | - Alicia Oliveira
- Hospital do Espírito Santo de Évora, Largo do Sr. da Pobreza, 7000-811 Évora, Portugal
| | - Filipa Carneiro
- Medical oncology department, Instituto Português de Oncologia Do Porto, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | - Filipa Palma dos Reis
- Hospital de Santo António Dos Capuchos (Centro Hospitalar Universitário de Lisboa Central), Alameda Santo António Dos Capuchos, 1169-050 Lisbon, Portugal
| | - Pedro Silvestre Madeira
- Instituto Português de Oncologia de Coimbra, Av. Prof. Dr. Bissaya Barreto No. 98, 3000-075 Coimbra, Portugal
| | - Sara Meireles
- Hospital de São João (Centro Hospitalar Universitário de São João), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Bosma NA, Warkentin MT, Gan CL, Karim S, Heng DY, Brenner DR, Lee-Ying RM. Efficacy and Safety of First-line Systemic Therapy for Metastatic Renal Cell Carcinoma: A Systematic Review and Network Meta-analysis. EUR UROL SUPPL 2022; 37:14-26. [PMID: 35128482 PMCID: PMC8792068 DOI: 10.1016/j.euros.2021.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
CONTEXT Considerable advances have been made in the first-line treatment of metastatic renal cell carcinoma (mRCC), with immunotherapy-based combinations including immunotherapy-tyrosine kinase inhibitors (IO-TKIs) and dual immunotherapy (IO-IO) favored. A lack of head-to-head clinical trials comparing these treatments means that there is uncertainty regarding their use in clinical practice. OBJECTIVE To compare and rank the efficacy and safety of first-line systemic treatments for mRCC with a focus on IO-based combinations. EVIDENCE ACQUISITION MEDLINE (Ovid), EMBASE, Cochrane Library, Web of Science, and abstracts of recent major scientific meetings were searched to identify the most up-to-date phase 3 randomized controlled trials (RCTs) of first-line IO-based combinations for mRCC up to June 2021. A systematic review and network meta-analysis were completed using the Bayesian framework. Primary endpoints included overall survival (OS) and progression-free survival (PFS). Secondary endpoints included the objective response rate (ORR), complete response (CR), grade 3-4 treatment-related adverse events (TRAEs), treatment-related drug discontinuation (TRDD), and health-related quality of life (HRQoL). The analysis was performed for the intention-to-treat (ITT) population as well as by clinical risk group. EVIDENCE SYNTHESIS A total of six phase 3 RCTs were included involving a total of 5121 patients. Nivolumab plus cabozantinib (NIVO-CABO) had the highest likelihood of an OS benefit in the ITT population (surface under the cumulative ranking curve 82%). Avelumab plus axitinib (AVEL-AXI) had the highest likelihood of an OS benefit for patients with favorable risk (65%). Pembrolizumab plus AXI (PEMBRO-AXI) had the highest likelihood of an OS benefit for patients with intermediate risk (78%). PEMBRO plus lenvatinib (PEMBRO-LENV) had the highest likelihood of an OS benefit for patients with poor risk (89%). PEMBRO-LENV was associated with a superior PFS benefit across all risk groups (89-98%). Maximal ORR was achieved with PEMBRO-LENV (97%). The highest likelihood for CR was attained with NIVO plus ipilimumab (NIVO-IPI; 85%) and PEMBRO-LENV (83%). The highest grade 3-4 TRAE rate occurred with PEMBRO-LENV (95%) and NIVO-CABO (83%), but the latter was associated with the lowest TRDD rate (2%). By contrast, NIVO-IPI had the lowest grade 3-4 TRAE rate (6%) and the highest likelihood of TRDD (100%). HRQoL consistently favored NIVO-CABO (66-75%), PEMBRO-LENV (44-85%), and NIVO-IPI (65-93%) in comparison to the other treatments. CONCLUSIONS IO-TKI drug combinations are associated with consistent improvements in clinically relevant outcomes for all mRCC risk groups. This benefit may be at the cost of higher TRAE rates; however, lower TRDD rates suggest a manageable side-effect profile. Longer follow-up is required to determine if the benefits of IO-TKIs will be sustained and if they should be favored in the first-line treatment of mRCC. PATIENT SUMMARY Combination treatments based on immunotherapy agents continue to show meaningful benefits in the first-line treatment of metastatic kidney cancer. Our review and network meta-analysis shows that immunotherapy combined with another class of agents called tyrosine kinase inhibitors is promising. However, longer follow-up is needed for this treatment strategy to clarify if the benefits are long-lasting.
Collapse
Affiliation(s)
- Nicholas A. Bosma
- Department of Oncology, University of Calgary Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Matthew T. Warkentin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Chun Loo Gan
- Department of Oncology, University of Calgary Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Safiya Karim
- Department of Oncology, University of Calgary Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Daniel Y.C. Heng
- Department of Oncology, University of Calgary Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Darren R. Brenner
- Department of Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Richard M. Lee-Ying
- Department of Oncology, University of Calgary Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
17
|
Saiga K, Ohe C, Yoshida T, Ohsugi H, Ikeda J, Atsumi N, Noda Y, Yasukochi Y, Higasa K, Taniguchi H, Kinoshita H, Tsuta K. PBRM1 Immunohistochemical Expression Profile Correlates with Histomorphological Features and Endothelial Expression of Tumor Vasculature for Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:1062. [PMID: 35205810 PMCID: PMC8870106 DOI: 10.3390/cancers14041062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
Loss of the polybromo-1 (PBRM1) protein has been expected as a possible biomarker for clear cell renal cell carcinoma (ccRCC). There is little knowledge about how PBRM1 immunohistochemical expression correlates with the histomorphological features of ccRCC and the endothelial expression of tumor vasculature. The present study evaluates the association of architectural patterns with the PBRM1 expression of cancer cells using a cohort of 425 patients with nonmetastatic ccRCC. Furthermore, we separately assessed the PBRM1 expression of the endothelial cells and evaluated the correlation between the expression of cancer cells and endothelial cells. PBRM1 loss in cancer cells was observed in 148 (34.8%) patients. In the correlation analysis between architectural patterns and PBRM1 expression, macrocyst/microcystic, tubular/acinar, and compact/small nested were positively correlated with PBRM1 expression, whereas alveolar/large nested, thick trabecular/insular, papillary/pseudopapillary, solid sheets, and sarcomatoid/rhabdoid were negatively correlated with PBRM1 expression. PBRM1 expression in vascular endothelial cells correlated with the expression of cancer cells (correlation coefficient = 0.834, p < 0.001). PBRM1 loss in both cancer and endothelial cells was associated with a lower recurrence-free survival rate (p < 0.001). Our PBRM1 expression profile indicated that PBRM1 expression in both cancer and endothelial cells may be regulated in an orchestrated manner.
Collapse
Affiliation(s)
- Kazuho Saiga
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
| | - Chisato Ohe
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (T.Y.); (H.O.); (H.T.); (H.K.)
| | - Haruyuki Ohsugi
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (T.Y.); (H.O.); (H.T.); (H.K.)
| | - Junichi Ikeda
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (T.Y.); (H.O.); (H.T.); (H.K.)
| | - Naho Atsumi
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
| | - Yuri Noda
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (Y.Y.); (K.H.)
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (Y.Y.); (K.H.)
| | - Hisanori Taniguchi
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (T.Y.); (H.O.); (H.T.); (H.K.)
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (T.Y.); (H.O.); (H.T.); (H.K.)
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata 573-1191, Japan; (K.S.); (J.I.); (N.A.); (Y.N.); (K.T.)
| |
Collapse
|
18
|
Yu J, He X, Fang C, Wu H, Hu L, Xue Y. MicroRNA‑200a‑3p and GATA6 are abnormally expressed in patients with non‑small cell lung cancer and exhibit high clinical diagnostic efficacy. Exp Ther Med 2022; 23:281. [PMID: 35317445 PMCID: PMC8908458 DOI: 10.3892/etm.2022.11210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is one of the main threats to human health. Survival of patients with lung cancer depends on timely detection and diagnosis. Among the genetic irregularities that control cancer development and progression, there are microRNAs (miRNAs/miRs). The present study aimed to investigate the expression patterns of miR-200a-3p and transcription factor GATA-6 (GATA6) in peripheral blood of patients with non-small cell lung cancer (NSCLC) and their clinical significance. The expression patterns of miR-200a-3p and GATA6 in the peripheral blood of patients with NSCLC and healthy subjects were measured via reverse transcription-quantitative PCR. The correlation between GATA6/miR-200a-3p expression and their diagnostic efficacy were analyzed by receiver operating characteristic curve analysis. The association between miR-200a-3p/GATA6 expression with the patient clinicopathological characteristics, and their correlation with carcinoembryonic antigen (CEA), neuron specific enolase (NSE) and squamous cell carcinoma antigen (SCCAg) were evaluated. The cumulative survival rate was examined, and whether miR-200a-3p and GATA6 expression levels were independently correlated with the prognosis of NSCLC was analyzed using multivariate logistic regression model. The results demonstrated that the expression of miR-200a-3p was high and that of GATA6 was low in the peripheral blood of patients with NSCLC, and both exhibited high clinical diagnostic efficacy. miR-200a-3p was revealed to target GATA6 by dual-luciferase assay. miR-200a-3p in the peripheral blood was correlated with TNM stage, lymph node metastasis and distal metastasis, while GATA6 in the peripheral blood was correlated with TNM stage and lymph node metastasis. miR-200a-3p and GATA6 were positively correlated with CEA and SCCAg, but not with NSE. High expression of miR-200a-3p and low expression of GATA6 predicted poor prognosis in patients with NSCLC. After adjusting for TNM stage, lymph node metastasis, distance metastasis, GATA6, CEA, NSE and SCCAg in the logistic regression model, it was indicated that the high expression of miR-200a-3p increased the risk of death in patients with NSCLC. Collectively, it was revealed that miR-200a-3p and GATA6 were abnormally expressed in the peripheral blood of patients with NSCLC. Serum levels of miR-200a-3p >1.475 and GATA6 <1.195 may assist the early diagnosis of NSCLC. GATA6 may function in NSCLC as a miR-200a-3p target, which may provide a future reference for NSCLC early diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Xinyun He
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Haixia Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Lei Hu
- Department of Laboratory Medicine, Guizhou Women's and Children's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
19
|
McGregor B, Mortazavi A, Cordes L, Salabao C, Vandlik S, Apolo AB. Management of adverse events associated with cabozantinib plus nivolumab in renal cell carcinoma: A review. Cancer Treat Rev 2022; 103:102333. [PMID: 35033866 PMCID: PMC9590624 DOI: 10.1016/j.ctrv.2021.102333] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Tyrosine kinase inhibitors have been successfully developed in combination with immune checkpoint inhibitors to treat advanced renal cell carcinoma (RCC), further advancing treatment. While safety profiles are generally manageable with combination regimens, overlapping adverse events (AEs) and immune-related AEs can make treatment more complex. The CheckMate 9ER study evaluated the tyrosine kinase inhibitor cabozantinib in combination with the anti-programmed cell death protein-1 antibody nivolumab in patients with previously untreated advanced RCC. Cabozantinib + nivolumab demonstrated superiority over sunitinib for progression-free survival, overall survival, and objective response rate. These outcomes supported the approval of cabozantinib + nivolumab as a first-line therapy for advanced RCC. The safety profile was manageable with prophylaxis, supportive care, dose holds and reductions for cabozantinib, and dose holds and immunosuppressive therapy for nivolumab. This review discusses the safety results of CheckMate 9ER and provides guidance on managing some of the more clinically relevant AEs with a focus on overlapping AEs, including diarrhea, elevated amylase/lipase, hepatotoxicity, dermatologic reactions, fatigue, endocrine disorders, and nephrotoxicity. We discuss AE management strategies (prophylaxis, supportive care, dose modification, and immunosuppressive therapy), and provide recommendations for identifying the causative agent of overlapping AEs and for consulting specialists about organ-specific immune-related AEs. Optimizing AE management can maintain tolerability and should be a priority with cabozantinib + nivolumab treatment.
Collapse
Affiliation(s)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, and the Comprehensive Cancer Center, Columbus, OH, USA
| | - Lisa Cordes
- National Cancer Institute and the Office of Clinical Research at the National Institutes of Health, Bethesda, MD, USA
| | | | - Susan Vandlik
- The Ohio State University Wexner Medical Center and the Comprehensive Cancer Center, Columbus, OH, USA
| | - Andrea B Apolo
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
20
|
Han Z, Dong Y, Lu J, Yang F, Zheng Y, Yang H. Role of hypoxia in inhibiting dendritic cells by VEGF signaling in tumor microenvironments: mechanism and application. Am J Cancer Res 2021; 11:3777-3793. [PMID: 34522449 PMCID: PMC8414384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023] Open
Abstract
The tumor microenvironment (TME) plays a central role in tumor initiation, development, immune escape, and clinical treatment. Hypoxia, an important characteristic of the TME, mediates vascular endothelial factor (VEGF) signaling through direct or indirect mechanisms. Directly, hypoxia promotes the expression of VEGF through hypoxia-inducible factor (HIF) induction. Indirectly, VEGF inhibits dendritic cell (DC) maturation and function by binding to VEGF receptors (VEGFRs) and co-receptors expressed on cell membranes. Additionally, HIF can bypass VEGF/VEGFR and activate downstream signaling factors to promote tumor development. Currently, DC vaccine, anti-HIF and anti-VEGF therapies are widely used in clinical treatment, but their long-term effects remain limited. Therefore, a further understanding of the effects of hypoxia and VEGF signaling on DCs will help in the development of innovative combination therapies and the identification of new targets.
Collapse
Affiliation(s)
- Ziying Han
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Yucheng Dong
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Jizhou Lu
- Department of Liver Surgery, The Third People’s Hospital of Gansu ProvinceNo. 763, Duanjiatan, Chengguan District, Lanzhou 730020, Gansu, China
| | - Fan Yang
- Department of Clinical Medicine, Capital Medical UniversityFengtai District, Youanmen West Headline 10, Beijing 100069, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeNo. 1 Shuai-Fu-Yuan, Wang-Fu-Jing, Beijing 100730, China
| |
Collapse
|
21
|
Powles T, Choueiri TK, Motzer RJ, Jonasch E, Pal S, Tannir NM, Signoretti S, Kaldate R, Scheffold C, Wang E, Aftab DT, Escudier B, George DJ. Outcomes based on plasma biomarkers in METEOR, a randomized phase 3 trial of cabozantinib vs everolimus in advanced renal cell carcinoma. BMC Cancer 2021; 21:904. [PMID: 34364385 PMCID: PMC8349489 DOI: 10.1186/s12885-021-08630-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the phase 3 METEOR trial, cabozantinib improved progression-free survival (PFS) and overall survival (OS) versus everolimus in patients with advanced RCC after prior antiangiogenic therapy. METHODS In this exploratory analysis, plasma biomarkers from baseline and week 4 from 621 of 658 randomized patients were analyzed for CA9, HGF, MET, GAS6, AXL, VEGF, VEGFR2, and IL-8. PFS and OS were analyzed by baseline biomarker levels as both dichotomized and continuous variables using univariate and multivariable methods. For on-treatment changes, PFS and OS were analyzed using fold change in biomarker levels at week 4. Biomarkers were considered prognostic if p < 0.05 and predictive if pinteraction < 0.05 for the interaction between treatment and biomarker. RESULTS Hazard ratios for PFS and OS favored cabozantinib versus everolimus for both low and high baseline levels of all biomarkers (hazard ratios ≤0.78). In univariate analyses, low baseline HGF, AXL, and VEGF were prognostic for improvements in both PFS and OS with cabozantinib, and low HGF was prognostic for improvements in both PFS and OS with everolimus. Low AXL was predictive of relative improvement in PFS for cabozantinib versus everolimus. Results were generally consistent when baseline biomarkers were expressed as continuous variables, although none were predictive of benefit with treatment. In multivariable analysis, low baseline HGF was independently prognostic for improved PFS for both cabozantinib and everolimus; low HGF, GAS6, and VEGF were independently prognostic for improved OS with cabozantinib. No biomarkers were independently prognostic for OS with everolimus. On-treatment increases in some biomarkers appeared prognostic for PFS or OS with cabozantinib in univariate analyses; however, none were independently prognostic in multivariable analysis. CONCLUSIONS PFS and OS were improved with cabozantinib versus everolimus at high and low baseline levels of all biomarkers. Low baseline HGF was consistently identified as a prognostic biomarker for improved PFS or OS with cabozantinib or everolimus, supporting further prospective evaluation of the prognostic significance of HGF in advanced RCC. TRIAL REGISTRATION ClinicalTrials.gov NCT01865747 (registered on 05/31/2013).
Collapse
Affiliation(s)
- Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK.
| | | | | | - Eric Jonasch
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Pal
- City of Hope National Medical Center, Duarte, CA, USA
| | - Nizar M Tannir
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
He Y, Luo Y, Huang L, Zhang D, Wang X, Ji J, Liang S. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Pharmacol Res 2021; 170:105732. [PMID: 34139345 DOI: 10.1016/j.phrs.2021.105732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Renal cell carcinoma (RCC) is a highly vascularized tumor and prone to distant metastasis. Sorafenib is the first targeted multikinase inhibitor and first-line chemical drug approved for RCC therapy. In fact, only a small number of RCC patients benefit significantly from sorafenib treatment, while the growing prevalence of sorafenib resistance has become a major obstacle for drug therapy effectivity of sorafenib. The molecular mechanisms of sorafenib resistance in RCC are not completely understood by now. Herein, we comprehensively summarize the underlying mechanisms of sorafenib resistance and molecular biomarkers for predicting sorafenib responsiveness. Moreover, we outline strategies suitable for overcoming sorafenib resistance and prospect potential approaches for identifying biomarkers associated with sorafenib resistance in RCC, which contributes to guide individualized and precision drug therapy.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Yang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Lan Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Jiayi Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
23
|
Quagliariello V, Berretta M, Buccolo S, Iovine M, Paccone A, Cavalcanti E, Taibi R, Montopoli M, Botti G, Maurea N. Polydatin Reduces Cardiotoxicity and Enhances the Anticancer Effects of Sunitinib by Decreasing Pro-Oxidative Stress, Pro-Inflammatory Cytokines, and NLRP3 Inflammasome Expression. Front Oncol 2021; 11:680758. [PMID: 34178667 PMCID: PMC8226180 DOI: 10.3389/fonc.2021.680758] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. Sunitinib, a recently-approved, multi-targeted Tyrosine Kinases Inhibitor (TKi), prolongs survival in patients with metastatic renal cell carcinoma and gastrointestinal stromal tumors, however a dose related cardiotoxicity was well described. Polydatin (3,4',5-trihydroxystilbene-3-β-d-glucoside) is a monocrystalline compound isolated from Polygonum cuspidatum with consolidated anti-oxidant and anti-inflammatory properties, however no studies investigated on its putative cardioprotective and chemosensitizing properties during incubation with sunitinib. We investigated on the effects of polydatin on the oxidative stress, NLRP3 inflammasome and Myd88 expression, highlighting on the production of cytokines and chemokines (IL-1β, IL-6, IL-8, CXCL-12 and TGF-β) during treatment with sunitinib. Exposure of cardiomyocytes and cardiomyoblasts (AC-16 and H9C2 cell lines) and human renal adenocarcinoma cells (769-P and A498) to polydatin combined to plasma-relevant concentrations of sunitinib reduces significantly iROS, MDA and LTB4 compared to only sunitinib-treated cells (P<0.001). In renal cancer cells and cardiomyocytes polydatin reduces expression of pro-inflammatory cytokines and chemokines involved in myocardial damages and chemoresistance and down-regulates the signaling pathway of NLRP3 inflammasome, MyD88 and NF-κB. Data of the present study, although in vitro, indicate that polydatin, besides reducing oxidative stress, reduces key chemokines involved in cancer cell survival, chemoresistance and cardiac damages of sunitinib through downregulation of NLRP3-MyD88 pathway, applying as a potential nutraceutical agent in preclinical studies of preventive cardio-oncology.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Simona Buccolo
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rosaria Taibi
- Department of Pharmacological Sciences, Gruppo Oncologico Ricercatori Italiani, GORI, Pordenone, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori –IRCCS- Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
24
|
Circulating Levels of the Interferon-γ-Regulated Chemokines CXCL10/CXCL11, IL-6 and HGF Predict Outcome in Metastatic Renal Cell Carcinoma Patients Treated with Antiangiogenic Therapy. Cancers (Basel) 2021; 13:cancers13112849. [PMID: 34200459 PMCID: PMC8201218 DOI: 10.3390/cancers13112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Sunitinib and pazopanib are standard first-line treatments for patients with metastatic renal cell carcinoma (mRCC). Nonetheless, as the number of treatment options increases, there is a need to identify biomarkers that can predict drug efficacy and toxicity. In this prospective study we evaluated a set of biomarkers that had been previously identified within a secretory signature in mRCC patients. This set includes tumor expression of c-Met and serum levels of HGF, IL-6, IL-8, CXCL9, CXCL10 and CXCL11. Our cohort included 60 patients with mRCC from 10 different Spanish hospitals who received sunitinib (n = 51), pazopanib (n = 4) or both (n = 5). Levels of biomarkers were studied in relation to response rate, progression-free survival (PFS) and overall survival (OS). High tumor expression of c-Met and high basal serum levels of HGF, IL-6, CXCL11 and CXCL10 were significantly associated with reduced PFS and/or OS. In multivariable Cox regression analysis, CXCL11 was identified as an independent biomarker predictive of shorter PFS and OS, and HGF was an independent predictor of reduced PFS. Correlation analyses using our cohort of patients and patients from TCGA showed that HGF levels were significantly correlated with those of IL-6, CXCL11 and CXCL10. Bioinformatic protein-protein network analysis revealed a significant interaction between these proteins, all this suggesting a coordinated expression and secretion. We also developed a prognostic index that considers this group of biomarkers, where high values in mRCC patients can predict higher risk of relapse (HR 5.28 [2.32-12.0], p < 0.0001). In conclusion, high plasma HGF, CXCL11, CXCL10 and IL-6 levels are associated with worse outcome in mRCC patients treated with sunitinib or pazopanib. Our findings also suggest that these factors may constitute a secretory cluster that acts coordinately to promote tumor growth and resistance to antiangiogenic therapy.
Collapse
|
25
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
26
|
Jang A, Sweeney PL, Barata PC, Koshkin VS. PD-L1 Expression and Treatment Implications in Metastatic Clear Cell Renal Cell Carcinoma: A Systematic Review. KIDNEY CANCER 2021. [DOI: 10.3233/kca-200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Over the past decade, immune checkpoint inhibitors (ICIs) have increasingly become the standard of care for various advanced malignancies, including metastatic clear cell renal cell carcinoma (mccRCC). Most ICIs currently used in clinical practice inhibit the interaction between the programmed cell death protein-1 (PD-1) and programmed death ligand-1 (PD-L1) complex. A deeper understanding of this interaction and PD-L1 expression in tumors has led to more effective therapies in the treatment of advanced cancers, but the debate regarding the utility of PD-L1 as a biomarker continues. OBJECTIVE: We aimed to systematically evaluate the role of PD-L1 in mccRCC in terms of expression and treatment implications. METHODS: Following PRISMA guidelines, we performed a systematic literature search using PubMed and Embase through August 31, 2020. Titles and abstracts were screened to identify articles for full-text review. A hand search was also performed using Google Scholar and the bibliography to relevant studies. RESULTS: A total of 26 articles were identified, and relevant data were extracted and organized. The available information regarding PD-L1 expression in mccRCC from both prospective clinical trials and retrospective studies were summarized. We discussed the utility of PD-L1 as a predictive and prognostic biomarker in mccRCC, its association with other potential biomarkers, and the pattern and level of expression of PD-L1 in primary versus metastatic tumors. CONCLUSIONS: Although significant progress has been made, much more remains to be learned regarding the differences between PD-L1+ and PD-L1- ccRCC tumors, in terms of both the underlying biology and clinical responses to immunotherapy and other agents.
Collapse
Affiliation(s)
- Albert Jang
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick L. Sweeney
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Pedro C. Barata
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, New Orleans, LA, USA
| | - Vadim S. Koshkin
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Neo-Fs Index: A Novel Immunohistochemical Biomarker Panel Predicts Survival and Response to Anti-Angiogenetic Agents in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061199. [PMID: 33801954 PMCID: PMC8000111 DOI: 10.3390/cancers13061199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Frameshift indels have emerged as a predictor of immunotherapy response but were not evaluated yet to predict anti-angiogenetic agent (AAA) response or prognosis in clear cell renal cell carcinoma (ccRCC). Methods: Here, to develop biomarkers that predict survival and response to AAA, we evaluated the immunohistochemical expression of proteins whose genes frequently harbor frameshift indels in 638 ccRCC patients and correlated the individual and integrated markers with prognosis and AAA response. The mutational landscape was evaluated using targeted next-generation sequencing in 12 patients concerning protein markers. Immune gene signatures were retrieved from TCGA RNA seq data. Results: Five proteins (APC, NOTCH1, ARID1A, EYS, and filamin A) were independent adverse prognosticators and were incorporated into the Neo-fs index. Better overall, disease-specific and recurrence-free survival were observed with high Neo-fs index in univariate and multivariate survival analyses. Better AAA responses were observed with a high Neo-fs index, which reflected increased MHC class I, CD8+ T cell, cytolytic activity, and plasmacytoid dendritic cell signatures and decreased type II-IFN response signatures, as well as greater single-nucleotide variant (SNV) and indel counts. Conclusions: Neo-fs index, reflecting antitumor immune signature and more SNVs. and indels, is a powerful predictor of survival and AAA response in ccRCC.
Collapse
|
28
|
Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, Wu H, Xu Q, Zhang L, Xu C, Yang D, Wang S. Current Advance of Immune Evasion Mechanisms and Emerging Immunotherapies in Renal Cell Carcinoma. Front Immunol 2021; 12:639636. [PMID: 33767709 PMCID: PMC7985340 DOI: 10.3389/fimmu.2021.639636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma is a highly heterogeneous cancer group, and the complex microenvironment of the tumor provides appropriate immune evasion opportunities. The molecular mechanism of immune escape in renal cell carcinoma is currently a hot issue, focusing primarily on the major complex of histocompatibility, immunosuppressive cells, their secreted immunosuppressive cytokines, and apoptosis molecule signal transduction. Immunotherapy is the best treatment option for patients with metastatic or advanced renal cell carcinoma and combination immunotherapy based on a variety of principles has shown promising prospects. Comprehensive and in-depth knowledge of the molecular mechanism of immune escape in renal cell carcinoma is of vital importance for the clinical implementation of effective therapies. The goal of this review is to address research into the mechanisms of immune escape in renal cell carcinoma and the use of the latest immunotherapy. In addition, we are all looking forward to the latest frontiers of experimental combination immunotherapy.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Kangkang Yang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jun Zhao
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel) 2021; 13:cancers13040663. [PMID: 33562324 PMCID: PMC7915065 DOI: 10.3390/cancers13040663] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Immune checkpoint blockade targeting PD-1/PD-L1 has a promising therapeutic efficacy in different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. This review summarizes the recent findings of PD-L1 role in resistance to therapies through the PD-1/PD-L1 pathway and other correlating signaling pathways. A special focus will be given to the key mechanisms underlying resistance to the PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, we also discuss the promising combination of therapeutic strategies for patients resistant to the PD-1/PD-L1 blockade in order to enhance the efficacy of immune checkpoint inhibitors. Abstract Release of immunoreactive negative regulatory factors such as immune checkpoint limits antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resistance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. In this review, we described the utility of PD-L1 expression levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways. Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was also summarized.
Collapse
|
30
|
Zizzari IG, Napoletano C, Di Filippo A, Botticelli A, Gelibter A, Calabrò F, Rossi E, Schinzari G, Urbano F, Pomati G, Scagnoli S, Rughetti A, Caponnetto S, Marchetti P, Nuti M. Exploratory Pilot Study of Circulating Biomarkers in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092620. [PMID: 32937860 PMCID: PMC7563741 DOI: 10.3390/cancers12092620] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The identification of biomarkers in response to therapeutic treatment is one of the main objectives of personalized oncology. Predictive biomarkers are particularly relevant for oncologists challenged by the busy scenario of possible therapeutic options in mRCC patients, including immunotherapy and TKIs. In fact the activation of the immune system can determine the outcome and success of the different therapeutic strategies. In this study we evaluated changes in the immune system of TKI mRCC-treated patients defining immunological profiles related to response characterized by specific biomarkers. The validation of the proposed immune portrait to an extended number of patients could allow characterization and selection of responsive and non-responsive patients from the beginning of the therapeutic process. Abstract With the introduction of immune checkpoint inhibitors (ICIs) and next-generation vascular endothelial growth factor receptor–tyrosine kinase inhibitors (VEGFR–TKIs), the survival of patients with advanced renal cell carcinoma (RCC) has improved remarkably. However, not all patients have benefited from treatments, and to date, there are still no validated biomarkers that can be included in the therapeutic algorithm. Thus, the identification of predictive biomarkers is necessary to increase the number of responsive patients and to understand the underlying immunity. The clinical outcome of RCC patients is, in fact, associated with immune response. In this exploratory pilot study, we assessed the immune effect of TKI therapy in order to evaluate the immune status of metastatic renal cell carcinoma (mRCC) patients so that we could define a combination of immunological biomarkers relevant to improving patient outcomes. We profiled the circulating levels in 20 mRCC patients of exhausted/activated/regulatory T cell subsets through flow cytometry and of 14 immune checkpoint-related proteins and 20 inflammation cytokines/chemokines using multiplex Luminex assay, both at baseline and during TKI therapy. We identified the CD3+CD8+CD137+ and CD3+CD137+PD1+ T cell populations, as well as seven soluble immune molecules (i.e., IFNγ, sPDL2, sHVEM, sPD1, sGITR, sPDL1, and sCTLA4) associated with the clinical responses of mRCC patients, either modulated by TKI therapy or not. These results suggest an immunological profile of mRCC patients, which will help to improve clinical decision-making for RCC patients in terms of the best combination of strategies, as well as the optimal timing and therapeutic sequence.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
- Correspondence: ; Tel.: +39-064-997-3025
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Fabio Calabrò
- Division of Medical Oncology B, San Camillo Forlanini Hospital Rome, 00149 Rome, Italy;
| | - Ernesto Rossi
- Department of Medical Oncology, Fondazione Policlinico A.Gemelli Rome, 00168 Rome, Italy; (E.R.); (G.S.)
| | - Giovanni Schinzari
- Department of Medical Oncology, Fondazione Policlinico A.Gemelli Rome, 00168 Rome, Italy; (E.R.); (G.S.)
| | - Federica Urbano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Giulia Pomati
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Simone Scagnoli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| | - Salvatore Caponnetto
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
| | - Paolo Marchetti
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (A.B.); (A.G.); (F.U.); (G.P.); (S.S.); (S.C.); (P.M.)
- Division of Oncology, Department of Clinical and Molecular Medicine, Ospedale Sant’Andrea, “Sapienza” University of Rome, 00189 Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy; (I.G.Z.); (A.D.F.); (A.R.); (M.N.)
| |
Collapse
|
31
|
Hu C, Chen B, Huang Z, Liu C, Ye L, Wang C, Tong Y, Yang J, Zhao C. Comprehensive profiling of immune-related genes in soft tissue sarcoma patients. J Transl Med 2020; 18:337. [PMID: 32873319 PMCID: PMC7465445 DOI: 10.1186/s12967-020-02512-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Immune-related genes (IRGs) have been confirmed to have an important role in tumorigenesis and tumor microenvironment formation. Nevertheless, a systematic analysis of IRGs and their clinical significance in soft tissue sarcoma (STS) patients is lacking. Methods Gene expression files from The Cancer Genome Atlas (TCGA) database and Genotype-Tissue Expression (GTEx) were used to select differentially expressed genes (DEGs). Differentially expressed immune-related genes (DEIRGs) were determined by matching the DEG and ImmPort gene sets, which were evaluated by functional enrichment analysis. Unsupervised clustering of the identified DEIRGs was conducted, and associations with prognosis, the tumor microenvironment (TME), immune checkpoints, and immune cells were analyzed simultaneously. Two prognostic signatures, one for overall survival (OS) and one for progression free survival (PFS), were established and validated in an independent set. Finally, two transcription factor (TF)-IRG regulatory networks were constructed, and a crucial regulatory axis was validated. Results In total, 364 DEIRGs and four clusters were identified. OS, TME scores, five immune checkpoints, and 12 types of immune cells were found to be significantly different among the four clusters. The two prognostic signatures incorporating 20 DEIRGs showed favorable discrimination and were successfully validated. Two nomograms combining signature and clinical variables were generated. The C-indexes were 0.879 (95%CI 0.832 ~ 0.926) and 0.825 (95%CI 0.776 ~ 0.874) for the OS and PFS signatures, respectively. Finally, TF-IRG regulatory networks were established, and the MYH11-ADM regulatory axis was verified in three independent datasets. Conclusion This comprehensive analysis of the IRG landscape in soft tissue sarcoma revealed novel IRGs related to carcinogenesis and the immune microenvironment. These findings have implications for prognosis and therapeutic responses, which reveal novel potential prognostic biomarkers, promote precision medicine, and provide potential novel targets for immunotherapy.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Qingdao University Medical College, Shandong, 266071, China
| | - Bo Chen
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.,Wenzhou Medical University, Zhejiang, 325000, China
| | - Zhangheng Huang
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lin Ye
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Cailin Wang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Yuexin Tong
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China
| | - Jiaxin Yang
- Wenzhou Medical University, Zhejiang, 325000, China
| | - Chengliang Zhao
- Department of Orthopedic, Affiliated Hospital of Chengde Medical University, Hebei, China.
| |
Collapse
|
32
|
Exosome-mediated miR-9-5p promotes proliferation and migration of renal cancer cells both in vitro and in vivo by targeting SOCS4. Biochem Biophys Res Commun 2020; 529:1216-1224. [PMID: 32819588 DOI: 10.1016/j.bbrc.2020.06.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Exosomes secreted by cancer cells play important roles in tumor progression by interacting with cell receptors. Renal cancer derived exosomes contain miRNAs which are associated with cell proliferation and invasion. Micro RNA 9-5 (miR-9-5) is highly expressed in the serum of renal cancer patients with advanced (tumor size - node - metastasis) TNM stage and Fuhrman grade. miR-9-5p is extensively expressed in exosomes derived from renal cancer cells. Overexpression of miR-9-5p promotes proliferation and invasion of A-704 (a cancer cell line of human kidney) cells via targeting and deregulating SOCS4 mRNA. Inhibition of the Janus kinase (JAK)/signaling transducer and activator of transcription (STAT) pathway by SOCS4 will be reduced, which leads to phosphorylation of STAT3 and JAK. Activated cytokine signaling promotes cell proliferation and invasion, and inhibits apoptosis. Moreover, overexpression of SOCS4 reduces miR-9-5p levels and plays an opposite role in cell. To conclude, exosomal miR-9-5p plays important roles in renal cancer both in vivo and in vitro, indicating it may be used as biomarker for diagnosis and for monitoring the efficacy if therapy.
Collapse
|
33
|
The impact of TNFSF14 on prognosis and immune microenvironment in clear cell renal cell carcinoma. Genes Genomics 2020; 42:1055-1066. [PMID: 32725578 DOI: 10.1007/s13258-020-00974-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND TNFSF14 has been proven to play an important role in various types of tumors. However, its function in renal cell carcinoma (RCC) has not yet been fully elucidated. OBJECTIVE In order to explore molecular mechanism of RCC, we evaluated the effect of TNFSF14 on RCC progression, prognosis and immune microenvironment. METHODS Using TCGA database, the differential expression of TNFSF14 and its relationships between clinicopathological features and prognosis were determined. Cox univariate and multivariate analyses were successively performed to identify whether TNFSF14 was an independent prognostic factor. The discriminating ability of TNFSF14 in RCC prognosis analysis was validated under the same clinical subgroups. Tumor mutational burden (TMB) of each RCC samples was calculated and the differential expression of TNFSF14 between high- and low-TMB groups was analyzed. The immune abundances of 22 leukocyte subtypes in each RCC samples were presented through the CIBERSORT algorithm. TIMER database was used to explore the relationships between copy number of TNFSF14 and the infiltration levels of 6 immune cells. RESULTS Overexpression of TNFSF14 implied adverse clinicopathological features and poor prognosis. Meanwhile, TNFSF14 was identified as an independent prognostic factor (HR = 1.047, P = 0.028) and possessed prevalent applicability in RCC prognostic analysis. TNFSF14 was upregulated in high-TMB group than that in low-TMB group (Log2FC = 0.722). Moreover, overexpression of TNFSF14 brought alteration of immune abundance of 8 leukocyte subtypes. Besides, somatic copy number alteration (SCNA) of TNFSF14 was associated with infiltration levels of 6 immune cells. CONCLUSIONS TNFSF14 has crucial impact on progression, prognosis and immune microenvironment in RCC. Besides, TNFSF14 may be a potential biomarker for predicting the efficacy and response rate of RCC immunotherapy.
Collapse
|
34
|
Ando R, Takahara K, Ito T, Kanao K, Kobayashi I, Shiroki R, Sumitomo M, Miyake H, Yasui T. Discontinuation of first-line molecular-targeted therapy and prognosis in patients with metastatic renal cell carcinoma: Impact of disease progression vs. adverse events. Urol Oncol 2020; 38:937.e19-937.e25. [PMID: 32693975 DOI: 10.1016/j.urolonc.2020.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We evaluated the impact of discontinuation of first-line (1L) molecular-targeted therapy on prognostic outcomes among patients with metastatic renal cell carcinoma (mRCC). METHODS Study patients with mRCC were treated with 1L molecular-targeted agents at 4 separate institutions. Prognostic outcomes in this patient cohort were analyzed retrospectively based on whether discontinuation of 1L therapy was related to adverse events (AEs) or progression of disease (PD). RESULTS Of the 201 patients enrolled, 117 patients (58%) and 84 patients (42%) discontinued 1L targeted therapy due to PD and AEs, respectively. Second-line therapy was subsequently provided to 101 (86%) and 66 (79%) of the patients who discontinued 1L therapy secondary to PD or AEs, respectively. Patients who discontinued 1L therapy due to AEs were significantly older than those with PD. The progression-free survival and overall survival from the initiation of 1L targeted therapy were significantly longer in patients who discontinued 1L therapy due to AE than in those who discontinued 1L therapy due to PD. The OS from the initiation of second-line targeted therapy was significantly longer in patients who discontinued 1L therapy due to AE than those with PD. Furthermore, AE as a reason for discontinuation of 1L targeted therapy as opposed to PD was independently associated with longer progression-free survival and OS as determined by multivariate analysis. CONCLUSIONS Our findings suggest that mRCC patients who discontinue 1L therapy due to AEs have a more favorable prognosis than those who discontinue therapy due to PD.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kiyoshi Takahara
- Department of Urology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Toshiki Ito
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kent Kanao
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan; Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Ikuo Kobayashi
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ryoichi Shiroki
- Department of Urology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Sumitomo
- Department of Urology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
35
|
Anti-angiogenesis and Immunotherapy: Novel Paradigms to Envision Tailored Approaches in Renal Cell-Carcinoma. J Clin Med 2020; 9:jcm9051594. [PMID: 32456352 PMCID: PMC7291047 DOI: 10.3390/jcm9051594] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Although decision making strategy based on clinico-histopathological criteria is well established, renal cell carcinoma (RCC) represents a spectrum of biological ecosystems characterized by distinct genetic and molecular alterations, diverse clinical courses and potential specific therapeutic vulnerabilities. Given the plethora of drugs available, the subtype-tailored treatment to RCC subtype holds the potential to improve patient outcome, shrinking treatment-related morbidity and cost. The emerging knowledge of the molecular taxonomy of RCC is evolving, whilst the antiangiogenic and immunotherapy landscape maintains and reinforces their potential. Although several prognostic factors of survival in patients with RCC have been described, no reliable predictive biomarkers of treatment individual sensitivity or resistance have been identified. In this review, we summarize the available evidence able to prompt more precise and individualized patient selection in well-designed clinical trials, covering the unmet need of medical choices in the era of next-generation anti-angiogenesis and immunotherapy.
Collapse
|