1
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Díaz MA, Fusco M, Benítez CA, Gayet F, García L, Victoria L, Jaramillo S, Bayo J, Zubieta MR, Rizzo MM, Piccioni F, Malvicini M. Targeting hyaluronan metabolism-related molecules associated with resistant tumor-initiating cells potentiates chemotherapy efficacy in lung cancer. Sci Rep 2024; 14:16803. [PMID: 39039104 PMCID: PMC11263553 DOI: 10.1038/s41598-024-66914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.
Collapse
Affiliation(s)
- Marco Aurelio Díaz
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Mariel Fusco
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Constanza Arriola Benítez
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Fernando Gayet
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Ludmila García
- Laboratorio Central, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Lucia Victoria
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Sebastián Jaramillo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Juan Bayo
- Programa de Hepatología Experimental y Terapia Génica, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Tecnicas, Pilar, Argentina
| | | | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Flavia Piccioni
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| | - Mariana Malvicini
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| |
Collapse
|
3
|
Vitale DL, Parnigoni A, Viola M, Karousou E, Sevic I, Moretto P, Passi A, Alaniz L, Vigetti D. Deciphering Drug Resistance: Investigating the Emerging Role of Hyaluronan Metabolism and Signaling and Tumor Extracellular Matrix in Cancer Chemotherapy. Int J Mol Sci 2024; 25:7607. [PMID: 39062846 PMCID: PMC11276752 DOI: 10.3390/ijms25147607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Daiana L. Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Arianna Parnigoni
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;
| | - Manuela Viola
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Evgenia Karousou
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Paola Moretto
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín B6000, Argentina; (D.L.V.); (I.S.); (L.A.)
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), UNNOBA-UNSAdA-CONICET, Junín 6000, Argentina
| | - Davide Vigetti
- Dipartimento di Medicina e Chirurgia, Universitá degli Studi dell’Insubria, 21100 Varese, Italy; (M.V.); (E.K.); (P.M.); (A.P.)
| |
Collapse
|
4
|
Dalle Vacche S, Molina-Gutiérrez S, Ferraro G, Ladmiral V, Caillol S, Lacroix-Desmazes P, Leterrier Y, Bongiovanni R. Biobased Composites from Eugenol- and Coumarin-Derived Methacrylic Latex and Hemp Nanocellulose: Cross-Linking via [2 + 2] Photocycloaddition and Barrier Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:8741-8751. [PMID: 39534019 PMCID: PMC11552611 DOI: 10.1021/acssuschemeng.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 11/16/2024]
Abstract
A novel-biobased latex was synthesized by redox-initiated emulsion copolymerization of ethoxy dihydroeugenyl methacrylate with 5 wt % of a photosensitive methacrylate containing a coumarin group. A stable copolymer latex having 16 wt % solids content and a particle size of 53 nm was obtained. The copolymer had a T g of 29 °C and was soluble in acetone. Coatings were obtained, and the effect of UVA irradiation was tested: the light-induced cross-linking of the copolymer by [2 + 2] cycloaddition of the coumarin pendant moieties was demonstrated by UV-visible spectroscopy. As a consequence of UVA-induced cross-linking, the copolymer became insoluble in acetone. The copolymer latex was combined with hemp-derived nanocellulose to obtain composite self-standing films by simple mixing in an aqueous medium followed by casting, evaporation of water, and hot pressing. The composite films were also successfully cross-linked by [2 + 2] cycloaddition, with an enhancement of barrier properties. The water vapor transmission rate of the cross-linked composite films with up to 45 wt % nanocellulose was 5 times lower than that of the hemp nanocellulose film, while further addition of nanocellulose increased permeability.
Collapse
Affiliation(s)
- Sara Dalle Vacche
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- INSTM-Politecnico
di Torino Research Unit, 50121 Firenze, Italy
| | - Samantha Molina-Gutiérrez
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Giuseppe Ferraro
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
| | - Vincent Ladmiral
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Caillol
- ICGM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Yves Leterrier
- Laboratory
for Processing of Advanced Composites (LPAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Roberta Bongiovanni
- Dipartimento
Scienza Applicata e tecnologia, Politecnico
di Torino, 10129 Torino, Italy
- INSTM-Politecnico
di Torino Research Unit, 50121 Firenze, Italy
| |
Collapse
|
5
|
Aguilar K, Sharma AK, Yang T, Mehta D, Panda CS, Lokeshwar VB. Teaching an Old Drug a New Trick: Targeting Treatment Resistance in Genitourinary Cancers. JOURNAL OF CELLULAR SIGNALING 2024; 5:51-56. [PMID: 38726221 PMCID: PMC11081427 DOI: 10.33696/signaling.5.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
In the quest for improving the clinical outcome of patients with metastatic genitourinary cancers, including metastatic renal cell carcinoma (mRCC), the emphasis often is on finding new targeted therapies. However, two studies by Jordan et al. (Oncogenesis 2020) and Wang et al. (Cancer Cell Int 2022) demonstrate the feasibility of improving the efficacy of a modestly effective drug Sorafenib against mRCC by attacking a mechanism hijacked by RCC cells for inactivating Sorafenib. The studies also identified hyaluronic acid synthase -3 (HAS3) as a bonafide target of Sorafenib in RCC cells. The studies demonstrate that an over-the-counter drug Hymecromone (4-methylumbelliferone) blocks inactivation of Sorafenib in RCC cells and improves its efficacy against mRCC through the inhibition of HAS3 expression and HA signaling. In the broader context, improving the efficacy of "old and failed drugs" that have favorable safety profiles should increase the availability of effective treatments for patients with advanced cancers.
Collapse
Affiliation(s)
- Karina Aguilar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| | - Anuj K. Sharma
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| | - Tianyu Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| | - Dipen Mehta
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| | - Chandramukhi S. Panda
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, 1410 Laney Walker Blvd., 30912, USA
| |
Collapse
|
6
|
Pibuel MA, Poodts D, Sias SA, Byrne A, Hajos SE, Franco PG, Lompardía SL. 4-Methylumbelliferone enhances the effects of chemotherapy on both temozolomide-sensitive and resistant glioblastoma cells. Sci Rep 2023; 13:9356. [PMID: 37291120 PMCID: PMC10249561 DOI: 10.1038/s41598-023-35045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary tumor of the CNS in adults, with a median survival of 14.6 months after diagnosis. The effectiveness of GBM therapies remains poor, highlighting the need for new therapeutic alternatives. In this work, we evaluated the effect of 4-methylumbelliferone (4MU), a coumarin derivative without adverse effects reported, in combination with temozolomide (TMZ) or vincristine (VCR) on U251, LN229, U251-TMZ resistant (U251-R) and LN229-TMZ resistant (LN229-R) human GBM cells. We determined cell proliferation by BrdU incorporation, migration through wound healing assay, metabolic and MMP activity by XTT and zymography assays, respectively, and cell death by PI staining and flow cytometry. 4MU sensitizes GBM cell lines to the effect of TMZ and VCR and inhibits metabolic activity and cell proliferation on U251-R cells. Interestingly, the lowest doses of TMZ enhance U251-R and LN229-R cell proliferation, while 4MU reverts this and even sensitizes both cell lines to TMZ and VCR effects. We showed a marked antitumor effect of 4MU on GBM cells alone and in combination with chemotherapy and proved, for the first time, the effect of 4MU on TMZ-resistant models, demonstrating that 4MU would be a potential therapeutic alternative for improving GBM therapy even on TMZ-refractory patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina.
| | - Daniela Poodts
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Sofía A Sias
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Agustín Byrne
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvia E Hajos
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Paula G Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvina L Lompardía
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| |
Collapse
|
7
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
8
|
Olivares CN, Ricci AG, Bilotas MA, Alaniz L, Barañao RI, Meresman GF. Effects of pharmacological inhibition of hyaluronic acid synthesis on experimental endometriosis. Eur J Clin Invest 2023; 53:e13899. [PMID: 36346481 DOI: 10.1111/eci.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dysregulated hyaluronic acid (HA) metabolism has been shown to be implicated in several pathologies including endometriosis. 4-Methylumbelliferone (4MU) is an HA synthesis inhibitor with proven antitumour activity. In this study, we aim to evaluate the effect of 4MU on endometriosis development both in vivo and in vitro. METHODS Endometriosis was surgically induced by uterine tissue auto-transplantation in 32 two-month-old BALB/c mice. Animals were designated into the early or late starting treatment group, which initiated on day 2 or day 15 after surgery, respectively. Within each group, 4MU 200 mg/kg/day or vehicle (Control) were administered by oesophageal gavage for 28 days. After sacrifice, the percentage of developed lesions, lesion size, cell proliferation, vascularization and HA deposition within the endometriotic-like lesions were evaluated. Cell viability was assessed in endometrial epithelial cells (ECC-1) and in endometrial stromal cells (t-HESC); and migration was evaluated in t-HESC. RESULTS There was a significant reduction in the percentage of developed lesions in mice that started the 4MU treatment on day 2 compared with its respective control group, and compared with those that started treatment on day 15. However, no significant changes were found when analysing endometriotic-like lesion's cell proliferation, vascularization and HA deposition. In vitro, both cell viability and migration were inhibited by 4MU treatment. CONCLUSIONS The inhibition of HA synthesis could be a beneficial and alternative option to treat endometriosis at the early stage of the disease. Further research is necessary to elucidate 4MU's mechanism of action and better strategies for delivering this promising drug.
Collapse
Affiliation(s)
- Carla Noemí Olivares
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - Analía Gabriela Ricci
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - Mariela Andrea Bilotas
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Junín, Argentina
| | - Rosa Inés Barañao
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| | - Gabriela Fabiana Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IBYME - CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Zhang J, Liu L, Wang Y, Wang C, Guo Y, Yuan Z, Jia Y, Li P, Sun S, Zhao G. A highly selective red-emitting fluorescent probe and its micro-nano-assembly for imaging endogenous peroxynitrite (ONOO -) in living cells. Anal Chim Acta 2023; 1241:340778. [PMID: 36657871 DOI: 10.1016/j.aca.2022.340778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Endogenous peroxynitrite plays a very important role in the regulation of life activities. However, validated tools for ONOO- tests are currently insufficient. We designed a fluorescent probe TPA-F-NO2 with a low fluorescence background in water based on the D-π-A structure for the imaging of endogenous ONOO- in living cells. TPA-F-NO2 can realize the naked eye detection of ONOO- due to the obvious color change. TPA-F-NO2 has the advantages of large stokes shift, high signal-to-noise ratio, high selectivity and sensitivity. The quantitative detection can be achieved in the range of 0-14 μM ONOO-. Due to its solvatochromic characteristics, TPA-F-NO2 has the potential to be used in OLEDs and other fields. In addition, 4-methylumbelliferone has a wide range of anticancer effects as an inhibitor of hyaluronic acid. We prepared TPA-MU-NPs by assembling TPA-F-NO2 and 4-methylumbelliferone. It also endows TPA-MU-NPs with ONOO- imaging function and anti-proliferation effect on breast cancer cells and other cells. This 'probe-drug' assembly strategy provides ideas for the design and optimization of dual-functional probes.
Collapse
Affiliation(s)
- Jingran Zhang
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Lele Liu
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Yanan Wang
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Chao Wang
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Yurong Guo
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Zihan Yuan
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, PR China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shuqing Sun
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China
| | - Guangjiu Zhao
- Department of Chemistry, MeChem Group, Molecular Dynamic Chemistry Center, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin, 300354, PR China.
| |
Collapse
|
10
|
Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the Cancer Cells Microenvironment. Cancers (Basel) 2023; 15:cancers15030798. [PMID: 36765756 PMCID: PMC9913668 DOI: 10.3390/cancers15030798] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.
Collapse
|
11
|
4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci 2023; 24:ijms24032129. [PMID: 36768453 PMCID: PMC9917189 DOI: 10.3390/ijms24032129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.
Collapse
|
12
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|
13
|
Imparato G, Urciuolo F, Mazio C, Netti PA. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine. LAB ON A CHIP 2022; 23:25-43. [PMID: 36305728 DOI: 10.1039/d2lc00611a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Malignant cells grow in a complex microenvironment that plays a key role in cancer progression. The "dynamic reciprocity" existing between cancer cells and their microenvironment is involved in cancer differentiation, proliferation, invasion, metastasis, and drug response. Therefore, understanding the molecular mechanisms underlying the crosstalk between cancer cells and their surrounding tissue (i.e., tumor stroma) and how this interplay affects the disease progression is fundamental to design and validate novel nanotherapeutic approaches. As an important regulator of tumor progression, metastasis and therapy resistance, the extracellular matrix of tumors, the acellular component of the tumor microenvironment, has been identified as very promising target of anticancer treatment, revolutionizing the traditional therapeutic paradigm that sees the neoplastic cells as the preferential objective to fight cancer. To design and to validate such a target therapy, advanced 3D preclinical models are necessary to correctly mimic the complex, dynamic and heterogeneous tumor microenvironment. In addition, the recent advancement in microfluidic technology allows fine-tuning and controlling microenvironmental parameters in tissue-on-chip devices in order to emulate the in vivo conditions. In this review, after a brief description of the origin of tumor microenvironment heterogeneity, some examples of nanomedicine approaches targeting the tumor microenvironment have been reported. Further, how advanced 3D bioengineered tumor models coupled with a microfluidic device can improve the design and testing of anti-cancer nanomedicine targeting the tumor microenvironment has been discussed. We highlight that the presence of a dynamic extracellular matrix, able to capture the spatiotemporal heterogeneity of tumor stroma, is an indispensable requisite for tumor-on-chip model and nanomedicine testing.
Collapse
Affiliation(s)
- Giorgia Imparato
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Claudia Mazio
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
14
|
Cheng Y, Yao J, Fang Q, Chen B, Zang G. A circadian rhythm-related biomarker for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Aging (Albany NY) 2022; 14:9617-9631. [PMID: 36455876 PMCID: PMC9792196 DOI: 10.18632/aging.204411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Lung adenocarcinoma (LUAD) remains a major reason of cancer-associated mortality globally, and there exists a lack of indicators for survival in LUAD patients. Therefore, it is clinically required to obtain a novel prognostically indicator for guiding clinical management. In this study, we established a circadian rhythm (CR) related signature by a combinative investigation of multiple datasets. The newly-established signature showed an acceptable ability to predict survival and could serve as an independent indicator for prognosis. Moreover, the newly-established signature was critically associated with tumor malignancy, including proliferation, invasion, EMT and metastasis. The newly-established signature was predictive of response to immune checkpoint blockade. Collectively, we established a CR-related gene signature that could forecast survival, tumor malignancy and therapeutic response; our findings could help guiding clinical management.
Collapse
Affiliation(s)
- Yuanjun Cheng
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Qianru Fang
- Department of Obstetrics, People’s Hospital of Chizhou, Chizhou, China
| | - Bin Chen
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Guohui Zang
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
15
|
Blevins DJ, Nazir R, Hossein Dabiri SM, Akbari M, Wulff JE. The effects of cell culture conditions on premature hydrolysis of traceless ester-linked disulfide linkers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
17
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
18
|
Wang HN, Xiang QA, Lin HH, Chen JN, Guo WJ, Guo WM, Yue XN, Zhao ZF, Ji K, Chen JJ. Plant-Derived Molecule 4-Methylumbelliferone Suppresses FcεRI-Mediated Mast Cell Activation and Allergic Inflammation. Molecules 2022; 27:1577. [PMID: 35268679 PMCID: PMC8912031 DOI: 10.3390/molecules27051577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/07/2022] Open
Abstract
Mast cells (MCs) are an important treatment target for high-affinity IgE Fc receptor (FcεRI)-mediated allergic diseases. The plant-derived molecule 4-methylumbelliferone (4-MU) has beneficial effects in animal models of inflammation and autoimmunity diseases. The aim of this study was to examine 4-MU effects on MC activation and probe the underlying molecular mechanism(s). We sensitized rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated them with exposure to DNP-human serum albumin (HSA), and then treated stimulated cells with 4-MU. Signaling-protein expression was determined by immunoblotting. In vivo allergic responses were examined in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) mouse models. 4-MU inhibited β-hexosaminidase activity and histamine release dose-dependently in FcεRI-activated RBLs and BMMCs. Additionally, 4-MU reduced cytomorphological elongation and F-actin reorganization while down-regulating IgE/Ag-induced phosphorylation of SYK, NF-κB p65, ERK1/2, p38, and JNK. Moreover, 4-MU attenuated the PCA allergic reaction (i.e., less ear thickening and dye extravasation). Similarly, we found that 4-MU decreased body temperature, serum histamine, and IL4 secretion in OVA-challenged ASA model mice. In conclusion, 4-MU had a suppressing effect on MC activation both in vitro and in vivo and thus may represent a new strategy for treating IgE-mediated allergic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (H.-N.W.); (Q.-A.X.); (H.-H.L.); (J.-N.C.); (W.-J.G.); (W.-M.G.); (X.-N.Y.); (Z.-F.Z.)
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China; (H.-N.W.); (Q.-A.X.); (H.-H.L.); (J.-N.C.); (W.-J.G.); (W.-M.G.); (X.-N.Y.); (Z.-F.Z.)
| |
Collapse
|
19
|
Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone Suppresses the Secretory Processes That Ensure the Invasion of Neutrophils into Tissues and Induce Inflammation. Biomedicines 2022; 10:biomedicines10020314. [PMID: 35203523 PMCID: PMC8869632 DOI: 10.3390/biomedicines10020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.
Collapse
|
20
|
OUP accepted manuscript. Glycobiology 2022; 32:743-750. [DOI: 10.1093/glycob/cwac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
|