1
|
Macowan M, Pattaroni C, Bonner K, Chatzis R, Daunt C, Gore M, Custovic A, Shields MD, Power UF, Grigg J, Roberts G, Ghazal P, Schwarze J, Turner S, Bush A, Saglani S, Lloyd CM, Marsland BJ. Deep multiomic profiling reveals molecular signatures that underpin preschool wheeze and asthma. J Allergy Clin Immunol 2024:S0091-6749(24)00869-8. [PMID: 39214237 DOI: 10.1016/j.jaci.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear. OBJECTIVES This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling. METHODS Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old. RESULTS Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae. CONCLUSIONS These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Macowan
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Céline Pattaroni
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia.
| | - Katie Bonner
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roxanne Chatzis
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Carmel Daunt
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Mindy Gore
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adnan Custovic
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael D Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Jonathan Grigg
- Centre for Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Graham Roberts
- Human Development in Health School, University of Southampton Faculty of Medicine, Southampton, United Kingdom; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, United Kingdom
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jürgen Schwarze
- Centre for Inflammation Research, Child Life and Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom; National Health Service Grampian, Aberdeen, United Kingdom
| | - Andrew Bush
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Papadopoulos NG, Apostolidou E, Miligkos M, Xepapadaki P. Bacteria and viruses and their role in the preschool wheeze to asthma transition. Pediatr Allergy Immunol 2024; 35:e14098. [PMID: 38445451 DOI: 10.1111/pai.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Wheezing is the cardinal symptom of asthma; its presence early in life, mostly caused by viral infections, is a major risk factor for the establishment of persistent or recurrent disease. Early-life wheezing and asthma exacerbations are triggered by common respiratory viruses, mainly rhinoviruses (RV), and to a lesser extent, respiratory syncytial virus, parainfluenza, human metapneumovirus, coronaviruses, adenoviruses, influenza, and bocavirus. The excess presence of bacteria, several of which are part of the microbiome, has also been identified in association with wheezing and acute asthma exacerbations, including haemophilus influenza, streptococcus pneumoniae, moraxella catarrhalis, mycoplasma pneumoniae, and chlamydophila pneumonia. While it is not clear when asthma starts, its characteristics develop over time. Airway remodeling already appears between the ages of 1 and 3 years of age even prior to the presence of atopic inflammation or an asthma diagnosis. The role of genetic defect or variations hampering the airway epithelium in response to environmental stimuli and severe disease morbidity are now considered as major determinants for early structural changes. Repeated viral infections can induce and perpetuate airway hyperresponsiveness. Allergic sensitization, that often precedes infection-induced wheezing, shifts inflammation toward type-2, while common respiratory infections themselves promote type-2 inflammation. Nevertheless, most children who wheeze with viral infections during infancy and during preschool years do not develop persistent asthma. Multiple factors, including illness severity, viral etiology, allergic sensitization, and the exposome, are associated with disease persistence. Here, we summarize current knowledge and developments in infection epidemiology of asthma in children, describing the known impact of each individual agent and mechanisms of transition from recurrent wheeze to asthma.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | | | - Michael Miligkos
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Wu LR, Peng QY, Li XJ, Guo MY, He JQ, Ying HZ, Yu CH. Daqing formula ameliorated allergic asthma and airway dysbacteriosis in mice challenged with ovalbumin and ampicillin. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117056. [PMID: 37597673 DOI: 10.1016/j.jep.2023.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a chronic airway inflammatory disease that can lead to several complications caused by bacterial infections. However, recurrent attacks of the disease require long-term use of antibiotics, resulting in lung dysbiosis and poor outcomes. Daqing Formula (DQF) is a well-known herbal medicine in Pharmacopoeia of China, which is widely used for various stimuli-induced lower respiratory diseases, including asthma, bronchitis, and pneumonia. Thus, it has been demonstrated to be a plant-derived broad-spectrum antibiotic for treating and preventing various acute and chronic respiratory diseases. AIM OF THE STUDY This study evaluated the efficacy and possible mechanism of DQF on allergic asthma and airway dysbiosis. METHODS AND MATERIALS The mice were co-challenged with ovalbumin and ampicillin to induce allergic asthma combined with airway dysbacteriosis. The populations of lung microbiota were detected by using 16s DNA sequencing. The levels of asthmatic markers in BALF were detected by ELISA. The levels of Th1/Th2 cytokines in splenic CD4+ cells of mice were analyzed by flow cytometry. The expressions of the GSK-3β signaling pathway in the lung tissues of asthmatic mice and eosinophils were detected by western blotting assay. The inhibition of DQF on the production of pro-inflammatory cytokines in eosinophils of asthmatic mice. RESULTS The results showed that treatment with DQF at 200-800 mg/kg doses significantly reduced the frequency of nasal rubbing and lung inflammation as well as the number of total cells, eosinophils, and macrophages in bronchoalveolar lavage fluid. It decreased the relative abundances of Streptococcus, Cuoriavidus, and Moraxella, increased Akkermansia and Prevotella_6 in lung tissues of asthmatic mice, and inhibited the growth of Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae and their resistant strains in vitro. Furthermore, DQF reduced the levels of eotaxin, TSLP, IL-4, IL-5, IL-25, and IL-33, but enhanced IFN-γ and IL-12 in BALF. It elevated the population of Th1 cells, inhibited eosinophil activation, and downregulated the expressions of p-GSK-3β, p-p65, nuclear β-catenin, and p-STAT3 in the lung tissues of asthmatic mice. CONCLUSIONS The results revealed that DQF reduced airway inflammation, ameliorated lung dysbiosis, shifted the Th1/Th2 balance, and inhibited eosinophil activation in asthmatic mice, indicating its potential for severe asthma treatment.
Collapse
Affiliation(s)
- Li-Ren Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qian-Yu Peng
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xue-Jian Li
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Mei-Ying Guo
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China.
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, 310013, China; Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Holmdahl I, Chakraborty S, Hoyer A, Filiou A, Asarnoj A, Sjölander A, Borres MP, van Hage M, Hedlin G, Konradsen JR, Söderhäll C. Inflammatory related plasma proteins involved in acute preschool wheeze. Clin Transl Allergy 2023; 13:e12308. [PMID: 38006384 PMCID: PMC10618892 DOI: 10.1002/clt2.12308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Preschool wheeze is a risk factor for asthma development. However, the molecular mechanism behind a wheezing episode is not well understood. OBJECTIVE Our aims were to assess the association of plasma proteins with acute preschool wheeze and to study the proteins with differential expression at the acute phase at revisit after 3 months. Additionally, to investigate the relationship between protein expression and clinical parameters. METHOD We measured 92 inflammatory proteins in plasma and clinical parameters from 145 children during an episode of preschool wheeze (PW) and at the revisit after 3 months (PW-R, n = 113/145) and 101 healthy controls (HC) aged 6-48 months in the GEWAC cohort using the antibody-mediated proximity extension-based assay (Olink Proteomics, Uppsala). RESULTS Of the 74 analysed proteins, 52 were differentially expressed between PW and HC. The expression profiles of the top 10 proteins, Oncostatin M (OSM), IL-10, IL-6, Fibroblast growth factor 21 (FGF21), AXIN1, CXCL10, SIRT2, TNFSF11, Tumour necrosis factor β (TNF-β) and CASP8, could almost entirely separate PW from HC. Five out of 10 proteins were associated with intake of oral corticosteroids (OCS) 24 h preceding blood sampling (OSM, CASP8, IL-10, TNF-β and CXCL10). No differences in protein expression were seen between PWs with or without OCS in comparison to HC. At the revisit after 3 months, differential protein expressions were still seen between PW-R and HC for three (IL-10, SIRT2 and FGF21) of the 10 proteins. CONCLUSION Our results contribute to unravelling potential immunopathological pathways shared between preschool wheeze and asthma.
Collapse
Affiliation(s)
- Idun Holmdahl
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Sandip Chakraborty
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Angela Hoyer
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Anastasia Filiou
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Anna Asarnoj
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | | | - Magnus P. Borres
- Thermo Fisher ScientificUppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Marianne van Hage
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Gunilla Hedlin
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Jon R. Konradsen
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| | - Cilla Söderhäll
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Astrid Lindgren's Children's HospitalKarolinska University HospitalStockholmSweden
| |
Collapse
|
5
|
Allergy, asthma, and proteomics: opportunities with immediate impact. Allergol Immunopathol (Madr) 2023; 51:16-21. [PMID: 36617817 DOI: 10.15586/aei.v51i1.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/08/2022] [Indexed: 01/03/2023]
Abstract
Allergy is widely discussed by researchers due to its complex mechanism that leads to disorders and injuries, but the reason behind the allergic status remains unclear. Current treatments are insufficient to improve the patient's quality of life significantly. New technologies in scientific and technological development are emerging. For instance, the union between allergy and peptidomics and bioinformatics tools may help fill the gaps in this field, diagnosis, and treatment. In this review, we look at peptidomics and address some findings, such as target proteins or biomarkers that help better understand mechanisms that lead to inflammation, organ damage, and, consequently, poor quality of life or even death.
Collapse
|
6
|
Wu SJ, Huang WC, Cheng CY, Wang MC, Cheng SC, Liou CJ. Fisetin Suppresses the Inflammatory Response and Oxidative Stress in Bronchial Epithelial Cells. Nutrients 2022; 14:nu14091841. [PMID: 35565807 PMCID: PMC9103812 DOI: 10.3390/nu14091841] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Fisetin is isolated from many fruits and vegetables and has been confirmed to improve airway hyperresponsiveness in asthmatic mice. However, whether fisetin reduces inflammatory response and oxidative stress in bronchial epithelial cells is unclear. Here, BEAS-2B human bronchial epithelial cells were treated with various concentrations of fisetin and then stimulated with tumor necrosis factor-α (TNF-α) or TNF-α/interleukin-4. In addition, ovalbumin-sensitized mice were treated with fisetin to detect inflammatory mediators and oxidative stress expression. Fisetin significantly reduced the levels of inflammatory cytokines and chemokines in TNF-α-stimulated BEAS-2B cells. Fisetin also attenuated intercellular adhesion molecule-1 expression in TNF-α-stimulated BEAS-2B cells, suppressing THP-1 monocyte adhesion. Furthermore, fisetin significantly suppressed airway hyperresponsiveness in the lungs and decreased eosinophil numbers in the bronchoalveolar lavage fluid of asthmatic mice. Fisetin decreased cyclooxygenase-2 expression, promoted glutathione levels, and decreased malondialdehyde levels in the lungs of asthmatic mice. Our findings indicate that fisetin is a potential immunomodulator that can improve the pathological features of asthma by decreasing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33303, Taiwan
| | - Meng-Chun Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
| | - Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- Correspondence: (S.-C.C.); (C.-J.L.); Tel.: +886-3-2118293 (S.-C.C.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (S.-C.C.); (C.-J.L.); Tel.: +886-3-2118293 (S.-C.C.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| |
Collapse
|
7
|
Tang W, Dong M, Teng F, Cui J, Zhu X, Wang W, Wuniqiemu T, Qin J, Yi L, Wang S, Dong J, Wei Y. Environmental allergens house dust mite-induced asthma is associated with ferroptosis in the lungs. Exp Ther Med 2021; 22:1483. [PMID: 34765024 PMCID: PMC8576623 DOI: 10.3892/etm.2021.10918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have indicated that allergens such as house dust mites (HDM) in the environment can induce allergic asthma. Ferroptosis is a newly discovered form of regulatory cell death characterized by aberrant lipid peroxidation and the accumulation of reactive oxygen species (ROS) in cells. However, whether ferroptosis participates in the pathological process of asthma remains to be elucidated. The present study used a HDM-induced mouse asthma model to determine the effect of HDM exposure on allergic asthma and its underlying mechanisms. Female BALB/c mice were intranasally exposed to HDM to induce allergic asthma. Airway hyperresponsiveness (AHR), lung inflammation, mucus secretion, IgE levels, cytokine levels and inflammatory cell counts in bronchoalveolar lavage fluid (BALF) were investigated. In addition, the morphological changes of mitochondria, ROS levels, glutathione (GSH) levels and changes in ferroptosis pathway proteins were also determined in murine lungs. As a result, HDM exposure significantly increased AHR, inflammatory cell infiltration and mucus secretion around the airways. Furthermore, elevated IgE levels in the BALF, lung eosinophilia and a concomitant increase in IL-13 and IL-5 levels in BALF were observed. HDM inhalation increased ROS and decreased GSH levels in the lungs. HDM inhalation induced dysmorphic small mitochondria with decreased crista, as well as condensed, ruptured outer membranes. Western blotting demonstrated that the activities of glutathione peroxidase 4 and catalytic subunit solute carrier family 7 member 11 were significantly decreased, and that protein expression levels of acyl-CoA synthetase long-chain family member 4 and 15 lipoxygenase 1 were upregulated compared with mice in the normal control group. Overall, these results indicated that the AHR, airway inflammation, lipid peroxidation and ROS levels increased in HDM-induced asthma, and that HDM inhalation induced ferroptosis in the lungs, which helped to form an improved understanding of the pathogenesis of allergic asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Ming Dong
- Department of Acupuncture and Orthopedics, Gumei Community Health Center, Shanghai 201102, P.R. China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
8
|
Huang WC, Huang TH, Yeh KW, Chen YL, Shen SC, Liou CJ. Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice. J Ginseng Res 2021; 45:654-664. [PMID: 34764720 PMCID: PMC8569325 DOI: 10.1016/j.jgr.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 01/08/2021] [Accepted: 03/06/2021] [Indexed: 01/21/2023] Open
Abstract
Background Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. Conclusion Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation Ginsenoside Rg3 reduced eosinophil infiltration, and airway hyperresponsiveness in the lungs of asthmatic mice. Ginsenoside Rg3 inhibited oxidative responses in the lungs. Ginsenoside Rg3 reduced the levels of Th2 cytokines in BALF and lung. Ginsenoside Rg3 inhibited monocyte cell adherence to tracheal epithelial cells. Ginsenoside Rg3 reduced the levels of pro-inflammatory cytokines in tracheal epithelial cells.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan.,School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Kuo-Wei Yeh
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei City, Taiwan
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| |
Collapse
|
9
|
Yang DH, Chin CS, Chao WC, Lin CH, Chen YW, Chen YH, Chen HH. Association of the Risk of Childhood Asthma at Age 6 With Maternal Allergic or Immune-Mediated Inflammatory Diseases: A Nationwide Population-Based Study. Front Med (Lausanne) 2021; 8:713262. [PMID: 34409053 PMCID: PMC8365169 DOI: 10.3389/fmed.2021.713262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to assess the associations of the risk of asthma diagnosed in children aged 6 years or younger and having maternal immune-mediated inflammatory diseases (IMIDs), including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory myositis, rheumatoid arthritis (RA), Sjögren's syndrome (SS), ankylosing spondylitis (AS), and autoimmune thyroiditis. Methods: A total of 628,878 singleton newborns documented in 2006-2009 and followed up for at least 6 years were identified. Overall, 153,085 (24.3%) children developed asthma at the age of ≤ 6 years. Two groups of maternal ages, i.e., <35 and ≥35 years, were evaluated. The associations of the risk of asthma occurring in children who were 6 years old or younger and had maternal IMIDs were examined. Results: The risk of asthma increased in children whose mothers had SLE [odds ratio (OR), 1.13; 95% confidence intervals (CI), 1.00-1.27; p = 0.04), RA (OR, 1.21; 95% CI, 1.07-1.38; p = 0.003), inflammatory myositis (OR, 1.41; 95% CI, 1.12-1.74; p = 0.003), asthma (OR, 1.58; 95% CI, 1.52-1.63), allergic rhinitis (OR, 1.30; 95% CI, 1.28-1.32), or atopic dermatitis (OR, 1.07; 95% CI, 1.02-1.12). Conversely, this increased risk was not observed in children whose mothers had AS (OR, 1.02; 95% CI, 0.87-1.20), SS (OR, 0.96; 95% CI, 0.86-1.07), SSc (OR, 1.28; 95% CI, 0.77-2.14), or autoimmune thyroiditis (OR, 1.01; 95% CI, 0.95-1.07). Other risk factors of childhood asthma included high urbanization level, preterm birth, and low birth weight. Conclusion: The risk of childhood asthma at 6 years of age increased in children whose mothers suffered from SLE, RA, inflammatory myositis, asthma, allergic rhinitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Deng-Ho Yang
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Shih Chin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hyperbaric Oxygen Therapy Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Computer Science, Tunghai University, Taichung, Taiwan.,Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yun-Wen Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Hua Chen
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of General Internal Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Science and Rong-Hsing Research Center for Translational Medicine, Chung-Hsing University, Taichung, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
10
|
Dodi G, Attanasi M, Di Filippo P, Di Pillo S, Chiarelli F. Virome in the Lungs: The Role of Anelloviruses in Childhood Respiratory Diseases. Microorganisms 2021; 9:microorganisms9071357. [PMID: 34201449 PMCID: PMC8307813 DOI: 10.3390/microorganisms9071357] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
More recently, increasing attention has been directed to exploring the function of the global virome in health and disease. Currently, by new molecular techniques, such as metagenomic DNA sequencing, the virome has been better unveiled. By investigating the human lung virome, we could provide novel insights into respiratory diseases. The virome, as a part of the microbiome, is characterized by a constant change in composition related to the type of diet, environment, and our genetic code, and other incalculable factors. The virome plays a substantial role in modulating human immune defenses and contributing to the inflammatory processes. Anelloviruses (AVs) are new components of the virome. AVs are already present during early life and reproduce without apparently causing harm to the host. The role of AVs is still unknown, but several reports have shown that AVs could activate the inflammasomes, intracellular multiprotein oligomers of the innate immune system, which show a crucial role in the host defense to several pathogens. In this narrative revision, we summarize the epidemiological data related to the possible link between microbial alterations and chronic respiratory diseases in children. Briefly, we also describe the characteristics of the most frequent viral family present in the lung virome, Anelloviridae. Furthermore, we discuss how AVs could modulate the immune system in children, affecting the development of chronic respiratory diseases, particularly asthma, the most common chronic inflammatory disease in childhood.
Collapse
|
11
|
Hsu WH, Lin LJ, Lu CK, Kao ST, Lin YL. Effect of You-Gui-Wan on House Dust Mite-Induced Mouse Allergic Asthma via Regulating Amino Acid Metabolic Disorder and Gut Dysbiosis. Biomolecules 2021; 11:biom11060812. [PMID: 34070764 PMCID: PMC8229888 DOI: 10.3390/biom11060812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal remedies have long been used for enhancing immunity and treating asthma. However, the evidence-based efficacy remains to be supported. This study aimed to explore the potential bio-signatures in allergic asthma and the effect of You-Gui-Wan (YGW), a traditional Chinese herbal prescription, on dust mite-induced mouse allergic asthma. Extract of Dermatophagoides pteronyssinus (Der p), a dust mite, was intratracheally administered to induce allergic asthma in mice. Serum metabolomic and 16S rRNA-based microbiome profiling were used to analyze untargeted metabolites with levels significantly changed and gut microbiota composition, respectively. Results indicated that 10 metabolites (acetylcarnitine, carnitine, hypoxanthine, tryptophan, phenylalanine, norleucine, isoleucine, betaine, methionine, and valine), mainly associated with branched-chain amino acid (BCAA) metabolism, aromatic amino acid (AAA) biosynthesis, and phenylalanine metabolism were markedly elevated after Der p treatment. YGW administration reversed the levels for 7 of the 10 identified metabolites, chiefly affecting BCAA metabolism. On 16S DNA sequencing, disordered Der p-induced gut microbiota was significantly alleviated by YGW. Multiple correlation analysis showed a good correlation between gut microbiota composition and levels of selected metabolites. Our study showed YGW administration effectively alleviated BCAA metabolic disorder and improved gut dysbiosis. This study provides support for YGW administration with benefits for allergic asthma.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
| | - Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (L.-J.L.); (S.-T.K.)
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan;
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; (L.-J.L.); (S.-T.K.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
- Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5520)
| |
Collapse
|
12
|
Karachaliou M, de Sanjose S, Roumeliotaki T, Margetaki K, Vafeiadi M, Waterboer T, Chatzi L, Kogevinas M. Heterogeneous associations of polyomaviruses and herpesviruses with allergy-related phenotypes in childhood. Ann Allergy Asthma Immunol 2021; 127:191-199.e3. [PMID: 33895421 DOI: 10.1016/j.anai.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Evidence suggests a complex interplay between infections and allergic diseases. OBJECTIVE To explore the association of 14 common viruses with eczema, asthma, and rhinoconjunctivitis in childhood. METHODS We used cross-sectional (n = 686) and prospective (n = 440) data from children participating in the Rhea birth cohort. Immunoglobulin G to polyomaviruses (BK polyomavirus, JC polyomavirus, KI polyomavirus [KIPyV], WU polyomavirus [WUPyV], human polyomavirus 6, human polyomavirus 7, Trichodysplasia spinulosa polyomavirus, Merkel cell polyomavirus, human polyomavirus 9, and human polyomavirus 10) and herpesviruses (Epstein-Barr virus, Cytomegalovirus, Herpes simplex virus-1, Herpes simplex virus-2) were measured at age 4 years by fluorescent bead-based multiplex serology. Definitions of eczema, asthma, and rhinoconjunctivitis at ages 4 and 6 years were based on questionnaires. Mediation of the associations by immune biomarkers was tested. RESULTS Less likely to have eczema at age 4 years were KIPyV-seropositive (odds ratio [OR], 0.47; 95% confidence interval [CI], 0.27-0.82) and human polyomavirus 6 (OR, 0.44; 95% CI, 0.26-0.73) compared with their seronegative counterparts. Seropositivity to Epstein-Barr virus was negatively associated with eczema at age 4 years (OR, 0.39; 95% CI, 0.22-0.67) and 6 years (OR, 0.50; 95% CI, 0.25-0.99). Children with a higher burden of herpesviruses or of skin polyomaviruses had the lowest odds of eczema at age 4 years. Higher odds for asthma at age 4 years were found for WUPyV-seropositive children (OR, 3.98; 95% CI, 1.38-11.51), and for children seropositive to both respiratory polyomaviruses (KIPyV and WUPyV) (OR, 7.35; 95% CI, 1.66-32.59) compared with children seronegative to both. No associations were observed for rhinoconjunctivitis. There was no evidence of mediation by immune biomarkers. CONCLUSION A heterogeneous pattern of infections and allergic diseases was observed with common infections associated with a decreased eczema risk and an increased asthma risk in children.
Collapse
Affiliation(s)
- Marianna Karachaliou
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | | | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Tim Waterboer
- Infections and Cancer Division, Infection, Inflammation, and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
13
|
Šutovská M, Kocmálová M, Kazimierová I, Forsberg CIN, Jošková M, Adamkov M, Fraňová S. Effects of Inhalation of STIM-Orai Antagonist SKF 96365 on Ovalbumin-Induced Airway Remodeling in Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1335:87-101. [PMID: 33742420 DOI: 10.1007/5584_2021_633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Airway remodeling (AR) consists of wall thickening and hyperreactivity. STIM (stromal interaction molecule) and Orai protein pathways mediate extracellular Ca2+ signals involved in AR. This study aims to define the effects on AR of the STIM-Orai antagonist SKF 96365 given by inhalation in three increasing doses in ovalbumin-induced AR. In the control group, the antiasthmatic budesonide and salbutamol were given in the same model. The airway structure was evaluated by histological and immunohistochemistry and reactivity by specific airway resistance, contraction strength of isolated airway smooth muscles, and mucociliary clearance expressed by ciliary beating frequency. The immuno-biochemical markers of chronic inflammation were evaluated by BioPlex and ELISA assays. The AR was mediated by inflammatory cytokines and growth factors. The findings show significant anti-remodeling effects of SKF 96365, which were associated with a decrease in airway hyperreactivity. The anti-remodeling effect of SKF 96365 was mediated via the suppression of IL-4, IL-5, and IL-13 synthesis, and IL-12-INF-γ-TGF-β pathway. The budesonide-related AR suppression had to do with a decrease in proinflammatory cytokines and an increase in the anti-inflammatory IL-10, with negligible influence on growth factors synthesis and mucous glands activity.
Collapse
Affiliation(s)
- Martina Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| | - Michaela Kocmálová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia. .,Martin's Biomedical Center (BioMed), Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | - Ivana Kazimierová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia.,Martin's Biomedical Center (BioMed), Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | | | - Marta Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| | - Marian Adamkov
- Institute of Histology and Embryology Jessenius Faculty of Medicine Comenius University, Martin, Slovakia
| | - Soňa Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Mala Hora, Martin, Slovakia
| |
Collapse
|
14
|
Lejeune S, Deschildre A, Le Rouzic O, Engelmann I, Dessein R, Pichavant M, Gosset P. Childhood asthma heterogeneity at the era of precision medicine: Modulating the immune response or the microbiota for the management of asthma attack. Biochem Pharmacol 2020; 179:114046. [PMID: 32446884 PMCID: PMC7242211 DOI: 10.1016/j.bcp.2020.114046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Exacerbations are a main characteristic of asthma. In childhood, the risk is increasing with severity. Exacerbations are a strong phenotypic marker, particularly of severe and therapy-resistant asthma. These early-life events may influence the evolution and be involved in lung function decline. In children, asthma attacks are facilitated by exposure to allergens and pollutants, but are mainly triggered by microbial agents. Multiple studies have assessed immune responses to viruses, and to a lesser extend bacteria, during asthma exacerbation. Research has identified impairment of innate immune responses in children, related to altered pathogen recognition, interferon release, or anti-viral response. Influence of this host-microbiota dialog on the adaptive immune response may be crucial, leading to the development of biased T helper (Th)2 inflammation. These dynamic interactions may impact the presentations of asthma attacks, and have long-term consequences. The aim of this review is to synthesize studies exploring immune mechanisms impairment against viruses and bacteria promoting asthma attacks in children. The potential influence of the nature of infectious agents and/or preexisting microbiota on the development of exacerbation is also addressed. We then discuss our understanding of how these diverse host-microbiota interactions in children may account for the heterogeneity of endotypes and clinical presentations. Finally, improving the knowledge of the pathophysiological processes induced by infections has led to offer new opportunities for the development of preventive or curative therapeutics for acute asthma. A better definition of asthma endotypes associated with precision medicine might lead to substantial progress in the management of severe childhood asthma.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Antoine Deschildre
- CHU Lille, Univ. Lille, Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, F-59000 Lille, France; Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Olivier Le Rouzic
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; CHU Lille, Univ. Lille, Department of Respiratory Diseases, F-59000 Lille Cedex, France
| | - Ilka Engelmann
- Univ. Lille, Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Rodrigue Dessein
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France; Univ. Lille, Bacteriology Department, Institute of Microbiology, CHU Lille, F-59037 Lille Cedex, France
| | - Muriel Pichavant
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France
| | - Philippe Gosset
- Univ. Lille, INSERM Unit 1019, CNRS UMR 9017, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, F-59019 Lille Cedex, France.
| |
Collapse
|
15
|
Lejeune S, Pichavant M, Engelmann I, Béghin L, Drumez E, Le Rouzic O, Dessein R, Rogeau S, Beke T, Kervoaze G, Delvart C, Ducoin H, Pouessel G, Le Mée A, Boileau S, Roussel J, Bonnel C, Mordacq C, Thumerelle C, Gosset P, Deschildre A. Severe preschool asthmatics have altered cytokine and anti-viral responses during exacerbation. Pediatr Allergy Immunol 2020; 31:651-661. [PMID: 32352598 DOI: 10.1111/pai.13268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Preschool asthma/recurrent wheeze is a heterogeneous condition. Different clinical phenotypes have been described, including episodic viral wheeze (EVW), severe intermittent wheeze (SIW), and multiple-trigger wheeze (MTW). OBJECTIVE To compare clinical, viral, and inflammatory/immune profiling at exacerbation between MTW, SIW, and EVW phenotypes. METHODS Multicenter, prospective, observational cohort (VIRASTHMA-2). Children (1-5 years) with preschool asthma were enrolled during hospitalization for a severe exacerbation. History and anamnestic data, plasma, and nasal samples were collected at exacerbation (T1) and at steady state, 8 weeks later (T2), and sputum samples were collected at T1. RESULTS A total of 147 children were enrolled, 37 (25%) had SIW, 18 (12.2%) EVW, and 92 (63%) MTW. They were atopic (47%), exposed to mold (22%) and cigarette smoke (50%), and prone to exacerbations (≥2 in the previous year in 70%). At exacerbation, at least one virus was isolated in 94% and rhinovirus in 75%, with no difference between phenotypes. Children with MTW and SIW phenotypes displayed lower plasma concentrations of IFN-γ (P = .002), IL-5 (P = .020), TNF-α (P = .038), IL-10 (P = .002), IFN-β (P = .036), and CXCL10 (P = .006) and lower levels of IFN-γ (P = .047) in sputum at exacerbation than children with EVW. At T2, they also displayed lower plasma levels of IFN-γ (P = .045) and CXCL10 (P = .013). CONCLUSION Among preschool asthmatic children, MTW and SIW, prone to exacerbations, display lower systemic levels of Th1, Th2 cytokines, pro- and anti-inflammatory cytokines, and antiviral responses during severe virus-induced exacerbation.
Collapse
Affiliation(s)
- Stéphanie Lejeune
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Muriel Pichavant
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Ilka Engelmann
- Virology Laboratory, EA3610, Institute of Microbiology, CHU Lille, Univ. Lille, Lille cedex, France
| | - Laurent Béghin
- LIRIC UMR 995 Inserm, Clinical Investigation Center, CIC-1403-Inserm-CHU, CHU Lille, Univ. Lille, Lille, France
| | - Elodie Drumez
- ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, CHU Lille, Univ. Lille, Lille, France.,Department of Biostatistics, CHU Lille, Lille, France
| | - Olivier Le Rouzic
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Rodrigue Dessein
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France.,Bacteriology Department, Institute of Microbiology, CHU Lille, Univ. Lille, Lille cedex, France
| | - Stéphanie Rogeau
- Institute of Immunology, CHU Lille, Univ. Lille, Lille, Lille cedex, France
| | - Timothée Beke
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Gwenola Kervoaze
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | | | - Héloïse Ducoin
- Pediatric Department, CH Lens E. Schaffner, Lens cedex, France
| | | | | | | | | | - Cécile Bonnel
- Pediatric Department, CH Bethune, Bethune cedex, France
| | - Clémence Mordacq
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Caroline Thumerelle
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Philippe Gosset
- INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| | - Antoine Deschildre
- Pediatric Pulmonology and Allergy Department, Hôpital Jeanne de Flandre, CHU Lille, Univ. Lille, Lille cedex, France.,INSERM Unit 1019, CNRS UMR 9017, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Univ. Lille, Lille cedex, France
| |
Collapse
|
16
|
Capek P, Matulová M, Šutovská M, Barboríková J, Molitorisová M, Kazimierová I. Chlorella vulgaris α-L-arabino-α-L-rhamno-α,β-D-galactan structure and mechanisms of its anti-inflammatory and anti-remodelling effects. Int J Biol Macromol 2020; 162:188-198. [PMID: 32565301 DOI: 10.1016/j.ijbiomac.2020.06.151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Microalgal exopolysaccharides (EPSs) are given great attention due to their potential biotechnology applications. Purified C. vulgaris EPS was subjected to compositional and sugar linkage analyses, and partial acid hydrolysis. Hydrolysate separation by gel chromatography afforded oligosaccharide fractions. Both, EPS and oligomers were studied by NMR spectroscopy. Data suggest very complex highly branched α-L-arabino-α-L-rhamno-α,β-D-galactan structure. Backbone repeating unit is formed by →2)-α-L-Rha (1 → 3)-α-L-Rha(1 → sequence, highly branched by long 1,6-linked α-D-Galp side chains, further branched at C2, C3 or C4 by α-L-Araf, α-D-Galf and β-D-Galf residues. α-L-Araf form longer 1,2-linked chains branched at C3, C4 or C5. Galf residues are localized as terminal units predominantly in the β configuration, while α-D-Galp and α-L-Araf may be partially O-methylated. Ex vivo biological assays showed increased interleukin-12 (IL-12) and interferon-gamma (INF-γ) levels corresponding to transforming growth factor beta (TGF-β) decrease in guinea pig model experimental asthma. These facts point to the anti-remodelling effect of Chlorella EPS and suggest its possible application in the treatment of asthma and chronic obstructive pulmonary disorder.
Collapse
Affiliation(s)
- Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia.
| | - Mária Matulová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia
| | - Martina Šutovská
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 11161/4B, Martin, 03601, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia.
| | - Jana Barboríková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 11161/4B, Martin, 03601, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Miroslava Molitorisová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 11161/4B, Martin, 03601, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| | - Ivana Kazimierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 11161/4B, Martin, 03601, Slovakia; Biomedical Center, Jessenius Faculty of Medicine, 03601 Martin, Slovakia
| |
Collapse
|
17
|
Jin Y, Gao H, Jorgensen R, Salloum J, Jian DI, Ng PK, Gangur V. Mechanisms of Wheat Allergenicity in Mice: Comparison of Adjuvant-Free vs. Alum-Adjuvant Models. Int J Mol Sci 2020; 21:ijms21093205. [PMID: 32369940 PMCID: PMC7247356 DOI: 10.3390/ijms21093205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
Wheat protein is considered a major type of food allergen in many countries including the USA. The mechanisms of allergenicity of wheat proteins are not well understood at present. Both adjuvant-based and adjuvant-free mouse models are reported for this food allergy. However, it is unclear whether the mechanisms underlying wheat allergenicity in these two types of models are similar or different. Therefore, we compared the molecular mechanisms in a novel adjuvant-free (AF) model vs. a conventional alum-adjuvant (AA) model of wheat allergy using salt-soluble wheat protein (SSWP). In the AF model, Balb/cJ mice were sensitized with SSWP via skin exposure. In the AA model, mice were sensitized by an intraperitoneal injection of SSWP with alum. In both models, allergic reactions were elicited using an identical protocol. Robust IgE as well as mucosal mast cell protein-1 responses were elicited similarly in both models. However, an analysis of the spleen immune markers identified strikingly different molecular activation patterns in these two models. Furthermore, a number of immune markers associated with intrinsic allergenicity were also identified in both models. Since the AF model uses skin exposure without an adjuvant, the mechanisms in the AF model may more closely simulate the human wheat allergenicity mechanisms from skin exposure in occupational settings such as in the baking industry.
Collapse
Affiliation(s)
- Yining Jin
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Haoran Gao
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Rick Jorgensen
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Jillian Salloum
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Dan Ioan Jian
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
| | - Perry K.W. Ng
- Cereal Science Laboratory, Michigan State University, East Lansing, MI 48824, USA;
| | - Venugopal Gangur
- Food Allergy & Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (Y.J.); (H.G.); (R.J.); (S.J.); (D.I.J.)
- Correspondence:
| |
Collapse
|
18
|
Sesamol Alleviates Airway Hyperresponsiveness and Oxidative Stress in Asthmatic Mice. Antioxidants (Basel) 2020; 9:antiox9040295. [PMID: 32244835 PMCID: PMC7222203 DOI: 10.3390/antiox9040295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Sesamol, isolated from sesame seeds (Sesamum indicum), was previously shown to have antioxidative, anti-inflammatory, and anti-tumor effects. Sesamol also inhibited lipopolysaccharide (LPS)-induced pulmonary inflammatory response in rats. However, it remains unclear how sesamol regulates airway inflammation and oxidative stress in asthmatic mice. This study aimed to investigate the efficacy of sesamol on oxidative stress and airway inflammation in asthmatic mice and tracheal epithelial cells. BALB/c mice were sensitized with ovalbumin, and received oral sesamol on days 14 to 27. Furthermore, BEAS-2B human bronchial epithelial cells were treated with sesamol to investigate inflammatory cytokine levels and oxidative responses in vitro. Our results demonstrated that oral sesamol administration significantly suppressed eosinophil infiltration in the lung, airway hyperresponsiveness, and T helper 2 cell-associated (Th2) cytokine expressions in bronchoalveolar lavage fluid and the lungs. Sesamol also significantly increased glutathione expression and reduced malondialdehyde levels in the lungs of asthmatic mice. We also found that sesamol significantly reduced proinflammatory cytokine levels and eotaxin in inflammatory BEAS-2B cells. Moreover, sesamol alleviated reactive oxygen species formation, and suppressed intercellular cell adhesion molecule-1 (ICAM-1) expression, which reduced monocyte cell adherence. We demonstrated that sesamol showed potential as a therapeutic agent for improving asthma.
Collapse
|
19
|
Wang C, Tang J, Qian B, Zeng Z, Gao Y, Song JL. Rubusoside alleviates the ovalbumin-induced mice allergic asthma by modulating the NF-κB activation. J Food Biochem 2020; 44:e13187. [PMID: 32185800 DOI: 10.1111/jfbc.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
The anti-inflammatory and anti-asthmatic effects of rubusoside (Rbs) were investigated in the ovalbumin (OVA)-induced asthmatic mice, followed by effective attenuation of Rbs treatment on the airway hyperresponsiveness and reduction of inflammatory cells inside the bronchoalveolar lavage fluid (BALF). The mitigation of inflammatory infiltration as a result of Rbs treatment was histologically observed in these mice lungs. Rbs contributed to the decrease of inflammatory cytokines (TNF-α, IL-13, IL-6, IL-5, and IL-4) inside the BALF of mice with asthma. A decline of OVA-dependent IgE and IgG1 inside the serum was also noticed in these mice. Rbs was proved to enhance the mRNA level of Foxp3 inside the mice lung affected with asthma while decrease that of IL-17A, IL-23, and RORγt. NF-κB pathway activation elicited by OVA was suppressed by Rbs inside the pulmonary tissues. Rbs played significantly in the reduction of airway inflammation induced by OVA which with modulating NF-κB pathway activation. PRACTICAL APPLICATIONS: Simultaneous therapy with medicine and food is strategically significant for disease prevention and treatment in traditional Chinese medicine. Rbs is a diterpene glycoside isolated from Rubus suavissimus. The anti-inflammatory and anti-asthmatic mechanism dependent of Rbs need further study clinically. The goal of current investigation is to explore the anti-inflammatory as well as anti-asthmatic activity of Rbs in mouse models of OVA-induced experimental allergic asthma. Results of the present study are scientifically supportive for the use of Rbs as an adjunctive reagent for clinical treatment of allergic asthma.
Collapse
Affiliation(s)
- Chengqiang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Jia Tang
- Institution of Documentation of Chinese Traditional Medicine Research, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Bo Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Zhen Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China
| | - Yang Gao
- Department of Pharmacy, Northern Jiangsu People's Hospital, Yangzhou, P.R. China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, P.R. China.,Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
20
|
Fang L, Sun Q, Roth M. Immunologic and Non-Immunologic Mechanisms Leading to Airway Remodeling in Asthma. Int J Mol Sci 2020; 21:ijms21030757. [PMID: 31979396 PMCID: PMC7037330 DOI: 10.3390/ijms21030757] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma increases worldwide without any definite reason and patient numbers double every 10 years. Drugs used for asthma therapy relax the muscles and reduce inflammation, but none of them inhibited airway wall remodeling in clinical studies. Airway wall remodeling can either be induced through pro-inflammatory cytokines released by immune cells, or direct binding of IgE to smooth muscle cells, or non-immunological stimuli. Increasing evidence suggests that airway wall remodeling is initiated early in life by epigenetic events that lead to cell type specific pathologies, and modulate the interaction between epithelial and sub-epithelial cells. Animal models are only available for remodeling in allergic asthma, but none for non-allergic asthma. In human asthma, the mechanisms leading to airway wall remodeling are not well understood. In order to improve the understanding of this asthma pathology, the definition of “remodeling” needs to be better specified as it summarizes a wide range of tissue structural changes. Second, it needs to be assessed if specific remodeling patterns occur in specific asthma pheno- or endo-types. Third, the interaction of the immune cells with tissue forming cells needs to be assessed in both directions; e.g., do immune cells always stimulate tissue cells or are inflamed tissue cells calling immune cells to the rescue? This review aims to provide an overview on immunologic and non-immunologic mechanisms controlling airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
| | - Qinzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Michael Roth
- Pulmonary Cell Research & Pneumology, University Hospital & University of Basel, Petersgraben 4, CH-4031 Basel, Switzerland;
- Correspondence: ; Tel.: +41-61-265-2337
| |
Collapse
|
21
|
Kim DH, Gu A, Lee JS, Yang EJ, Kashif A, Hong MH, Kim G, Park BS, Lee SJ, Kim IS. Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma. Int J Med Sci 2020; 17:498-509. [PMID: 32174780 PMCID: PMC7053304 DOI: 10.7150/ijms.37833] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
S100A8 and S100A9 are important proteins in the pathogenesis of allergy. Asthma is an allergic lung disease, characterized by bronchial inflammation due to leukocytes, bronchoconstriction, and allergen-specific IgE. In this study, we examined the role of S100A8 and S100A9 in the interaction of cytokine release from bronchial epithelial cells, with constitutive apoptosis of neutrophils. S100A8 and S100A9 induce increased secretion of neutrophil survival cytokines such as MCP-1, IL-6 and IL-8. This secretion is suppressed by TLR4 inhibitor), LY294002, AKT inhibitor, PD98059, SB202190, SP600125, and BAY-11-7085. S100A8 and S100A9 also induce the phosphorylation of AKT, ERK, p38 MAPK and JNK, and activation of NF-κB, which were blocked after exposure to TLR4i, LY294002, AKTi, PD98059, SB202190 or SP600125. Furthermore, supernatants collected from bronchial epithelial cells after S100A8 and S100A9 stimulation suppressed the apoptosis of normal and asthmatic neutrophils. These inhibitory mechanisms are involved in suppression of caspase 9 and caspase 3 activation, and BAX expression. The degradation of MCL-1 and BCL-2 was also blocked by S100A8 and S100A9 stimulation. Essentially, neutrophil apoptosis was blocked by co-culture of normal and asthmatic neutrophils with BEAS-2B cells in the presence of S100A8 and S100A9. These findings will enable elucidation of asthma pathogenesis.
Collapse
Affiliation(s)
- Da Hye Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ayoung Gu
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 54538
| | - Eun Ju Yang
- Department of Clinical Laboratory Science, Daegu Haany University, Gyeongsan, 38610
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824
| | - Beom Seok Park
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 13135
| | - Soo Jin Lee
- Department of Pediatrics, School of Medicine, Eulji University, Daejeon, 301-746
| | - In Sik Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon 34824.,Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| |
Collapse
|