1
|
Veas Rodriguez J, Piñol M, Sorolla MA, Parisi E, Sorolla A, Santacana M, Ruiz M, Parra G, Bernabeu M, Iglesias M, Aracil C, Escartin A, Vilardell F, Matias-Guiu X, Salud A, Montal R. Comprehensive immunophenotyping of gastric adenocarcinoma identifies an inflamed class of tumors amenable to immunotherapies. J Immunother Cancer 2025; 13:e010024. [PMID: 40102027 PMCID: PMC11927434 DOI: 10.1136/jitc-2024-010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Gastric adenocarcinoma (GAC) imposes a considerable global health burden. Molecular profiling of GAC from the tumor microenvironment perspective through a multi-omics approach is eagerly awaited in order to allow a more precise application of novel therapies in the near future. METHODS To better understand the tumor-immune interface of GAC, we identified an internal cohort of 82 patients that allowed an integrative molecular analysis including mutational profiling by whole-exome sequencing, RNA gene expression of 770 genes associated with immune response, and multiplex protein expression at spatial resolution of 34 immuno-oncology targets at different compartments (tumorous cells and immune cells). Molecular findings were validated in 595 GAC from the TCGA and ACRG external cohorts with available multiomics data. Prediction of response to immunotherapies of the discovered immunophenotypes was assessed in 1039 patients with cancer from external cohorts with available transcriptome data. RESULTS Unsupervised clustering by gene expression identified a subgroup of GAC that includes 52% of the tumors, the so-called Inflamed class, characterized by high tumor immunogenicity and cytotoxicity, particularly in the tumor center at protein level, with enrichment of PIK3CA and ARID1A mutations and increased presence of exhausted CD8+ T cells as well as co-inhibitory receptors such as PD1, CTLA4, LAG3, and TIGIT. The remaining 48% of tumors were called non-inflamed based on the observed exclusion of T cell infiltration, with an overexpression of VEGFA and higher presence of TP53 mutations, resulting in a worse clinical outcome. A 10-gene RNA signature was developed for the identification of tumors belonging to these classes, demonstrating in evaluated datasets comparable clinical utility in predicting response to current immunotherapies when tested against other published gene signatures. CONCLUSIONS Comprehensive immunophenotyping of GAC identifies an inflamed class of tumors that complements previously proposed tumor-based molecular clusters. Such findings may provide the rationale for exploring novel immunotherapeutic approaches for biomarker-enriched populations in order to improve GAC patient's survival.
Collapse
Affiliation(s)
- Joel Veas Rodriguez
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Miquel Piñol
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Alba Sorolla
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Eva Parisi
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Anabel Sorolla
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Santacana
- Scientific and Technical Service of Immunohistochemistry, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Maria Ruiz
- Scientific and Technical Service of Biobank, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Genís Parra
- CNAG-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mario Bernabeu
- CNAG-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Hospital del Mar, University Pompeu Fabra, Hospital del Mar Research Institute, CIBERONC, Barcelona, Spain
| | - Carles Aracil
- Department of Gastroenterology, Clinical and Experimental Research in Digestive and Hematological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Alfredo Escartin
- Department of Surgery, Experimental Surgery Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Felip Vilardell
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, Oncological Pathology Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Antonieta Salud
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| | - Robert Montal
- Department of Medical Oncology, Cancer Biomarkers Research Group, Hospital Universitari Arnau de Vilanova - IRBLleida, Lleida, Spain
| |
Collapse
|
2
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Nagatani Y, Kiyota N, Imamura Y, Koyama T, Funakoshi Y, Komatsu M, Itoh T, Teshima M, Nibu KI, Sakai K, Nishio K, Shimomura M, Nakatsura T, Ikarashi D, Nakayama T, Kitano S, Minami H. Different characteristics of the tumor immune microenvironment among subtypes of salivary gland cancer. Asia Pac J Clin Oncol 2024; 20:779-788. [PMID: 39233454 DOI: 10.1111/ajco.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
AIM Although immune checkpoint inhibitors (ICPi) for salivary gland cancer (SGC) have been investigated in clinical trials, details of the tumor immune microenvironment (TIME) remain unclear. This research aimed to elucidate the TIME of SGC and its relationship with tumor mutation burden (TMB) and to explore the rationale for the applicability of ICPi. MATERIALS AND METHODS We selected five pathological types, namely adenoid cystic carcinoma (ACC); adenocarcinoma, not otherwise specified (ANOS); salivary duct carcinoma (SDC); and low/high-grade mucoepidermoid carcinoma (MEClow/high). We investigated the TIME and TMB of each pathological type. TIME was evaluated by multiplexed fluorescent immunohistochemistry. TMB was measured by next-generation sequencing. RESULTS ACC and MEChigh showed the lowest and highest infiltration of immune effector and suppressor cells in both tumor and stroma. ANOS, SDC, and MEClow showed modest infiltration of immune effector cells in tumors. Correlation analysis showed a positive correlation between CD3+CD8+ T cells in tumor and TMB (r = 0.647). CD3+CD8+ T cells in tumors showed a positive correlation with programmed cell death-ligand 1 expression in tumor cells (r = 0.513) and a weak positive correlation with CD3+CD4+Foxp3+ cells in tumors (r = 0.399). However, no correlation was observed between CD3+CD8+ T cells and CD204+ cells in tumors (r = -0.049). CONCLUSION The TIME of ACC was the so-called immune desert type, which may explain the mechanisms of the poor response to ICPi in previous clinical trials. On the other hand, MEChigh was the immune-inflamed type, and this may support the rationale of ICPi for this pathological subtype.
Collapse
Affiliation(s)
- Yoshiaki Nagatani
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kobe University Hospital Cancer Center, Kobe, Japan
| | - Yoshinori Imamura
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Koyama
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Komatsu
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Teshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Department of Otorhinolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Daiki Ikarashi
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takayuki Nakayama
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Center for Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kobe University Hospital Cancer Center, Kobe, Japan
| |
Collapse
|
4
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Advancements in immunotherapy for advanced esophageal squamous cell carcinoma: a comprehensive review of current strategies and future directions. Expert Rev Clin Immunol 2024; 20:971-984. [PMID: 38884604 DOI: 10.1080/1744666x.2024.2368194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Esophageal cancer (EC), particularly esophageal squamous cell carcinoma (ESCC), is characterized by high incidence and poor prognosis worldwide, necessitating novel therapeutic approaches like immunotherapy. This review explores the impact of immune checkpoint inhibitors (ICIs) on ESCC, especially focusing on PD-1/PD-L1 and CTLA-4 inhibitors. Our literature search, conducted across databases including PubMed, Web of Science, and EMBASE, from January 2010 to December 2023, aimed at identifying advancements, challenges, and future directions in the use of immunotherapy for ESCC. AREAS COVERED We provide a detailed analysis of clinical trials evaluating the efficacy of ICIs as monotherapy and in combination with chemotherapy, radiotherapy, and targeted therapy for locally advanced ESCC. Our findings highlight the significant survival benefits offered by ICIs, albeit with varying efficacy across patient populations, emphasizing the need for precise biomarkers to tailor treatment strategies. EXPERT OPINION The integration of immunotherapy into the ESCC treatment paradigm represents a significant shift, improving survival outcomes. Future research should focus on optimizing combination therapies and novel immunotherapeutic agents, incorporating genetic and tumor microenvironment analyses to enhance patient selection and treatment efficacy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
5
|
Jiang Z, Zhu M, Zhang L, Cui H, Jiang R, Yang Y. Antitumor immunity and prognosis value elicited by FAT3 and LRP1B co-mutation in endometrial cancer. Gynecol Oncol 2024; 187:1-11. [PMID: 38696842 DOI: 10.1016/j.ygyno.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE FAT3 and LRP1B are two tumor suppressor genes with high mutation frequency in multiple cancer types, we sought to investigate the prognostic and immunological significance of these two genes in EC. METHODS Based on a cohort of 502 EC samples, we conducted a comprehensive analysis of its multidimensional data types including genomic, transcriptomic, and clinical information, the potential impact of FAT3 and LRP1B co-mutation on antitumor immune response and prognosis were systematically discussed. RESULTS We observed that FAT3 and LRP1B co-mutation was not only defined a dataset with prominently increased TMB, decreased tumor aneuploidy, and specially enriched in MSI-H subtype, but also manifested increased expression of immune-related markers, especially exclusive upregulation of PD-L1 levels and higher PD-L1+/CD8A+ proportion. Further analysis focused on lymphocyte infiltration and pathway enrichment explored the immune cell composition of the microenvironment and underlying molecular mechanisms affecting tumor development. Furthermore, EC patients with FAT3 and LRP1B co-mutation possessed significantly prolonged PFS and OS, and the co-mutation status was proved to be an independent prognostic factor. And a nomogram with high predictive performance was constructed by incorporating co-mutation with clinical features. More strikingly, the prognosis of MSI-H patients in EC with co-mutation was significantly improved, and their survival reached a level consistent with the POLE subtype. CONCLUSIONS In endometrial cancer, co-mutation of FAT3 and LRP1B not only leads to activation of the immune state, but also represents a subgroup with an improved prognosis, particularly in the MSI-H subtype.
Collapse
Affiliation(s)
- Zhansheng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, China.
| | - Mingyu Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Lu Zhang
- Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Haiyan Cui
- Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Center for Precision Cancer Medicine & Translational Research, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, China.
| | - Yanfang Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, China; Department of the second breast cancer, Tianjin Medical University Cancer Institute and Hospital, China.
| |
Collapse
|
6
|
Jenke R, Oliinyk D, Zenz T, Körfer J, Schäker-Hübner L, Hansen FK, Lordick F, Meier-Rosar F, Aigner A, Büch T. HDAC inhibitors activate lipid peroxidation and ferroptosis in gastric cancer. Biochem Pharmacol 2024; 225:116257. [PMID: 38705532 DOI: 10.1016/j.bcp.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Denys Oliinyk
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Tamara Zenz
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - Justus Körfer
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; University Hospital Leipzig, Institute for Anatomy, Leipzig, Germany
| | - Linda Schäker-Hübner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Finn K Hansen
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Florian Meier-Rosar
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Achim Aigner
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany.
| | - Thomas Büch
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| |
Collapse
|
7
|
Mitrea DA, Froicu EM, Prenen H, Gambacorta MA, Span PN, Poortmans P. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review. Crit Rev Oncol Hematol 2024; 199:104381. [PMID: 38735504 DOI: 10.1016/j.critrevonc.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION AND PURPOSE With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.
Collapse
Affiliation(s)
- Diana A Mitrea
- Department of Radiation Oncology, Centre Antoine-Lacassagne, 33 Av. de Valombrose, Nice 06100, France.
| | - Eliza M Froicu
- Department of Medical Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Hans Prenen
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Maria A Gambacorta
- Department of Radiation Oncology Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Wilrijk-Antwerp, Belgium
| |
Collapse
|
8
|
Ciavattone NG, Guan N, Farfel A, Stauff J, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Evaluating immunotherapeutic outcomes in triple-negative breast cancer with a cholesterol radiotracer in mice. JCI Insight 2024; 9:e175320. [PMID: 38502228 PMCID: PMC11141879 DOI: 10.1172/jci.insight.175320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary D Luker
- Department of Radiology, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Padonou F, Vanhulst T, Langouo-Fontsa MD. Can we yet use tertiary lymphoid structures as predictive biomarkers for immunotherapy response in melanoma? Curr Opin Oncol 2024; 36:63-68. [PMID: 38441065 DOI: 10.1097/cco.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the potential of tertiary lymphoid structures (TLS) as predictive biomarkers in the response to immunotherapy for melanoma patients. RECENT FINDINGS The significance of TLS as indicators predicting immunotherapy response becomes particularly pronounced. Melanoma, renowned for its aggressive characteristics, has undergone revolutionary transformations in treatment through immunotherapeutic interventions. Investigations have unveiled a compelling correlation between the presence of TLS in the melanoma tumor microenvironment and favorable responses to immunotherapy. These responses, characterized by heightened survival rates and improved clinical outcomes, imply that TLS might be pivotal in tailoring more efficient and personalized treatments for individuals with melanoma. The ongoing discourse regarding TLS as a predictive biomarker underscores the need for a meticulous examination of its potential in guiding clinical decisions and optimizing therapeutic strategies. SUMMARY TLS show great promises as potential biomarkers to melanoma patient's outcomes in ICI treatment; however, more studies are needed to understand their mechanisms of actions and the long-term impact of their functionality.
Collapse
Affiliation(s)
- Francine Padonou
- Molecular Immunology Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels (Anderlecht), Belgium
| | | | | |
Collapse
|
10
|
Huang Q, Liu Z, Yu Y, Rong Z, Wang P, Wang S, Wu H, Yan X, Cho WC, Mu T, Li J, Zhao J, Qiu M, Hou Y, Li X. Prediction of response to neoadjuvant chemo-immunotherapy in patients with esophageal squamous cell carcinoma by a rapid breath test. Br J Cancer 2024; 130:694-700. [PMID: 38177659 PMCID: PMC10876947 DOI: 10.1038/s41416-023-02547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.
Collapse
Affiliation(s)
- Qi Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Yipei Yu
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwei Rong
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiang Yan
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Teng Mu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jilun Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jia Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China.
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
11
|
Ansari A, Ray SK, Sharma M, Rawal R, Singh P. Tumor Mutational Burden as a Biomarker of Immunotherapy Response: An Immunogram Approach in Onco-immunology. Curr Mol Med 2024; 24:1461-1469. [PMID: 39420726 DOI: 10.2174/0115665240266906231024111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment by allowing T cells to reactivate. Tumor mutational burden (TMB) is a biomarker that has emerged as a viable diagnostic for locating patients who would benefit from immunotherapy in particular cancer types. Greater neo-antigens mean more opportunities for T cell identification, and TMB is clinically linked to better immune checkpoint inhibitors. Tumor foreignness is a cancer immunogram, and TMB can be used as a substitute for foreignness. The role of TMB analysis as an independent predictor of immunotherapy response in the context of immune checkpoint inhibitor medications is the subject of this mini-review.
Collapse
Affiliation(s)
- Afzal Ansari
- ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
- Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, India
| | - Suman Kumar Ray
- ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Gujarat, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| |
Collapse
|
12
|
Hou Y, Li X, Yang Y, Shi H, Wang S, Gao M. Serum cytokines and neutrophil-to-lymphocyte ratio as predictive biomarkers of benefit from PD-1 inhibitors in gastric cancer. Front Immunol 2023; 14:1274431. [PMID: 38022654 PMCID: PMC10643875 DOI: 10.3389/fimmu.2023.1274431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunotherapy is significantly revolutionizing cancer treatment and demonstrating promising efficacy in gastric cancer (GC) patients. However, only a subset of patients could derive benefits from targeted monoclonal antibody therapy against programmed death receptor 1 (PD-1). This study aims to identify suitable serum cytokines and blood cell ratios as predictive biomarkers to aid in the selection of GC patients likely to benefit from PD-1 inhibitors. Materials and methods This retrospective study included 41 GC patients who received PD-1 inhibitors combined with chemotherapy, 36 GC patients treated solely with chemotherapy, and 33 healthy controls. The study assessed the levels of seven cytokines: interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and various inflammatory markers, including the neutrophil-to-lymphocyte ratio (NLR), total lymphocyte count (TLC), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR). Measurements were obtained using the inpatient system. Univariate and multivariate Cox regression analyses were performed to evaluate the predictive significance of these hematologic parameters for clinical outcomes. Results Levels of IL-6, IL-10, TNF-α, NLR, and PLR were significantly elevated in GC patients compared to healthy controls, while TLC and LMR were higher in the control group. Among the 41 patients receiving PD-1 inhibitors and chemotherapy, baseline IL-2 was associated with OS and PFS. Additionally, IL-6 and IL-17A correlated with OS, while NLR was linked to PFS (all P<0.05). These factors were identified as independent prognostic indicators in both univariate and multivariate analyses. Furthermore, almost all cytokine levels increased following the initiation of PD-1 inhibitor treatment. Conclusions The introduction of PD-1 inhibitors alongside chemotherapy in GC impacts serum cytokine levels. IL-2, IL-6, IL-17A, and NLR exhibit potential as reliable circulating predictive biomarkers for identifying patients who may benefit from PD-1 inhibitors combined with chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Ciavattone NG, Guan J, Farfel A, Desmond T, Viglianti BL, Scott PJ, Brooks AF, Luker GD. Predicting efficacy of immunotherapy in mice with triple negative breast cancer using a cholesterol PET radiotracer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560577. [PMID: 37873149 PMCID: PMC10592945 DOI: 10.1101/2023.10.02.560577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.
Collapse
|
14
|
Dadgar N, Edlukudige Keshava V, Raj MS, Wagner PL. The Influence of the Microbiome on Immunotherapy for Gastroesophageal Cancer. Cancers (Basel) 2023; 15:4426. [PMID: 37760397 PMCID: PMC10526145 DOI: 10.3390/cancers15184426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has shown promise as a treatment option for gastroesophageal cancer, but its effectiveness is limited in many patients due to the immunosuppressive tumor microenvironment (TME) commonly found in gastrointestinal tumors. This paper explores the impact of the microbiome on the TME and immunotherapy outcomes in gastroesophageal cancer. The microbiome, comprising microorganisms within the gastrointestinal tract, as well as within malignant tissue, plays a crucial role in modulating immune responses and tumor development. Dysbiosis and reduced microbial diversity are associated with poor response rates and treatment resistance, while specific microbial profiles correlate with improved outcomes. Understanding the complex interactions between the microbiome, tumor biology, and immunotherapy is crucial for developing targeted interventions. Microbiome-based biomarkers may enable personalized treatment approaches and prediction of patient response. Interventions targeting the microbiome, such as microbiota-based therapeutics and dietary modifications, offer the potential for reshaping the gut microbiota and creating a favorable TME that enhances immunotherapy efficacy. Further research is needed to reveal the underlying mechanisms, and large-scale clinical trials will be required to validate the efficacy of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | | | - Moses S. Raj
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.E.K.); (M.S.R.)
| |
Collapse
|
15
|
Ji S, Zhao C, Liu R, Wang Y, Yang Q, Yang H, Xu J. A combined immune prognostic index in esophageal squamous cell carcinoma patients treated with anti-PD-1 therapy. Ther Adv Med Oncol 2023; 15:17588359231174869. [PMID: 37333902 PMCID: PMC10272641 DOI: 10.1177/17588359231174869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Background Only a fraction of patients with esophageal squamous cell carcinoma (ESCC) show tumor responses to anti-programmed cell death protein 1 (PD-1) therapy. The predictive value of single biomarkers for prognosis is limited, and a more comprehensive approach that incorporates multiple factors may improve the prognostic prediction. Here, we conducted a retrospective study to develop a combined immune prognostic index (CIPI) for predicting clinical outcomes of ESCC patients treated with anti-PD-1 therapy. Design and methods We performed a pooled analysis of two multicenter clinical trials comparing immunotherapy versus chemotherapy as second-line treatment in ESCC patients. The discovery cohort comprised patients who received anti-PD-1 inhibitors (N = 322) and the control cohort comprised patients who received chemotherapy (N = 307). The validation cohort included patients with pan-cancers treated with PD-1/programmed cell death ligand-1 inhibitors, except for ESCC (N = 110). Multivariable Cox proportional hazard regression was used to assess the prediction value of variables on survival. Results In the discovery cohort, neutrophil-to-lymphocyte ratio, serum albumin, and liver metastasis were independently associated with overall survival (OS) and progression-free survival (PFS). We integrated the three variables into CIPI and found that CIPI could categorize patients into four subgroups (CIPI 0 to CIPI 3) with distinct OS, PFS, and tumor responses. The CIPI was also predictive of clinical outcomes in the validation cohort, but not in the control cohort. Furthermore, patients with CIPI 0, CIPI 1, and CIPI 2 were more likely to benefit from anti-PD-1 monotherapy than chemotherapy, while patients with CIPI 3 did not benefit from anti-PD-1 monotherapy over chemotherapy. Conclusions The CIPI score was a robust biomarker for prognostic prediction in ESCC patients treated with anti-PD-1 therapy and was immunotherapy specific. The CIPI score may also be applicable for prognostic prediction in pan-cancers.
Collapse
Affiliation(s)
- Shoujian Ji
- Department of Gastroenterology, The 960 Hospital of the PLA, Jinan, China
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chuanhua Zhao
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rongrui Liu
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan Wang
- Innovent Biologics, Inc., Suzhou, China
| | - Qing Yang
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, China
| | - Hua Yang
- Department of Outpatient, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Street, Haidian District, Beijing 100853, China
| | - Jianming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Street, Haidian District, Beijing 100853, China
| |
Collapse
|
16
|
Abboud K, Umoru G, Esmail A, Abudayyeh A, Murakami N, Al-Shamsi HO, Javle M, Saharia A, Connor AA, Kodali S, Ghobrial RM, Abdelrahim M. Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology. Cancers (Basel) 2023; 15:1433. [PMID: 36900226 PMCID: PMC10000896 DOI: 10.3390/cancers15051433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The rationale for administering immune checkpoint inhibitors (ICIs) in the adjuvant setting is to eradicate micro-metastases and, ultimately, prolong survival. Thus far, clinical trials have demonstrated that 1-year adjuvant courses of ICIs reduce the risk of recurrence in melanoma, urothelial cancer, renal cell carcinoma, non-small cell lung cancer, and esophageal and gastroesophageal junction cancers. Overall survival benefit has been shown in melanoma while survival data are still not mature in other malignancies. Emerging data also show the feasibility of utilizing ICIs in the peri-transplant setting for hepatobiliary malignancies. While ICIs are generally well-tolerated, the development of chronic immune-related adverse events, typically endocrinopathies or neurotoxicities, as well as delayed immune-related adverse events, warrants further scrutiny regarding the optimal duration of adjuvant therapy and requires a thorough risk-benefit determination. The advent of blood-based, dynamic biomarkers such as circulating tumor DNA (ctDNA) can help detect minimal residual disease and identify the subset of patients who would likely benefit from adjuvant treatment. In addition, the characterization of tumor-infiltrating lymphocytes, neutrophil-to-lymphocyte ratio, and ctDNA-adjusted blood tumor mutation burden (bTMB) has also shown promise in predicting response to immunotherapy. Until additional, prospective studies delineate the magnitude of overall survival benefit and validate the use of predictive biomarkers, a tailored, patient-centered approach to adjuvant ICIs that includes extensive patient counseling on potentially irreversible adverse effects should be routinely incorporated into clinical practice.
Collapse
Affiliation(s)
- Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Abdullah Esmail
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoka Murakami
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Humaid O. Al-Shamsi
- Department of Oncology, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi P.O. Box 92510, United Arab Emirates
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashish Saharia
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Ashton A. Connor
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Sudha Kodali
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Rafik M. Ghobrial
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX 77030, USA
- Cockrell Center of Advanced Therapeutics Phase I Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY 14853, USA
| |
Collapse
|
17
|
Clinical relevance of PD-1 positive CD8 T-cells in gastric cancer. Gastric Cancer 2023; 26:393-404. [PMID: 36781556 PMCID: PMC10115710 DOI: 10.1007/s10120-023-01364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND We evaluated the relevance of PD-1+CD8+ T-cells in gastric cancer (GC) including prognostic significance, association with chemotherapy and immunotherapy sensitivity and correlations with the tumor microenvironment (TME). METHODS Discovery cohort: GC samples were evaluated for AE1/3, CD8, PD-1, Ki-67 and Granzyme-B expression with fluorescence-based multiplex immunohistochemistry (mIHC). Validation cohorts: we analyzed bulk RNAseq GC datasets from TCGA, the "3G" chemotherapy trial and an immunotherapy phase 2 trial. The cox proportional hazards model was used to identify factors that influenced overall survival (OS). To study the TME, we analyzed single-cell RNAseq performed on GCs. RESULTS In the discovery cohort of 350 GCs, increased PD-1 expression of CD8 T-cells was prognostic for OS (HR 0.822, p = 0.042). PD-1 expression in CD8 T-cells highly correlated with cytolytic [Granzyme-B+] (r = 0.714, p < 0.001) and proliferative [Ki-67+] (r = 0.798, p < 0.001) activity. Analysis of bulk RNAseq datasets showed tumors with high PD-1 and CD8A expression levels had improved OS when treated with immunotherapy (HR 0.117, p = 0.036) and chemotherapy (HR 0.475, p = 0.017). Analysis of an scRNAseq dataset of 152,423 cells from 40 GCs revealed that T-cell and NK-cell proportions were higher (24% vs 18% and 19% vs 15%, p < 0.0001), while macrophage proportions were lower (7% vs 11%, p < 0.0001) in CD8PD-1high compared to CD8PD-1low tumors. CONCLUSION This is one of the largest GC cohorts of mIHC combined with analysis of multiple datasets providing orthogonal validation of the clinical relevance of PD-1+CD8+ T-cells being associated with improved OS. CD8PD-1high tumors have distinct features of an immunologically active, T-cell inflamed TME.
Collapse
|
18
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
19
|
Yeo BSY, Song HJJMD, Soong YL, Chua MLK, Ang MK, Lim DWT, See A, Lim CM. Efficacy of Anti-PD1 Blockade in Treating Recurrent or Metastatic Nasopharyngeal Cancer: A Systematic Review and Meta-analysis. Oral Oncol 2023; 136:106242. [PMID: 36413976 DOI: 10.1016/j.oraloncology.2022.106242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Anti-PD1 antibody has emerged as a promising immunotherapeutic option in patients with recurrent and/or metastatic nasopharyngeal cancers (RM-NPC). We aim to summarise existing evidence on the use of anti-PD1 antibodies in the treatment of these patients and compare its effectiveness with standard-of-care palliative chemotherapy. Our secondary aim is to explore potential combination therapies with anti-PD1 antibodies. MATERIALS AND METHODS PubMed, Embase and Cochrane databases were systematically searched for studies comparing the efficacy of various anti-PD1 antibodies in the treatment of RM-NPC (either as first or second line treatment) from inception to 2 September 2022. Meta-analyses were performed to correlate the various anti-PD1 antibodies with primary endpoints including overall response rate disease control rate (DCR), progression free survival (PFS) and overall survival (OS). RESULTS Eighteen studies with 1,887 patients met the inclusion criteria. The use of anti-PD1 antibody monotherapy as second-line treatment of RM-NPC revealed an ORR of 23 % (95 % CI = 19 %-28 %) and DCR of 51 % (95 % CI = 42 %-60 %). The ORRs for first-line as well as a combination of first and second-line treatments were 21 % (95 % CI = 15 % - 30 %) and 22 % (95 % CI = 6 % - 56 %, I2 = 75 %) respectively. The 12-month PFS and 12-month OS was also 27 % (95 % CI = 21 %-33 %) and 63 % (95 % CI = 53 %-72 %) respectively. ORR was much higher at 73 % (95 % CI = 32 %-94 %) when anti-PD1 antibodies were combined with Gemcitabine plus Cisplatin. CONCLUSION Anti-PD1 antibody demonstrate considerable activity in previously treated RM-NPC patients. Combining anti-PD1 antibodies with gemcitabine and cisplatin chemotherapy enhanced the efficacy of treatment.
Collapse
Affiliation(s)
- Brian Sheng Yep Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, 117597, Singapore
| | | | - Yoke Lim Soong
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Cres, 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Cres, 169610, Singapore
| | - Mei-Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Cres, 169610, Singapore
| | - Darren Wan Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Cres, 169610, Singapore
| | - Anna See
- Department of Otorhinolaryngology-Head and Neck Surgery, Singapore General Hospital, Outram Road, 169608, Singapore; Academic Clinical Program, Division of Surgery and Surgical Oncology, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Chwee Ming Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Singapore General Hospital, Outram Road, 169608, Singapore; Academic Clinical Program, Division of Surgery and Surgical Oncology, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
20
|
Horiba MN, Casak SJ, Mishra-Kalyani PS, Roy P, Beaver JA, Pazdur R, Kluetz PG, Lemery SJ, Fashoyin-Aje LA. FDA Approval Summary: Nivolumab for the Adjuvant Treatment of Adults with Completely Resected Esophageal/Gastroesophageal Junction Cancer and Residual Pathologic Disease. Clin Cancer Res 2022; 28:5244-5248. [PMID: 35960160 PMCID: PMC9771915 DOI: 10.1158/1078-0432.ccr-22-0617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
The FDA approved nivolumab on May 20, 2021, for the adjuvant treatment of completely resected (negative margins) esophageal or gastroesophageal junction cancer (EC/GEJC) in patients who had residual pathologic disease following chemoradiotherapy. The approval was based on data from the double-blind CheckMate 577 trial, which randomly allocated patients to receive nivolumab or placebo. Disease-free survival (DFS) was the primary endpoint. At the time of the final DFS analysis and the prespecified interim overall survival (OS) analysis, the estimated median DFS was 22.4 months [95% confidence interval (CI), 16.6-34.0] in the nivolumab arm versus 11.0 months (95% CI, 8.3-14.3) in the placebo arm, with an HR of 0.69 (95% CI, 0.56-0.85; two-sided P value = 0.0003). An unblinded review of OS did not indicate a detrimental effect on survival. Adverse reactions occurring in ≥20% of patients receiving nivolumab were fatigue/asthenia, diarrhea, nausea, rash, musculoskeletal pain, and cough. Approval of nivolumab is likely to change the treatment paradigm for the adjuvant treatment of patients with completely resected (negative margins) EC/GEJC who have residual pathologic disease following chemoradiotherapy based on the study results and favorable risk:benefit of nivolumab administration.
Collapse
Affiliation(s)
- M. Naomi Horiba
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Sandra J. Casak
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Pourab Roy
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Julia A. Beaver
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.,Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Richard Pazdur
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.,Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Paul G. Kluetz
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland.,Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Steven J. Lemery
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Lola A. Fashoyin-Aje
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
21
|
Yang Y, Wang F. Research trends on anti-PD-1/PD-L1 immunotherapy for esophageal cancer: A bibliometric analysis. Front Oncol 2022; 12:983892. [DOI: 10.3389/fonc.2022.983892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectivesThe study aims to summarize publication characteristics of anti-programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) immunotherapy for esophageal cancer and create scientific maps to explore hotspots and emerging trends with bibliometric methods.MethodsThe publications between 2012 and 2021 were retrieved from the Web of Science Core Collection (WoSCC) on June 20, 2022. Bibliometric tools including HistCite, VOSviewer, and CiteSpace were used for statistical analysis. Data on the trend of the annual output, countries/regions, institutions, journals, authors, subject categories, keywords, and co-cited references were presented in this study.ResultsA total of 552 publications written by 3,623 authors of 872 institutions, 44 countries/regions in 250 journals were included in the bibliometric study. China, USA and Japan were the key countries in this field. Kato Ken, Bang Yung-Jue, Frontiers in Oncology, Journal of Clinical Oncology and Natl Canc Ctr were the top 1 productive author, co-cited author, productive journal, co-cited journal and prolific institution, respectively. The top 4 most present keywords were esophageal cancer, immunotherapy, esophageal squamous cell carcinoma and PD-L1. Neoadjuvant chemotherapy, response, PD-1 blockade and CD8+ T cell were four latest research frontiers. The keywords reflected the progress from PD-1/PD-L1 expression to the clinical application of PD-1/PD-L1 inhibitors. The current researches mainly focus on neoadjuvant immunotherapy for esophageal cancer and development of biomarkers. Further research is warranted to determine effective predictive biomarkers or models, illustrate the molecular mechanism of combined treatment, and construct the optimal therapeutic strategy.ConclusionsThis study visually analyzed the global trend and hotspots of anti-PD-1/PD-L1 immunotherapy for esophageal cancer over the past decade. The results could guide scientists to comprehensively understand the global frontiers and determine future directions.
Collapse
|
22
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Here, we reviewed the recent breakthroughs in the understanding of predictive biomarkers for immune checkpoint inhibitors (ICI) treatment. RECENT FINDINGS ICI have revolutionized cancer therapy enabling novel therapeutic indications in multiple tumor types and increasing the probability of survival in patients with metastatic disease. However, in every considered tumor types only a minority of patients exhibits clear and lasting benefice from ICI treatment, and due to their unique mechanism of action treatment with ICI is also associated with acute clinical toxicities called immune related adverse events (irAEs) that can be life threatening. The approval of the first ICI drug has prompted many exploratory strategies for a variety of biomarkers and have shown that several factors might affect the response to ICI treatment, including tumors intrinsic factors, tumor microenvironment and tumor extrinsic or systemic factor. Currently, only three biomarkers programmed death-ligand 1 (PD-L1), tumor microenvironment and microsatellite instability had the US Food and Drug Administration-approbation with some limitations. SUMMARY The establishment of valid predictive biomarkers of ICI sensitivity has become a priority to guide patient treatment to maximize the chance of benefit and prevent unnecessary toxicity.
Collapse
|
24
|
Sundar R, Huang KK, Kumar V, Ramnarayanan K, Demircioglu D, Her Z, Ong X, Bin Adam Isa ZF, Xing M, Tan ALK, Tai DWM, Choo SP, Zhai W, Lim JQ, Das Thakur M, Molinero L, Cha E, Fasso M, Niger M, Pietrantonio F, Lee J, Jeyasekharan AD, Qamra A, Patnala R, Fabritius A, De Simone M, Yeong J, Ng CCY, Rha SY, Narita Y, Muro K, Guo YA, Skanderup AJ, So JBY, Yong WP, Chen Q, Göke J, Tan P. Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition. Gut 2022; 71:1277-1288. [PMID: 34433583 PMCID: PMC9185816 DOI: 10.1136/gutjnl-2021-324420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumour evolution and therapeutic response. We aimed to study the regulation of the tumour immune microenvironment through epigenetic alternate promoter use in gastric cancer and to expand our findings to other gastrointestinal tumours. DESIGN Alternate promoter burden (APB) was quantified using a novel bioinformatic algorithm (proActiv) to infer promoter activity from short-read RNA sequencing and samples categorised into APBhigh, APBint and APBlow. Single-cell RNA sequencing was performed to analyse the intratumour immune microenvironment. A humanised mouse cancer in vivo model was used to explore dynamic temporal interactions between tumour kinetics, alternate promoter usage and the human immune system. Multiple cohorts of gastrointestinal tumours treated with immunotherapy were assessed for correlation between APB and treatment outcomes. RESULTS APBhigh gastric cancer tumours expressed decreased levels of T-cell cytolytic activity and exhibited signatures of immune depletion. Single-cell RNAsequencing analysis confirmed distinct immunological populations and lower T-cell proportions in APBhigh tumours. Functional in vivo studies using 'humanised mice' harbouring an active human immune system revealed distinct temporal relationships between APB and tumour growth, with APBhigh tumours having almost no human T-cell infiltration. Analysis of immunotherapy-treated patients with GI cancer confirmed resistance of APBhigh tumours to immune checkpoint inhibition. APBhigh gastric cancer exhibited significantly poorer progression-free survival compared with APBlow (median 55 days vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032). CONCLUSION These findings demonstrate an association between alternate promoter use and the tumour microenvironment, leading to immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie-Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Deniz Demircioglu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zul Fazreen Bin Adam Isa
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Manjie Xing
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Angie Lay-Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre, Singapore,Curie Oncology, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Meghna Das Thakur
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Luciana Molinero
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Edward Cha
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Marcella Fasso
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aditi Qamra
- Statistical Programming and Analytics, Roche Canada, Mississauga, Ontario, Canada,University Health Network, Toronto, Ontario, Canada
| | | | | | | | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | - Jimmy Bok Yan So
- Singapore Gastric Cancer Consortium, Singapore,Department of Surgery, National University Hospital, Singapore,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Singapore Gastric Cancer Consortium, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore .,Singapore Gastric Cancer Consortium, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
To N, Evans RPT, Pearce H, Kamarajah SK, Moss P, Griffiths EA. Current and Future Immunotherapy-Based Treatments for Oesophageal Cancers. Cancers (Basel) 2022; 14:3104. [PMID: 35804876 PMCID: PMC9265112 DOI: 10.3390/cancers14133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Oesophageal cancer is a disease that causes significant morbidity and mortality worldwide, and the prognosis of this condition has hardly improved in the past few years. Standard treatment includes a combination of chemotherapy, radiotherapy and surgery; however, only a proportion of patients go on to treatment intended to cure the disease due to the late presentation of this disease. New treatment options are of utmost importance, and immunotherapy is a new option that has the potential to transform the landscape of this disease. This treatment is developed to act on the changes within the immune system caused by cancer, including checkpoint inhibitors, which have recently shown great promise in the treatment of this disease and have recently been included in the adjuvant treatment of oesophageal cancer in many countries worldwide. This review will outline the mechanisms by which cancer evades the immune system in those diagnosed with oesophageal cancer and will summarize current and ongoing trials that focus on the use of our own immune system to combat disease.
Collapse
Affiliation(s)
- Natalie To
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Richard P. T. Evans
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Sivesh K. Kamarajah
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Ewen A. Griffiths
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
26
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim JW, Na HY, Lee HN. Combination treatment with 17β-estradiol and anti-PD-L1 suppresses MC38 tumor growth by reducing PD-L1 expression and enhancing M1 macrophage population in MC38 colon tumor model. Cancer Lett 2022; 543:215780. [PMID: 35690286 DOI: 10.1016/j.canlet.2022.215780] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
17β-estradiol (E2) is known to have a protective effect in colorectal cancer (CRC); thus, E2 may be effective for cancer immunotherapy in CRC. The aim of this study is to evaluate the effect of combination therapy with E2 and anti-programmed cell death receptor-1 ligand (PD-L1) antibodies, and the effects of sex and estrogen on colon tumor growth, PD-L1 expression, and tumor-associated cell populations in an MC38 colon tumor model. Male mice showed increased MC38 colon tumor growth and PD-L1 expression in tumor sections as well as higher proportion of cancer-associated fibroblasts (CD45-CD31-CD140a+), PD-L1-expressing tumor cells (CD45-CD274+) and tumor-associated macrophages (TAMs) (CD11b+F4/80+CD274+) compared to female mice. E2 treatment prior to MC38 injection significantly reduced these phenomena in male mice. Furthermore, co-treatment with E2 and anti-PD-L1 antibodies significantly inhibited MC38 tumor growth and reduced PD-L1-expressing cells in male mice compared to treatment with either E2 or anti-PD-L1 antibodies alone. Combination treatment with E2 and anti-PD-L1 decreased TAM population (CD11b+F4/80+) in the tumor mass while increasing M1 TMAs (CD11b+F4/80+CD86+). These results suggest that estrogen inhibits MC38 tumor growth by downregulating PD-L1 expression and regulating tumor-associated cell populations. Furthermore, estrogen boosted the effect of anti-PD-L1 antibody in the MC38 tumor model.
Collapse
Affiliation(s)
- Chin-Hee Song
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ryoung Hee Nam
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Soo In Choi
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Jae Young Jang
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Jin Won Kim
- Departments of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Hee Young Na
- Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
27
|
Yan X, Duan H, Ni Y, Zhou Y, Wang X, Qi H, Gong L, Liu H, Tian F, Lu Q, Sun J, Yang E, Zhong D, Wang T, Huang L, Wang J, Chaoyang Wang, Wang Y, Wan Z, Lei J, Zhao J, Jiang T. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: A prospective, single-arm, phase II study (TD-NICE). Int J Surg 2022; 103:106680. [PMID: 35595021 DOI: 10.1016/j.ijsu.2022.106680] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical benefit of neoadjuvant immunotherapy in resectable esophageal squamous cell carcinoma (ESCC). remains unclear. This study evaluated the efficacy and safety of the programmed death 1 (PD-1) inhibitor tislelizumab combined with chemotherapy as neoadjuvant therapy in patients with resectable ESCC. METHODS Treatment-naïve patients were enrolled and eligible patients received 3 cycles of neoadjuvant therapy with tislelizumab, carboplatin, and nab-paclitaxel. The primary endpoint was surgery patients major pathological response (MPR). Subgroup analysis was stratified by tumor downstaging, circumferential resection margin (CRM), PD-ligand 1 (PD-L1) expression, and tumor mutation burden (TMB). Safety was assessed by adverse events (AEs) and postoperative complications. RESULTS Between September 2020 and March 2021, 45 patients were enrolled. Thirty-six (80.0%) of 45 patients underwent surgery, and 29 (80.5%) underwent successful R0 resection. MPR and pathological complete response (pCR) for surgery patients were 72.0% and 50.0%, respectively. Intention to treatment (ITT) patients MPR and PCR were 57.5% and 40%. Downgrading occurred in 75% of 36 patients. MPR and pCR were identified to be associated with tumor downstaging and CRM but not PD-L1 expression or TMB. TPS levels in MPR and pCR group were significantly higher than that in Non-MPR and Non-pCR group, respectively. Treatment-related AEs of grade 3-4 and immune-related AEs occurred in 42.2% and 22.2% of 45 patients, respectively, and postoperative complications occurred in 77.8% of 36 patients. No treatment-related surgical delay or death occurred. No associations between gene mutation and pathological efficacy were observed. CONCLUSIONS Tislelizumab plus chemotherapy as neoadjuvant therapy demonstrates promising antitumor activity for resectable ESCC with high rates of MPR, pCR, and R0 resection, as well as acceptable tolerability.
Collapse
Affiliation(s)
- Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Hongtao Duan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Yongan Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Xiaoping Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Haini Qi
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Li Gong
- Department of Pathology, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Honggang Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Jianyong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Ende Yang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Daixing Zhong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Tao Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Lijun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Chaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Zhiyi Wan
- Genecast Biotechnology Co., Ltd, 88 Danshan Road, Xidong Chuangrong Building, Suite C 1310-1318, Xishan District, Wuxi City, Jiangsu, 214104, China.
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, No.1. Xinsi Road, Xi'an, Shaanxi, China.
| |
Collapse
|
28
|
Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, Ho SWT, Tan ALK, Ishimoto T, Kim G, Shabbir A, Chen Q, Zhang B, Xu S, Lam KP, Lum HYJ, Teh M, Yong WP, So JBY, Tan P. Single-Cell Atlas of Lineage States, Tumor Microenvironment, and Subtype-Specific Expression Programs in Gastric Cancer. Cancer Discov 2022; 12:670-691. [PMID: 34642171 PMCID: PMC9394383 DOI: 10.1158/2159-8290.cd-21-0683] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2 and stage-wise accrual of cancer-associated fibroblast subpopulations marked by high INHBA and FAP coexpression. Single-cell comparisons between patient-derived organoids (PDO) and primary tumors highlighted inter- and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-sequencing cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra- and interpatient lineage states across distinct gastric cancer subtypes. SIGNIFICANCE We profiled gastric malignancies at single-cell resolution and identified increased plasma cell proportions as a novel feature of diffuse-type tumors. We also uncovered distinct cancer-associated fibroblast subtypes with INHBA-FAP-high cell populations as predictors of poor clinical prognosis. Our findings highlight potential origins of deregulated cell states in the gastric tumor ecosystem. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Nisha Padmanabhan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Mayu Koiwa
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Vivien Koh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Shamaine Wei Ting Ho
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Guowei Kim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Asim Shabbir
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore
| | - Biyan Zhang
- Singapore Immunology Network (SIgN), A*STAR, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), A*STAR, Singapore.,Department of Physiology, National University of Singapore, Singapore
| | - Kong-Peng Lam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.,Singapore Immunology Network (SIgN), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Ming Teh
- Department of Pathology, National University Health System, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Corresponding Author: Patrick Tan, Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. Phone: 65-6516-1783; Fax: 65-6221-2402; E-mail:
| |
Collapse
|
29
|
Yang Y, Meng WJ, Wang ZQ. Cancer Stem Cells and the Tumor Microenvironment in Gastric Cancer. Front Oncol 2022; 11:803974. [PMID: 35047411 PMCID: PMC8761735 DOI: 10.3389/fonc.2021.803974] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) remains one of the leading causes of cancer-related death worldwide. Cancer stem cells (CSCs) might be responsible for tumor initiation, relapse, metastasis and treatment resistance of GC. The tumor microenvironment (TME) comprises tumor cells, immune cells, stromal cells and other extracellular components, which plays a pivotal role in tumor progression and therapy resistance. The properties of CSCs are regulated by cells and extracellular matrix components of the TME in some unique manners. This review will summarize current literature regarding the effects of CSCs and TME on the progression and therapy resistance of GC, while emphasizing the potential for developing successful anti-tumor therapy based on targeting the TME and CSCs.
Collapse
Affiliation(s)
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
30
|
Kim HD, Ryu MH, Park YS, Lee SY, Moon M, Kang YK. Insertion-deletion rate is a qualitative aspect of the tumor mutation burden associated with the clinical outcomes of gastric cancer patients treated with nivolumab. Gastric Cancer 2022; 25:226-234. [PMID: 34468871 DOI: 10.1007/s10120-021-01233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aimed to investigate the clinical implications of the tumor mutation burden (TMB) and insertion-deletion (indel) rate in gastric cancer patients treated with nivolumab. METHODS A total of 105 patients with advanced gastric cancer who were treated with nivolumab as third or later line of therapy were included as the study population. The indel rate was defined as the proportion of indels making up the TMB. RESULTS The median age was 58 (32-78 years), and 65 (61.9%) were men. Patients with TMB > 18.03/Mb showed superior progression-free survival (PFS) and overall survival (OS) compared to those with TMB ≤ 18.03/Mb. Patients with a high indel rate (> 40%) had a favorable PFS and OS compared to those with a lower indel rate (≤ 40%) (P = 0.009 and P = 0.007, respectively). The association between a high indel rate and favorable PFS and OS was prominent in a subgroup with TMB > 18.03/Mb (P < 0.001 and P = 0.007 for PFS and OS, respectively), but not in that with TMB ≤ 18.03/Mb. All five patients with deficient-MMR fell into the category of 'TMB > 18.03/Mb with an indel rate of > 40%. TMB ≥ 18.03/Mb with an indel rate of > 40% was independently associated with a favorable PFS (hazard ratio [HR] 0.07, P = 0.012) and OS (HR 0.09, P = 0.023). CONCLUSION TMB and indel rate should be jointly considered to better predict survival outcomes of gastric cancer patients treated with nivolumab. Our findings deserve further investigation and validation in future studies.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Lee
- Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Meesun Moon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
31
|
Sundar R, Liu DHW, Hutchins GGA, Slaney HL, Silva ANS, Oosting J, Hayden JD, Hewitt LC, Ng CCY, Mangalvedhekar A, Ng SB, Tan IBH, Tan P, Grabsch HI. Spatial profiling of gastric cancer patient-matched primary and locoregional metastases reveals principles of tumour dissemination. Gut 2021; 70:1823-1832. [PMID: 33229445 PMCID: PMC8458060 DOI: 10.1136/gutjnl-2020-320805] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Endoscopic mucosal biopsies of primary gastric cancers (GCs) are used to guide diagnosis, biomarker testing and treatment. Spatial intratumoural heterogeneity (ITH) may influence biopsy-derived information. We aimed to study ITH of primary GCs and matched lymph node metastasis (LNmet). DESIGN GC resection samples were annotated to identify primary tumour superficial (PTsup), primary tumour deep (PTdeep) and LNmet subregions. For each subregion, we determined (1) transcriptomic profiles (NanoString 'PanCancer Progression Panel', 770 genes); (2) next-generation sequencing (NGS, 225 gastrointestinal cancer-related genes); (3) DNA copy number profiles by multiplex ligation-dependent probe amplification (MLPA, 16 genes); and (4) histomorphological phenotypes. RESULTS NanoString profiling of 64 GCs revealed no differences between PTsup1 and PTsup2, while 43% of genes were differentially expressed between PTsup versus PTdeep and 38% in PTsup versus LNmet. Only 16% of genes were differently expressed between PTdeep and LNmet. Several genes with therapeutic potential (eg IGF1, PIK3CD and TGFB1) were overexpressed in LNmet and PTdeep compared with PTsup. NGS data revealed orthogonal support of NanoString results with 40% mutations present in PTdeep and/or LNmet, but not in PTsup. Conversely, only 6% of mutations were present in PTsup and were absent in PTdeep and LNmet. MLPA demonstrated significant ITH between subregions and progressive genomic changes from PTsup to PTdeep/LNmet. CONCLUSION In GC, regional lymph node metastases are likely to originate from deeper subregions of the primary tumour. Future clinical trials of novel targeted therapies must consider assessment of deeper subregions of the primary tumour and/or metastases as several therapeutically relevant genes are only mutated, overexpressed or amplified in these regions.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute Singapore, National University Health System, Singapore,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,The N.1 Institute for Health, National University of Singapore, Singapore
| | - Drolaiz HW Liu
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gordon GA Hutchins
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, West Yorkshire, UK
| | - Hayley L Slaney
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, West Yorkshire, UK
| | - Arnaldo NS Silva
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, West Yorkshire, UK,Department of Surgery, University of Cambridge, Cambridge University Hospitals, Addenbrookes, Cambridge, UK
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Jeremy D Hayden
- Department of Upper Gastrointestinal Surgery, Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Lindsay C Hewitt
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cedric CY Ng
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre Singapore, Singapore
| | | | - Sarah B Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Iain BH Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore,Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Heike I Grabsch
- Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands .,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, West Yorkshire, UK
| |
Collapse
|
32
|
Puhr HC, Preusser M, Ilhan-Mutlu A. Immunotherapy for Esophageal Cancers: What Is Practice Changing in 2021? Cancers (Basel) 2021; 13:4632. [PMID: 34572859 PMCID: PMC8472767 DOI: 10.3390/cancers13184632] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The prognosis of advanced esophageal cancer is dismal, and treatment options are limited. Since the first promising data on second-line treatment with checkpoint inhibitors in esophageal cancer patients were published, immunotherapy was surmised to change the face of modern cancer treatment. Recently, several studies have found this to be true, as the checkpoint inhibitors nivolumab and pembrolizumab have achieved revolutionary response rates in advanced as well as resectable settings in esophageal cancer patients. Although the current results of large clinical trials promise high efficacy with tolerable toxicity, desirable survival rates, and sustained quality of life, some concerns remain. This review aims to summarize the novel clinical data on immunotherapeutic agents for esophageal cancer and provide a critical view of potential restrictions for the implementation of these therapies for unselected patient populations.
Collapse
Affiliation(s)
- Hannah Christina Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (M.P.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (M.P.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria
| | - Aysegül Ilhan-Mutlu
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (H.C.P.); (M.P.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria
| |
Collapse
|
33
|
Zhang L. PERFECT trial results: Combining neoadjuvant chemoradiotherapy with atezolizumab is feasible in resectable esophageal adenocarcinoma. Thorac Cancer 2021; 12:1797-1799. [PMID: 33973394 PMCID: PMC8201525 DOI: 10.1111/1759-7714.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Liyi Zhang
- Sun Yat‐sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
34
|
Lengyel CG, Hussain S, Trapani D, El Bairi K, Altuna SC, Seeber A, Odhiambo A, Habeeb BS, Seid F. The Emerging Role of Liquid Biopsy in Gastric Cancer. J Clin Med 2021; 10:2108. [PMID: 34068319 PMCID: PMC8153353 DOI: 10.3390/jcm10102108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Liquid biopsy (LB) is a novel diagnostic method with the potential of revolutionizing the prevention, diagnosis, and treatment of several solid tumors. The present paper aims to summarize the current knowledge and explore future possibilities of LB in the management of metastatic gastric cancer. (2) Methods: This narrative review examined the most recent literature on the use of LB-based techniques in metastatic gastric cancer and the current LB-related clinical trial landscape. (3) Results: In gastric cancer, the detection of circulating cancer cells (CTCs) has been recognized to have a prognostic role in all the disease stages. In the setting of localized disease, cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) qualitative and quantitative detection have the potential to inform on the risk of cancer recurrence and metastatic dissemination. In addition, gastric cancer-released exosomes may play an essential part in metastasis formation. In the metastatic setting, the levels of cfDNA show a positive correlation with tumor burden. There is evidence that circulating tumor microemboli (CTM) in the blood of metastatic patients is an independent prognostic factor for shorter overall survival. Gastric cancer-derived exosomal microRNAs or clonal mutations and copy number variations detectable in ctDNA may contribute resistance to chemotherapy or targeted therapies, respectively. There is conflicting and limited data on CTC-based PD-L1 verification and cfDNA-based Epstein-Barr virus detection to predict or monitor immunotherapy responses. (4) Conclusions: Although preliminary studies analyzing LBs in patients with advanced gastric cancer appear promising, more research is required to obtain better insights into the molecular mechanisms underlying resistance to systemic therapies. Moreover, validation and standardization of LB methods are crucial before introducing them in clinical practice. The feasibility of repeatable, minimally invasive sampling opens up the possibility of selecting or dynamically changing therapies based on prognostic risk or predictive biomarkers, such as resistance markers. Research is warranted to exploit a possible transforming area of cancer care.
Collapse
Affiliation(s)
| | - Sadaqat Hussain
- North West Cancer Center, Altnagelvin Hospital, Londonderry BT47 6SB, UK;
| | - Dario Trapani
- European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | | | | | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrew Odhiambo
- Unit of Medical Oncology, Department of Clinical Medicine, University of Nairobi, Nairobi 30197, Kenya;
| | - Baker Shalal Habeeb
- Department of Medical Oncology, Shaqlawa Teaching Hospital, Shaqlawa, Erbil 44005, Iraq;
| | - Fahmi Seid
- School of Medicine and Health Sciences, Hawassa University, Hawassa 1560, Ethiopia;
| |
Collapse
|
35
|
Lonie JM, Barbour AP, Dolcetti R. Understanding the immuno-biology of oesophageal adenocarcinoma: Towards improved therapeutic approaches. Cancer Treat Rev 2021; 98:102219. [PMID: 33993033 DOI: 10.1016/j.ctrv.2021.102219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
With an incidence that is constantly rising, oesophageal adenocarcinoma (OAC) is becoming an increasing health burden worldwide. Although significant advances in treatment regimens have improved patient outcomes, survival rates for this deadly cancer remain unsatisfactory. This highlights the need to improve current therapeutic approaches and develop novel therapeutic strategies for treating OAC patients. The advent of immunotherapy has revolutionised treatment across a range of malignancies, however outcomes in OAC show modest results. The inherent resistance of OAC to treatment reflects the complex genomic landscape of this cancer, which displays a lack of ubiquitous driver mutations and large-scale genomic alterations along with high tumour and immune heterogeneity. Research into the immune landscape of OAC is limited, and elucidation of the mechanisms surrounding the immune responses to this complex cancer will result in improved therapeutic approaches. This review explores what is known about the immuno-biology of OAC and explores promising therapeutic avenues that may improve responses to immunotherapeutic regimens.
Collapse
Affiliation(s)
- James M Lonie
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Sir Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021; 22:ijms22083805. [PMID: 33916915 PMCID: PMC8067563 DOI: 10.3390/ijms22083805] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Karim Rihawi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Fabiola Lorena Rojas Llimpe
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
- Correspondence: ; Tel.: +39-0512142958; Fax: +39-0512142805
| |
Collapse
|
37
|
Ghidini M, Petrillo A, Botticelli A, Trapani D, Parisi A, La Salvia A, Sajjadi E, Piciotti R, Fusco N, Khakoo S. How to Best Exploit Immunotherapeutics in Advanced Gastric Cancer: Between Biomarkers and Novel Cell-Based Approaches. J Clin Med 2021; 10:1412. [PMID: 33915839 PMCID: PMC8037391 DOI: 10.3390/jcm10071412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research efforts, advanced gastric cancer still has a dismal prognosis with conventional treatment options. Immune checkpoint inhibitors have revolutionized the treatment landscape for many solid tumors. Amongst gastric cancer subtypes, tumors with microsatellite instability and Epstein Barr Virus positive tumors provide the strongest rationale for responding to immunotherapy. Various predictive biomarkers such as mismatch repair status, programmed death ligand 1 expression, tumor mutational burden, assessment of tumor infiltrating lymphocytes and circulating biomarkers have been evaluated. However, results have been inconsistent due to different methodologies and thresholds used. Clinical implementation therefore remains a challenge. The role of immune checkpoint inhibitors in gastric cancer is emerging with data from monotherapy in the heavily pre-treated population already available and studies in earlier disease settings with different combinatorial approaches in progress. Immune checkpoint inhibitor combinations with chemotherapy (CT), anti-angiogenics, tyrosine kinase inhibitors, anti-Her2 directed therapy, poly (ADP-ribose) polymerase inhibitors or dual checkpoint inhibitor strategies are being explored. Moreover, novel strategies including vaccines and CAR T cell therapy are also being trialed. Here we provide an update on predictive biomarkers for response to immunotherapy with an overview of their strengths and limitations. We discuss clinical trials that have been reported and trials in progress whilst providing an account of future steps needed to improve outcome in this lethal disease.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Medical Oncology (B), Policlinico Umberto I, 00161 Rome, Italy
| | - Dario Trapani
- Division of Early Drug Development for innovative therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | - Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 De Octubre, 28041 Madrid, Spain;
| | - Elham Sajjadi
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Shelize Khakoo
- Department of Medicine, Royal Marsden Hospital, London and Surrey, Sutton SM25PT, UK;
| |
Collapse
|
38
|
van den Ende T, de Clercq NC, van Berge Henegouwen MI, Gisbertz SS, Geijsen ED, Verhoeven RHA, Meijer SL, Schokker S, Dings MPG, Bergman JJGHM, Haj Mohammad N, Ruurda JP, van Hillegersberg R, Mook S, Nieuwdorp M, de Gruijl TD, Soeratram TTD, Ylstra B, van Grieken NCT, Bijlsma MF, Hulshof MCCM, van Laarhoven HWM. Neoadjuvant Chemoradiotherapy Combined with Atezolizumab for Resectable Esophageal Adenocarcinoma: A Single-arm Phase II Feasibility Trial (PERFECT). Clin Cancer Res 2021; 27:3351-3359. [PMID: 33504550 DOI: 10.1158/1078-0432.ccr-20-4443] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE The CROSS trial established neoadjuvant chemoradiotherapy (nCRT) for patients with resectable esophageal adenocarcinoma (rEAC). In the PERFECT trial, we investigated the feasibility and efficacy of nCRT combined with programmed-death ligand-1 (PD-L1) inhibition for rEAC. PATIENTS AND METHODS Patients with rEAC received nCRT according to the CROSS regimen combined with five cycles of atezolizumab (1,200 mg). The primary endpoint was the feasibility of administering five cycles of atezolizumab in ≥75% patients. A propensity score-matched nCRT cohort was used to compare pathologic response, overall survival, and progression-free survival. Exploratory biomarker analysis was performed on repeated tumor biopsies. RESULTS We enrolled 40 patients of whom 85% received all cycles of atezolizumab. Immune-related adverse events of any grade were observed in 6 patients. In total, 83% proceeded to surgery. Reasons for not undergoing surgery were progression (n = 4), patient choice (n = 2), and death (n = 1). The pathologic complete response rate was 25% (10/40). No statistically significant difference in response or survival was found between the PERFECT and the nCRT cohort. Baseline expression of an established IFNγ signature was higher in responders compared with nonresponders (P = 0.043). On-treatment nonresponders showed either a high number of cytotoxic lymphocytes (CTL) with a transcriptional signature consistent with expression of immune checkpoints, or a low number of CTLs. CONCLUSIONS Combining nCRT with atezolizumab is feasible in patients with rEAC. On the basis of our exploratory biomarker study, future studies are necessary to elucidate the potential of neoadjuvant immunotherapy in patient subgroups.See related commentary by Catenacci, p. 3269.
Collapse
Affiliation(s)
- Tom van den Ende
- Amsterdam UMC, Department of Medical Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands.
| | - Nicolien C de Clercq
- Amsterdam UMC, Department of Internal and Vascular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne S Gisbertz
- Amsterdam UMC, Department of Surgery, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - E D Geijsen
- Amsterdam UMC, Department of Radiotherapy, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - R H A Verhoeven
- Amsterdam UMC, Department of Medical Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands.,Department of Research and Development, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC, Department of Pathology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandor Schokker
- Amsterdam UMC, Department of Medical Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - M P G Dings
- Amsterdam UMC, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Jacques J G H M Bergman
- Amsterdam UMC, Department of Gastroenterology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jelle P Ruurda
- Department of Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Stella Mook
- Department of Radiotherapy, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC, Department of Internal and Vascular Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Amsterdam UMC, Department of Medical Oncology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tanya T D Soeratram
- Amsterdam UMC, Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Nicole C T van Grieken
- Amsterdam UMC, Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten C C M Hulshof
- Amsterdam UMC, Department of Radiotherapy, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC, Department of Medical Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Mismatch Repair System Genomic Scars in Gastroesophageal Cancers: Biology and Clinical Testing. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alterations in the mismatch repair (MMR) system result in genomic instability, neoantigen production, and immune response in cancer. There is evidence that gastroesophageal tumors with MMR deficiency may be susceptible to immune-checkpoint inhibitors treatment, especially in those presenting at advanced-stage disease. Although a number of biomarkers have been developed in histology-agnostic settings to assess MMR status, there is evidence that a tumor-specific testing approach would improve the selection of patients for immunotherapy. However, no testing methods have been developed specifically for gastroesophageal cancers so far. Here, we discuss the state of the art, current advances, and future perspectives of MMR-related biomarkers’ biologic and clinical role in gastroesophageal cancers.
Collapse
|