1
|
Xiong H, Liao M, Zhang H, Li Y, Bai J, Zhang J, Li L, Zhang L. DARS expression in BCR/ABL1-negative myeloproliferative neoplasms and its association with the immune microenvironment. Sci Rep 2024; 14:16711. [PMID: 39030308 PMCID: PMC11271514 DOI: 10.1038/s41598-024-67067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
DARS, encoding for aspartyl-tRNA synthetase, is implicated in the pathogenesis of various cancers, including renal cell carcinoma, glioblastoma, colon cancer, and gastric cancer. Its role in BCR/ABL1-negative myeloproliferative neoplasms (MPNs), however, remains unexplored. This study aimed to elucidate the expression of DARS in patients with MPNs (PV 23, ET 19, PMF 16) through immunohistochemical analysis and to examine the profiles of circulating immune cells and cytokines using flow cytometry. Our findings indicate a significant overexpression of DARS in all MPNs subtypes at the protein level compared to controls (P < 0.05). Notably, elevated DARS expression was linked to splenomegaly in MPNs patients. The expression of DARS showed a negative correlation with CD4+ T cells (R = - 0.451, P = 0.0004) and CD4+ T/CD8+ T cell ratio (R = - 0.3758, P = 0.0040), as well as with CD68+ tumor-associated macrophages (R = 0.4037, P = 0.0017). Conversely, it was positively correlated with IL-2 (R = 0.5419, P < 0.001), IL-5 (R = 0.3161, P = 0.0166), IL-6 (R = 0.2992, P = 0.0238), and IFN-γ (R = 0.3873, P = 0.0029). These findings underscore a significant association between DARS expression in MPNs patients and specific clinical characteristics, as well as immune cell composition. Further investigation into the interplay between DARS and the immune microenvironment in MPNs could shed light on the underlying mechanisms of MPNs pathogenesis and immune dysregulation.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Minjing Liao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Huitao Zhang
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yanhong Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jun Bai
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jinping Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Vermeersch G, Proost P, Struyf S, Gouwy M, Devos T. CXCL8 and its cognate receptors CXCR1/CXCR2 in primary myelofibrosis. Haematologica 2024; 109:2060-2072. [PMID: 38426279 PMCID: PMC11215396 DOI: 10.3324/haematol.2023.284921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BCR::ABL1 negative myeloproliferative neoplasms (MPN) form a distinct group of hematologic malignancies characterized by sustained proliferation of cells from multiple myeloid lineages. With a median survival of 16-35 months in patients with high-risk disease, primary myelofibrosis (PMF) is considered the most aggressive entity amongst all BCR::ABL1 MPN. Additionally, for a significant subset of patients, MPN evolve into secondary acute myeloid leukemia (AML), which has an even poorer prognosis compared to de novo AML. As the exact mechanisms of disease development and progression remain to be elucidated, current therapeutic approaches fail to prevent disease progression or transformation into secondary AML. As each MPN entity is characterized by sustained activation of various immune cells and raised cytokine concentrations within bone marrow (BM) and peripheral blood (PB), MPN may be considered to be typical inflammation-related malignancies. However, the exact role and consequences of increased cytokine concentrations within BM and PB plasma has still not been completely established. Up-regulated cytokines can stimulate cellular proliferation, or contribute to the development of an inflammation-related BM niche resulting in genotoxicity and thereby supporting mutagenesis. The neutrophil chemoattractant CXCL8 is of specific interest as its concentration is increased within PB and BM plasma of patients with PMF. Increased concentration of CXCL8 negatively correlates with overall survival. Furthermore, blockage of the CXCR1/2 axis appears to be able to reduce BM fibrosis and megakaryocyte dysmorphia in murine models. In this review, we summarize available evidence on the role of the CXCL8-CXCR1/2 axis within the pathogenesis of PMF, and discuss potential therapeutic modalities targeting either CXCL8 or its cognate receptors CXCR1/2.
Collapse
Affiliation(s)
- Gael Vermeersch
- Department of Hematology, University Hospitals Leuven, 3000, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, 3000, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven.
| |
Collapse
|
3
|
Zhang P, You N, Ding Y, Zhu W, Wang N, Xie Y, Huang W, Ren Q, Qin T, Fu R, Zhang L, Xiao Z, Cheng T, Ma X. Gadd45g insufficiency drives the pathogenesis of myeloproliferative neoplasms. Nat Commun 2024; 15:2989. [PMID: 38582902 PMCID: PMC10998908 DOI: 10.1038/s41467-024-47297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.
Collapse
Affiliation(s)
- Peiwen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Na You
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiyi Ding
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenqi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yueqiao Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wanling Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tiejun Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
4
|
Yamazaki S, Mabuchi Y, Kimura T, Suto EG, Hisamatsu D, Naraoka Y, Kondo A, Azuma Y, Kikuchi R, Nishikii H, Morishita S, Araki M, Komatsu N, Akazawa C. Activated mesenchymal stem/stromal cells promote myeloid cell differentiation via CCL2/CCR2 signaling. Stem Cell Reports 2024; 19:414-425. [PMID: 38428413 PMCID: PMC10937152 DOI: 10.1016/j.stemcr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Myeloid cells, which originate from hematopoietic stem/progenitor cells (HSPCs), play a crucial role in mitigating infections. This study aimed to explore the impact of mesenchymal stem/stromal cells (MSCs) on the differentiation of HSPCs and progenitors through the C-C motif chemokine CCL2/CCR2 signaling pathway. Murine MSCs, identified as PDGFRα+Sca-1+ cells (PαS cells), were found to secrete CCL2, particularly in response to lipopolysaccharide stimulation. MSC-secreted CCL2 promoted the differentiation of granulocyte/macrophage progenitors into the myeloid lineage. MSC-derived CCL2 plays an important role in the early phase of myeloid cell differentiation in vivo. Single-cell RNA sequencing analysis confirmed that CCL2-mediated cell fate determination was also observed in human bone marrow cells. These findings provide valuable insights for investigating the in vivo effects of MSC transplantation.
Collapse
Affiliation(s)
- Satoshi Yamazaki
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Tokyo 144-0041, Japan
| | - Takaharu Kimura
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Eriko Grace Suto
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuna Naraoka
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ayako Kondo
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuzuki Azuma
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Riko Kikuchi
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Hidekazu Nishikii
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; Department of Hematology, Institute of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Soji Morishita
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Marito Araki
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Norio Komatsu
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
5
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
6
|
de Castro FA, Mehdipour P, Chakravarthy A, Ettayebi I, Loo Yau H, Medina TS, Marhon SA, de Almeida FC, Bianco TM, Arruda AGF, Devlin R, de Figueiredo-Pontes LL, Chahud F, da Costa Cacemiro M, Minden MD, Gupta V, De Carvalho DD. Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia. Br J Haematol 2024; 204:206-220. [PMID: 37726227 DOI: 10.1111/bjh.19107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.
Collapse
Affiliation(s)
- Fabíola Attié de Castro
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tiago Silva Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Felipe Campos de Almeida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia (INCT-iii), Salvador, Brazil
| | - Thiago Mantello Bianco
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea G F Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rebecca Devlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Chahud
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Aboderin FI, Oduola T, Davison GM, Oguntibeju OO. A Review of the Relationship between the Immune Response, Inflammation, Oxidative Stress, and the Pathogenesis of Sickle Cell Anaemia. Biomedicines 2023; 11:2413. [PMID: 37760854 PMCID: PMC10525295 DOI: 10.3390/biomedicines11092413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Sickle cell anaemia (SCD) is a life-threatening haematological disorder which is predominant in sub-Saharan Africa and is triggered by a genetic mutation of the β-chain haemoglobin gene resulting in the substitution of glutamic acid with valine. This mutation leads to the production of an abnormal haemoglobin molecule called haemoglobin S (HbS). When deoxygenated, haemoglobin S (HbS) polymerises and results in a sickle-shaped red blood cell which is rigid and has a significantly shortened life span. Various reports have shown a strong link between oxidative stress, inflammation, the immune response, and the pathogenesis of sickle cell disease. The consequence of these processes leads to the development of vasculopathy (disease of the blood vessels) and several other complications. The role of the immune system, particularly the innate immune system, in the pathogenesis of SCD has become increasingly clear in recent years of research; however, little is known about the roles of the adaptive immune system in this disease. This review examines the interaction between the immune system, inflammation, oxidative stress, blood transfusion, and their effects on the pathogenesis of sickle cell anaemia.
Collapse
Affiliation(s)
- Florence Ifechukwude Aboderin
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Taofeeq Oduola
- Department of Chemical Pathology, Usmanu Danfodiyo University, Sokoto 840004, Nigeria;
| | - Glenda Mary Davison
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
8
|
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, Perrella G, Mahony CB, Ling RE, Elliott NE, Karali CS, Stone AP, Kemble S, Cutler EA, Fielding AK, Croft AP, Bassett D, Poologasundarampillai G, Roy A, Gooding S, Rayes J, Machlus KR, Psaila B. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13:364-385. [PMID: 36351055 PMCID: PMC9900323 DOI: 10.1158/2159-8290.cd-22-0199] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michela Colombo
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Guanlin Wang
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wei Xiong Wen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nikolaos Sousos
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lauren C. Murphy
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca E. Ling
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Natalina E. Elliott
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew P. Stone
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emily A. Cutler
- University College London Cancer Institute, London, United Kingdom
| | | | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | | - Anindita Roy
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
9
|
Bonometti A, Borsani O, Rumi E, Ferretti VV, Dioli C, Lucato E, Paulli M, Boveri E. Arginase‐1+ bone marrow myeloid cells are reduced in myeloproliferative neoplasms and correlate with clinical phenotype, fibrosis, and molecular driver. Cancer Med 2022; 12:7815-7822. [PMID: 36524315 PMCID: PMC10134329 DOI: 10.1002/cam4.5542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal myeloid proliferative disorders characterized by sustained systemic inflammation. Despite its renowned importance, the knowledge concerning the inflammatory pathophysiology of these conditions is currently limited to studies on serum cytokines, while cellular immunity has rarely been investigated. METHODS In the present study, we targeted Arginase-1 immunosuppressive myeloid cells in the bone marrow of MPN patients and healthy controls and investigated their clinical and prognostic significance. We demonstrated that MPN are characterized by a significant reduction of bone marrow immunosuppressive cells and that the number of these cells significantly correlates with several clinical and histopathological features of diagnostic and prognostic importance. Moreover, we identified an unreported correlation between a reduction of Arginase-1+ bone marrow cells and the presence of CALR mutations, linking tumor-promoting immunity and molecular drivers. Finally, we postulate that the reduction of bone marrow Arginase-1+ immunosuppressive cells may be due to the migration of these cells to the spleen, where they may exert systemic immunomodulatory function. CONCLUSION Altogether, this study preliminary investigated the contribution of cellular immunity in the pathogenesis of myeloproliferative neoplasms and identified a possible interesting therapeutic target as well as a set of new links that may contribute to unraveling the biological mechanisms behind these interesting hematological neoplasms.
Collapse
Affiliation(s)
- Arturo Bonometti
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
- Pathology Unit Humanitas Clinical and Research Center IRCCS Rozzano Italy
| | - Oscar Borsani
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Elisa Rumi
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | - Claudia Dioli
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Elena Lucato
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
| | - Marco Paulli
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Emanuela Boveri
- Unit of Anatomic Pathology IRCCS San Matteo Foundation Pavia Italy
| |
Collapse
|
10
|
Bassan VL, Barretto GD, de Almeida FC, Palma PVB, Binelli LS, da Silva JPL, Fontanari C, Castro RC, de Figueiredo Pontes LL, Frantz FG, de Castro FA. Philadelphia-negative myeloproliferative neoplasms display alterations in monocyte subpopulations frequency and immunophenotype. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:223. [PMID: 36175590 PMCID: PMC9522456 DOI: 10.1007/s12032-022-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022]
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN’s pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Gabriel Dessotti Barretto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Felipe Campos de Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil
| | - Larissa Sarri Binelli
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - João Paulo Lettieri da Silva
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Caroline Fontanari
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ricardo Cardoso Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lorena Lôbo de Figueiredo Pontes
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
11
|
Giannotta JA, Fattizzo B, Barcellini W. Paroxysmal Nocturnal Hemoglobinuria in the Context of a Myeloproliferative Neoplasm: A Case Report and Review of the Literature. Front Oncol 2021; 11:756589. [PMID: 34858830 PMCID: PMC8632248 DOI: 10.3389/fonc.2021.756589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by intravascular hemolytic anemia and thrombosis and is notoriously associated with aplastic anemia and myelodysplastic syndromes. Rarer associations include myeloproliferative neoplasms (MPNs), which are also burdened by increased thrombotic tendency. The therapeutic management of this rare combination has not been defined so far. Here, we describe a 62-year-old man who developed a highly hemolytic PNH more than 10 years after the diagnosis of MPN. The patient started eculizumab, obtaining good control of intravascular hemolysis but without amelioration of transfusion-dependent anemia. Moreover, we performed a review of the literature regarding the clinical and pathogenetic significance of the association of PNH and MPN. The prevalence of PNH clones in MPN patients is about 10%, mostly in association with JAK2V617F-positive myelofibrosis. Thrombotic events were a common clinical presentation (35% of subjects), sometimes refractory to combined treatment with cytoreductive agents, anticoagulants, and complement inhibitors. The latter showed only partial effectiveness in controlling hemolytic anemia and, due to the paucity of data, should be taken in consideration after a careful risk/benefit evaluation in this peculiar setting.
Collapse
Affiliation(s)
| | - Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|