1
|
Bedia JS, Huang YW, Gonzalez AD, Gonzalez VD, Funingana IG, Rahil Z, Mike A, Lowber A, Vias M, Ashworth A, Brenton JD, Fantl WJ. Coordinated protein modules define DNA damage responses to carboplatin at single cell resolution in human ovarian carcinoma models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624591. [PMID: 39605494 PMCID: PMC11601625 DOI: 10.1101/2024.11.21.624591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tubo-ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy and frequently responds to platinum-based chemotherapy because of common genetic and somatic impairment of DNA damage repair (DDR) pathways. The mechanisms of clinical platinum resistance are diverse and poorly molecularly defined. Consequently, there are no biomarkers or medicines that improve patient outcomes. Herein we use single cell mass cytometry (CyTOF) to systematically evaluate the phosphorylation and abundance of proteins known to participate in the DNA damage response (DDR). Single cell analyses of highly characterized HGSC cell lines that phenocopy human patients show that cells with comparable levels of intranuclear platinum, a proxy for carboplatin uptake, undergo different cell fates. Unsupervised analyses revealed a continuum of DDR responses. Decompositional methods were used to identify eight distinct protein modules of carboplatin resistance and sensitivity at single cell resolution. CyTOF profiling of primary and secondary platinum-resistance patient models shows that a complex DDR sensitivity module is strongly associated with response, suggesting it as a potential tool to clinically characterize complex drug resistance phenotypes.
Collapse
Affiliation(s)
- Jacob S. Bedia
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridgeshire, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Zainab Rahil
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Mike
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis Lowber
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Wendy J. Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Comprehensive Cancer Institute
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
McCabe A, Quinn GP, Jain S, Ó Dálaigh M, Dean K, Murphy RG, McDade SS. ClassifieR 2.0: expanding interactive gene expression-based stratification to prostate and high-grade serous ovarian cancer. BMC Bioinformatics 2024; 25:362. [PMID: 39574035 PMCID: PMC11580654 DOI: 10.1186/s12859-024-05981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Advances in transcriptional profiling methods have enabled the discovery of molecular subtypes within and across traditional tissue-based cancer classifications. Such molecular subgroups hold potential for improving patient outcomes by guiding treatment decisions and revealing physiological distinctions and targetable pathways. Computational methods for stratifying transcriptomic data into molecular subgroups are increasingly abundant. However, assigning samples to these subtypes and other transcriptionally inferred predictions is time-consuming and requires significant bioinformatics expertise. To address this need, we recently reported "ClassifieR," a flexible, interactive cloud application for the functional annotation of colorectal and breast cancer transcriptomes. Here, we report "ClassifieR 2.0" which introduces additional modules for the molecular subtyping of prostate and high-grade serous ovarian cancer (HGSOC). RESULTS ClassifieR 2.0 introduces ClassifieRp and ClassifieRov, two specialised modules specifically designed to address the challenges of prostate and HGSOC molecular classification. ClassifieRp includes sigInfer, a method we developed to infer commercial prognostic prostate gene expression signatures from publicly available gene-lists or indeed any user-uploaded gene-list. ClassifieRov utilizes consensus molecular subtyping methods for HGSOC, including tools like consensusOV, for accurate ovarian cancer stratification. Both modules include functionalities present in the original ClassifieR framework for estimating cellular composition, predicting transcription factor (TF) activity and single sample gene set enrichment analysis (ssGSEA). CONCLUSIONS ClassifieR 2.0 combines molecular subtyping of prostate cancer and HGSOC with commonly used sample annotation tools in a single, user-friendly platform, allowing scientists without bioinformatics training to explore prostate and HGSOC transcriptional data without the need for extensive bioinformatics knowledge or manual data handling to operate various packages. Our sigInfer method within ClassifieRp enables the inference of commercially available gene signatures for prostate cancer, while ClassifieRov incorporates consensus molecular subtyping for HGSOC. Overall, ClassifieR 2.0 aims to make molecular subtyping more accessible to the wider research community. This is crucial for increased understanding of the molecular heterogeneity of these cancers and developing personalised treatment strategies.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland.
| | - Gerard P Quinn
- BlokBio, Ormeau Labs, Belfast, Northern Ireland, UK
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Suneil Jain
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Micheál Ó Dálaigh
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ross G Murphy
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK
- The Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, UK
| | - Simon S McDade
- BlokBio, Ormeau Labs, Belfast, Northern Ireland, UK.
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
3
|
Knarr MJ, Moon J, Rawat P, DiFeo A, Hoon DSB, Drapkin R. Repurposing colforsin daropate to treat MYC-driven high-grade serous ovarian carcinomas. Sci Signal 2024; 17:eado8303. [PMID: 39561220 DOI: 10.1126/scisignal.ado8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is one of the deadliest cancers for women, with a low survival rate, no early detection biomarkers, a high rate of recurrence, and few therapeutic options. Forskolin, an activator of cyclic AMP signaling, has several anticancer activities, including against HGSOC, but has limited use in vivo. Its water-soluble derivative, colforsin daropate, has the same mechanism of action as forskolin and is used to treat acute heart failure. Here, we investigated the potential of colforsin daropate as a treatment for HGSOC. We found that colforsin daropate induced cell cycle arrest and apoptosis in cultured HGSOC cells and spheroids but had negligible cytotoxicity in immortalized, nontumorigenic fallopian tube secretory cells and ovarian surface epithelial cells. Colforsin daropate also prevented HGSOC cells from invading ovarian surface epithelial cell layers in culture. In vivo, colforsin daropate reduced tumor growth, synergized with cisplatin (a standard chemotherapy in ovarian cancer care), and improved host survival in subcutaneous and intraperitoneal xenograft models. These antitumor effects of colforsin daropate were mediated in part by its reduction in the abundance and transcriptional activity of the oncoprotein c-MYC, which is often increased in HGSOC. Our findings demonstrate that colforsin daropate may be a promising therapeutic that could be combined with conventional therapies to treat HGSOC.
Collapse
Affiliation(s)
- Matthew J Knarr
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jamie Moon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health Services, Santa Monica, CA 90404, USA
| | - Priyanka Rawat
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Health Services, Santa Monica, CA 90404, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Li B, Tan S, Yu X, Wang Y. Bufalin: A promising therapeutic drug against the cisplatin-resistance of ovarian cancer by targeting the USP36/c-Myc axis. Biochem Biophys Res Commun 2024; 733:150440. [PMID: 39067250 DOI: 10.1016/j.bbrc.2024.150440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.
Collapse
Affiliation(s)
- Bing Li
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Shu Tan
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Yu
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Wang
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
5
|
Castillo Cruz B, Chinapen Barletta S, Ortiz Muñoz BG, Benitez-Reyes AS, Amalbert Perez OA, Cardona Amador AC, Vivas-Mejia PE, Barletta GL. Effect of Cyclodextrins Formulated in Liposomes and Gold and Selenium Nanoparticles on siRNA Stability in Cell Culture Medium. Pharmaceuticals (Basel) 2024; 17:1344. [PMID: 39458985 PMCID: PMC11510567 DOI: 10.3390/ph17101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome's fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium. Here, we continued that study to include α, γ, methyl-β-cyclodextrins and β-cyclodextrin-modified gold and selenium nanoparticles. METHODS We used Isothermal Titration Calorimetry to study the binding thermodynamics of siRNAs to the cyclodextrin-modified nanoparticles and to screen for the best adamantane derivative to modify the siRNA fragments, and we used gel electrophoresis to study the stabilization effect of siRNA by cyclodextrins and the nanoparticles. RESULTS We found that only β- and methyl-β-cyclodextrins increased siRNA serum stability. Cyclodextrin-modified selenium nanoparticles also stabilize siRNA fragments in serum, and siRNAs chemically modified with an adamantane moiety (which forms inclusion complexes with the cyclodextrin-modified-nanoparticles) show a strong stabilization effect. CONCLUSIONS β-cyclodextrins are good additives to stabilize siRNA in cell culture medium, and the thermodynamic data we generated of the interaction between cyclodextrins and adamantane analogs (widely used in drug delivery studies), should serve as a guide for future studies where cyclodextrins are sought for the delivery and solvation of small organic molecules.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Sandra Chinapen Barletta
- Department of Physiology/Pathology, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico;
| | - Bryan G. Ortiz Muñoz
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Adriana S. Benitez-Reyes
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Omar A. Amalbert Perez
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Alexander C. Cardona Amador
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| | - Pablo E. Vivas-Mejia
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 0035, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Gabriel L. Barletta
- Department of Chemistry, University of Puerto Rico at Humacao, Humacao 00791, Puerto Rico; (B.C.C.); (B.G.O.M.); (A.S.B.-R.); (O.A.A.P.); (A.C.C.A.)
| |
Collapse
|
6
|
Bujnakova Mlynarcikova A, Scsukova S. Evaluation of effects of bisphenol analogs AF, S, and F on viability, proliferation, production of selected cancer-related factors, and expression of selected transcripts in Caov-3 human ovarian epithelial cell line. Food Chem Toxicol 2024; 191:114889. [PMID: 39059691 DOI: 10.1016/j.fct.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol A (BPA) has been a substantial additive in plastics until the reports on its adverse effects have led to its restrictions and replacement. Monitoring studies document the increasing occurrence of bisphenol analogs, however, data on their effects and risks is still insufficient. Based on the indications that BPA might contribute to ovarian cancer pathogenesis, we examined effects of the analogs AF (BPAF), S (BPS) and F (BPF) (10-9-10-4 M) on the Caov-3 epithelial cancer cells, including the impact on cell viability, proliferation, oxidative stress, and production and expression of several factors and genes related to ovarian cancer. At environmentally relevant doses, bisphenols did not exert significant effects. At the highest concentration, BPAF caused varied alterations, including decreased cell viability and proliferation, caspase activation, down-regulation of PCNA and BIRC5, elevation of IL8, VEGFA, MYC, PTGS2 and ABCB1 expressions. Only BPA (10-4 M) increased IL-6, IL-8 and VEGFA output by the Caov-3 cells. Each bisphenol induced generation of reactive oxygen species and decreased superoxide dismutase activity at the highest concentration. Although the effects were observed only in the supraphysiological doses, the results indicate that certain bisphenol analogs might affect several ovarian cancer cell characteristics and merit further investigation.
Collapse
Affiliation(s)
- Alzbeta Bujnakova Mlynarcikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia.
| | - Sona Scsukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia
| |
Collapse
|
7
|
Blackman A, Rees AC, Bowers RR, Jones CM, Vaena SG, Clark MA, Carter S, Villamor ED, Evans D, Emanuel AJ, Fullbright G, O’Malley MS, Carpenter RL, Long DT, Spruill LS, Romeo MJ, Orr BC, Helke KL, Delaney JR. MYC is Sufficient to Generate Mid-Life High-Grade Serous Ovarian and Uterine Serous Carcinomas in a p53-R270H Mouse Model. CANCER RESEARCH COMMUNICATIONS 2024; 4:2525-2538. [PMID: 39225558 PMCID: PMC11425777 DOI: 10.1158/2767-9764.crc-24-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment are understood. MYC, an oncogene, is amongst the most amplified genes in high-grade serous ovarian cancer (HGSOC), but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant-negative mutant p53-R270H with a fallopian tube epithelium (FTE)-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 14.5 months. Histopathologic examination of mice revealed HGSOC characteristics, including nuclear p53 and nuclear MYC in clusters of cells within the FTE and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the FTE. Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy-number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate that the Myc and Trp53-R270H transgenes were able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology-directed repair mutations. Histologic and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the FTE. SIGNIFICANCE Mouse models using transgenes which generate spontaneous cancers are essential tools to examine the etiology of human diseases. Here, the first Myc-driven spontaneous model is described as a valid HGSOC model. Surprisingly, aspects of uterine serous carcinoma were also observed in this model.
Collapse
Affiliation(s)
- Alexandra Blackman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina.
| | - Amy C. Rees
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Robert R. Bowers
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Christian M. Jones
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Silvia G. Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| | - Madison A. Clark
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Shelby Carter
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Evan D. Villamor
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Della Evans
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Anthony J. Emanuel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Matthew S. O’Malley
- Department of Medical Sciences, Indiana University Bloomington, Bloomington, Indiana.
| | - Richard L. Carpenter
- Department of Medical Sciences, Indiana University Bloomington, Bloomington, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University Bloomington, Bloomington, Indiana.
| | - David T. Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| | - Laura S. Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.
| | - Brian C. Orr
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina.
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
8
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Dareng EO, Coetzee SG, Tyrer JP, Peng PC, Rosenow W, Chen S, Davis BD, Dezem FS, Seo JH, Nameki R, Reyes AL, Aben KKH, Anton-Culver H, Antonenkova NN, Aravantinos G, Bandera EV, Beane Freeman LE, Beckmann MW, Beeghly-Fadiel A, Benitez J, Bernardini MQ, Bjorge L, Black A, Bogdanova NV, Bolton KL, Brenton JD, Budzilowska A, Butzow R, Cai H, Campbell I, Cannioto R, Chang-Claude J, Chanock SJ, Chen K, Chenevix-Trench G, Chiew YE, Cook LS, DeFazio A, Dennis J, Doherty JA, Dörk T, du Bois A, Dürst M, Eccles DM, Ene G, Fasching PA, Flanagan JM, Fortner RT, Fostira F, Gentry-Maharaj A, Giles GG, Goodman MT, Gronwald J, Haiman CA, Håkansson N, Heitz F, Hildebrandt MAT, Høgdall E, Høgdall CK, Huang RY, Jensen A, Jones ME, Kang D, Karlan BY, Karnezis AN, Kelemen LE, Kennedy CJ, Khusnutdinova EK, Kiemeney LA, Kjaer SK, Kupryjanczyk J, Labrie M, Lambrechts D, Larson MC, Le ND, Lester J, Li L, Lubiński J, Lush M, Marks JR, Matsuo K, May T, McLaughlin JR, McNeish IA, Menon U, Missmer S, Modugno F, Moffitt M, Monteiro AN, Moysich KB, Narod SA, Nguyen-Dumont T, Odunsi K, Olsson H, Onland-Moret NC, Park SK, Pejovic T, Permuth JB, Piskorz A, Prokofyeva D, Riggan MJ, Risch HA, Rodríguez-Antona C, Rossing MA, Sandler DP, Setiawan VW, Shan K, Song H, Southey MC, Steed H, Sutphen R, Swerdlow AJ, Teo SH, Terry KL, Thompson PJ, Vestrheim Thomsen LC, Titus L, Trabert B, Travis R, Tworoger SS, Valen E, Van Nieuwenhuysen E, Edwards DV, Vierkant RA, Webb PM, Weinberg CR, Weise RM, Wentzensen N, White E, Winham SJ, Wolk A, Woo YL, Wu AH, Yan L, Yannoukakos D, Zeinomar N, Zheng W, Ziogas A, Berchuck A, Goode EL, Huntsman DG, Pearce CL, Ramus SJ, Sellers TA, Freedman ML, Lawrenson K, Schildkraut JM, Hazelett D, Plummer JT, Kar S, Jones MR, Pharoah PDP, Gayther SA. Integrative multi-omics analyses to identify the genetic and functional mechanisms underlying ovarian cancer risk regions. Am J Hum Genet 2024; 111:1061-1083. [PMID: 38723632 PMCID: PMC11179261 DOI: 10.1016/j.ajhg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.
Collapse
Affiliation(s)
- Eileen O Dareng
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon G Coetzee
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pei-Chen Peng
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Will Rosenow
- 3Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Stephanie Chen
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brian D Davis
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Felipe Segato Dezem
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robbin Nameki
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto L Reyes
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katja K H Aben
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Netherlands Comprehensive Cancer Organisation, Utrecht, the Netherlands
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | | | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Line Bjorge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus; Department of Radiation Oncology, Hannover Medical School, Hannover, Germany; Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Kelly L Bolton
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Agnieszka Budzilowska
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ralf Butzow
- Department of Pathology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ian Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rikki Cannioto
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population Sciences, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kexin Chen
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yoke-Eng Chiew
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA; Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, NSW, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecological Oncology; HSK, Dr. Horst-Schmidt Klinik, Wiesbaden, Wiesbaden, Germany; Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany
| | - Matthias Dürst
- Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Diana M Eccles
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gabrielle Ene
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - James M Flanagan
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Marc T Goodman
- Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Florian Heitz
- Department of Gynecology and Gynecological Oncology; HSK, Dr. Horst-Schmidt Klinik, Wiesbaden, Wiesbaden, Germany; Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte (KEM), Essen, Germany; Center for Pathology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | | | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus K Høgdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ruea-Yea Huang
- Center For Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Linda E Kelemen
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia; Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Lambertus A Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne K Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, FMSS - Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lian Li
- Department of Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jeffrey R Marks
- Department of Surgery, Duke University Hospital, Durham, NC, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taymaa May
- Division of Gynecologic Oncology, University Health Network, Princess Margaret Hospital, Toronto, ON, Canada
| | - John R McLaughlin
- Public Health Ontario, Samuel Lunenfeld Research Institute, Toronto, ON, Canada
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Stacey Missmer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francesmary Modugno
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melissa Moffitt
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Steven A Narod
- Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA; Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Håkan Olsson
- Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Utrecht, UMC Utrecht, Utrecht, the Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anna Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Darya Prokofyeva
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Marjorie J Riggan
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Cristina Rodríguez-Antona
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - V Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kang Shan
- Department of Obstetrics and Gynaecology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Honglin Song
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada; Section of Gynecologic Oncology Surgery, Alberta Health Services, North Zone, Edmonton, AB, Canada
| | - Rebecca Sutphen
- Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia; Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gyneoclogy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pamela J Thompson
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liv Cecilie Vestrheim Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Titus
- Muskie School of Public Service, University of Southern Maine, Portland, ME, USA
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen Valen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Leuven, Belgium
| | - Digna Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Department of Biomedical Sciences, Women's Health Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert A Vierkant
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Rayna Matsuno Weise
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stacey J Winham
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, University of Malaya Medical Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Li Yan
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China
| | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Nur Zeinomar
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California, Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Celeste L Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine and Health, University of NSW Sydney, Sydney, NSW, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, NSW, Australia
| | | | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joellen M Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dennis Hazelett
- Samuel Oschin Comprehensive Cancer Institute, The Center for Bioinformatics and Functional Biology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine T Plummer
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Section of Translational Epidemiology, Division of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michelle R Jones
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Jaliffa C, Rogel U, Sen I, Singer G. Comprehensive Genomic Characterization in Ovarian Low-Grade and Chemosensitive and Chemoresistant High-Grade Serous Carcinomas. Oncology 2024; 102:979-987. [PMID: 38697030 DOI: 10.1159/000538948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Genomic characterization of serous ovarian carcinoma (SOC), which includes low-grade serous carcinoma (LGSC) and high-grade serous carcinoma (HGSC), remains necessary to improve efficacy of platinum-based chemotherapy. The aim of this study was to investigate the genomic variations in these SOC groups, also in relation to chemoresponse. METHODS Forty-five samples of SOC were retrospectively analyzed by next-generation sequencing on DNA/RNA extracts from formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained at diagnosis. HGSCs were classified as platinum-resistant and platinum-sensitive. RESULTS In the LGSC group, 44% of the carcinomas had mutually exclusive variants in the RAS/RAF pathway, while additional likely oncogenic variants in the CDKN2A, SMARCA4, and YAP1 genes were observed in the remaining LGSCs. Tumor mutation burden (TMB) was significantly lower in the intrinsically chemoresistant LGSC group than in the HGSC group. In the HGSC cohort, TP53 variants were found in 90% and homologous recombination repair (HRR) pathway variants in 41% of the neoplasms. HGSCs of the chemoresistant group without classic mutations in the HRR pathway were characterized by additional variants in FGFR2 and with an FGFR3::TACC3 fusion. In addition, HGSCs showed MYC, CCNE1, and AKT2 gains that were almost exclusively observed in the chemosensitive HGSC group. CONCLUSION These results suggest that very low TMB and MYC, CCNE1, and AKT2 gains in SOC patients may be biomarkers related to platinum treatment efficacy. Thorough genomic characterization of SOCs prior to treatment might lead to more specific platinum-based chemotherapy strategies.
Collapse
Affiliation(s)
- Carolina Jaliffa
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland,
| | - Uwe Rogel
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Indrani Sen
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| |
Collapse
|
11
|
Kim Y, Park WH, Suh DH, Kim K, No JH, Kim YB. Anticancer Effects of BRD4 Inhibitor in Epithelial Ovarian Cancer. Cancers (Basel) 2024; 16:959. [PMID: 38473320 DOI: 10.3390/cancers16050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Efforts have been made to develop bromodomain inhibitors as cancer treatments. Sub-pathways, particularly in ovarian cancer, affected by bromodomain-containing protein (BRD) remain unclear. This study verified the antitumor effects of a new drug that can overcome OPT-0139-chemoresistance to treat ovarian cancer. A mouse xenograft model of human ovarian cancer cells, SKOV3 and OVCAR3, was used in this study. Cell viability and proliferation were assessed using MTT and ATP assays. Cell cycle arrest and apoptosis were determined using flow cytometry. BRD4 and c-Myc expression and apoptosis-related molecules were detected using RT-PCR and real-time PCR and Western blot. We confirmed the OPT-0139 effect and mechanism of action in epithelial ovarian cancer. OPT-0139 significantly reduced cell viability and proliferation and induced apoptosis and cell cycle arrest. In the mouse xenograft model, significant changes in tumor growth, volume, weight, and BRD4-related gene expression were observed, suggesting the antitumor effects of BRD4 inhibitors. Combination therapy with cisplatin promoted apoptosis and suppressed tumor growth in vitro and in vivo. Our results suggest OPT-0139, a BRD4 inhibitor, as a promising anticancer drug for the treatment of ovarian cancer by inhibiting cell proliferation, decreasing cell viability, arresting cell cycle, and inducing apoptosis.
Collapse
Affiliation(s)
- Yeorae Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
| | - Wook-Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
| | - Dong-Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Jae-Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Yong-Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
12
|
Murawski M, Jagodziński A, Bielawska-Pohl A, Klimczak A. Complexity of the Genetic Background of Oncogenesis in Ovarian Cancer-Genetic Instability and Clinical Implications. Cells 2024; 13:345. [PMID: 38391958 PMCID: PMC10886918 DOI: 10.3390/cells13040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.
Collapse
Affiliation(s)
- Marek Murawski
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Adam Jagodziński
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| |
Collapse
|
13
|
Blackman A, Rees AC, Bowers RR, Jones CM, Vaena SG, Clark MA, Carter S, Villamor ED, Evans D, Emanuel AJ, Fullbright G, Long DT, Spruill L, Romeo MJ, Helke KL, Delaney JR. MYC is sufficient to generate mid-life high-grade serous ovarian and uterine serous carcinomas in a p53-R270H mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576924. [PMID: 38352443 PMCID: PMC10862747 DOI: 10.1101/2024.01.24.576924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Genetically engineered mouse models (GEMM) have fundamentally changed how ovarian cancer etiology, early detection, and treatment is understood. However, previous GEMMs of high-grade serous ovarian cancer (HGSOC) have had to utilize genetics rarely or never found in human HGSOC to yield ovarian cancer within the lifespan of a mouse. MYC, an oncogene, is amongst the most amplified genes in HGSOC, but it has not previously been utilized to drive HGSOC GEMMs. We coupled Myc and dominant negative mutant p53-R270H with a fallopian tube epithelium-specific promoter Ovgp1 to generate a new GEMM of HGSOC. Female mice developed lethal cancer at an average of 15.1 months. Histopathological examination of mice revealed HGSOC characteristics including nuclear p53 and nuclear MYC in clusters of cells within the fallopian tube epithelium and ovarian surface epithelium. Unexpectedly, nuclear p53 and MYC clustered cell expression was also identified in the uterine luminal epithelium, possibly from intraepithelial metastasis from the fallopian tube epithelium (FTE). Extracted tumor cells exhibited strong loss of heterozygosity at the p53 locus, leaving the mutant allele. Copy number alterations in these cancer cells were prevalent, disrupting a large fraction of genes. Transcriptome profiles most closely matched human HGSOC and serous endometrial cancer. Taken together, these results demonstrate the Myc and Trp53-R270H transgene was able to recapitulate many phenotypic hallmarks of HGSOC through the utilization of strictly human-mimetic genetic hallmarks of HGSOC. This new mouse model enables further exploration of ovarian cancer pathogenesis, particularly in the 50% of HGSOC which lack homology directed repair mutations. Histological and transcriptomic findings are consistent with the hypothesis that uterine serous cancer may originate from the fallopian tube epithelium.
Collapse
|
14
|
Ahamed A, Hasan M, Samanta A, Alam SSM, Jamil Z, Ali S, Hoque M. Prospective pharmacological potential of cryptotanshinone in cancer therapy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 9:100308. [DOI: 10.1016/j.prmcm.2023.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
15
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
16
|
Mueller PR, Kershner AJ, Breitrick BI, Keller KN, Radtke RL, Patel RJ, Gierach K, Arvedson J, Moyle-Heyrman GE, Pearson DA. Vitamin D and docosahexaenoic acid inhibit proliferation of the ovarian cancer cell line OVCAR4. Nutr Health 2023:2601060231202565. [PMID: 37728210 DOI: 10.1177/02601060231202565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Ovarian cancer is one of the deadliest cancers in women. Improved preventative, diagnostic, and therapeutic strategies are needed. Certain dietary patterns and nutrients such as vitamin D and omega-3 fatty acids are associated with reduced cancer risk, but their effects on ovarian cancer remain to be fully elucidated, and their combined effects have not been explored. AIM To determine the individual and combined effects of the active vitamin D metabolite, calcitriol, and the omega-3 fatty acid, docosahexaenoic acid, on cell growth, and the abundance of the vitamin D receptor (VDR), proteins that modulate cell cycle progression, and apoptotic markers. METHODS OVCAR4 cells, a model of ovarian cancer, were treated with calcitriol, and docosahexaenoic acid, either alone or in combination. Effects on cell growth were determined by the sulforhodamine B assay. Changes in VDR, the cell cycle promotor c-Myc, the cell cycle inhibitor p27 and cleaved PARP, were determined by Western blotting. RESULTS While OVCAR4 cell growth was inhibited by individual treatment with either calcitriol or docosahexaenoic acid, the combined treatment revealed enhanced growth inhibition as compared to either treatment alone. Furthermore, long-term treatment (12 days) yielded stronger growth inhibition at lower concentrations as compared to short-term treatments (3 days). Accompanying this growth inhibition was a decrease in c-Myc, and an increase in p27. CONCLUSIONS The observed reduction in cell growth mediated by calcitriol and docosahexaenoic acid highlights the need for further research utilizing these nutrients, alone and especially in combination, to support ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Paul R Mueller
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
- Department of Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Alexandra J Kershner
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Brooke I Breitrick
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Katharina N Keller
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Rebecca L Radtke
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Ruchita J Patel
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Kylie Gierach
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Jon Arvedson
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Georgette E Moyle-Heyrman
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
- Department of Chemistry, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| | - Debra A Pearson
- Department of Human Biology, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
- Department of Chemistry, College of Science Engineering and Technology, University of Wisconsin - Green Bay, Wisconsin, USA
| |
Collapse
|
17
|
Hafeez A, Khan Z, Armaghan M, Khan K, Sönmez Gürer E, Abdull Razis AF, Modu B, Almarhoon ZM, Setzer WN, Sharifi-Rad J. Exploring the therapeutic and anti-tumor properties of morusin: a review of recent advances. Front Mol Biosci 2023; 10:1168298. [PMID: 37228582 PMCID: PMC10203489 DOI: 10.3389/fmolb.2023.1168298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Morusin is a natural product that has been isolated from the bark of Morus alba, a species of mulberry tree. It belongs to the flavonoid family of chemicals, which is abundantly present in the plant world and is recognized for its wide range of biological activities. Morusin has a number of biological characteristics, including anti-inflammatory, anti-microbial, neuro-protective, and antioxidant capabilities. Morusin has exhibited anti-tumor properties in many different forms of cancer, including breast, prostate, gastric, hepatocarcinoma, glioblastoma, and pancreatic cancer. Potential of morusin as an alternative treatment method for resistant malignancies needs to be explored in animal models in order to move toward clinical trials. In the recent years several novel findings regarding the therapeutic potential of morusin have been made. This aim of this review is to provide an overview of the present understanding of morusin's beneficial effects on human health as well as provide a comprehensive and up-to-date discussion of morusin's anti-cancer properties with a special focus on in vitro and in vivo studies. This review will aid future research on the creation of polyphenolic medicines in the prenylflavone family, for the management and treatment of cancers.
Collapse
Affiliation(s)
- Amna Hafeez
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Armaghan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | |
Collapse
|
18
|
Quintela M, James DW, Pociute A, Powell L, Edwards K, Coombes Z, Garcia J, Garton N, Das N, Lutchman-Singh K, Margarit L, Beynon AL, Rioja I, Prinjha RK, Harker NR, Gonzalez D, Conlan RS, Francis LW. Bromodomain inhibitor i-BET858 triggers a unique transcriptional response coupled to enhanced DNA damage, cell cycle arrest and apoptosis in high-grade ovarian carcinoma cells. Clin Epigenetics 2023; 15:63. [PMID: 37060086 PMCID: PMC10105475 DOI: 10.1186/s13148-023-01477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.
Collapse
Affiliation(s)
- Marcos Quintela
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - David W James
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Agne Pociute
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lydia Powell
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Kadie Edwards
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Zoe Coombes
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Jetzabel Garcia
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Neil Garton
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nagindra Das
- Swansea Bay University Health Board, Swansea, SA12 7BR, UK
| | | | - Lavinia Margarit
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
- Cwm Taf Morgannwg University Health Board, Swansea, SA2 8QA, UK
| | | | - Inmaculada Rioja
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Rab K Prinjha
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Nicola R Harker
- Immunology Research Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, SG1 2NY, UK
| | - Deyarina Gonzalez
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lewis W Francis
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
19
|
Park SM, Jee W, Park YR, Kim H, Na YC, Jung JH, Jang HJ. Euonymus sachalinensis Induces Apoptosis by Inhibiting the Expression of c-Myc in Colon Cancer Cells. Molecules 2023; 28:molecules28083473. [PMID: 37110707 PMCID: PMC10140968 DOI: 10.3390/molecules28083473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
We hypothesized that Euonymus sachalinensis (ES) induces apoptosis by inhibiting the expression of c-Myc in colon cancer cells, and this study proved that the methanol extract of ES has anticancer effects in colon cancer cells. ES belongs to the Celastraceae family and is well known for its medicinal properties. Extracts of species belonging to this family have been used to treat diverse diseases, including rheumatoid arthritis, chronic nephritis, allergic conjunctivitis, rhinitis, and asthma. However, ES has been targeted because there are currently few studies on the efficacy of ES for various diseases, including cancer. ES lowers cell viability in colon cancer cells and reduces the expression of c-Myc protein. We confirm that the protein level of apoptotic factors such as PARP and Caspase 3 decrease when ES is treated with Western blot, and confirm that DNA fragments occur through TUNEL assay. In addition, it is confirmed that the protein level of oncogenes CNOT2 and MID1IP1 decrease when ES is treated. We have also found that ES enhances the chemo-sensitivity of 5-FU in 5-FU-resistant cells. Therefore, we confirm that ES has anticancer effects by inducing apoptotic cell death and regulating the oncogenes CNOT2 and MID1IP1, suggesting its potential for use in the treatment of colon cancer.
Collapse
Affiliation(s)
- So-Mi Park
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wona Jee
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye-Rin Park
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyungsuk Kim
- Department of Korean Rehabilitation Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Luo C, Zhu Y, Zhou J, Sun X, Zhang S, Tan S, Li Z, Lin H, Zhang W. Increased CYR61 expression activates CCND1/c-Myc pathway to promote nasal epithelial cells proliferation in chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 247:109235. [PMID: 36681101 DOI: 10.1016/j.clim.2023.109235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-β1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
21
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
C-MYC Inhibited Ferroptosis and Promoted Immune Evasion in Ovarian Cancer Cells through NCOA4 Mediated Ferritin Autophagy. Cells 2022; 11:cells11244127. [PMID: 36552889 PMCID: PMC9776536 DOI: 10.3390/cells11244127] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE We aimed to construct the ferritin autophagy regulatory network and illustrate its mechanism in ferroptosis, TME immunity and malignant phenotypes of ovarian cancer. METHODS First, we used Western blot assays and immunohistochemistry to detect the pathway expression in ovarian cancer samples (C-MYC, NCOA4). Then, we performed RIP and FISH analysis to verify the targeted binding of these factors after which we constructed ovarian cancer cell models and detected pathway regulator expression (NCOA4). Co-localization and Western blot assays were used to detect ferritin autophagy in different experimental groups. We selected corresponding kits to assess ROS contents in ovarian cancer cells. MMP was measured using flow cytometry and mitochondrial morphology was observed through TEM. Then, we chose Clone, EdU and Transwell to evaluate the proliferation and invasion abilities of ovarian cancer cells. We used Western blot assays to measure the DAMP content in ovarian cancer cell supernatants. Finally, we constructed tumor bearing models to study the effect of the C-MYC pathway on ovarian cancer tumorigenesis and TME immune infiltration in in vivo conditions. RESULTS Through pathway expression detection, we confirmed that C-MYC was obviously up-regulated and NCOA4 was obviously down-regulated in ovarian cancer samples, while their expression levels were closely related to the malignancy degree of ovarian cancer. RIP, FISH and cell model detection revealed that C-MYC could down-regulate NCOA4 expression through directly targeted binding with its mRNA. Ferritin autophagy and ferroptosis detection showed that C-MYC could inhibit ferroptosis through NCOA4-mediated ferritin autophagy, thus reducing ROS and inhibiting mitophagy in ovarian cancer cells. Cell function tests showed that C-MYC could promote the proliferation and invasion of ovarian cancer cells through the NCOA4 axis. The Western blot assay revealed that C-MYC could reduce HMGB1 release in ovarian cancer cells through the NCOA4 axis. In vivo experiments showed that C-MYC could promote tumorigenesis and immune evasion in ovarian cancer cells through inhibiting HMGB1 release induced by NCOA4-mediated ferroptosis. CONCLUSION According to these results, we concluded that C-MYC could down-regulate NCOA4 expression through directly targeted binding, thus inhibiting ferroptosis and promoting malignant phenotype/immune evasion in ovarian cancer cells through inhibiting ferritin autophagy.
Collapse
|
23
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
24
|
Dai Y, Kawaguchi T, Nishio M, Otani J, Tashiro H, Terai Y, Sasaki R, Maehama T, Suzuki A. The TIGD5 gene located in 8q24 and frequently amplified in ovarian cancers is a tumor suppressor. Genes Cells 2022; 27:633-642. [PMID: 36054307 DOI: 10.1111/gtc.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Ovarian cancer (OC) is the fifth most common cancer of female cancer death and leading cause of lethal gynecological cancers. High-grade serous ovarian carcinoma (HGSOC) is an aggressive malignancy that is rapidly fatal. Many cases of OC show amplification of the 8q24 chromosomal region, which contains the well-known oncogene MYC. Although MYC amplification is more frequently observed in OCs than in other tumor types, due to the large size of the 8q24 amplicon, the functions of the vast majority of the genes it contains are still unknown. The TIGD5 gene is located at 8q24.3 and encodes a nuclear protein with a DNA-binding motif, but its precise role is obscure. We show here that TIGD5 often co-amplifies with MYC in OCs, and that OC patients with high TIGD5 mRNA expression have a poor prognosis. However, we also found that TIGD5 overexpression in ovarian cancer cell lines unexpectedly suppressed their growth, adhesion, and invasion in vitro, and also reduced tumor growth in xenografted nude mice in vivo. Thus, our work suggests that TIGD5 may in fact operate as a tumor suppressor in OCs rather than as an oncogene.
Collapse
Affiliation(s)
- Yuntao Dai
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tetsuya Kawaguchi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hironori Tashiro
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
25
|
Sabatier R, Garnier S, Guille A, Carbuccia N, Pakradouni J, Adelaide J, Provansal M, Cappiello M, Rousseau F, Chaffanet M, Birnbaum D, Mamessier E, Gonçalves A, Bertucci F. Whole-genome/exome analysis of circulating tumor DNA and comparison to tumor genomics from patients with heavily pre-treated ovarian cancer: subset analysis of the PERMED-01 trial. Front Oncol 2022; 12:946257. [PMID: 35965534 PMCID: PMC9373051 DOI: 10.3389/fonc.2022.946257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe poor prognosis of ovarian carcinoma (OvC) is due to the advanced stage at diagnosis, a high risk of relapse after first-line therapies, and the lack of efficient treatments in the recurrence setting. Circulating tumor DNA (ctDNA) analysis is a promising tool to assess treatment-resistant OvC and may avoid iterative tissue biopsies. We aimed to evaluate the genomic profile of recurrent heavily pre-treated OvC.MethodsWe performed tumor panel-based sequencing as well as low-coverage whole-genome sequencing (LC-WGS) of tumor and plasma collected in patients with ovarian cancer included in the PERMED-01 trial. Whole-exome sequencing (WES) data of plasma samples were also analyzed and compared to mutation and copy number alteration (CNA) tumor profiles. The prognostic value [progression-free survival (PFS)] of these alterations was assessed in an exploratory analysis.ResultsTumor and plasma genomic analyses were done for 24 patients with heavily pretreated OvC [67% high-grade serous carcinoma (HGSC)]. Tumor mutation burden was low (median 2.04 mutations/Mb) and the most frequent mutated gene was TP53 (94% of HGSC). Tumor CNAs were frequent with a median of 50% of genome altered fraction. Plasma LC-WGS and WES detected ctDNA in 21/24 cases (88%) with a median tumor fraction of 12.7%. We observed a low correlation between plasma and tumor CNA profiles. However, this correlation was significant in cases with the highest circulating tumor fraction. Plasma genome altered fraction and plasma mutation burden (p = 0.011 and p = 0.041, respectively, log-rank tests) were associated with PFS.ConclusionsCombination of LC-WGS and WES can detect ctDNA in most pre-treated OvCs. Some ctDNA characteristics, such as genome altered fraction and plasma mutation burden, showed prognostic value. ctDNA assessment with LC-WGS may be a promising and non-expansive tool to evaluate disease evolution in this disease with high genomic instability.Clinical Trial Registrationhttps://clinicaltrials.gov/ct2/show/NCT02342158, identifier NCT02342158.
Collapse
Affiliation(s)
- Renaud Sabatier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
- *Correspondence: Renaud Sabatier,
| | - Séverine Garnier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Arnaud Guille
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Nadine Carbuccia
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovation, Institut Paoli-Calmettes, Marseille, France
| | - José Adelaide
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Magali Provansal
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Maria Cappiello
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Frédérique Rousseau
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - Max Chaffanet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Emilie Mamessier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
| | - Anthony Gonçalves
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| | - François Bertucci
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM—Predictive Oncology Laboratory, Marseille, France
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes—Department of Medical Oncology, CRCM, Marseille, France
| |
Collapse
|
26
|
Noriega-Rivera R, Rivera-Serrano M, Rabelo-Fernandez RJ, Pérez-Santiago J, Valiyeva F, Vivas-Mejía PE. Upregulation of the Long Noncoding RNA CASC10 Promotes Cisplatin Resistance in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2022; 23:7737. [PMID: 35887085 PMCID: PMC9318856 DOI: 10.3390/ijms23147737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Despite initial responses to first-line treatment with platinum and taxane-based combination chemotherapy, most high-grade serous ovarian carcinoma (HGSOC) patients will relapse and eventually develop a cisplatin-resistant fatal disease. Due to the lethality of this disease, there is an urgent need to develop improved targeted therapies against HGSOC. Herein, we identified CASC10, a long noncoding RNA upregulated in cisplatin-resistant ovarian cancer cells and ovarian cancer patients. We performed RNA sequencing (RNA-seq) in total RNA isolated from the HGSOC cell lines OVCAR3 and OV-90 and their cisplatin-resistant counterparts. Thousands of RNA transcripts were differentially abundant in cisplatin-sensitive vs. cisplatin-resistant HGSOC cells. Further data filtering unveiled CASC10 as one of the top RNA transcripts significantly increased in cisplatin-resistant compared with cisplatin-sensitive cells. Thus, we focused our studies on CASC10, a gene not previously studied in ovarian cancer. SiRNA-mediated CASC10 knockdown significantly reduced cell proliferation and invasion; and sensitized cells to cisplatin treatment. SiRNA-mediated CASC10 knockdown also induced apoptosis, cell cycle arrest, and altered the expression of several CASC10 downstream effectors. Multiple injections of liposomal CASC10-siRNA reduced tumor growth and metastasis in an ovarian cancer mouse model. Our results demonstrated that CASC10 levels mediate the susceptibility of HGSOC cells to cisplatin treatment. Thus, combining siRNA-mediated CASC10 knockdown with cisplatin may represent a plausible therapeutic strategy against HGSOC.
Collapse
Affiliation(s)
- Ricardo Noriega-Rivera
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Mariela Rivera-Serrano
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Robert J. Rabelo-Fernandez
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
| | - Josué Pérez-Santiago
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
- School of Dental Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Fatima Valiyeva
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
- Comprehensive Cancer Center, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (R.J.R.-F.); (J.P.-S.); (F.V.)
| |
Collapse
|
27
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
28
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
29
|
Castillo Cruz B, Flores Colón M, Rabelo Fernandez RJ, Vivas-Mejia PE, Barletta GL. A Fresh Look at the Potential of Cyclodextrins for Improving the Delivery of siRNA Encapsulated in Liposome Nanocarriers. ACS OMEGA 2022; 7:3731-3737. [PMID: 35128281 PMCID: PMC8812098 DOI: 10.1021/acsomega.1c06436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Liposomes are among the most effective vehicles to deliver siRNAs to cells, both in vitro and in vivo. However, despite numerous efforts to improve the potential of liposomes, siRNAs begin to leach out of liposomes as soon as they are formulated. This decreases the value of liposomes for drug delivery purposes significantly, masking their true potential. In this study, we examine the effect of β-cyclodextrins on the retention time and transfection efficiency of siRNAs formulated in a liposome. Cyclodextrins have been widely studied as solvating agents and drug delivery vectors mainly because these cyclic nontoxic glucose structures can bind several molecules of different physicochemical characteristics, through H-bonding or by forming inclusion complexes. These properties, although beneficial for most applications, have resulted in some contradictory results published in the literature, whereas cyclodextrins have been found to destabilize a liposome's membrane. Here, we present a systematic study, which shows that β-cyclodextrin binds, possibly via hydrogen bonding, with siRNA and DOPC liposomes, resulting in increased siRNA serum stability and in vitro siRNA's transfection efficiency when formulated together.
Collapse
Affiliation(s)
- Betzaida Castillo Cruz
- Department
of Chemistry, University of Puerto Rico, Humacao Campus, Humacao 00791, Puerto
Rico
| | - Marienid Flores Colón
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico
| | - Robert J. Rabelo Fernandez
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00927, Puerto Rico
| | - Pablo E. Vivas-Mejia
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
- Department
of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico
| | - Gabriel L. Barletta
- Department
of Chemistry, University of Puerto Rico, Humacao Campus, Humacao 00791, Puerto
Rico
- UPR
Comprehensive Cancer Center, Medical Center Area, Ave. José Celso Barbosa, San Juan 00935, Puerto Rico
| |
Collapse
|
30
|
Wu C, Song W, Wang Z, Wang B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol Biol Rep 2022; 49:2531-2542. [PMID: 35031926 DOI: 10.1007/s11033-021-07066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) poses a serious threat to public health due to its significant morbidity and mortality rates. The processes of NSCLC formation and development are quite complex and involve numerous regulatory biomolecules. Long non-coding RNAs (lncRNAs) have attracted attention since they have been found to play critical roles in the tumorigenesis of various human malignancies. Recently, double homeobox A pseudogene 8 (DUXAP8) was identified as an oncogenic lncRNA that is overexpressed in different tumor types. In NSCLC, high expression of DUXAP8 is associated with poor prognosis in patients. The regulatory mechanism underlying the oncogenic effects of DUXAP8 can be divided into transcriptional level and post-transcriptional level. DUXAP8 promotes proliferation, epithelial-mesenchymal transition, and aerobic glycolysis in NSCLC cells. Moreover, DUXAP8 shows potential for the diagnosis and treatment of NSCLC. Herein, we review the molecular mechanisms underlying the DUXAP8-mediated phenotypes of NSCLC as well as its potential clinical applications.
Collapse
Affiliation(s)
- Cui Wu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Zhongnan Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
31
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
32
|
Sun X, Liu Q, Huang J, Diao G, Liang Z. Transcriptome-based stemness indices analysis reveals platinum-based chemo-theraputic response indicators in advanced-stage serous ovarian cancer. Bioengineered 2021; 12:3753-3771. [PMID: 34266348 PMCID: PMC8806806 DOI: 10.1080/21655979.2021.1939514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Serous ovarian cancer (SOC) is a main histological subtype of ovarian cancer, in which cancer stem cells (CSC) are responsible for its chemoresistance. However, the underlying modulation mechanisms of chemoresistance led by cancer stemness are still undefined. We aimed to investigate potential drug-response indicators among stemness-associated biomarkers in advanced SOC samples. The mRNA expression-based stemness index (mRNAsi) of The Cancer Genome Atlas (TCGA) was evaluated and corrected by tumor purity. Weighted gene co-expression network analysis (WGCNA) was utilized to explore the gene modules and key genes involved in stemness characteristics. We found that mRNAsi and corrected mRNAsi scores were both greater in tumors of Grade 3 and 4 than that of Grade 1 and 2. Forty-two key genes were obtained from the most significant mRNAsi-related gene module. Functional annotation revealed that these key genes were mainly involved in the mitotic division. Thirteen potential platinum-response indicators were selected from the genes enriched to platinum-response associated pathways. Among them, we identified 11 genes with prognostic value of progression-free survival (PFS) in advanced SOC patients treated with platinum and 7 prognostic genes in patients treated with a combination of platinum and taxol. The expressions of the 13 key genes were also validated between platinum-resistant and -sensitive SOC samples of advanced stages in two Gene Expression Omnibus (GEO) datasets. The results revealed that CDC20 was a potential platinum-sensitivity indicator in advanced SOC. These findings may provide a new insight for chemotherapies in advanced SOC patients clinically.
Collapse
Affiliation(s)
- Xinwei Sun
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qingyu Liu
- Orthopedic Department, The 964th Hospital of Chinese People's Liberation Army Joint Logistics Support Force, Changchun, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Gynecology and Obstetrics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
33
|
De Santis C, Götte M. The Role of microRNA Let-7d in Female Malignancies and Diseases of the Female Reproductive Tract. Int J Mol Sci 2021; 22:ijms22147359. [PMID: 34298978 PMCID: PMC8305730 DOI: 10.3390/ijms22147359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.
Collapse
MESH Headings
- Aging
- Animals
- Biomarkers
- Biomarkers, Tumor
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Fertility/genetics
- Gene Expression Regulation
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/genetics
- Genital Neoplasms, Female/drug therapy
- Genital Neoplasms, Female/genetics
- Humans
- Mice
- MicroRNAs/genetics
- MicroRNAs/physiology
- Molecular Targeted Therapy
- Pregnancy
- Pregnancy Complications/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
Collapse
|
34
|
Lazo JS, Sharlow ER, Cornelison R, Hart DJ, Llaneza DC, Mendelson AJ, Rastelli EJ, Tasker NR, Landen CN, Wipf P. Credentialing and Pharmacologically Targeting PTP4A3 Phosphatase as a Molecular Target for Ovarian Cancer. Biomolecules 2021; 11:969. [PMID: 34209460 PMCID: PMC8329922 DOI: 10.3390/biom11070969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
High grade serous ovarian cancer (OvCa) frequently becomes drug resistant and often recurs. Consequently, new drug targets and therapies are needed. Bioinformatics-based studies uncovered a relationship between high Protein Tyrosine Phosphatase of Regenerating Liver-3 (PRL3 also known as PTP4A3) expression and poor patient survival in both early and late stage OvCa. PTP4A3 mRNA levels were 5-20 fold higher in drug resistant or high grade serous OvCa cell lines compared to nonmalignant cells. JMS-053 is a potent allosteric small molecule PTP4A3 inhibitor and to explore further the role of PTP4A3 in OvCa, we synthesized and interrogated a series of JMS-053-based analogs in OvCa cell line-based phenotypic assays. While the JMS-053 analogs inhibit in vitro PTP4A3 enzyme activity, none were superior to JMS-053 in reducing high grade serous OvCa cell survival. Because PTP4A3 controls cell migration, we interrogated the effect of JMS-053 on this cancer-relevant process. Both JMS-053 and CRISPR/Cas9 PTP4A3 depletion blocked cell migration. The inhibition caused by JMS-053 required the presence of PTP4A3. JMS-053 caused additive or synergistic in vitro cytotoxicity when combined with paclitaxel and reduced in vivo OvCa dissemination. These results indicate the importance of PTP4A3 in OvCa and support further investigations of the lead inhibitor, JMS-053.
Collapse
Affiliation(s)
- John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Elizabeth R. Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Robert Cornelison
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
- KeViRx, Inc., Charlottesville, VA 22904, USA
| | - Duncan J. Hart
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Danielle C. Llaneza
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Anna J. Mendelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA; (R.C.); (D.J.H.); (D.C.L.); (A.J.M.)
| | - Ettore J. Rastelli
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| | - Nikhil R. Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA 22908, USA;
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA; (E.J.R.); (N.R.T.); (P.W.)
| |
Collapse
|