1
|
Maghfour J, Ozog DM, Mineroff J, Jagdeo J, Kohli I, Lim HW. Photobiomodulation CME part I: Overview and mechanism of action. J Am Acad Dermatol 2024; 91:793-802. [PMID: 38309304 DOI: 10.1016/j.jaad.2023.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 02/05/2024]
Abstract
Photobiomodulation (PBM), previously known as low-level laser light therapy, represents a noninvasive form of phototherapy that utilizes wavelengths in the red light (RL, 620-700 nm) portion of the visible light (VL, 400-700 nm) spectrum and the near-infrared (NIR, 700-1440 nm) spectrum. PBM is a promising and increasingly used therapy for the treatment of various dermatologic and nondermatologic conditions. Photons from RL and NIR are absorbed by endogenous photoreceptors including mitochondrial cytochrome C oxidase (COX). Activation of COX leads to the following changes: modulation of mitochondrial adenosine triphosphate (ATP), generation of reactive oxygen species (ROS), and alterations in intracellular calcium levels. The associated modulation of ATP, ROS and calcium levels promotes the activation of various signaling pathways (eg, insulin-like growth factors, phosphoinositide 3-kinase pathways), which contribute to downstream effects on cellular proliferation, migration, and differentiation. Effective PBM therapy is dependent on treatment parameters (eg, fluence, treatment duration and output power). PBM is generally well-tolerated and safe with erythema being the most common and self-limiting adverse cutaneous effect.
Collapse
Affiliation(s)
- Jalal Maghfour
- Department of Dermatology, Henry Ford Health, Detroit, Michigan
| | - David M Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan.
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York
| | - Indermeet Kohli
- The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan; The Henry W. Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan; College of Human Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
2
|
Zhao C, Bo J, Li T, Tian J, Long T, He Y, Chen S, Liu C. Blue light-driven cell cycle arrest in thyroid cancer via Retinal-OPN3 complex. Cell Commun Signal 2024; 22:530. [PMID: 39487504 PMCID: PMC11531186 DOI: 10.1186/s12964-024-01908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, with a rising incidence. Traditional treatments, such as thyroidectomy and radiotherapy, often lead to significant side effects, including impaired thyroid function. Therefore, there is an urgent need for non-invasive therapeutic approaches. This study aims to explore the potential of photobiomodulation therapy (PBMT), a non-invasive treatment using specific wavelengths of light, in the management of PTC. METHODS We investigated the effects of blue light PBMT on PTC cells, focusing on the Retinal-OPSIN 3 (OPN3) complex's role in mediating cellular responses. Blue light exposure was applied to PTC cells, and subsequent changes in cellular proliferation, cell cycle progression, and protein expression were analyzed. Statistical tests, including one-way ANOVA and t-tests, were used to evaluate the significance of the findings. RESULTS Blue light exposure led to the dissociation of 11-cis-retinal from OPN3, resulting in the accumulation of all-trans retinal. This accumulation disrupted cellular proliferation pathways and induced G0/G1 cell cycle arrest in PTC cells. The Retinal-OPN3 complex was found to be a key mediator in these processes, demonstrating that thyroid cells can respond to specific light wavelengths and utilize their photoreceptive potential for therapeutic purposes. CONCLUSIONS Our findings suggest that PBMT, through the modulation of the Retinal-OPN3 complex, offers a promising non-invasive approach for treating PTC. This study highlights the therapeutic potential of light signal transduction in non-ocular tissues and opens new avenues for non-invasive cancer therapies.
Collapse
Affiliation(s)
- Changrui Zhao
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaqiang Bo
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianyu Li
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Tian Long
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying He
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases (China Pharmaceutical University), Nanjing, China.
| |
Collapse
|
3
|
Ansari S, Charantimath S, Lagali-Jirge V, Keluskar V. Comparative efficacy of low-level laser therapy (LLLT) to TENS and therapeutic ultrasound in management of TMDs: a systematic review & meta-analysis. Cranio 2024; 42:752-761. [PMID: 35315745 DOI: 10.1080/08869634.2022.2050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To assess the reduction in pain, muscle tenderness, joint clicking, and improvement in mouth opening (MO) after low-level laser therapy (LLLT) compared to transcutaneous electrical nerve stimulation (TENS) and therapeutic ultrasound (US) among temporomandibular joint disorder (TMD) patients. METHODS A systematic search of online sources of electronic databases was undertaken. The quality of the study was assessed using the Cochrane risk of bias assessment tool for randomized controlled trials (RCTs). RESULTS Twelve RCTs were included in the systematic review, and 9 were included in the meta-analysis. For reduction in pain between LLLT and TENS, LLLT was found to be better than TENS, at 95% CI. LLLT was also proven to be better in reducing pain than therapeutic US, at 81% CI. CONCLUSION This systematic review and meta-analysis compared the effectiveness of LLLT, TENS, and therapeutic US in TMD. LLLT provided relatively more effective pain relief and improvement in MO.
Collapse
Affiliation(s)
- Sulem Ansari
- Department of Oral Medicine and Radiology, KAHER's KLE VK Institute of Dental Sciences, Belagavi, India
| | - Shivayogi Charantimath
- Department of Oral Medicine and Radiology, KAHER's KLE VK Institute of Dental Sciences, Belagavi, India
| | - Vasanti Lagali-Jirge
- Department of Oral Medicine and Radiology, KAHER's KLE VK Institute of Dental Sciences, Belagavi, India
| | - Vaishali Keluskar
- Department of Oral Medicine and Radiology, KAHER's KLE VK Institute of Dental Sciences, Belagavi, India
| |
Collapse
|
4
|
Mutafchieva MZ, Draganova MN, Tomov GT. Histological Improvement and Cytokine Levels Reduction in Patients with Oral Lichen Planus after Photobiomodulation Therapy. Biomedicines 2024; 12:2300. [PMID: 39457611 PMCID: PMC11504435 DOI: 10.3390/biomedicines12102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Oral lichen planus (OLP) is a mucocutaneous disease associated with the formation of symptomatic lesions in the mouth that are often refractory to treatment. An as-yet-unknown antigen triggers an inflammatory reaction in which various immune and non-immune cells release multiple cytokines that contribute to disease progression. The ability of photobiomodulation (PBM) to reduce the symptoms and signs of the disease has been shown, but little is known about its molecular and cellular effects. The aim of this study was to evaluate changes in pro-inflammatory cytokine levels and in histological findings in OLP patients treated with photobiomodulation therapy. Methods: Twenty OLP patients underwent PBM with diode laser (810 nm), (0.50 W, 30 s, 1.2 J/cm2), 3 times weekly for a month. Pain level and clinical scores of lesions were recorded before and after therapy. Salivary levels of IL-1β, IL-6, and TNF-α in OLP patients were measured before and after PBM and compared with those of 10 healthy controls. Biopsies were taken at the beginning and end of treatment to assess pathomorphological changes. Results: PBM significantly reduced the level of pain and clinical scores of the lesions. Salivary levels of IL-1β, IL-6, and TNF-α in OLP patients were significantly higher compared to those in healthy controls and decreased after therapy. 60% of the post-treatment OLP biopsies demonstrated histological improvement, characterized by inflammatory infiltrate reduction (50%), epithelial hyperplasia reduction (30%), epithelial thickening (15%), or epidermal-dermal attachment repair (5%). Conclusion: The effectiveness of PBM therapy in OLP patients was confirmed at the clinical, molecular, and histomorphological levels.
Collapse
Affiliation(s)
- Maria Zaharieva Mutafchieva
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Milena Nenkova Draganova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Georgi Tomchev Tomov
- Department of Healthcare and Social Work, New Bulgarian University, 1618 Sofia, Bulgaria;
| |
Collapse
|
5
|
Ye R, He Y, Ni W, Zhang Y, Zhu Y, Cao M, He R, Yao M. LLLT accelerates experimental wound healing under microgravity conditions via PI3K/AKT-CCR2 signal axis. Front Bioeng Biotechnol 2024; 12:1387474. [PMID: 39193227 PMCID: PMC11347831 DOI: 10.3389/fbioe.2024.1387474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Background and Purpose The risk of skin injuries in space is increasing with longer space missions and a growing astronaut population. This highlights the importance of understanding the adverse effects of weightlessness on wound healing. The objective of this research was to examine the therapeutic potential of Low-Level Light Therapy (LLLT) on skin healing processes under simulated microgravity (SMG) conditions and uncover the underlying molecular mechanisms, thus providing innovative solutions and a sound theoretical basis for space skin injuries. Methods Hindlimb unloading (HU) mice models were used to simulate weightlessness conditions, with or without a complete management of LLLT for 14 days. A systematic testing consisting of HE, Masson and immunohistochemical staining was performed against the standardized mouse tissue specimens. In vitro assessment of cellular biological functions under SMG conditions was carried out in the rotation system of culture (RSOC) using HaCaT and NIH3T3 cell-lines. Results Under SMG conditions, LLLT significantly reduced skin wound area in HU mice, especially on Days 10 (p < 0.001), accompanied by increased collagen deposition and elevated levels of Ki67 and CD31. Moreover, LLLT showed impressive anti-inflammatory effects represented by the reduced in pro-inflammatory markers including LY6G, F4/80 and CD86, as well as the decreased levels of IL-1β, IL-6 and TNF-α. Conversely, an elevation in the anti-inflammatory marker CD206 was observed. By employing bioinformatics technology, we further found the PI3K/AKT signaling was prominent in the KEGG pathway analysis and CCR2 acted as a hub gene in the interaction network. Therefore, we demonstrated that LLLT could enhance the phosphorylation of PI3K/AKT and reduce CCR2 expression under SMG conditions, while CCR2 knockdown promoted the phosphorylation of PI3K/AKT, suggesting an important role of CCR2/PI3K/AKT signal axis in LLLT-accelerated wound healing under SMG conditions. Conclusion LLLT induced activation of the PI3K/AKT signaling pathway through suppression of CCR2 expression, which significantly enhanced skin wound healing under SMG conditions.s.
Collapse
Affiliation(s)
- Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ying Zhu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Ruida He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Kalampouka I, Mould RR, Botchway SW, Mackenzie AM, Nunn AV, Thomas EL, Bell JD. Selective induction of senescence in cancer cells through near-infrared light treatment via mitochondrial modulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400046. [PMID: 39155124 DOI: 10.1002/jbio.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 08/20/2024]
Abstract
Photobiomodulation, utilising non-ionising light in the visible and near-infrared (NIR) spectrum, has been suggested as a potential method for enhancing tissue repair, reducing inflammation and possibly mitigating cancer-therapy-associated side effects. NIR light is suggested to be absorbed intracellularly, mainly by chromophores within the mitochondria. This study examines the impact of 734 nm NIR light on cellular senescence. Cancer (MCF7 and A549) and non-cancer (MCF10A and IMR-90) cell populations were subjected to 63 mJ/cm2 NIR-light exposure for 6 days. Senescence levels were quantified by measuring active senescence-associated beta-galactosidase. Exposure to NIR light significantly increases senescence levels in cancer (10.0%-203.2%) but not in non-cancer cells (p > 0.05). Changes in senescence were associated with significant modulation of mitochondrial homeostasis, including increased levels of reactive oxygen species (p < 0.05) and mitochondrial membrane potential (p < 0.05) post-NIR-light treatment. These results suggest that NIR light modulates cellular chemistry, arresting the proliferation of cancer cells via senescence induction while sparing non-cancer cells.
Collapse
Affiliation(s)
- I Kalampouka
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - R R Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - S W Botchway
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A M Mackenzie
- Research Complex at Harwell & Central Laser Facility, Rutherford Appleton Laboratory, Didcot, UK
| | - A V Nunn
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
- The Guy Foundation - The Guy Foundation Family Trust, Beaminster, UK
| | - E L Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - J D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
7
|
Radithia D, Mahdani FY, Bakti RK, Parmadiati AE, Subarnbhesaj A, Pramitha SR, Pradnyani IGAS. Effectiveness of low-level laser therapy in reducing pain score and healing time of recurrent aphthous stomatitis: a systematic review and meta-analysis. Syst Rev 2024; 13:192. [PMID: 39039581 PMCID: PMC11264394 DOI: 10.1186/s13643-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis (RAS) is a common chronic inflammatory oral disease that negatively impacts the quality of life. Current therapies aim to reduce pain and healing process yet challenges such as rapid loss due to salivary flushing in topical drugs and adverse effects due to prolonged use of systemic medications require further notice. Low-level laser therapy is reported with immediate pain relief and faster healing thus preserving the potential for optimal treatment modalities. This review critically analyses and summarizes the effectiveness of LLLT in reducing pain scores and healing time of RAS. METHODS A systematic search was conducted in ScienceDirect, PubMed, and Scopus using keywords of low-level laser therapy, photo-biomodulation therapy, and recurrent aphthous stomatitis. RCTs between 1967 to June 2022, presenting characteristics of the laser and reporting pain score and/or healing time of RAS after irradiation were included. Animal studies and recurrent aphthous ulcers with a history of systemic conditions were excluded. Studies were critically appraised using the RoB 2 tool. A meta-analysis was performed using inverse variance random effects. RESULTS Fourteen trials with a total of 664 patients were included. Reduced pain was reported in 13 studies, while shortened healing time was presented in 4. The pooling of two studies after CO2 irradiation demonstrated faster healing time compared to placebo (MD - 3.72; 95% CI - 4.18, - 3.25). CONCLUSION Pain score and healing time of RAS were reduced after irradiation with LLLT. RoB resulted in "some concerns" urging well-designed RCTs with larger samples to further assess each laser application for comparison. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022355737.
Collapse
Affiliation(s)
- Desiana Radithia
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia.
| | - Fatma Yasmin Mahdani
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Reiska Kumala Bakti
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Adiastuti Endah Parmadiati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - Ajiravudh Subarnbhesaj
- Department of Oral Biomedical Science, Division of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, 123 Thanon Mittraphap, Tambon Nai Mueang, Mueang Khon Kaen District, Khon Kaen, 40002, Thailand
| | - Selviana Rizky Pramitha
- Oral Medicine Specialist Study Program, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| | - I Gusti Agung Sri Pradnyani
- Oral Medicine Specialist Study Program, Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Pacar Kembang, Kec. Tambaksari, Kota SBY, Jawa Timur, 60132, Indonesia
| |
Collapse
|
8
|
da Rocha VP, Mansano BSDM, Dos Santos CFC, Teixeira ILA, de Oliveira HA, Vieira SS, Antonio EL, Izar MCDO, Fonseca FAH, Serra AJ. How long does the biological effect of a red light-emitting diode last on adipose-derived mesenchymal stem cells? Photochem Photobiol 2024. [PMID: 38888236 DOI: 10.1111/php.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
This research investigated the duration of the influence of red light-emitting diodes (LED, 630 nm; output power: 2452.5 mW; laser beam: 163.5 cm2; irradiance: 15 mW/cm2; radiant exposure: 4 J/cm2) on different periods after irradiation (6, 12, 24, 48, and 72 h) on adipose-derived mesenchymal stem cells' (AdMSCs) metabolism and paracrine factors. AdMSCs were irradiated three times every 48 h. Twenty-four hours after the last irradiation, there was a higher MTT absorbance, followed by a decrease after 48 h. The cells' secretome showed increased levels of IL-6 and VEGF after 12 and 24 h, but this was reversed after 48 h. Additionally, LED irradiation resulted in higher levels of nitrite and did not affect oxidative stress markers. LED irradiation had significant effects on AdMSCs after 24 h compared to other groups and its control group.
Collapse
Affiliation(s)
- Vitor Pocani da Rocha
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Stella Sousa Vieira
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Ednei Luiz Antonio
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Andrey Jorge Serra
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Choi K, Kim H, Nam SY, Heo CY. Enhancement of skin rejuvenation and hair growth through novel near-infrared light emitting diode (nNIR) lighting: in vitro and in vivo study. Lasers Med Sci 2024; 39:104. [PMID: 38630175 PMCID: PMC11024053 DOI: 10.1007/s10103-024-04044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.
Collapse
Affiliation(s)
- Keonwoo Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Hongbin Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea.
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea.
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Sourvanos D, Zhu TC, Dimofte A, Busch TM, Lander B, Burrell JC, Neiva R, Fiorellini JP. A novel investigational preclinical model to assess fluence rate for dental oral craniofacial tissues. Photodiagnosis Photodyn Ther 2024; 46:104015. [PMID: 38373469 PMCID: PMC11139582 DOI: 10.1016/j.pdpdt.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE Photodynamic Therapy (PDT) and Photobiomodulation (PBM) are recognized for their potential in treating head and neck conditions. The heterogeneity of human tissue optical properties presents a challenge for effective dosimetry. The porcine mandible cadaver serves as an excellent model and has several similarities to human tissues of the dental oral craniofacial complex. This study aims to validate a novel modeling system that will help refine PDT and PBM dosimetry for the head and neck region. METHODS AND MATERIALS Light transmission was analyzed through several tissue combinations at distances of 2 mm to 10 mm. Maximum light fluence rates (mW/cm2) were compared across tissue types to reveal the effects of tissue heterogeneity. RESULTS The study revealed that light fluence is affected by tissue composition, with dentin/enamel showing reduced transmission and soft tissue regions exhibiting elevated values. The porcine model has proven to be efficient in mimicking human tissue responses to light, enabling the potential to optimize future protocols. CONCLUSION The porcine mandible cadaver is a novel model to understand the complex interactions between light and tissue. This study provides a foundation for future investigations into dosimetry optimization for PDT and PBM.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Bradley Lander
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Justin C Burrell
- Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA; Department of Oral and Maxillofacial Surgery, Hospital of the University of Pennsylvania and University of Pennsylvania School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michal J. Crescenz Veterans Affairs Medical Center, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
11
|
Ratanasereeprasert N, Hsu LF, Wang SK, Chen YJ, Chang JH, Yao CCJ. Molecular signaling and mechanisms of low-level laser-induced gene expression in cells involved in orthodontic tooth movement. J Formos Med Assoc 2024; 123:442-451. [PMID: 37805307 DOI: 10.1016/j.jfma.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND The study aimed to observe molecular signaling, including reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm), to evaluate the alteration of gene expression by low-level laser therapy (LLLT) and the correlation between its mechanisms and the NF-kB pathway in cells involved in orthodontic tooth movement. METHODS Osteoblast-like cells (MG63), immortalized periodontal ligament cells (iPDL), and M1 macrophage-like cells were irradiated by 980-nm LLLT with energy densities of 1 and 10 J/cm2 ΔΨm and intracellular ROS were monitored using fluorescent probes. The changes of mRNA expression were assessed using reverse transcription polymerase chain reaction (RT-PCR). NF-kB inhibitor, ROS scavenger, and ΔΨm suppressor were used to analyze signals associated with the regulation of gene expression. Finally, Western blot analysis was performed to confirm NF-kB signaling after LLLT. RESULTS We found the increases of ΔΨm and ROS in all three cell types after LLLT, but no significant difference was observed between 1 and 10 J/cm2 LLLT. Regarding gene expression, some target genes were upregulated in MG63 6 h, 12 h, and 1 day after LLLT and in iPDL cells 12 h and 1 day after LLLT. However, no changes occurred in M1 cells. The inhibitor that significantly reduced most changes in gene expression was NF-kB inhibitor. Western blot analysis showed the increase in p-IkBα level after LLLT in iPDL and MG63, but not in M1. CONCLUSION The 980-nm LLLT increased ΔΨm and ROS production in all three cell types. However, changes in gene regulation were found only in MG63 and iPDL cells, which related to the NF-kB pathway.
Collapse
Affiliation(s)
| | - Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shih-Kai Wang
- Department of Dentistry, School of Dentistry, National Taiwan University, Department of Pediatric Dentistry, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Heng Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Chiu ST, Lai UH, Huang YC, Leong CP, Chen PC. Effect of various photobiomodulation regimens on breast cancer-related lymphedema: A systematic review and meta-analysis. Lasers Med Sci 2023; 39:11. [PMID: 38129368 DOI: 10.1007/s10103-023-03959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Breast cancer-related lymphedema (BCRL) is common among patients who have completed their cancer treatment. Although low-level laser therapy (LLLT) has been explored as a treatment option for BCRL, we could not find a regimen that is more effective than others. This meta-analysis aimed to organize existing research and determine the optimal combination of LLLT parameters for BCRL treatment. Studies were collected from four online databases: Embase, Ovid Medline, Cochrane, and Cinahl. The collected studies were reviewed by two of the authors. We focused on the aspects of the treatment area, treatment regimen, and total treatment sessions across the included studies. The comparisons between LLLT and non-LLLT were performed through a meta-analysis. Post-treatment QOL was significantly better in the axillary group. The group treated "three times/week with a laser density of 1.5-2 J/cm2" had significantly better outcomes in terms of swelling reduction, both immediately post-treatment and at 1-3 months follow-ups. The group with > 15 treatment sessions had significantly better post-treatment outcomes regarding reduced swelling and improved grip strength. According to these results, LLLT can relieve the symptoms of BCRL by reducing limb swelling and improving QOL. Further exploration found that a treatment approach targeting the axilla, combined with an increased treatment frequency, appropriate laser density, and extended treatment course, yielded better outcomes. However, further rigorous, large-scale studies, including long-term follow-up, are needed to substantiate this regimen.
Collapse
Affiliation(s)
- Shao-Tang Chiu
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - U-Hin Lai
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Yu-Chi Huang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chau-Peng Leong
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Po-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
- School of Medicine, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|
13
|
Nishi H, Horikoshi S, Ohta K, Yoshida T, Fukushima N, Oshita K, Munenaga S, Edahiro T, Ureshino H, Shigeishi H, Yoshioka Y, Konishi M, Ide N, Ogawa Y, Marukawa R, Shintani T, Ino N, Kajiya M, Kakimoto N, Ohge H, Ichinohe T, Kawaguchi H. Efficacy of Low-Level Laser Therapy for Oral Mucositis in Hematologic Patients Undergoing Transplantation: A Single-Arm Prospective Study. J Pers Med 2023; 13:1603. [PMID: 38003918 PMCID: PMC10672422 DOI: 10.3390/jpm13111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Oral mucositis significantly affects the quality of life in hematologic cancer patients undergoing hematopoietic stem cell transplantation. Despite global evidence supporting the efficacy of low-level laser therapy (LLLT) for mucositis prevention, its clinical adoption in Japan is limited. This study aimed to fill this gap by evaluating the safety and efficacy of LLLT in a Japanese patient population. In a single-group, non-blinded, exploratory trial, we compared 21 LLLT-treated patients against a historical control of 96 patients. The primary endpoint was the incidence of Grade ≥ 2 mucositis, based on NCI-CTCAE ver. 4.0. The LLLT group showed a significantly lower incidence of Grade ≥ 2 mucositis (23.8%) compared to the control group (64.6%) (p = 0.0006). Furthermore, Grade ≥ 2 mucositis correlated with increased oral dryness and longer hospital stays. Our study confirms the efficacy of LLLT in reducing the onset of severe oral mucositis among Japanese hematologic cancer patients, advocating for its clinical introduction as a preventive measure in Japan.
Collapse
Affiliation(s)
- Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734-8551, Japan; (S.H.); (S.M.); (N.I.); (H.K.)
| | - Susumu Horikoshi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734-8551, Japan; (S.H.); (S.M.); (N.I.); (H.K.)
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.O.); (H.S.)
| | - Tetsumi Yoshida
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (T.Y.); (T.E.); (H.U.); (T.I.)
| | - Noriyasu Fukushima
- Department of Internal Medicine, Karatsu Red Cross Hospital, Karatsu 847-8588, Japan;
| | - Kyoko Oshita
- Department of Anesthesiology, Hiroshima General Hospital, Hiroshima 734-8551, Japan;
| | - Syuichi Munenaga
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734-8551, Japan; (S.H.); (S.M.); (N.I.); (H.K.)
| | - Taro Edahiro
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (T.Y.); (T.E.); (H.U.); (T.I.)
| | - Hiroshi Ureshino
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (T.Y.); (T.E.); (H.U.); (T.I.)
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.O.); (H.S.)
| | - Yukio Yoshioka
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Masaru Konishi
- Department of Oral and Maxillofacial Radiology, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Noriaki Ide
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734-8551, Japan; (S.H.); (S.M.); (N.I.); (H.K.)
| | - Yuma Ogawa
- Department of Program of Dentistry, School of Dentistry, Hiroshima University, Hiroshima 734-8551, Japan; (Y.O.); (R.M.)
| | - Rikou Marukawa
- Department of Program of Dentistry, School of Dentistry, Hiroshima University, Hiroshima 734-8551, Japan; (Y.O.); (R.M.)
| | - Tomoaki Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (T.S.); (M.K.)
| | - Natumi Ino
- Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Mikihito Kajiya
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima 734-8551, Japan; (T.S.); (M.K.)
| | - Naoya Kakimoto
- Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima 734-8551, Japan;
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (T.Y.); (T.E.); (H.U.); (T.I.)
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734-8551, Japan; (S.H.); (S.M.); (N.I.); (H.K.)
| |
Collapse
|
14
|
Al-Toukhy GM, Suef RA, Hassan S, Farag MMS, El-Tayeb TA, Mansour MTM. Photobiological modulation of hepatoma cell lines and hepatitis B subviral particles secretion in response to 650 nm low level laser treatment. J Egypt Natl Canc Inst 2023; 35:33. [PMID: 37870653 DOI: 10.1186/s43046-023-00190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a serious global health concern, with an increased incidence and risk of developing cirrhosis and hepatocellular carcinoma (HCC). Patients chronically infected with HBV are likely to experience chronic oxidative stress, leading to mitochondrial dysfunction. Photobiomodulation is induced by the absorption of low-level laser therapy (LLLT) with a red or infrared laser by cytochrome C oxidase enzyme, resulting in mitochondrial photoactivation. Although it is widely used in clinical practice, the use of LLL as adjuvant therapy for persistent HBV infection is uncommon. This study aimed to investigate the effect of LLLT dosage from 2 J/cm2 to 10 J/cm2 of red diode laser (650 nm) on both hepatoma cell lines (HepG2.2.15 [integrated HBV genome stable cell model] and non-integrated HepG2), with a subsequent impact on HBVsvp production. METHODS The present study evaluated the effects of different fluences of low-level laser therapy (LLLT) irradiation on various aspects of hepatoma cell behavior, including morphology, viability, ultrastructure, and its impact on HBVsvp synthesis. RESULTS In response to LLLT irradiation, we observed a considerable reduction in viability, proliferation, and HBVsvp production in both hepatoma cell lines HepG2.2.15 and HepG2. Ultrastructural modification of mitochondria and nuclear membranes: This effect was dose, cell type, and time-dependent. CONCLUSIONS The use of LLLT may be a promising therapy for HCC and HBV patients by reducing cell proliferation, HBVsvp production, and altering mitochondrial and nuclear structure involved in cellular death inducers. Further research is required to explore its clinical application.
Collapse
Affiliation(s)
- Ghada M Al-Toukhy
- Department of Virology and Immunology, Children's Cancer Hospital, Cairo, 57357, Egypt.
| | - Reda A Suef
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Sarah Hassan
- Pathology and Electron Microscopy, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed M S Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Biomedical Research Department, Armed Forces College of Medicine, Cairo, Egypt
| | - Tarek A El-Tayeb
- National Institute of Laser Enhanced Science (NILES), Cairo University, Cairo, Egypt
| | - Mohamed T M Mansour
- Department of Virology and Immunology, National Cancer Institute, Cairo University, Cairo, Egypt
- Children Cancer Hospital, Cairo, 57357, Egypt
| |
Collapse
|
15
|
Jere SW, Abrahamse H, Houreld NN. Interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing. J Biomed Sci 2023; 30:81. [PMID: 37735655 PMCID: PMC10515080 DOI: 10.1186/s12929-023-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
The induction of a cells destiny is a tightly controlled process that is regulated through communication between the matrix and cell signalling proteins. Cell signalling activates distinctive subsections of target genes, and different signalling pathways may be used repeatedly in different settings. A range of different signalling pathways are activated during the wound healing process, and dysregulated cellular signalling may lead to reduced cell function and the development of chronic wounds. Diabetic wounds are chronic and are characterised by the inability of skin cells to act in response to reparative inducements. Serine/threonine kinase, protein kinase B or AKT (PKB/AKT), is a central connection in cell signalling induced by growth factors, cytokines and other cellular inducements, and is one of the critical pathways that regulate cellular proliferation, survival, and quiescence. AKT interacts with a variety of other pathway proteins including glycogen synthase kinase 3 beta (GSK3β) and β-catenin. Novel methodologies based on comprehensive knowledge of activated signalling pathways and their interaction during normal or chronic wound healing can facilitate quicker and efficient diabetic wound healing. In this review, we focus on interaction of the AKT and β-catenin signalling pathways and the influence of photobiomodulation on cellular signalling proteins in diabetic wound healing.
Collapse
Affiliation(s)
- Sandy Winfield Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028 South Africa
| |
Collapse
|
16
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7" and 2*3*8=6*8 and "9dhl"="9dhl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
17
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7%' and 2*3*8=6*8 and '6o48'!='6o48%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
18
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7' and 2*3*8=6*8 and 'rz5y'='rz5y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
19
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
20
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
21
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7jypboind] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
22
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
23
|
Grajales M, Ríos-Osorio N, Jimenez-Peña O, Mendez-Sanchez J, Sanchez-Fajardo K, García-Perdomo HA. Effectiveness of photobiomodulation with low-level lasers on the acceleration of orthodontic tooth movement: a systematic review and meta-analysis of split-mouth randomised clinical trials. Lasers Med Sci 2023; 38:200. [PMID: 37667064 DOI: 10.1007/s10103-023-03870-7'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 01/29/2024]
Abstract
Although several studies have evaluated the effect of low-level laser therapy (LLLT) on orthodontic movement acceleration, results are still inconsistent. Such inconsistencies may be attributed to the differences in the LLLT application protocols, especially in terms of wavelength ranges. Objective: (i) to assess the clinical effects of LLLT on the acceleration of orthodontic movement and (ii) to establish the most effective LLLT wavelength to accelerate tooth movement during orthodontic treatments. MEDLINE (PubMed), Scopus, ScienceDirect, and LILACS were searched from inception to October 2022. Inclusion criteria: Split-mouth randomised clinical trials (RCTs) on systemically healthy patients reporting the effect of LLLT in accelerating orthodontic movements, specifically retraction of canines. The risk of bias was assessed using RoB-2. A random effect model was applied. Nineteen RCTs met the inclusion criteria for qualitative synthesis, and eighteen RCTs were included in the quantitative synthesis. Seventeen studies were rated as at some concerns of bias and two studies were classified as having a low risk of bias. In general terms, this systematic review and meta-analysis presents a moderate risk of bias. Findings of this systematic review and meta-analysis point to a tendency for faster orthodontic dental movement in the groups receiving LLLT treatment during the first (OR of 0.28 95% CI (0.07 to 0.48)), second (OR of 0.52 95% CI (0.31 to 0.73)), and third (OR of 0.41 95% CI (0.03 to 0.79)) month follow-up. Wavelengths ≤ 810 nm and energy density values ≤ 5.3 J/cm2 were associated with faster orthodontic tooth movement.
Collapse
Affiliation(s)
- Marggie Grajales
- Laser Dentistry Master Program, European Program EMDOLA, University of Barcelona, Barcelona, Spain
| | - Nestor Ríos-Osorio
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia.
| | - Oscar Jimenez-Peña
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Juan Mendez-Sanchez
- Research Department COC-CICO, Institución Universitaria Colegios de Colombia UNICOC, Km 20, Autonorte I-55, Chía, 250008, Bogotá, Cundinamarca, Colombia
| | - Kelly Sanchez-Fajardo
- Department of Bio-Clinical Research, Faculty of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Herney Andrés García-Perdomo
- Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
24
|
da Silva TG, Rodrigues JA, Siqueira PB, Dos Santos Soares M, Mencalha AL, de Souza Fonseca A. Effects of photobiomodulation by low-power lasers and LEDs on the viability, migration, and invasion of breast cancer cells. Lasers Med Sci 2023; 38:191. [PMID: 37610503 DOI: 10.1007/s10103-023-03858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Among the malignant tumors, breast cancer is the most commonly diagnosed worldwide, being the most prevalent in women. Photobiomodulation has been used for wound healing, swelling and pain reduction, and muscle repair. The application of photobiomodulation in cancer patients has been controversial. Therefore, a better understanding of radiation-induced effects involved in photobiomodulation on cancer cells is needed. Thus, this study aimed to investigate the effects of exposure to low-power lasers and LEDs on cell viability, migration, and invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (23, 46, and 69 J/cm2, 0.77 W/cm2) and blue LED (160, 321, and 482 J/cm2, 5.35 W/cm2), alone or in combination. Cell viability was assessed using the WST-1 assay, cell migration was evaluated using the wound healing assay, and cell invasion was performed using the Matrigel transwell assay. Viability and migration were not altered in MCF-7 and MDA-MB-231 cultures after exposure to low-power red laser and blue LED. However, there was a decrease in cell invasion from the cultures of the two cell lines evaluated. The results suggest that photobiomodulation induced by low-power red laser and blue LED does not alter cell viability and migration but decreases cell invasion in human breast cancer cells.
Collapse
Affiliation(s)
- Thayssa Gomes da Silva
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil.
| | - Juliana Alves Rodrigues
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil
| | - Márcia Dos Santos Soares
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil
| | - Adenilson de Souza Fonseca
- Departamento de Biofísica E Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Boulevard 28 de Setembro, 87, PAPC, 4Th Floor, CEP: 20.551-030, Vila Isabel, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal Do Estado Do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
25
|
da Silva TG, Ribeiro RS, Mencalha AL, de Souza Fonseca A. Photobiomodulation at molecular, cellular, and systemic levels. Lasers Med Sci 2023; 38:136. [PMID: 37310556 DOI: 10.1007/s10103-023-03801-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Since the reporting of Endre Mester's results, researchers have investigated the biological effects induced by non-ionizing radiation emitted from low-power lasers. Recently, owing to the use of light-emitting diodes (LEDs), the term photobiomodulation (PBM) has been used. However, the molecular, cellular, and systemic effects involved in PBM are still under investigation, and a better understanding of these effects could improve clinical safety and efficacy. Our aim was to review the molecular, cellular, and systemic effects involved in PBM to elucidate the levels of biological complexity. PBM occurs as a consequence of photon-photoacceptor interactions, which lead to the production of trigger molecules capable of inducing signaling, effector molecules, and transcription factors, which feature it at the molecular level. These molecules and factors are responsible for cellular effects, such as cell proliferation, migration, differentiation, and apoptosis, which feature PBM at the cellular level. Finally, molecular and cellular effects are responsible for systemic effects, such as modulation of the inflammatory process, promotion of tissue repair and wound healing, reduction of edema and pain, and improvement of muscle performance, which features PBM at the systemic level.
Collapse
Affiliation(s)
- Thayssa Gomes da Silva
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil.
| | - Rickson Souza Ribeiro
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Vila Isabel, Boulevard 28 de Setembro, 87, Rio de Janeiro, 20551030, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil
| |
Collapse
|
26
|
Kim YJ, Song J, Lee DH, Um SH, Bhang SH. Suppressing cancer by damaging cancer cell DNA using LED irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 243:112714. [PMID: 37084656 DOI: 10.1016/j.jphotobiol.2023.112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND High-energy irradiation eliminates cancer cells by destroying their genetic components. However, there are several side effects from doing this, such as fatigue, dermatitis, and hair loss, which remain obstacles to this treatment. Here, we propose a moderate method that uses low-energy white light from a light-emitting diode (LED) to selectively inhibit cancer cell proliferation without affecting normal cells. METHODS The association between LED irradiation and cancer cell growth arrest was evaluated based on cell proliferation, viability, and apoptotic activity. Immunofluorescence, polymerase chain reaction, and western blotting were performed in vitro and in vivo to identify the metabolism related to the inhibition of HeLa cell proliferation. RESULTS LED irradiation aggravated the defective p53 signaling pathway and induced cell growth arrest in cancer cells. Consequently, cancer cell apoptosis was induced by the increased DNA damage. Additionally, LED irradiation inhibited the proliferation of cancer cells by suppressing the MAPK pathway. Furthermore, the suppression of cancer growth by the regulation of p53 and MAPK was observed in cancer-bearing mice irradiated with LED. CONCLUSIONS Our findings suggest that LED irradiation can suppress cancer cell activity and may contribute to preventing the proliferation of cancer cells after medical surgery without causing side effects.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
27
|
Elboim-Gabyzon M, Nahhas F. Laser therapy versus pulsed electromagnetic field therapy as treatment modalities for early knee osteoarthritis: a randomized controlled trial. BMC Geriatr 2023; 23:144. [PMID: 36922781 PMCID: PMC10018856 DOI: 10.1186/s12877-022-03568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/27/2022] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND This randomized controlled trial aimed to compare the effects of pulsed electromagnetic field therapy (PEMFT) and low-level laser therapy (LLLT) on pain and physical function of participants with knee osteoarthritis (KOA). METHODS According to the Kellgren-Lawrence classification, participants with grade 2-3 KOA were randomized to receive PEMFT or LLLT for six sessions lasting 15 min/session over a 3-week period. Pain at rest and when walking, standing from a sitting position, and climbing the stairs was assessed using the visual analog scale. Functional level was measured by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), timed up-and-go test (TUG), and 10-m walk (10 MW) test. Measurements were obtained before and after the interventions. Significance was determined at p ≤ 0.05. RESULTS Forty participants were included in the study. Pain and physical function improved significantly (p < 0.0001) in both groups. PEMFT was significantly more effective in reducing pain at rest, when standing from a sitting position, and when climbing the stairs, and in improving both WOMAC scores and TUG results (p ≤ 0.0003). The improvements in pain during the activities and the WOMAC scores reached the minimal clinically important difference. No adverse events occurred. CONCLUSION Six sessions of PEMFT and LLLT had immediate positive effects on pain and physical function in individuals with low-grade KOA, with PEMFT resulting in significantly better results. TRIAL REGISTRATION ISRCTN registry trial ID: ISRCTN17001174.
Collapse
Affiliation(s)
- Michal Elboim-Gabyzon
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, 188 Hushi Abba Boulevard, 3498837, Haifa, Israel.
| | - Fouad Nahhas
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, 188 Hushi Abba Boulevard, 3498837, Haifa, Israel
| |
Collapse
|
28
|
Zaki Ewiss MA, Mahmoud MA, Steiner R. Effect of femtosecond laser interaction with human fibroblasts: a preliminary study. Lasers Med Sci 2023; 38:83. [PMID: 36867297 PMCID: PMC9984333 DOI: 10.1007/s10103-023-03740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
In in vitro methods and cell culture models, femtosecond (fs) laser interaction has been employed to assess its effect on the proliferation and morphology of human skin fibroblasts. We cultured a primary human skin fibroblast cell line on a glass plate, passages 17-23. The cells were irradiated with a 90-fs laser at a wavelength of 800 nm and a repetition rate of 82 MHz. The target received an average power of 320 mW for 5, 20, and 100 s, corresponding to the radiation exposures of 22.6, 90.6, and 452.9 J/cm2, respectively. Using a laser scanning microscopy technique, the photon densities were measured to be 6.4 × 1018, 2.6 × 1019, and 1.3 × 1020 photons/cm2 in a spot area of 0.07 cm2; the recorded spectra were obtained from the laser interaction after 0.00, 1.00, 25.00, and 45.00 h. The cell count and morphological changes showed that the cultured cells were affected by laser irradiation under photon stress; some fibroblasts were killed, while others were injured and survived. We discovered evidence of the formation of several coenzyme compounds, such as flavin (500-600 nm), lipopigments (600-750 nm), and porphyrin (500-700 nm). This study is motivated by the future development of a novel, ultra-short fs laser system and the need to develop a basic in vitro understanding of photon-human cell interaction. The cell proliferation indicated that cells are partly killed or wounded. The exposure of fibroblasts to fs laser fluence up to 450 J/cm2 accelerates cell growth of the viable residual cell.
Collapse
Affiliation(s)
- M A Zaki Ewiss
- Department of Physics, Faculty of Science, Cairo University, Giza, 12630, Egypt.
| | - M A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - R Steiner
- Institute of Laser Technologies in Medicine and Metrology at the University of Ulm, 89081, Ulm, Germany
| |
Collapse
|
29
|
Koh RB, Rychel J, Fry L. Physical Rehabilitation in Zoological Companion Animals. Vet Clin North Am Exot Anim Pract 2023; 26:281-308. [PMID: 36402487 DOI: 10.1016/j.cvex.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Animal physical rehabilitation is one of the fast-growing fields in veterinary medicine in recent years. It has become increasingly common in small animal practice and will continue to emerge as an essential aspect of veterinary medicine that plays a vital role in the care of animals with physical impairments or disabilities from surgery, injuries, or diseases.1 This is true now more than ever because of the increasing advances in lifesaving treatments, the increased lifespan of companion animals, and the growth of chronic conditions, of which many are associated with movement disorders. The American Association of Rehabilitation Veterinarians (AARV) defines APR as "the diagnosis and management of patients with painful or functionally limiting conditions, particularly those with injury or illness related to the neurologic and musculoskeletal systems." Rehabilitation not only focuses on recovery after surgical procedures but also on improving the function and quality of life in animals suffering from debilitating diseases such as arthritis or neurologic disorders. The overall goal of APR is to decrease pain, reduce edema, promote tissue healing, restore gait and mobility to its prior activity level, regain strength, prevent further injury, and promote optimal quality of life. Typically, a multimodal approach with pharmaceutical and nonpharmaceutical interventions is used by APR therapists to manage patients during their recovery. The purpose of this article aims to provide knowledge and guidance on physical rehabilitation to help veterinarians in the proper return of their patients with ZCA safely after injury and/or surgery.
Collapse
Affiliation(s)
- Ronald B Koh
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, School of Veterinary Medicine, 1 Garrod Road, Davis, CA 95616, USA.
| | - Jessica Rychel
- Red Sage Integrative Veterinary Partners, 1027 West Horsetooth, Suite 101, Fort Collins, CO 80526, USA
| | - Lindsey Fry
- Red Sage Integrative Veterinary Partners, 1027 West Horsetooth, Suite 101, Fort Collins, CO 80526, USA
| |
Collapse
|
30
|
Efficacy of Low-Level Laser Therapy in a Rabbit Model of Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24010760. [PMID: 36614203 PMCID: PMC9820841 DOI: 10.3390/ijms24010760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Little is known about alternative treatment options for rhinosinusitis (RS). We aimed to evaluate the efficacy of low-level laser therapy (LLLT) for RS in experimentally induced rabbit models of RS. A total of 18 rabbits were divided into four groups: a negative control group (n = 3), an RS group without treatment (n = 5, positive control group), an RS group with natural recovery (n = 5, natural recovery group), and an RS group with laser irradiation (n = 5, laser-treated group). Computed tomography and histopathological staining were performed for each group. mRNA and protein expression levels of local cytokines (IFN-γ, IL-17, and IL-5) were also measured. Tissue inflammation revealed a significant improvement in the laser-treated group compared with the RS and natural recovery groups (p < 0.01). In addition, sinus opacification in the CT scans and cytokine expression was reduced in the laser-treated group, though without statistical significance. LLLT could be an effective option for the management of RS concerning radiological, histological, and molecular parameters.
Collapse
|
31
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
32
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
33
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
34
|
Pomini KT, Buchaim DV, Bighetti ACC, Andreo JC, Rosso MPDO, Escudero JSB, Della Coletta BB, Alcalde MP, Duarte MAH, Pitol DL, Issa JPM, Ervolino E, Moscatel MBM, Bellini MZ, de Souza AT, Soares WC, Buchaim RL. Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers (Basel) 2022; 14:polym14194170. [PMID: 36236116 PMCID: PMC9572221 DOI: 10.3390/polym14194170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this preclinical protocol, an adjunct method is used in an attempt to overcome the limitations of conventional therapeutic approaches applied to bone repair of large bone defects filled with scaffolds. Thus, we evaluate the effects of photobiomodulation therapy (PBMT) on the bone repair process on defects filled with demineralized bovine bone (B) and fibrin sealant (T). The groups were BC (blood clot), BT (B + T), BCP (BC + PBMT), and BTP (B + T + PBMT). Microtomographically, BC and BCP presented a hypodense cavity with hyperdense regions adjacent to the border of the wound, with a slight increase at 42 days. BT and BTP presented discrete hyperdensing areas at the border and around the B particles. Quantitatively, BCP and BTP (16.96 ± 4.38; 17.37 ± 4.38) showed higher mean bone density volume in relation to BC and BT (14.42 ± 3.66; 13.44 ± 3.88). Histologically, BC and BCP presented deposition of immature bone at the periphery and at 42 days new bone tissue became lamellar with organized total collagen fibers. BT and BTP showed inflammatory infiltrate along the particles, but at 42 days, it was resolved, mainly in BTP. In the birefringence analysis, BT and BTP, the percentage of red birefringence increased (9.14% to 20.98% and 7.21% to 27.57%, respectively), but green birefringence was similar in relation to 14 days (3.3% to 3.5% and 3.5% to 4.2%, respectively). The number of osteocytes in the neoformed bone matrix proportionally reduced in all evaluated groups. Immunostaining of bone morphogenetic protein (BMP—2/4), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) were higher in BCP and BTP when compared to the BC and BT groups (p < 0.05). An increased number of TRAP positive cells (tartrate resistant acid phosphatase) was observed in BT and BTP. We conclude that PBMT positively influenced the repair of bone defects filled with B and T.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | - José Stalin Bayas Escudero
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16066-840, Brazil
| | | | - Márcia Zilioli Bellini
- Pro-Rectory of Research and Graduate Studies, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
- Correspondence: ; Tel.: +55-14-3235-8220
| |
Collapse
|
35
|
Sadraeian M, Zhang L, Aavani F, Biazar E, Jin D. Viral inactivation by light. ELIGHT 2022; 2:18. [PMID: 36187558 PMCID: PMC9510523 DOI: 10.1186/s43593-022-00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Le Zhang
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Dayong Jin
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
36
|
Kim H, Kim Y, Kim TH, Heo SY, Jung WK, Kang HW. Stimulatory effects of wavelength-dependent photobiomodulation on proliferation and angiogenesis of colorectal cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112527. [PMID: 35914464 DOI: 10.1016/j.jphotobiol.2022.112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 05/01/2023]
Abstract
In recent decades, the laser treatment of cancer has been introduced as a promising treatment option. Because of the maldistribution of optical energy and an ambiguous boundary between the normal and tumor tissues, laser irradiation can stimulate residual cancer cells, leading to a cancer regrowth. As photobiomodulation (PBM) is involved in an extensive range of cellular responses, profound comprehension of photo-stimulated mechanisms against the cancer cells is required to establish a safety margin for PBM. Therefore, we aimed to identify the stimulant effects of PBM at various wavelengths against the tumor cells to establish a safety margin for the laser treatment. CT26 murine colon cancer cells were exposed to either 405 (BL), 635 (VIS), or 808 (NIR) nm laser lights at the fluences of 0, 10, 30, and 50 J/cm2. In addition, CT26 tumor-bearing mice were irradiated with BL, VIS, or NIR at a fluence of 30 J/cm2. Both the proliferation and angiogenesis potential of the CT26 cells and tumors were evaluated using the MTT assay, western blot, and immunohistochemistry (IHC) staining analyses. Although cell viability was not statistically significant, BL significantly induced p-ERK upregulation in the CT26 cells, indicating that PBM with BL can stimulate proliferation. In vivo tests showed that the NIR group exhibited the maximum relative tumor volume, and BL yielded a slight increase compared to the control. In the IHC staining and western blot analyses, both BL and NIR increased the expression of EGFR, VEGF, MMP-9, and HIF-1α, which are related to the proliferation and angiogenesis-related factors. Further investigations will be pursued to clarify the molecular pathways that depend on the cancer cell types and laser wavelengths for the establishment of safety guidelines in clinical environments.
Collapse
Affiliation(s)
- Hyejin Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Yeongeun Kim
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Tae-Hee Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Republic of Korea
| | - Won-Kyo Jung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
37
|
Salman S, Guermonprez C, Declercq L, Kerdine-Römer S. P05-03 Photobiomodulation-induced Nrf2 partially controls the inflammatory response in keratinocytes. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Abstract
Low-level laser therapy (LLLT) has become an important part of the therapeutic process in various diseases. However, despite the broad use of LLLT in everyday clinical practice, the full impact of LLLT on cell life processes has not been fully understood. This paper presents the current state of knowledge concerning the mechanisms of action of LLLT on cells. A better understanding of the molecular processes occurring within the cell after laser irradiation may result in introducing numerous novel clinical applications of LLLT and potentially increases the safety profile of this therapy.
Collapse
|
39
|
Bahari Bandari A, Hajmohammady S, Mafi S. Therapeutic Effect of a Low-Level Laser on Acute Pain and Post-operative Mouth Opening After Closed Reduction of Mandibular-Condylar Fracture. J Lasers Med Sci 2022; 13:e30. [PMID: 36743149 PMCID: PMC9841373 DOI: 10.34172/jlms.2022.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Introduction: The purpose of this study was to determine the therapeutic effect of low-level laser therapy (LLLT) on acute pain and the range of mouth opening after condylar closed reduction surgery. The use of low-level lasers, especially to reduce inflammation and pain, has received more attention in recent years. The results of many studies performed in this field are contradictory, and the effectiveness of low-level lasers in the treatment of patients is still uncertain. Methods: This study was performed as a randomized, double-blinded clinical trial on 40 patients with condylar closed reduction surgery. Patients were randomly assigned to two groups of 20 patients, including the placebo and intervention groups. In the intervention group, the patients received LLLT (100 mw, 2 J/cm2, 20 S/point, 14 extraoral points, 7 days). The range of jaw movements after opening the intermaxillary-fixation was measured. Patients' pain was assessed using the visual analog scale (VAS). Data were analyzed using SPSS software version 21, the chi-square test, and repeated measures ANOVA. Results: There was no significant difference between the study groups in terms of the range of jaw motions. The mean VAS score was 56.85 (SD=3.817) in the intervention group and 60.95 (SD=4.861) in the placebo group, showing a statistically significant difference between the two groups at the end of the study (P=0.007) Conclusion: The results of this study indicated the effectiveness of low-level lasers in reducing acute pain in patients undergoing closed condylar surgery. Iranian Registry of Clinical Trials (IRCT20200520047519N1).
Collapse
Affiliation(s)
- Arash Bahari Bandari
- Department of Oral and Maxillofacial Surgery, Dental School of Kermanshah, Kermanshah, Iran
| | | | - Sahar Mafi
- Assistant Professor, Department of Oral Medicine, Dental School of Kermanshah, Kermanshah, Iran,Correspondence to Sahar Mafi, Tel: 09123592738, E-mail:
| |
Collapse
|
40
|
Staelens M, Di Gregorio E, Kalra AP, Le HT, Hosseinkhah N, Karimpoor M, Lim L, Tuszyński JA. Near-Infrared Photobiomodulation of Living Cells, Tubulin, and Microtubules In Vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:871196. [PMID: 35600165 PMCID: PMC9115106 DOI: 10.3389/fmedt.2022.871196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
We report the results of experimental investigations involving photobiomodulation (PBM) of living cells, tubulin, and microtubules in buffer solutions exposed to near-infrared (NIR) light emitted from an 810 nm LED with a power density of 25 mW/cm2 pulsed at a frequency of 10 Hz. In the first group of experiments, we measured changes in the alternating current (AC) ionic conductivity in the 50–100 kHz range of HeLa and U251 cancer cell lines as living cells exposed to PBM for 60 min, and an increased resistance compared to the control cells was observed. In the second group of experiments, we investigated the stability and polymerization of microtubules under exposure to PBM. The protein buffer solution used was a mixture of Britton-Robinson buffer (BRB aka PEM) and microtubule cushion buffer. Exposure of Taxol-stabilized microtubules (~2 μM tubulin) to the LED for 120 min resulted in gradual disassembly of microtubules observed in fluorescence microscopy images. These results were compared to controls where microtubules remained stable. In the third group of experiments, we performed turbidity measurements throughout the tubulin polymerization process to quantify the rate and amount of polymerization for PBM-exposed tubulin vs. unexposed tubulin samples, using tubulin resuspended to final concentrations of ~ 22.7 μM and ~ 45.5 μM in the same buffer solution as before. Compared to the unexposed control samples, absorbance measurement results demonstrated a slower rate and reduced overall amount of polymerization in the less concentrated tubulin samples exposed to PBM for 30 min with the parameters mentioned above. Paradoxically, the opposite effect was observed in the 45.5 μM tubulin samples, demonstrating a remarkable increase in the polymerization rates and total polymer mass achieved after exposure to PBM. These results on the effects of PBM on living cells, tubulin, and microtubules are novel, further validating the modulating effects of PBM and contributing to designing more effective PBM parameters. Finally, potential consequences for the use of PBM in the context of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Michael Staelens
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | - Aarat P. Kalra
- Scholes Lab, Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Hoa T. Le
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | - Jack A. Tuszyński
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jack A. Tuszyński
| |
Collapse
|
41
|
Ahmadi F, Dalirsani Z, Tayarani-Najaran Z, Ebrahimzadeh-Bideskan A, Shafieian R. A Comparative Analysis of Photobiomodulation-Mediated Biological Effects of Single Versus Double Irradiation on Dental Pulp Stem Cells: An In Vitro Study. Photobiomodul Photomed Laser Surg 2022; 40:334-342. [PMID: 35559714 DOI: 10.1089/photob.2021.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: In recent years, fractionated irradiation protocols, rather than a simple plan of exposure, have been proposed as a more effective method in the field of tissue regeneration. Thus, this study aimed at a comparative analysis of single versus double irradiation of an 808-nm diode laser, in terms of dental pulp stem cells' (DPSCs) viability and proliferation in vitro. Methods: Subcultured DPSCs were either irradiated, or not (control group), with energy densities of 3, 7, and 12 J·cm-2 in a single- or double-session manner (24 h apart). On 0, 12, 24, 48, and 72 h postirradiation, cell viability and proliferation were evaluated through Trypan Blue and alamarBlue assays, respectively. Results: During the first 48 h postirradiation, the highest rates of DPSC proliferation were assigned to double irradiation at 3 or single exposure to 7 J⋅cm-2, with no cytotoxic effects on cell viability. Inversely, single irradiation at 12, or a double session of exposure to 7 or 12 J⋅cm-2, led to a significant descent in the rates of proliferation and cell viability. Conclusions: Within the limitations of this study, evidence suggests a positive impact on the biological responses of DPSCs following double session of exposure to lower energy densities as well as a single irradiation at a higher energy dosage.
Collapse
Affiliation(s)
- Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Dalirsani
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Stem Cells and Regenerative Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Regulatory Processes of the Canonical Wnt/β-Catenin Pathway and Photobiomodulation in Diabetic Wound Repair. Int J Mol Sci 2022; 23:ijms23084210. [PMID: 35457028 PMCID: PMC9028270 DOI: 10.3390/ijms23084210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Skin is a biological system composed of different types of cells within a firmly structured extracellular matrix and is exposed to various external and internal insults that can break its configuration. The restoration of skin's anatomic continuity and function following injury is a multifaceted, dynamic, well-coordinated process that is highly dependent on signalling pathways, including the canonical Wnt/β catenin pathway, all aimed at restoring the skin's protective barrier. Compromised and inappropriate tissue restoration processes are often the source of wound chronicity. Diabetic patients have a high risk of developing major impediments including wound contamination and limb amputation due to chronic, non-healing wounds. Photobiomodulation (PBM) involves the application of low-powered light at specific wavelengths to influence different biological activities that incite and quicken tissue restoration. PBM has been shown to modulate cellular behaviour through a variety of signal transduction pathways, including the Wnt/β catenin pathway; however, the role of Wnt/β catenin in chronic wound healing in response to PBM has not been fully defined. This review largely focuses on the role of key signalling pathways in human skin wound repair, specifically, the canonical Wnt/β-catenin pathway, and the effects of PBM on chronic wound healing.
Collapse
|
43
|
Baczewska M, Stępień P, Mazur M, Krauze W, Nowak N, Szymański J, Kujawińska M. Method to analyze effects of low-level laser therapy on biological cells with a digital holographic microscope. APPLIED OPTICS 2022; 61:B297-B306. [PMID: 35201152 DOI: 10.1364/ao.445337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Low-level laser therapy (LLLT) is a therapeutic tool that uses the photobiochemical interaction between light and tissue. Its effectiveness is controversial due to a strong dependence on dosimetric parameters. In this work, we demonstrate that digital holographic microscopy is an effective label-free imaging technique to analyze the effects of LLLT on biological cells, and we propose the full methodology to create correct synthetic aperture phase maps for further extensive, highly accurate statistical analysis. The proposed methodology has been designed to provide a basis for many other biological experiments using quantitative phase imaging. We use SHSY-5Y and HaCaT cells irradiated with different doses of red light for the experiment. The analysis shows quantitative changes in cell dry mass density and the projected cell surface in response to different radiation doses.
Collapse
|
44
|
Moskvin SV, Strazhev SV. [Low-level laser therapy in oncology - what's new? Analysis of 2018-2021 publications]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:56-66. [PMID: 36538405 DOI: 10.17116/kurort20229906156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-level laser therapy (LLLT) is included in the Federal project «Fight against oncological diseases», which provides for equipping all specialized medical institutions in Russia with the appropriate devices until 2026. PURPOSE OF THE STUDY Publications analysis on the use of LLLT in oncology. MATERIAL AND METHODS To search for publications, databases and libraries were used: PubMed, Scopus, ResearchGate, Google Scholar, J-STAGE, eLibrary.ru for the period 2018-2021. For analysis, publications were selected that are of interest from the point of view of improving the methodology of LLLT, the prospects for the development of this method in the prevention, treatment and rehabilitation of patients. A total of 223 publications were found, including 39 reviews and meta-analyses, mostly in English (165) and Portuguese (41). RESULTS AND DISCUSSION The inclusion of LLLT in the ISOO/MASCC/ASCO recommendations for the treatment of complications such as mucositis, salivary gland hypofunction and xerostomia caused by non-surgical methods of treating cancer patients should be considered as a promising trend. An extremely low level of quality of LLLT techniques was noted, most often the replacement with meaningless «doses», «fluences» instead of the necessary parameters: wavelength, operating mode, power, frequency, exposure, etc. The use of only local illumination instead of systemic methods of LLLT does not allow obtaining the best results of treatment and prevention. Eliminating the shortcomings of treatment protocols with a focus on Russian experience, when laser blood illumination (intravenously or externally) and laser acupuncture are also necessarily carried out with local illumination of the lesion, will bring the effectiveness of LLLT to a qualitatively new, higher level.
Collapse
Affiliation(s)
- S V Moskvin
- Academy of Postgraduate Education of Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency, Moscow, Russia
| | - S V Strazhev
- City Polyclinic No.212 of the Department of Health of the City of Moscow - Branch No. 70, Moscow, Russia
| |
Collapse
|
45
|
Photobiomodulation therapy prevents dysgeusia chemotherapy induced in breast cancer women treated with doxorubicin plus cyclophosphamide: a triple-blinded, randomized, placebo-controlled clinical trial. Support Care Cancer 2021; 30:2569-2580. [PMID: 34799776 DOI: 10.1007/s00520-021-06642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate the effectiveness of photobiomodulation (PBMT) in preventing dysgeusia in breast cancer patients treated with doxorubicin-cyclophosphamide (AC). METHODS This is a phase II, randomized, triple-blind, placebo-controlled clinical trial involving 112 breast cancer patients treated with AC. The patients were divided equally into two groups: a test group treated with 2 J red laser and 3 J infrared laser on 21 points that were symmetrically distributed on the tongue on day 0 of four cycles of AC, and an equal placebo group treated with simulated PBMT to blind the patient, evaluator, and statistician. The clinicopathological and sociodemographic data, results of taste test, and subjective taste analysis, and the QoL, ECOG performance status, body mass index, and other side effects were recorded. The data were analyzed using ANOVA-RM/Bonferroni, Friedman/Dunn, and chi-square/Fisher's exact tests. RESULTS PBMT patients showed less objective and subjective taste loss (p<0.05). On the other hand, the placebo group showed a higher ECOG status (p=0.037) and more significant weight loss (p<0.001) after four cycles of AC. The QoL was significantly higher in the PBMT group (p<0.05) at all assessment periods, and PBMT treatment also reduced the incidence of cachexia (p=0.020), anorexia (p<0.001), diarrhea (p=0.040), oral mucositis (p=0.020), and vomiting (p=0.008). CONCLUSION PBMT reduced the taste loss and improved the overall health status and QoL of patients with breast cancer treated with AC. TRIAL REGISTRATION Brazilian Clinical Trials Registry ( www.ensaiosclinicos.gov.br ) approval number RBR-9qnm34y, registered on 01/05/2021.
Collapse
|
46
|
MicroRNA31 and MMP-1 contribute to the differentiated pathway of invasion -with enhanced epithelial-to-mesenchymal transition- in squamous cell carcinoma of the skin. Arch Dermatol Res 2021; 314:767-775. [PMID: 34647185 DOI: 10.1007/s00403-021-02288-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is an important mechanism of invasion in cutaneous squamous cell carcinomas (cSCCs) and has been found to be enhanced in tumors originated from actinic keratosis with transformation limited to the basal epithelial layer -differentiated pathway-, compared to cases with invasion subsequent to complete epidermal transformation -classical pathway-. Several microRNAs and proteins can contribute to EMT modulation in cSCCs. MicroRNA21 and microRNA31 are involved in posttranscriptional regulation of protein expression and could play a relevant role in EMT and cSCC progression. Throughout the EMT process upregulation of matrix metalloproteinases (MMPs) enhances invasiveness and MMP-1 and MMP-3 contribute to local invasion, angiogenesis and metastasis in cSCCs. Additionally, cSCC development is associated with PTEN loss and NF-κB, NOTCH-1 and p63 activation. The aim of this work is to identify differences in the expression of those molecules between both pathways of cSCCs development. Eight tissue microarrays from 80 consecutive cSCCs were analyzed using LNA-based miRNA in situ hybridization for miRNA21 and miRNA31 evaluation, and immunohistochemistry for MMP-1, MMP-3, PTEN, NOTCH-1, NF-κB, p63 and CD31. Significantly higher expression of miRNA31 (p < 0.0001) and MMP-1 (p = 0.0072) and angiogenesis (p = 0.0199) were found in the differentiated pathway, whereas PTEN loss (p = 0.0430) was more marked in the classical pathway. No significant differences were found for the other markers. Our findings support a contribution of miRNA31 and MMP-1 in the differentiated pathway, associated to EMT and increased microvascularization. The greater PTEN loss in the classical pathway indicate that its relevance in cSCC is not EMT-related.
Collapse
|
47
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:ijms22094942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
48
|
Khodabandeh Z, Haghighat S, Tanideh N, Zare S, Farrokhi F, Karandish M, Iraji A. Comparing the effects of Elaegnus Angustifolia, Hypericum Perforatum and Psidium Guajava extracts on metabolic activity of dental pulp-derived mesenchymal stem cells. Cell Tissue Bank 2021; 23:143-155. [PMID: 33843009 DOI: 10.1007/s10561-021-09923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Dental pulp derived-mesenchymal stem cells (DP-MSCs) is considered a suitable are candidate for tissue engineering techniques and osseous reconstruction. Based on the hypothesis that Hypericum perforatum, Elaeagnus Angustifolia and Psidium guajava extracts can be used in cell-based bone tissue engineering due to meagre cytotoxicity response in the cell culture medium, their effects on the viability and metabolic activity of DP-MSCs were investigated and compared with each extract. DP-MSCs were extracted from human dental pulp, characterized by flow cytometry, and differentiated into Osteogenic and adipogenic lineages which were then cultured in different concentrations of E. Angustifolia, H. perforatum and P. guajava extracts at different time intervals followed by MTT assay evaluation. The dental pulp mesenchymal stem cells were evaluated for their plastic adherence ability, fibroblast-like and spindle morphology. According to flow cytometry data, isolated cells from DP-MSCs expressed MSCs markers. A comparison of herbal extracts' concentrations revealed that 500 μg/ml was toxic to dental pulp stem cells, a guide to the toxic dose for DP-MSCs. The P.guajava bore low toxicity and increased dental pulp stem cell viability in comparison to the other two herbal extracts. The hydro-alcoholic extracts of E. Angustifolia, H. perforatum, and P. guajava were efficient in DP-MSCs viability, and therefore were concluded to be useful in maintaining structural and functional cell viability. It was also concluded that the co-culture of stem cells with herbal elements could stimulate endogenous factors to enhance the proliferation and viability of MSCs.
Collapse
Affiliation(s)
- Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sara Haghighat
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Pharmacology Department, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farnaz Farrokhi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Karandish
- Orthodontic Department, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Ghasrdasht St, Shiraz, Iran
| |
Collapse
|
49
|
Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with Light-Emitting Diode: Implications and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6663539. [PMID: 33623634 PMCID: PMC7875639 DOI: 10.1155/2021/6663539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/05/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
This study evaluated the effects of light-emitting diode (LED) on mesenchymal stem cells (MSCs). An electronic search was conducted in PubMed/MEDLINE, Scopus, and Web of Science database for articles published from 1980 to February 2020. Ten articles met the search criteria and were included in this review. The risk of bias was evaluated to report quality, safety, and environmental standards. MSCs were derived from adipose tissue, bone marrow, dental pulp, gingiva, and umbilical cord. Protocols for cellular irradiation used red and blue light spectrum with variations of the parameters. The LED has been shown to induce greater cellular viability, proliferation, differentiation, and secretion of growth factors. The set of information available leads to proposing a complex signaling cascade for the action of photobiomodulation, including angiogenic factors, singlet oxygen, mitogen-activated protein kinase/extracellular signal-regulated protein kinase, Janus kinase/signal transducer, and reactive oxygen species. In conclusion, although our results suggest that LED can boost MSCs, a nonuniformity in the experimental protocol, bias, and the limited number of studies reduces the power of systematic review. Further research is essential to find the optimal LED irradiation parameters to boost MSCs function and evaluate its impact in the clinical setting.
Collapse
|
50
|
Ahmed W, Elbrønd VS, Harrison AP, Hart JO, Williams RE. An Investigation Into the Short-Term Effects of Photobiomodulation on the Mechanical Nociceptive Thresholds of M. Longissimus and M. Gluteus Medius, in Relation to Muscle Firing Rate in Horses at Three Different Gaits. J Equine Vet Sci 2020; 98:103363. [PMID: 33663728 DOI: 10.1016/j.jevs.2020.103363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/18/2023]
Abstract
Back pain is a common condition in horses, yet despite this, quantitative assessments of the efficacy of treatment are scarce. Mechanical nociceptive thresholds (MNTs) and acoustic myography (AMG) recordings were obtained, both preinterventionand postintervention, from the left and right epaxial muscles in eight healthy general riding horses (mean age 17 ± 6 yrs). Using an algometer, MNT readings were taken at each of the 6 preselected points along the thoracolumbar M. longissimus and M. gluteus medius region. AMG recordings of the M. longissimus and M. gluteus medius were taken while walking, trotting, and cantering on a left or right hand 20m circle on a longe, on a waxed sand surface in an indoor arena. Horses were then treated using a class 1 laser. Therapy was applied for 1 minute at 1000 Hz to the same preselected points from which MNT measurements had previously been taken. Measurements were subsequently taken 1 hour and 24 hours post-treatment for MNT reading, and only 24 hours after for AMG measurements. No significant effect of treatment was noted for the MNTs. The AMG results were analyzed in terms of their temporal summation (T-score), where statistically significant improvements in the T-scores for M. longissimus and M. gluteus medius were noted for the different gaits. It is concluded that cold laser therapy has a positive effect on horse muscles that reveals a change in their firing frequency that is commensurate with changes seen with analgesia in subjects experiencing pain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Faculty of Health and Medical Sciences, University of Copenhagen, PAS (Physiology), Frederiksberg C, Denmark
| | - Vibeke S Elbrønd
- Faculty of Health and Medical Sciences, University of Copenhagen, PAS (Physiology), Frederiksberg C, Denmark
| | - Adrian P Harrison
- Faculty of Health and Medical Sciences, University of Copenhagen, PAS (Physiology), Frederiksberg C, Denmark.
| | | | | |
Collapse
|