1
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-01023-x. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
2
|
Sohn K, Palacios V, Clark R. Bifidobacterium longum subsp infantis (EVC001) is associated with reduced incidence of necrotizing enterocolitis stage ≥2 and bloody stools in premature babies. J Perinatol 2024:10.1038/s41372-024-02188-8. [PMID: 39643694 DOI: 10.1038/s41372-024-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To utilize an evidence-based probiotic protocol to achieve a 50% reduction in necrotizing enterocolitis (NEC) ≥ stage 2 and bloody stools. STUDY DESIGN From January 2022 through September 2023, daily enteral Bifidobacterium longum ssp. infantis EVC001 (B. infantis EVC001) was administered to babies ≤ 33 6/7 weeks gestation until 36 weeks post menstrual age. Feeding tolerance and complications were compared to babies admitted during the prior two-year period. Fisher's Exact test was used to analyze proportional data and t test was used for continuous variables. RESULTS A total of 265 babies received EVC001, and a total of 277 babies formed the pre-probiotic cohort. Probiotic use was associated with decreased NEC ≥ stage 2 (p = 0.0058), reduced bloody stools (p < 0.0001), decreased time to full enteral feeds (p < 0.0001), and decreased total parenteral nutrition (TPN) days (p < 0.0001). CONCLUSION Administration of B. infantis EVC001 was associated with a decrease in NEC, a decrease in bloody stools, and improvement in feeding tolerance in premature babies.
Collapse
Affiliation(s)
- Kristin Sohn
- Department of Pediatrics, University of Nevada School of Medicine, Reno, NV, USA.
- Pediatrix Neonatology of Nevada, Reno, NV, USA.
| | | | - Reese Clark
- Pediatrix Center for Research and Education, Sunrise, FL, USA
| |
Collapse
|
3
|
Liu X, Zhang B, Zhang Y, Li W, Yin J, Shi A, Wang J, Wang S. 2'-Fucosyllactose Promotes Colonization of Akkermansia muciniphila and Prevents Colitis In Vitro and in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4765-4776. [PMID: 38393978 DOI: 10.1021/acs.jafc.3c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Akkermansia muciniphila is a potential candidate for ulcerative colitis prevention. Considering that it utilizes 2'-fucosyllactose (2'FL) for growth, 2'FL can be used to enrich the abundance of A. muciniphila in feces. However, whether the crosswalk between 2'FL and A. muciniphila can promote the intestinal colonization of A. muciniphila remains unclear. In this study, we explored the effect and the underlying mechanism of 2'FL on the colonization of A. muciniphila in vitro and in vivo as well as its alleviating effect on colitis. Our results revealed that 2'FL can serve as a carbon source of A. muciniphila to support the growth and increase cell-surface hydrophobicity and the expression of the genes coding fibronectin-binding autotransporter adhesin to promote the adhesion to Caco2/HT29 methotrexate (MTX) cells but not of galactooligosaccharides (GOS) and glucose. Moreover, 2'FL could increase the host mucin formation to promote the adhesion of A. muciniphila to Caco2/HT29 MTX cells but not of GOS and glucose. Furthermore, 2'FL could significantly increase the colonization of A. muciniphila in the gut to alleviate colitis in mice. Overall, the interplay between A. muciniphila and 2'FL is expected to provide an advantageous ecological niche for A. muciniphila so as to confer further health benefits against colitis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
5
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Species- and subspecies-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. Gut Microbes 2024; 16:2414975. [PMID: 39428758 PMCID: PMC11497992 DOI: 10.1080/19490976.2024.2414975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND The human gut microbiome develops rapidly during infancy, a key window of development coinciding with the maturation of the adaptive immune system. However, little is known about the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n = 94) from a cohort of infants (n = 15) at monthly intervals in the first 6 months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. RESULTS Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a published cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. CONCLUSION By augmenting published metagenomic datasets with data from a newly established cohort, we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Department of Pediatrics, Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
6
|
Fernandes MA, Delgado L, Almeida AC. The impact of probiotics on antibiotic resistance in newborns: A systematic review. J Neonatal Perinatal Med 2024; 17:509-518. [PMID: 39058454 DOI: 10.3233/npm-240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Newborns, particularly premature ones, are vulnerable to bacterial infections and often receive antibiotics, disrupting their normal intestinal microbiota. Probiotics have multiple health benefits and are recommended for restoring balance, but caution is needed due to potential consequences, such as promoting antibiotic resistance. Therefore, this study aimed to conduct a systematic review to assess current knowledge regarding the impact of probiotics on antibiotic resistance in newborns. METHODS This systematic review is aligned with the PRISMA 2020 statement. The search involved three electronic databases (PubMed, Scopus, and Web of Science) and the keywords used were "newborn", "probiotic", and "antibiotic resistance". Titles/abstracts were independently analyzed, followed by full-text assessments. Data extraction and synthesis were conducted, assessing outcomes like antibiotic resistance gene and mobile gene elements quantity and quality, vancomycin resistant enterococci colonization, antibiotic-resistant bacteria colonization, and microbiota changes. It was only included randomized controlled trials and cohort studies focusing on human newborns. RESULTS In the study selection process, 1,970 articles were identified and six were included in this review. The results varied, with two studies suggesting a positive impact of probiotics on antibiotic resistance, one a negative impact, while three others found no significant impact. Microbiota changes were also addressed across four studies, where the findings included promotion of beneficial bacteria and reduction of potential pathogens. Bias risk was evaluated using Joanna Briggs Institute tools. CONCLUSION Our findings did not allow for clear conclusions to be drawn, due to the observed heterogeneity between studies, highlighting the need for further studies.
Collapse
Affiliation(s)
| | - Lucinda Delgado
- Department of Pediatrics, Hospital Senhora da Oliveira - Guimarães, Creixomil, Portugal
| | - André Coelho Almeida
- Department of Neonatology, Hospital Senhora da Oliveira - Guimarães, Creixomil, Portugal
| |
Collapse
|
7
|
Minot SS, Mayer-Blackwell K, Fiore-Gartland A, Johnson A, Self S, Bhatti P, Yao L, Liu L, Sun X, Jinfa Y, Kublin J. Strain-level characterization of health-associated bacterial consortia that colonize the human gut during infancy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.16.23300077. [PMID: 38168439 PMCID: PMC10760300 DOI: 10.1101/2023.12.16.23300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The human gut microbiome develops rapidly during infancy, a key window of development coinciding with maturation of the adaptive immune system. However, little is known of the microbiome growth dynamics over the first few months of life and whether there are any generalizable patterns across human populations. We performed metagenomic sequencing on stool samples (n=94) from a cohort of infants (n=15) at monthly intervals in the first six months of life, augmenting our dataset with seven published studies for a total of 4,441 metagenomes from 1,162 infants. Results Strain-level de novo analysis was used to identify 592 of the most abundant organisms in the infant gut microbiome. Previously unrecognized consortia were identified which exhibited highly correlated abundances across samples and were composed of diverse species spanning multiple genera. Analysis of a cohort of infants with cystic fibrosis identified one such novel consortium of diverse Enterobacterales which was positively correlated with weight gain. While all studies showed an increased community stability during the first year of life, microbial dynamics varied widely in the first few months of life, both by study and by individual. Conclusion By augmenting published metagenomic datasets with data from a newly established cohort we were able to identify novel groups of organisms that are correlated with measures of robust human development. We hypothesize that the presence of these groups may impact human health in aggregate in ways that individual species may not in isolation.
Collapse
Affiliation(s)
| | | | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Andrew Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Steven Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
- Epidemiology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Lena Yao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Lili Liu
- Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Jinfa
- Nanhai Maternity and Child Healthcare Hospital of Foshan, Foshan, China
| | - James Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, USA
| |
Collapse
|
8
|
Guo H, Fan M, Hou T, Li Y, Wang S, Wang X, Peng H, Wang M, Wu T, Zhang Y. Efficacy and Safety of Bifidobacterium longum Supplementation in Infants: A Meta-Analysis of Randomized Controlled Trials. Foods 2023; 12:4451. [PMID: 38137255 PMCID: PMC10742581 DOI: 10.3390/foods12244451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Strategies to stabilize and support overall infant health by increasing the number of Bifidobacterium longum in the infant gut are of interest, but few studies have systematically addressed this issue. We aimed to evaluate the efficacy and safety of Bifidobacterium longum use in infants using meta-analysis. METHODS We searched PubMed, EMBASE, Cochrane Library of Systematic Reviews, and SinoMed for publications until 27 July 2022. The main outcomes of interest were weight gain, risk of necrotizing enterocolitis (NEC), and adverse events. Two authors independently performed study screening, risk of bias assessment, and data extraction. Outcome data were extracted from each included study and combined using mean difference (MD) or risk ratio (RR) and finally combined using a fixed-effect model or random-effect model. RESULTS A total of 4481 relevant studies were identified, of which 15 were found to be eligible for randomized controlled trials and were included in the meta-analysis. The combined extracted data showed that the intervention group containing Bifidobacterium longum had a significantly lower risk of NEC (RR = 0.539, 95% CI: 0.333, 0.874) compared to the control group. There was no statistical difference between the intervention and control groups regarding weight gain (MD = 0.029, 95% CI: -0.032, 0.090), the occurrence of adverse events (RR = 0.986, 95% CI: 0.843, 1.153), and serious adverse events (RR = 0.881, 95% CI: 0.493, 1.573). CONCLUSIONS Bifidobacterium longum may significantly reduce the risk of NEC in infants as well as being safe; thus, further research evidence is needed on whether there is a benefit on weight gain.
Collapse
Affiliation(s)
- Huangda Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Meng Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Tianjiao Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yixin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Siyue Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Xueheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Batta VK, Rao SC, Patole SK. Bifidobacterium infantis as a probiotic in preterm infants: a systematic review and meta-analysis. Pediatr Res 2023; 94:1887-1905. [PMID: 37460707 PMCID: PMC10665187 DOI: 10.1038/s41390-023-02716-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Bifidobacterium infantis has special abilities to utilise human milk oligosaccharides. Hence we hypothesised that probiotic supplements containing B. infantis may confer greater benefits to preterm infants than probiotic supplements without B. infantis. METHODS A systematic review with meta-analysis was conducted according to standard guidelines. We selected RCTs evaluating probiotics compared to placebo or no treatment in preterm and/or low birth weight infants. Probiotic effects on Necrotizing Enterocolitis (NEC), Late Onset Sepsis (LOS) and Mortality were analysed separately for RCTs in which the supplemented probiotic product contained B. infantis and those that did not contain B. infantis. RESULTS 67 RCTs were included (n = 14,606), of which 16 used probiotics containing B. infantis (Subgroup A) and 51 RCTs did not (Subgroup B) Meta-analysis of all RCTs indicated that probiotics reduced the risk of NEC, LOS, and mortality. The subgroup meta-analysis demonstrated greater reduction in the incidence of NEC in subgroup A than subgroup B [(relative risk in subgroup A: 0.38; 95% CI, 0.27-0.55) versus (0.67; 95% CI, 0.55-0.81) in subgroup B; p value for subgroup difference: 0.01]. CONCLUSIONS These results provide indirect evidence that probiotic supplements that include B. infantis may be more beneficial for preterm infants. Well-designed RCTs are necessary to confirm these findings. IMPACT Evidence is emerging that beneficial effects of probiotics are species and strain specific. This systematic review analyses if B. infantis supplementation provides an advantage to preterm infants. This is the first systematic review evaluating the effects of probiotics containing B. infantis in preterm infants. The results of this systematic review provides indirect evidence that probiotics that include B. infantis may be more beneficial for preterm infants. These results will help in guiding future research and clinical practice for using B. infantis as a probiotic in preterm infants.
Collapse
Affiliation(s)
- Vamsi K Batta
- Neonatal Intensive Care Unit, Perth Children's Hospital, Perth, WA, Australia
- Neonatal Intensive Care Unit, King Edward Memorial Hospital, Perth, WA, Australia
| | - Shripada C Rao
- Neonatal Intensive Care Unit, Perth Children's Hospital, Perth, WA, Australia.
- School of Medicine, University of Western Australia, Perth, WA, Australia.
| | - Sanjay K Patole
- Neonatal Intensive Care Unit, King Edward Memorial Hospital, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Laursen MF, Roager HM. Human milk oligosaccharides modify the strength of priority effects in the Bifidobacterium community assembly during infancy. THE ISME JOURNAL 2023; 17:2452-2457. [PMID: 37816852 PMCID: PMC10689826 DOI: 10.1038/s41396-023-01525-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Despite the significant role of the gut microbiota in infant health and development, little is known about the ecological processes determining gut microbial community assembly. According to ecology theory, the timing and order of arrival of microbial species into an ecosystem affect microbial community assembly, a phenomenon termed priority effects. Bifidobacterium species are recognized as highly abundant early colonizers of the infant's gut, partly due to their ability to selectively utilize human milk oligosaccharides (HMOs) from breast milk. However, the role of priority effects in Bifidobacterium community assembly remains unclear. Here, we investigated the Bifidobacterium community assembly in the gut of 25 breastfed Danish infants longitudinally sampled throughout the first 6 months of life. Our results showed that the breastfed infants were often initially, but temporarily, dominated by suboptimal HMO-utilizing Bifidobacterium taxa, such as B. longum subsp. longum, before more efficient HMO-utilizers such as B. longum subsp. infantis, replaced the first colonizer as the dominant Bifidobacterium taxon. Subsequently, we validated this observation using gnotobiotic mice sequentially colonized with B. longum subsp. longum and B. longum subsp. infantis or vice versa, with or without supplementation of HMOs in the drinking water. The results showed that in the absence of HMOs, order of arrival determined dominance. Yet, when mice were supplemented with HMOs the strength of priority effects diminished, and B. longum subsp. infantis dominated regardless of colonization order. Our data demonstrate that the arrival order of Bifidobacterium taxa and the deterministic force of breast milk-derived HMOs, dictate Bifidobacterium community assembly in the infant's gut.
Collapse
Affiliation(s)
- Martin F Laursen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Happel AU, Rametse L, Perumaul B, Diener C, Gibbons SM, Nyangahu DD, Donald KA, Gray C, Jaspan HB. Bifidobacterium infantis supplementation versus placebo in early life to improve immunity in infants exposed to HIV: a protocol for a randomized trial. BMC Complement Med Ther 2023; 23:367. [PMID: 37853370 PMCID: PMC10583347 DOI: 10.1186/s12906-023-04208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION Pan African Clinical Trials Registry Identifier: PACTR202301748714019. CLINICAL TRIALS gov: NCT05923333. PROTOCOL VERSION Version 1.8, dated 18 July 2023.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Lerato Rametse
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Brandon Perumaul
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road Rondebosch, Cape Town, 7700, South Africa
- The Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Clive Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, 7505, South Africa
| | - Heather B Jaspan
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA, 98195, USA
| |
Collapse
|
12
|
Larke JA, Heiss BE, Ehrlich AM, Taft DH, Raybould HE, Mills DA, Slupsky CM. Milk oligosaccharide-driven persistence of Bifidobacterium pseudocatenulatum modulates local and systemic microbial metabolites upon synbiotic treatment in conventionally colonized mice. MICROBIOME 2023; 11:194. [PMID: 37635250 PMCID: PMC10463478 DOI: 10.1186/s40168-023-01624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.
Collapse
Affiliation(s)
- Jules A Larke
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Britta E Heiss
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Amy M Ehrlich
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - Diana H Taft
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, , Davis, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
14
|
Njunge JM, Walson JL. Microbiota and growth among infants and children in low-income and middle-income settings. Curr Opin Clin Nutr Metab Care 2023; 26:245-252. [PMID: 36930056 DOI: 10.1097/mco.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
PURPOSE OF REVIEW Adequate nutrition is essential but insufficient for optimal childhood growth and development. Increasingly, it is clear that the gut microbiota modulates childhood growth and may be particularly important in low-income and middle-income countries (LMIC), where growth faltering, undernutrition, environmental contamination and enteric pathogens are more common. We summarize recent evidence demonstrating the role of the gut microbiota in impacting childhood growth and interventions targeting the gut microbiota to impact growth in children in LMIC settings. RECENT FINDINGS Recent studies show that maturation of the infant microbiota is linked with the development of the immune system, which is key to host-microbe symbiosis. Infants lacking Bifidobacterium longum subsp. Infantis, which predominates breastfed microbiome, display immune activation while supplementation is linked to increased immune tolerance and among undernourished children, promotes growth. Microbiome-directed complimentary foods (MDCF) containing local ingredients is a novel strategy to promote gut microbiota development, especially among undernourished children and improve growth. Dietary patterns during pregnancy may drive selection of gut microbial species that impact infant health and growth. SUMMARY Growth patterns among children in LMIC settings are closely associated with the diversity and maturity of the infant microbiome. Prebiotics, probiotics, and synbiotics targeting microbiota dysbiosis may impact birth outcomes, infant immune development and infections, and childhood growth in LMIC settings.
Collapse
Affiliation(s)
- James M Njunge
- KEMRI-Wellcome Trust Research Programme, Kilifi
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
| | - Judd L Walson
- The Childhood Acute Illness & Nutrition Network, Nairobi, Kenya
- Department of Global Health
- Departments of Medicine, Pediatrics, and Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
16
|
Effects of Perinatal Antibiotic Exposure and Neonatal Gut Microbiota. Antibiotics (Basel) 2023; 12:antibiotics12020258. [PMID: 36830169 PMCID: PMC9951864 DOI: 10.3390/antibiotics12020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Antibiotic therapy is one of the most important strategies to treat bacterial infections. The overuse of antibiotics, especially in the perinatal period, is associated with long-lasting negative consequences such as the spread of antibiotic resistance and alterations in the composition and function of the gut microbiota, both of which negatively affect human health. In this review, we summarize recent evidence about the influence of antibiotic treatment on the neonatal gut microbiota and the subsequent negative effects on the health of the infant. We also analyze the possible microbiome-based approaches for the re-establishment of healthy microbiota in neonates.
Collapse
|
17
|
Mathews T, Hayer SS, Dinkel D, Hanish A, Poppert Cordts KM, Rasmussen H, Moore T. Maternal-Child Microbiome and Impact on Growth and Neurodevelopment in Infants and Children: A Scoping Review. Biol Res Nurs 2023:10998004221151179. [PMID: 36607703 DOI: 10.1177/10998004221151179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Pathologic changes in the microbiome (dysbiosis) have been implicated in affecting the growth and neurodevelopment of infants and children. There is evidence to suggest that prenatal and postnatal stressors may be a factor in dysbiosis and there is also a growing body of evidence to suggest that interventions may reduce this negative impact. A scoping review was undertaken to identify association between maternal and/or child microbiome with child growth and neurodevelopment. Additionally, intervention studies such as use of nutritional supplementation and its impact on the microbiome, growth and neurodevelopment were reviewed. METHODS An exhaustive literature search identified 654 relevant citations. After review of abstracts, 557 were eliminated, and 97 remained for full text review. We identified and reported on 42 articles which met inclusion criteria. RESULTS Seven studies examined associations between microbiome and neurodevelopment and 36 studies evaluated anthropometric measurements, most commonly weight, and microbiota relationships. One study evaluated both growth and neurodevelopment and microbiota. Fourteen studies evaluated supplemental nutrients. Preterm, low birth weight (LBW), and very low birth weight (VLBW) infants were most studied. Findings were inconclusive for consistent associations between microbiota and growth and neurodevelopment. Further, there were no consistent conclusive changes with prescribed treatment interventions. DISCUSSION There is a need for high-quality longitudinal studies evaluating repeated developmental assessment measures using consistent microbial analysis techniques to inform conclusions regarding the association between microbiome and infant and child growth and neurodevelopment. Additional intervention studies that may mitigate dysbiosis are warranted.
Collapse
Affiliation(s)
- Therese Mathews
- College of Nursing, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Shivdeep S Hayer
- Department of Biology, College of Arts and Sciences, 169231University of Nebraska at Omaha, Omaha, NE, USA
| | - Danae Dinkel
- School of Health and Kinesiology, 14720University of Nebraska at Omaha, Omaha, NE, USA
| | - Alyson Hanish
- College of Nursing, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Katrina M Poppert Cordts
- College of Medicine, Department of Psychiatry, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Rasmussen
- College of Education & Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tiffany Moore
- College of Nursing, 12284University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
18
|
Mills DA, German JB, Lebrilla CB, Underwood MA. Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes 2023; 15:2192458. [PMID: 37013357 PMCID: PMC10075334 DOI: 10.1080/19490976.2023.2192458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces of breast-fed infants that was readily associated with infant health status. Recent advances in bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique enrichment and enabled the tailored use of probiotic supplementation to restore missing bifidobacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to beneficially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This review also presents a model for probiotic applications wherein bifidobacterial functions, in the form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic outcomes by which probiotic efficacy can be scored toward improving infant health.
Collapse
Affiliation(s)
- David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Viticulture and Enology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Department of Chemistry, University of California-Davis, Davis, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA, United States
| | - Mark A. Underwood
- Foods for Health Institute, University of California-Davis, Davis, CA, United States
- Division of Neonatology, Department of Pediatrics, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
19
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
20
|
Arzamasov AA, Nakajima A, Sakanaka M, Ojima MN, Katayama T, Rodionov DA, Osterman AL. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. mSystems 2022; 7:e0034322. [PMID: 36094076 PMCID: PMC9599254 DOI: 10.1128/msystems.00343-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on characterizing the elements of HMO utilization machinery in B. longum subsp. infantis; however, the regulatory mechanisms governing the expression of these catabolic pathways remain poorly understood. A bioinformatic regulon reconstruction approach used in this study implicated NagR, a transcription factor from the ROK family, as a negative global regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis. This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation and experimental assessment of binding of recombinant NagR to predicted DNA operators. The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR transcriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages revealed multiple potential regulon expansion events, suggesting evolution from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis and Bifidobacterium bifidum. IMPORTANCE The predominance of bifidobacteria in the gut of breastfed infants is attributed to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are considered promising prebiotics that would stimulate the growth of bifidobacteria and confer multiple health benefits to preterm and malnourished children suffering from impaired (stunted) gut microbiota development. However, the rational selection of HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mechanisms governing HMO utilization in target bifidobacteria. This study describes NagR-mediated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp. infantis. The elucidated regulatory network appears optimally adapted to simultaneous utilization of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual components) to infant formulas. The study also provides insights into the evolutionary trajectories of complex regulatory networks controlling carbohydrate metabolism in bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A. Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Miriam N. Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
21
|
Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA, Smith R, Coxhead J, Butler A, Marsland BJ, Embleton ND, Berrington JE, Stewart CJ. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525-1535. [PMID: 36163498 PMCID: PMC9519454 DOI: 10.1038/s41564-022-01213-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, UK
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Smith
- Bioscience Institute, Newcastle University, Newcastle, UK
| | | | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK.
| | | |
Collapse
|
22
|
Arzamasov AA, Osterman AL. Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Crit Rev Biochem Mol Biol 2022; 57:562-584. [PMID: 36866565 PMCID: PMC10192226 DOI: 10.1080/10409238.2023.2182272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
24
|
Ting JY, Yoon EW, Fajardo CA, Daboval T, Bertelle V, Shah PS. Antimicrobial utilization in very-low-birth-weight infants: association with probiotic use. J Perinatol 2022; 42:947-952. [PMID: 35399098 DOI: 10.1038/s41372-022-01382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To examine the association between probiotic use and antimicrobial utilization. STUDY DESIGN We retrospectively evaluated very-low-birth-weight (VLBW) infants admitted to tertiary neonatal intensive care units in Canada between 2014 and 2019. Our outcome was antimicrobial utilization rate (AUR) defined as number of days of antimicrobial exposure per 1000 patient-days. RESULT Of 16,223 eligible infants, 7279 (45%) received probiotics. Probiotic use rate increased from 10% in 2014 to 68% in 2019. The AUR was significantly lower in infants who received probiotics vs those who did not (107 vs 129 per 1000 patient-days, aRR = 0.89, 95% CI [0.81, 0.98]). Among 13,305 infants without culture-proven sepsis or necrotizing enterocolitis ≥Stage 2, 5931 (45%) received probiotics. Median AUR was significantly lower in the probiotic vs the no-probiotic group (78 vs 97 per 1000 patient-days, aRR = 0.85, 95% CI [0.74, 0.97]). CONCLUSION Probiotic use was associated with a significant reduction in AUR among VLBW infants.
Collapse
Affiliation(s)
- Joseph Y Ting
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Eugene W Yoon
- Maternal-infant Care Research Centre, Mount Sinai Hospital, Toronto, ON, Canada
| | - Carlos A Fajardo
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Thierry Daboval
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Valérie Bertelle
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Prakesh S Shah
- Maternal-infant Care Research Centre, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
25
|
Tobias J, Olyaei A, Laraway B, Jordan BK, Dickinson SL, Golzarri-Arroyo L, Fialkowski E, Owora A, Scottoline B. Bifidobacteriumlongum subsp. infantis EVC001 Administration Is Associated with a Significant Reduction in the Incidence of Necrotizing Enterocolitis in Very Low Birth Weight Infants. J Pediatr 2022; 244:64-71.e2. [PMID: 35032555 DOI: 10.1016/j.jpeds.2021.12.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the effects of Bifidobacteriumlongum subsp. infantis EVC001 (Binfantis EVC001) administration on the incidence of necrotizing enterocolitis (NEC) in preterm infants in a single level IV neonatal intensive care unit (NICU). STUDY DESIGN Nonconcurrent retrospective analysis of 2 cohorts of very low birth weight (VLBW) infants not exposed and exposed to Binfantis EVC001 probiotic at Oregon Health & Science University from 2014 to 2020. Outcomes included NEC incidence and NEC-associated mortality, including subgroup analysis of extremely low birth weight (ELBW) infants. Log-binomial regression models were used to compare the incidence and risk of NEC-associated outcomes between the unexposed and exposed cohorts. RESULTS The cumulative incidence of NEC diagnoses decreased from 11.0% (n = 301) in the no EVC001 (unexposed) cohort to 2.7% (n = 182) in the EVC001 (exposed) cohort (P < .01). The EVC001 cohort had a 73% risk reduction of NEC compared with the no EVC001 cohort (adjusted risk ratio, 0.27; 95% CI, 0.094-0.614; P < .01) resulting in an adjusted number needed to treat of 13 (95% CI, 10.0-23.5) for Binfantis EVC001. NEC-associated mortality decreased from 2.7% in the no EVC001 cohort to 0% in the EVC001 cohort (P = .03). There were similar reductions in NEC incidence and risk for ELBW infants (19.2% vs 5.3% [P < .01]; adjusted risk ratio, 0.28; 95% CI, 0.085-0.698 [P = .02]) and mortality (5.6% vs 0%; P < .05) in the 2 cohorts. CONCLUSIONS In this observational study of 483 VLBW infants, Binfantis EVC001 administration was associated with significant reductions in the risk of NEC and NEC-related mortality. Binfantis EVC001 supplementation may be considered safe and effective for reducing morbidity and mortality in the NICU.
Collapse
Affiliation(s)
- Joseph Tobias
- Department of Surgery, Oregon Health & Science University, Portland, OR
| | - Amy Olyaei
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | - Bryan Laraway
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Brian K Jordan
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | | | | | | | - Arthur Owora
- School of Public Health, Indiana University, Bloomington, IN
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health & Science University, Portland, OR.
| |
Collapse
|
26
|
Barratt MJ, Nuzhat S, Ahsan K, Frese SA, Arzamasov AA, Sarker SA, Islam MM, Palit P, Islam MR, Hibberd MC, Nakshatri S, Cowardin CA, Guruge JL, Byrne AE, Venkatesh S, Sundaresan V, Henrick B, Duar RM, Mitchell RD, Casaburi G, Prambs J, Flannery R, Mahfuz M, Rodionov DA, Osterman AL, Kyle D, Ahmed T, Gordon JI. Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Sci Transl Med 2022; 14:eabk1107. [PMID: 35417188 PMCID: PMC9516695 DOI: 10.1126/scitranslmed.abk1107] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupted development of the gut microbiota is a contributing cause of childhood malnutrition. Bifidobacterium longum subspecies infantis is a prominent early colonizer of the infant gut that consumes human milk oligosaccharides (HMOs). We found that the absolute abundance of Bifidobacterium infantis is lower in 3- to 24-month-old Bangladeshi infants with severe acute malnutrition (SAM) compared to their healthy age-matched counterparts. A single-blind, placebo-controlled trial (SYNERGIE) was conducted in 2- to 6-month-old Bangladeshi infants with SAM. A commercial U.S. donor-derived B. infantis strain (EVC001) was administered daily with or without the HMO lacto-N-neotetraose for 28 days. This intervention increased fecal B. infantis abundance in infants with SAM, although to levels still 10- to 100-fold lower than in untreated healthy controls. EVC001 treatment promoted weight gain that was associated with reduced intestinal inflammation markers in infants with SAM. We cultured fecal B. infantis strains from Bangladeshi infants and colonized gnotobiotic mice with these cultured strains. The gnotobiotic mice were fed a diet representative of that consumed by 6-month-old Bangladeshi infants, with or without HMO supplementation. One B. infantis strain, Bg_2D9, expressing two gene clusters involved in uptake and utilization of N-glycans and plant-derived polysaccharides, exhibited superior fitness over EVC001. The fitness advantage of Bg_2D9 was confirmed in a gnotobiotic mouse model of mother-to-infant gut microbiota transmission where dams received a pretreatment fecal community from a SAM infant in the SYNERGIE trial. Whether Bg_2D9 is superior to EVC001 for treating malnourished infants who consume a diet with limited breastmilk requires further clinical testing.
Collapse
Affiliation(s)
- Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Sharika Nuzhat
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Kazi Ahsan
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Steven A. Frese
- Evolve BioSystems, Inc., Davis, CA 95618 USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588 USA
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Shafiqul Alam Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - M. Munirul Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Parag Palit
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Md Ridwan Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Matthew C. Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Swetha Nakshatri
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Carrie A. Cowardin
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Janaki L. Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Alexandra E. Byrne
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Siddarth Venkatesh
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Vinaik Sundaresan
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Bethany Henrick
- Evolve BioSystems, Inc., Davis, CA 95618 USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588 USA
| | | | | | | | | | | | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994 Russia
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - David Kyle
- Evolve BioSystems, Inc., Davis, CA 95618 USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
27
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
28
|
Komatsu Y, Kumakura D, Seto N, Izumi H, Takeda Y, Ohnishi Y, Nakaoka S, Aizawa T. Dynamic Associations of Milk Components With the Infant Gut Microbiome and Fecal Metabolites in a Mother-Infant Model by Microbiome, NMR Metabolomic, and Time-Series Clustering Analyses. Front Nutr 2022; 8:813690. [PMID: 35071301 PMCID: PMC8780135 DOI: 10.3389/fnut.2021.813690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The gut microbiome and fecal metabolites of breastfed infants changes during lactation, and are influenced by breast milk components. This study aimed to investigate dynamic associations of milk components with the infant gut microbiome and fecal metabolites throughout the lactation period in a mother–infant model. Methods: One month after delivery, breast milk and subsequent infant feces were collected in a pair for 5 months from a mother and an exclusively breastfed infant. Composition of the fecal microbiome was determined with 16S rRNA sequencing. Low-molecular-weight metabolites, including human milk oligosaccharides (HMOs), and antibacterial proteins were measured in feces and milk using 1H NMR metabolomics and enzyme-linked immunosorbent assays. The association of milk bioactive components with the infant gut microbiome and fecal metabolites was determined with Python clustering and correlation analyses. Results: The HMOs in milk did not fluctuate throughout the lactation period. However, they began to disappear in infant feces at the beginning of month 4. Notably, at this time-point, a bifidobacterium species switching (from B. breve to B. longum subsp. infantis) occurred, accompanied by fluctuations in several metabolites including acetate and butyrate in infant feces. Conclusions: Milk bioactive components, such as HMOs, might play different roles in the exclusively breastfed infants depending on the lactation period.
Collapse
Affiliation(s)
- Yosuke Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Health Care and Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Japan.,Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Sapporo, Japan
| | - Daiki Kumakura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Namiko Seto
- Health Care and Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Japan
| | - Hirohisa Izumi
- Health Care and Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Japan.,Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Sapporo, Japan
| | - Yasuhiro Takeda
- Health Care and Nutritional Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Japan.,Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University, Sapporo, Japan
| | - Yuki Ohnishi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shinji Nakaoka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Lueschow SR, Boly TJ, Frese SA, Casaburi G, Mitchell RD, Henrick BM, McElroy SJ. Bifidobacterium longum Subspecies infantis Strain EVC001 Decreases Neonatal Murine Necrotizing Enterocolitis. Nutrients 2022; 14:495. [PMID: 35276854 PMCID: PMC8839161 DOI: 10.3390/nu14030495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a disease mainly of preterm infants with a 30-50% mortality rate and long-term morbidities for survivors. Treatment strategies are limited and have not improved in decades, prompting research into prevention strategies, particularly with probiotics. Recent work with the probiotic B. infantis EVC001 suggests that this organism may generate a more appropriate microbiome for preterm infants who generally have inappropriate gut colonization and inflammation, both risk factors for NEC. Experimental NEC involving Paneth cell disruption in combination with bacterial dysbiosis or formula feeding was induced in P14-16 C57Bl/6 mice with or without gavaged B. infantis. Following completion of the model, serum, small intestinal tissue, the cecum, and colon were harvested to examine inflammatory cytokines, injury, and the microbiome, respectively. EVC001 treatment significantly decreased NEC in a bacterial dysbiosis dependent model, but this decrease was model-dependent. In the NEC model dependent on formula feeding, no difference in injury was observed, but trending to significant differences was observed in serum cytokines. EVC001 also improved wound closure at six and twelve hours compared to the sham control in intestinal epithelial monolayers. These findings suggest that B. infantis EVC001 can prevent experimental NEC through anti-inflammatory and epithelial barrier restoration properties.
Collapse
Affiliation(s)
- Shiloh R. Lueschow
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Timothy J. Boly
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA;
| | - Giorgio Casaburi
- Department of Bioinformatics, Metabiomics, Carlsbad, CA 92008, USA;
| | - Ryan D. Mitchell
- Evolve Biosystems, Inc., Davis, CA 95618, USA; (R.D.M.); (B.M.H.)
| | - Bethany M. Henrick
- Evolve Biosystems, Inc., Davis, CA 95618, USA; (R.D.M.); (B.M.H.)
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE 68588, USA
| | - Steven J. McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
31
|
Sowden M, van Niekerk E, Bulabula ANH, Dramowski A, Whitelaw A, Twisk J, van Weissenbruch MM. Impact of a multi-strain probiotic administration on peri-rectal colonization with drug-resistant Gram-negative bacteria in preterm neonates. Front Pediatr 2022; 10:1002762. [PMID: 36405834 PMCID: PMC9667553 DOI: 10.3389/fped.2022.1002762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Infections caused by drug resistant Gram-negative bacteria (DR-GNB) are a major health concern for hospitalized preterm neonates, globally. The aim of this study was to investigate the effect of a multi-strain probiotic on the incidence of rectal colonization with DR-GNB in preterm neonates. METHODS A double-blind, placebo-controlled, randomized clinical trial was conducted including 200 neonates, randomly allocated to a multi-strain probiotic (n = 100) or placebo (n = 100). RESULTS Fifteen percent of the neonates showed peri-rectal colonization with DR-GNB on the day of enrolment indicating probable maternal-to-neonate (vertical) bacterial transmission or environmental acquisition at time of delivery, with no difference between groups. Acquisition of further DR-GNB colonization was rapid, with an increase from 15% on the day enrolment to 77% by day 7 and 83% by day 14 of life. By day 7 (corresponding to early gut colonization), neonates in the probiotic group were 57% less likely to have peri-rectal DR-GNB colonization [OR: 0.43 (0.20-0.95); p = 0.04] and by day 14 (corresponding to late gut colonization), neonates in the probiotic group were 93% less likely to have peri-rectal DR-GNB colonization [OR: 0.07 (0.02-0.23); p < 0.001]. CONCLUSION Hospitalized neonates showed substantial peri-rectal colonization with DR-GNB at enrolment and further rapid acquisition of DR-GNB in the first 2 weeks of life. The use of a multi-strain probiotic was effective in reducing early and late neonatal gut colonization with DR-GNB. CLINICAL TRIAL REGISTRATION The trial was registered at the Pan African Clinical Trial Registry (PACTR202011513390736).
Collapse
Affiliation(s)
- Marwyn Sowden
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Evette van Niekerk
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology, University of Stellenbosch, Cape Town, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Jos Twisk
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, Netherlands
| | | |
Collapse
|
32
|
Lebeaux RM, Karalis DB, Lee J, Whitehouse HC, Madan JC, Karagas MR, Hoen AG. The association between early life antibiotic exposure and the gut resistome of young children: a systematic review. Gut Microbes 2022; 14:2120743. [PMID: 36289062 PMCID: PMC9621065 DOI: 10.1080/19490976.2022.2120743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial resistance is a growing public health burden, but little is known about the effects of antibiotic exposure on the gut resistome. As childhood (0-5 years) represents a sensitive window of microbiome development and a time of relatively high antibiotic use, the aims of this systematic review were to evaluate the effects of antibiotic exposure on the gut resistome of young children and identify knowledge gaps. We searched PubMed, Scopus, Web of Science, and the Cochrane Central Register of Controlled Trials. A PICO framework was developed to determine eligibility criteria. Our main outcomes were the mean or median difference in overall resistance gene load and resistome alpha diversity by antibiotic exposure groups. Bias assessment was completed using RoB 2 and ROBINS-I with quality of evidence assessed via the GRADE criteria. From 4885 records identified, 14 studies (3 randomized controlled trials and 11 observational studies) were included in the qualitative review. Eight studies that included information on antibiotic exposure and overall resistance gene load reported no or positive associations. Inconsistent associations were identified for the nine studies that assessed resistome alpha diversity. We identified three main groups of studies based on study design, location, participants, antibiotic exposures, and indication for antibiotics. Overall, the quality of evidence for our main outcomes was rated low or very low, mainly due to potential bias from the selective of reporting results and confounding. We found evidence that antibiotic exposure is associated with changes to the overall gut resistance gene load of children and may influence the diversity of antimicrobial resistance genes. Given the overall quality of the studies, more research is needed to assess how antibiotics impact the resistome of other populations. Nonetheless, this evidence indicates that the gut resistome is worthwhile to consider for antibiotic prescribing practices.
Collapse
Affiliation(s)
- Rebecca M. Lebeaux
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Despina B. Karalis
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jihyun Lee
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Hanna C. Whitehouse
- Program in Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
33
|
Casaburi G, Wei J, Kazi S, Liu J, Wang K, Tao GZ, Lin PY, Dunn JCY, Henrick BM, Frese SA, Sylvester KG. Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Front Pediatr 2022; 10:893059. [PMID: 36081629 PMCID: PMC9445129 DOI: 10.3389/fped.2022.893059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of premature newborn morbidity and mortality. The clinical features of NEC consistently include prematurity, gut dysbiosis and enteral inflammation, yet the pathogenesis remains obscure. Herein we combine metagenomics and targeted metabolomics, with functional in vivo and in vitro assessment, to define a novel molecular mechanism of NEC. One thousand six hundred and forty seven publicly available metagenomics datasets were analyzed (NEC = 245; healthy = 1,402) using artificial intelligence methodologies. Targeted metabolomic profiling was used to quantify the concentration of specified fecal metabolites at NEC onset (n = 8), during recovery (n = 6), and in age matched controls (n = 10). Toxicity assays of discovered metabolites were performed in vivo in mice and in vitro using human intestinal epithelial cells. Metagenomic and targeted metabolomic analyses revealed significant differences in pyruvate fermentation pathways and associated intermediates. Notably, the short chain fatty acid formate was elevated in the stool of NEC patients at disease onset (P = 0.005) dissipated during recovery (P = 0.02) and positively correlated with degree of intestinal injury (r 2 = 0.86). In vitro, formate caused enterocyte cytotoxicity in human cells through necroptosis (P < 0.01). In vivo, luminal formate caused significant dose and development dependent NEC-like injury in newborn mice. Enterobacter cloacae and Klebsiella pneumoniae were the most discriminatory taxa related to NEC dysbiosis and increased formate production. Together, these data suggest a novel biochemical mechanism of NEC through the microbial production of formate. Clinical efforts to prevent NEC should focus on reducing the functional consequences of newborn gut dysbiosis associated metabolic pathways.
Collapse
Affiliation(s)
| | - Jingjing Wei
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Sufyan Kazi
- Evolve Biosystems, Inc., Davis, CA, United States
| | - Junlin Liu
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of General Surgery, The People's Hospital of Liuyang City, Liuyang, China
| | - Kewei Wang
- Department of Surgery, Stanford University, Stanford, CA, United States.,Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Po-Yu Lin
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - James C Y Dunn
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Bethany M Henrick
- Evolve Biosystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Steven A Frese
- Evolve Biosystems, Inc., Davis, CA, United States.,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States.,Department of Nutrition, University of Nevada Reno, Reno, NV, United States
| | - Karl G Sylvester
- Department of Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
34
|
Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow’s Milk Evidence Map Example. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microbiome revolution brought the realization that diet, health, and safety for humans in reality means diet, health, and safety for the human holobiont/superorganism. Eating healthier means much more than just feeding human cells. Our diet must also nourish the combination of our microbiome and our connected physiological systems (e.g., the microimmunosome). For this reason, there has been an interest in returning to ancestral “complete” unprocessed foods enriched in microbes, including raw milks. To contribute to this inevitable “nourishing the holobiont” trend, we introduce a systematic risk–benefit analysis tool (evidence mapping), which facilitates transdisciplinary state-of-the-science decisions that transcend single scientific disciplines. Our prior paper developed an evidence map (a type of risk–benefit mind map) for raw vs. processed/pasteurized human breast milk. In the present paper, we follow with a comprehensive evidence map and narrative for raw/natural vs. processed/pasteurized cow’s milk. Importantly, the evidence maps incorporate clinical data for both infectious and non-communicable diseases and allow the impact of modern agricultural, food management, and medical and veterinary monitoring outcomes to be captured. Additionally, we focus on the impact of raw milks (as “complete” foods) on the microimmunosome, the microbiome-systems biology unit that significantly determines risk of the world’s number one cause of human death, non-communicable diseases.
Collapse
|
35
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
36
|
Laursen MF. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. ANNALS OF NUTRITION & METABOLISM 2021; 77:1-14. [PMID: 34461613 DOI: 10.1159/000517912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
Early life is a critical period as our gut microbiota establishes here and may impact both current and future health. Thus, it is of importance to understand how different factors govern the complex microbial colonization patterns in this period. The gut microbiota changes substantially during infancy and toddlerhood in terms of both taxonomic composition and diversity. This developmental trajectory differs by a variety of factors, including term of birth, mode of birth, intake of antibiotics, presence of furred pets, siblings and family members, host genetics, local environment, geographical location, and maternal and infant/toddler diet. The type of milk feeding and complementary feeding is particularly important in early and late infancy/toddlerhood, respectively. Breastfeeding, due to the supply of human milk oligosaccharide into the gut, promotes the growth of specific human milk oligosaccharide (HMO)-utilizing Bifidobacterium species that dominate the ecosystem as long as the infant is primarily breastfed. These species perform saccharolytic fermentation in the gut and produce metabolites with physiological effects that may contribute to protection against infectious and immune-related diseases. Formula feeding, due to its lack of HMOs and higher protein content, give rise to a more diverse gut microbiota that contains more opportunistic pathogens and results in a more proteolytic metabolism in the gut. Complementary feeding, due to the introduction of dietary fibers and new protein sources, induces a shift in the gut microbiota and metabolism away from the milk-adapted and toward a more mature and diverse adult-like community with increased abundances of short chain fatty acid-producing bacterial taxa. While the physiological implication of these complementary diet-induced changes remains to be established, a few recent studies indicate that an inadequately matured gut microbiota may be causally related to poor growth and development. Further studies are required to expand our knowledge on interactions between diet, gut microbiota, and health in the early life setting.
Collapse
|
37
|
Dietert RR. Microbiome First Medicine in Health and Safety. Biomedicines 2021; 9:biomedicines9091099. [PMID: 34572284 PMCID: PMC8468398 DOI: 10.3390/biomedicines9091099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Microbiome First Medicine is a suggested 21st century healthcare paradigm that prioritizes the entire human, the human superorganism, beginning with the microbiome. To date, much of medicine has protected and treated patients as if they were a single species. This has resulted in unintended damage to the microbiome and an epidemic of chronic disorders [e.g., noncommunicable diseases and conditions (NCDs)]. Along with NCDs came loss of colonization resistance, increased susceptibility to infectious diseases, and increasing multimorbidity and polypharmacy over the life course. To move toward sustainable healthcare, the human microbiome needs to be front and center. This paper presents microbiome-human physiology from the view of systems biology regulation. It also details the ongoing NCD epidemic including the role of existing drugs and other factors that damage the human microbiome. Examples are provided for two entryway NCDs, asthma and obesity, regarding their extensive network of comorbid NCDs. Finally, the challenges of ensuring safety for the microbiome are detailed. Under Microbiome-First Medicine and considering the importance of keystone bacteria and critical windows of development, changes in even a few microbiota-prioritized medical decisions could make a significant difference in health across the life course.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Abstract
Immune-system maturation starts early in life, but studies investigating immune-system education in human infants remain scarce. In a recent issue of Cell, Henrick et al. study early gut microbiota and immune-system development in two infant cohorts. The authors describe that Bifidobacteria can use milk sugars to produce immunoregulatory compounds that induce immune tolerance and reduce intestinal inflammation.
Collapse
Affiliation(s)
- Johanne E Spreckels
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
39
|
Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, Chen Y, Ehrlich AM, Bernhardsson AK, Mugabo CH, Ambrosiani Y, Gustafsson A, Chew S, Brown HK, Prambs J, Bohlin K, Mitchell RD, Underwood MA, Smilowitz JT, German JB, Frese SA, Brodin P. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021; 184:3884-3898.e11. [PMID: 34143954 DOI: 10.1016/j.cell.2021.05.030] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon β (IFNβ) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.
Collapse
Affiliation(s)
- Bethany M Henrick
- Evolve BioSystems, Inc., Davis, CA 95618, USA; Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA.
| | - Lucie Rodriguez
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ewa Henckel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Aron Arzoomand
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Axel Olin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jun Wang
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | | | - Anna Karin Bernhardsson
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Constantin Habimana Mugabo
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden
| | - Ylva Ambrosiani
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Anna Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | | | | | - Kajsa Bohlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14152 Stockholm, Sweden; Department of Neonatology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | | | - Mark A Underwood
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Pediatrics, University of California Davis Children's Hospital, Sacramento, CA 95817, USA
| | - Jennifer T Smilowitz
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Steven A Frese
- Department of Food Science and Technology, University of Nebraska, Lincoln, Lincoln, NE 68588-6205, USA; Department of Nutrition, University of Nevada, Reno, Reno, NV 89557, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17121 Solna, Sweden; Pediatric Rheumatology, Karolinska University Hospital, 17176 Solna, Sweden.
| |
Collapse
|
40
|
Bajorek S, Duar RM, Corrigan M, Matrone C, Winn KA, Norman S, Mitchell RD, Cagney O, Aksenov AA, Melnik AV, Kopylova E, Perez J. B. infantis EVC001 Is Well-Tolerated and Improves Human Milk Oligosaccharide Utilization in Preterm Infants in the Neonatal Intensive Care Unit. Front Pediatr 2021; 9:795970. [PMID: 35071138 PMCID: PMC8767116 DOI: 10.3389/fped.2021.795970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
Not all infants carry specialized gut microbes, meaning they cannot digest human milk oligosaccharides and therefore do not receive complete benefits from human milk. B. infantis EVC001 is equipped to convert the full array of complex oligosaccharides into compounds usable by the infant, making it an ideal candidate to stabilize gut function and improve nutrition in preterm infants. A prospective, open-label study design was used to evaluate the tolerability of B. infantis EVC001 and its effects on the fecal microbiota in preterm infants in a Neonatal Intensive Care Unit. Thirty preterm infants <1,500 g and/or <33 weeks gestation at birth were divided into two matched groups, and control infants were enrolled and discharged prior to enrolling EVC001 infants to prevent cross-colonization of B. infantis: (1) fifteen control infants received no EVC001, and (2) fifteen infants received once-daily feedings of B. infantis EVC001 (8.0 x 109 CFU) in MCT oil. Clinical information regarding medications, growth, nutrition, gastrointestinal events, diagnoses, and procedures was collected throughout admission. Infant stool samples were collected at baseline, Study Days 14 and 28, and 34-, 36-, and 38-weeks of gestation. Taxonomic composition of the fecal microbiota, functional microbiota analysis, B. infantis, and human milk oligosaccharides (HMOs) in the stool were determined or quantified using 16S rRNA gene sequencing, metagenomic sequencing, qPCR, and mass spectrometry, respectively. No adverse events or tolerability issues related to EVC001 were reported. Control infants had no detectable levels of B. infantis. EVC001 infants achieved high levels of B. infantis (mean = 9.7 Log10 CFU/μg fecal DNA) by Study Day 14, correlating with less fecal HMOs (ρ = -0.83, P < 0.0001), indicating better HMO utilization in the gut. In this study, B. infantis EVC001 was shown to be safe, well-tolerated, and efficient in colonizing the preterm infant gut and able to increase the abundance of bifidobacteria capable of metabolizing HMOs, resulting in significantly improved utilization of human milk. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03939546, identifier: NCT03939546.
Collapse
Affiliation(s)
- Sarah Bajorek
- St. Mary's Hospital, Grand Junction, CO, United States.,Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | | | - Maxwell Corrigan
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Christa Matrone
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Kathryn A Winn
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Susan Norman
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States
| | | | - Orla Cagney
- Evolve BioSystems Inc., Davis, CA, United States
| | - Alexander A Aksenov
- Department of Chemistry, University of Connecticut, Storrs, CT, United States.,Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Alexey V Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, United States.,Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Evguenia Kopylova
- Arome Science Inc., Farmington, CT, United States.,Clarity Genomics Inc., San Diego, CA, United States
| | - Jose Perez
- Orlando Health Winnie Palmer Hospital for Women and Babies, Orlando, FL, United States.,Seattle Children's Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|