1
|
Han Y, Zhao J, Liao X, Wang R, Dong L. CircZMYM2 Alleviates TGF-β1-Induced Proliferation, Migration and Activation of Fibroblasts via Targeting miR-199b-5p/KLF13 Axis. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05168-y. [PMID: 39808406 DOI: 10.1007/s12010-024-05168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro. Levels of genes and proteins were detected by qRT-PCR and western blotting. Cell proliferation and migration were analyzed using cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine (EdU) and wound healing assays. The fibrosis progression was determined by the change of E-cadherin, α-smooth muscle actin (α-SMA), collagen type I α 1 (COL1A1) and collagen type III α 1 (COL3A1). The interaction between miR-199b-5p and circZMYM2 or KLF13 (Kruppel Like Factor 13) was analyzed using dual-luciferase reporter, RIP and RNA-pull-down assays. CircZMYM2 was decreased in TGF-β1-induced IMR-90 and HFL1 fibroblasts. Functionally, re-expression of circZMYM2 in IMR-90 and HFL1 cells could attenuate TGF-β1-evoked proliferation, migration and fibrosis in cells. Mechanistically, the circZMYM2/miR-199b-5p/KLF13 constituted a competing endogenous RNA (ceRNA). TGF-β1 reduced KLF13 expression and increased miR-199b-5p expression in IMR-90 and HFL1 cells. Further rescue experiments suggested that miR-199b-5p up-regulation or KLF13 knockdown reversed the anti-fibrotic effects of circZMYM2; moreover, silencing of miR-199b-5p exhibited anti-fibrotic effects, which was counteracted by KLF13 knockdown. CircZMYM2 had an anti-fibrotic effect that could suppress fibroblast activation via miR-199b-5p/KLF13 axis, pointing a novel perspective into the potential action pattern of circ_0022383 in IPF.
Collapse
Affiliation(s)
- Yu Han
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Central Hospital of Ordos City, Ordos, Inner Mongolia Autonomous Region, China
| | - Jun Zhao
- Department of Oncology, Central Hospital of Ordos City, Ordos, Inner Mongolia Autonomous Region, China
| | - Xiuge Liao
- Department of Respiratory Medicine, Central Hospital of Ordos City, Ordos, Inner Mongolia Autonomous Region, China
| | - Ruifeng Wang
- Department of Respiratory Medicine, Central Hospital of Ordos City, Ordos, Inner Mongolia Autonomous Region, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
| |
Collapse
|
2
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
4
|
Hayek H, Rehbini O, Kosmider B, Brandt T, Chatila W, Marchetti N, Criner GJ, Bolla S, Kishore R, Bowler RP, Bahmed K. The Regulation of Fatty Acid Synthase by Exosomal miR-143-5p and miR-342-5p in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 70:259-282. [PMID: 38117249 PMCID: PMC11478129 DOI: 10.1165/rcmb.2023-0232oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFβ1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.
Collapse
Affiliation(s)
- Hassan Hayek
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
| | | | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| | | | | | | | | | | | - Raj Kishore
- Center for Translational Medicine, and
- Department of Cardiovascular Sciences, Temple University, Philadelphia, Pennsylvania; and
| | | | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation
- Center for Inflammation and Lung Research
- Department of Thoracic Medicine and Surgery
| |
Collapse
|
5
|
Chen P, Xie L, Ma L, Zhao X, Chen Y, Ge Z. Prediction and analysis of genetic effect in idiopathic pulmonary fibrosis and gastroesophageal reflux disease. IET Syst Biol 2023; 17:352-365. [PMID: 37907428 PMCID: PMC10725712 DOI: 10.1049/syb2.12081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
With increasing research on idiopathic pulmonary fibrosis (IPF) and gastroesophageal reflux disease (GERD), more and more studies have indicated that GERD is associated with IPF, but the underlying pathological mechanisms remain unclear. The aim of the present study is to identify and analyse the differentially expressed genes (DEGs) between IPF and GERD and explore the relevant molecular mechanisms via bioinformatics analysis. Four GEO datasets (GSE24206, GSE53845, GSE26886, and GSE39491) were downloaded from the GEO database, and DEGs between IPF and GERD were identified with the online tool GEO2R. Subsequently, a series of bioinformatics analyses are conducted, including Kyoto Encyclopaedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses, the PPI network, biological characteristics, TF-gene interactions, TF-miRNA coregulatory networks, and the prediction of drug molecules. Totally, 71 genes were identified as DEGs in IPF and GERD. Five KEGG pathways, including Amoebiasis, Protein digestion and absorption, Relaxin signalling pathway, AGE-RAGE signalling pathway in diabetic complications, and Drug metabolism - cytochrome P450, were significantly enriched. In addition, eight hub genes, including POSTN, MMP1, COL3A1, COL1A2, CXCL12, TIMP3, VCAM1, and COL1A1 were selected from the PPI network by Cytoscape software. Then, five hub genes (MMP1, POSTN, COL3A1, COL1A2, and COL1A1) with high diagnostic values for IPF and GERD were validated by GEO datasets. Finally, TF-gene and miRNA interaction was identified with hub genes and predicted drug molecules for the IPF and GERD. And the results suggest that cetirizine, luteolin, and pempidine may have great potential therapeutic value in IPF and GERD. This study will provide novel strategies for the identification of potential biomarkers and valuable therapeutic targets for IPF and GERD.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Respiratory MedicineWenzhou People's HospitalWenzhouChina
| | - Lubin Xie
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Leikai Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xianda Zhao
- Department of AnesthesiologyFirst People's Hospital of WenlingWenlingChina
| | - Yong Chen
- Department of AnesthesiologyShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Zhouling Ge
- Department of Respiratory MedicineWenzhou People's HospitalWenzhouChina
| |
Collapse
|
6
|
Soccio P, Moriondo G, Scioscia G, Leo V, Tondo P, Salerno L, Palange P, Barbaro MPF, Lacedonia D. Searching for airways biomarkers useful to identify progressive pulmonary fibrosis. BMC Pulm Med 2023; 23:407. [PMID: 37884953 PMCID: PMC10605223 DOI: 10.1186/s12890-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with unknown etiology. To date, the identification of new diagnostic, prognostic and progression biomarkers of IPF turns out to be necessary. MicroRNA (miRNA) are small non-coding RNAs which negatively regulate gene expression at the post-transcriptional level in several biological and pathological processes. An aberrant regulation of gene expression by miRNA is often associated with various diseases, including IPF. As result, miRNAs have emerged as potential biomarkers with relevance to pulmonary fibrosis. Several reports suggested that miRNAs are secreted as microvesicles or exosome, and hance they are stable and can be readily detected in the circulation. In the contest of miRNAs as circulating biomarkers, different studies show their role in various types of interstitial lung diseases and suggest that these small molecules could be used as prognostic markers of the disease. Exosomes are small, lipid-bound vesicles able to carry various elements of the naïve cells such as proteins, lipids, mRNAs and miRNA to facilitate cell communication under normal and diseases condition. Exosomal miRNAs (exo-miRNA) have been studied in relation to many diseases. However, there is little or no knowledge regarding exo-miRNA in bronchoalveolar lavage (BAL) in IPF. Our study's aim is to evaluate the changes in the expression of two exo-miRNAs in BAL, respectively miR-21 and miR-92a, through highlighting the differences between IPF, progressive pulmonary fibrosis (PPF) and not-progressive pulmonary fibrosis (nPPF). METHODS Exosomes were characterized by Western Blot and Multiplex Surface Marker Analysis. Exosomal miRNA expression was performed by qRT-PCR. ANOVA or Kruskal-Wallis test, based on data normality, was used to compare the differential expression between groups. RESULTS MiR-21 expression was significantly higher in the nPPF group than in both IPF and PPF. A result that could point above a possible role of miR-21, as a biomarker in the differential diagnosis between PPF and nPPF. MiR-92a, indeed, was down regulated in PPF compared to IPF and down regulated in PPF compared to nPPF. CONCLUSIONS This study demonstrated the putative role of both miR-21 and miR-92a as possible biomarkers of pulmonary fibrosis progression. Moreover, the role of exo-miRNAs is examined as a possible future direction that could lead to new therapeutic strategies for the treatment of progressive and non-progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy.
| | - Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| | - Valentina Leo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale Università, 37, Rome, 00185, Italy
- Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Viale del Policlinico, 155, Rome, 00161, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Luciana Salerno
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale Università, 37, Rome, 00185, Italy
- Division of Pulmonary Medicine, Policlinico Umberto I Hospital, Viale del Policlinico, 155, Rome, 00161, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, Foggia, 71122, Italy
- Institute of Respiratory Diseases, Policlinico of Foggia, Viale Luigi Pinto, 1 , Foggia, 71122, Italy
| |
Collapse
|
7
|
Xuan S, Zhang J, Guo Q, Zhao L, Yao X. A Diagnostic Classifier Based on Circulating miRNA Pairs for COPD Using a Machine Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081440. [PMID: 37189541 DOI: 10.3390/diagnostics13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is highly underdiagnosed, and early detection is urgent to prevent advanced progression. Circulating microRNAs (miRNAs) have been diagnostic candidates for multiple diseases. However, their diagnostic value has not yet been fully established in COPD. The purpose of this study was to develop an effective model for the diagnosis of COPD based on circulating miRNAs. We included circulating miRNA expression profiles of two independent cohorts consisting of 63 COPD and 110 normal samples, and then we constructed a miRNA pair-based matrix. Diagnostic models were developed using several machine learning algorithms. The predictive performance of the optimal model was validated in our external cohort. In this study, the diagnostic values of miRNAs based on the expression levels were unsatisfactory. We identified five key miRNA pairs and further developed seven machine learning models. The classifier based on LightGBM was selected as the final model with the area under the curve (AUC) values of 0.883 and 0.794 in test and validation datasets, respectively. We also built a web tool to assist diagnosis for clinicians. Enriched signaling pathways indicated the potential biological functions of the model. Collectively, we developed a robust machine learning model based on circulating miRNAs for COPD screening.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qinxing Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Zhao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
8
|
Lin L, Qu W, Li Y, Zhu H, Jiang W. MiR-29a-3p/NID1 axis regulates pulmonary fibrosis induced by TGF-β1. Panminerva Med 2023; 65:126-127. [PMID: 31961112 DOI: 10.23736/s0031-0808.19.03777-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lin Lin
- No.1 Department of Respiratory and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenxiu Qu
- No.1 Department of General Internal Medicine, Shengjing Hospital of China Medical University, Shenyang, China -
| | - Yan Li
- Operation Room, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Honghua Zhu
- Department of Gastroenterology, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Wei Jiang
- Department of Cardiothoracic Surgery, the People's Hospital of Zhangqiu Area, Jinan, China
| |
Collapse
|
9
|
Prasanna PGS, Aryankalayil M, Citrin DE, Coleman CN. Radiation-induced pulmonary fibrosis: roles of therapy-induced senescence and microRNAs. Int J Radiat Biol 2023:1-10. [PMID: 36763093 DOI: 10.1080/09553002.2023.2177768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE Progressive, irreversible radiation-induced pulmonary fibrosis (RIPF) is a clinically significant intermediate- to a late-occurring side effect of radiotherapy. Known mechanisms of RIPF include oxidative stress-induced activation of TGF-β with activation of SMAD signaling, TNF-α elaboration, and activation of the Angiotensin Converting Enzyme (ACE) mediated production of angiotensin II with resulting activation of profibrotic cytokine signaling and vasoconstriction. The pioneering work of John Moulder, to whom this paper is dedicated, and several of his colleagues demonstrated that inhibiting the conversion of ACE with drugs such as Captopril, Enalapril, and Losartan can ameliorate radiation fibrosis in various tissues. While this work led several groups to probe mechanism-based pharmacological mitigation of RIPF, in this article, we explore and discuss the roles of microRNAs (miRNA) and therapy-induced senescence (TIS) in the pathogenesis of and potential biomarkers for RIPF. CONCLUSION Our analysis of the published literature in the last decade on RIPF, miRNA, and TIS identifies TIS as a mechanism in the onset and progression of RIPF, which is regulated through several miRNAs. This work may lead to the discovery and development of the next generation of miRNA therapeutics and/or the repurposing of approved pharmaceutical agents and the development of early biomarker panels to predict RIPF.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, Bethesda, MD, USA
| | | | - Deborah E Citrin
- Radiation Oncology Branch, The National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, Bethesda, MD, USA.,Radiation Oncology Branch, The National Cancer Institute, Bethesda, MD, USA.,Department of Health and Human Services, Administration for Strategic Preparedness and Response, Washington, DC, USA
| |
Collapse
|
10
|
Elliot S, Catanuto P, Pereira-simon S, Xia X, Shahzeidi S, Roberts E, Ludlow J, Hamdan S, Daunert S, Parra J, Stone R, Pastar I, Tomic-Canic M, Glassberg MK. Urine-derived exosomes from individuals with IPF carry pro-fibrotic cargo. eLife 2022; 11:e79543. [PMID: 36454035 PMCID: PMC9714968 DOI: 10.7554/elife.79543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).
Collapse
Affiliation(s)
- Sharon Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Simone Pereira-simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | | | - Evan Roberts
- Cancer Modeling Shared Resource Sylvester Comprehensive Cancer Center, University of MiamiMiamiUnited States
| | | | - Suzana Hamdan
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
- Miami Clinical and Translational Science Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Jennifer Parra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | - Rivka Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marilyn K Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
- Department of Medicine, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| |
Collapse
|
11
|
Deng W, Zhang Y, Fang P, Shi H, Yang S. Silencing lncRNA Snhg6 mitigates bleomycin-induced pulmonary fibrosis in mice via miR-26a-5p/TGF-β1-smads axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2375-2387. [PMID: 35785413 DOI: 10.1002/tox.23603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial pulmonary disease with slow onset and high mortality. Epithelial-mesenchymal transition (EMT) is a significant condition for tissue fibrosis, and lncRNA-Snhg6 (small nucleolar RNA host gene 6) is related to EMT in some cancer cells, but its role in pulmonary fibrosis remains obscure. Here, we found that TGF-β1 and Snhg6 were up-regulated in lung tissues of BLM-induced lung fibrosis mouse, and Snhg6 expression was significantly increased in primary lung fibroblasts after BLM treatment. Snhg6 knockdown notably alleviated the pulmonary dysfunction, and the increase of fibrosis area and collagen deposition induced by BLM. MiR-26a-5p was downregulated in BLM-induced fibrotic lung tissues, and it was negatively regulated by Snhg6. Silencing Snhg6 markedly alleviated the TGF-β1-induced increase in fibrotic marker expression, cell proliferation, migration and differentiation, as well as the nuclear transport of p-Smad2/3 by modulating miR-26a-5p expression in mouse lung fibroblasts. Moreover, overexpressing Snhg6-induced collagen accumulation and fibroblast activation in fibroblasts, which was reversed by treatment with miR-26a-5p mimic or oxymatrine (an inhibitor of TGF-β1-Smads pathway). Interestingly, silencing Snhg6 in vivo mitigated BLM-driven pulmonary fibrosis by regulating the miR-26a-5p/TGF-β1-Smads axis. Our data revealed that Snhg6 contributed to the process of BLM-driven lung fibrosis in mouse by modulating the miR-26a-5p/TGF-β1-Smads axis, suggesting that Snhg6 might be a therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Wenjing Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalong Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Ping Fang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyang Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Jeong MH, Han H, Lagares D, Im H. Recent Advances in Molecular Diagnosis of Pulmonary Fibrosis for Precision Medicine. ACS Pharmacol Transl Sci 2022; 5:520-538. [PMID: 35983278 PMCID: PMC9379941 DOI: 10.1021/acsptsci.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis is a serious, progressive lung disease characterized by scarring and stiffening lung tissues, affecting the respiratory system and leading to organ failure. It is a complex disease consisting of alveolar damage, chronic inflammation, and a varying degree of lung fibrosis. Significant challenges with pulmonary fibrosis include the lack of effective means to diagnose the disease at early stages, identify patients at higher risks of progress, and assess disease progression and treatment response. Precision medicine powered by accurate molecular profiling and phenotyping could significantly improve our understanding of the disease's heterogeneity, potential biomarkers for diagnosis and prognosis, and molecular targets for treatment development. This Review discusses various translational model systems, including organoids and lung-on-a-chip systems, biomarkers in single cells and extracellular vesicles, and functional pharmacodynamic markers. We also highlight emerging sensing technologies for molecular characterization of pulmonary fibrosis and biomarker detection.
Collapse
Affiliation(s)
- Mi Ho Jeong
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
| | - Hongwei Han
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Lagares
- Department
of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts
General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hyungsoon Im
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
13
|
Hany NM, Eissa S, Basyouni M, Hasanin AH, Aboul-Ela YM, Elmagd NMA, Montasser IF, Ali MA, Skipp PJ, Matboli M. Modulation of hepatic stellate cells by Mutaflor ® probiotic in non-alcoholic fatty liver disease management. Lab Invest 2022; 20:342. [PMID: 35907883 PMCID: PMC9338485 DOI: 10.1186/s12967-022-03543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-β, were estimated by ELISA. RESULTS Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-β effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Noha M Hany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt. .,MASRI Research Institue, Ain Shams University, Cairo, Egypt.
| | - Manal Basyouni
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| | - Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M Aboul-Ela
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa M Abo Elmagd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Montasser
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud A Ali
- Department of Molecular Microbiology, Military Medical Academy, Cairo, Egypt
| | - Paul J Skipp
- Centre for Proteomic Research, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| |
Collapse
|
14
|
Fu M, Yin W, Zhang W, Zhu Y, Ni H, Gong L. MicroRNA-15a inhibits hepatic stellate cell activation and proliferation via targeting SRY-box transcription factor 9. Bioengineered 2022; 13:13011-13020. [PMID: 35611752 PMCID: PMC9276033 DOI: 10.1080/21655979.2022.2068895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating research have indicated that microRNAs are associated with the progression of hepatic fibrosis (HF). Nevertheless, the biological role and function of microRNA (miR)-15a in HF are still unknown. Our data revealed that miR-15a expression was decreased in TGF-β1-treated LX-2 cells and CCl4-induced mouse model. Additionally, miR-15a could directly target the 3’‑untranslated region of SRY-box transcription factor 9 (SOX9) to inhibit its expression. miR-15a overexpression attenuated the viability and invasion, but enhanced apoptosis in LX-2 cells. However, miR-15a knockdown had the opposite effects. Interestingly, SOX9 overexpression reversed the changes in cell viability, invasion and apoptosis mediated by miR-15a overexpression. Moreover, the miR-15a overexpression-mediated collagen I and alpha smooth muscle actin (a-SMA) downregulation were reversed by SOX9 overexpression. Overall, miR-15a could inhibit LX-2 cell viability and HF pathogenesis by targeting SOX9 in vitro and in vivo.
Collapse
Affiliation(s)
- Maoying Fu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Weihua Yin
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Yanfang Zhu
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Huihui Ni
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan, China
| |
Collapse
|
15
|
Wang S, Liu M, Li X, Zhang J, Wang F, Zhang C, Roden A, Ryu JH, Warrington KJ, Sun J, Matteson EL, Tschumperlin DJ, Vassallo R. Canonical and noncanonical regulatory roles for JAK2 in the pathogenesis of rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary fibrosis. FASEB J 2022; 36:e22336. [PMID: 35522243 DOI: 10.1096/fj.202101436r] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) and rheumatoid arthritis-associated interstitial lung disease (RA-ILD) are two fibrotic interstitial lung diseases that share the usual interstitial pneumonia (UIP) injury pattern. Here, we report that RNA sequencing of lung biopsies from patients with RA-ILD and IPF revealed shared and distinct disease-causing pathways. Analysis of transcriptomic data identified a JAK2 related JAK/STAT signaling pathway gene signature that distinguishes RA-UIP from idiopathic UIP. This was further confirmed by immunohistostaining, which identified JAK2 phosphorylation with two distinct forms of activation: a cytoplasmic form of JAK2 activation in most IPF cases (13/20) and a nuclear form of p-JAK2 in RA-UIP (5/5) and a minority of IPF (6/20) cases. Further immunohistostaining identified STAT5A&B as the downstream transcriptional activator for JAK2-mediated canonical signal transduction and phosphorylation of Tyr41 on histone H3 (H3Y41ph) as the downstream epigenetic regulation site for JAK2-mediated noncanonical signal transduction. Gene Set Enrichment Analysis (GSEA) of the RNA-Seq data further supported this shared pathogenic mechanism for the two diseases with the enrichment of STAT5A&B target gene sets as well as the JAK2 regulated H3Y41ph target gene set. This regulatory role of JAK2 in the pathogenesis of pulmonary fibrosis was further demonstrated by the attenuation of bleomycin-induced murine pulmonary fibrosis using a JAK2-selective pharmacological inhibitor CEP33779. In vitro studies with normal and IPF derived lung fibroblasts revealed a central role for JAK2 as an essential intermediary molecule in TGF-β-mediated myofibroblast trans-differentiation, proliferation, and extracellular matrix protein production. These observations support a crucial role for JAK2 as an intermediary molecule in fibrotic lung disease development.
Collapse
Affiliation(s)
- Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Mengfei Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Xiujuan Li
- Division of Endocrinology, Department of Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zhang
- Division of Pulmonary Medicine, Department of Medicine, Chongqing General Hospital, Chongqing, China
| | - Faping Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Anja Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Health Science Research, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Eric L Matteson
- Division of Rheumatology, Department of Health Science Research, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Santos-Álvarez JC, Velázquez-Enríquez JM, García-Carrillo R, Rodríguez-Beas C, Ramírez-Hernández AA, Reyes-Jiménez E, González-García K, López-Martínez A, Pérez-Campos Mayoral L, Aguilar-Ruiz SR, Romero-Tlalolini MDLÁ, Torres-Aguilar H, Castro-Sánchez L, Arellanes-Robledo J, Vásquez-Garzón VR, Baltiérrez-Hoyos R. miRNAs Contained in Extracellular Vesicles Cargo Contribute to the Progression of Idiopathic Pulmonary Fibrosis: An In Vitro Aproach. Cells 2022; 11:cells11071112. [PMID: 35406675 PMCID: PMC8997737 DOI: 10.3390/cells11071112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease. Lesions in the lung epithelium cause alterations in the microenvironment that promote fibroblast accumulation. Extracellular vesicles (EVs) transport proteins, lipids, and nucleic acids, such as microRNAs (miRNAs). The aim of this study was to characterize the differentially expressed miRNAs in the cargo of EVs obtained from the LL97 and LL29 fibroblast cell lines isolated from IPF lungs versus those derived from the CCD19 fibroblast cell line isolated from a healthy donors. We characterized EVs by ultracentrifugation, Western blotting, and dynamic light scattering. We identified miRNAs by small RNA-seq, a total of 1144 miRNAs, of which 1027 were known miRNAs; interestingly, 117 miRNAs were novel. Differential expression analysis showed that 77 miRNAs were upregulated and 68 were downregulated. In addition, pathway enrichment analyses from the Gene Ontology and Kyoto Encyclopedia of Genomes identified several miRNA target genes in the categories, cell proliferation, regulation of apoptosis, pathways in cancer, and proteoglycans in cancer. Our data reveal that miRNAs contained in EVs cargo could be helpful as biomarkers for fibrogenesis, diagnosis, and therapeutic intervention of IPF.
Collapse
Affiliation(s)
- Jovito Cesar Santos-Álvarez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Juan Manuel Velázquez-Enríquez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Rosendo García-Carrillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico;
| | | | - Alma Aurora Ramírez-Hernández
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Edilburga Reyes-Jiménez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Karina González-García
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Armando López-Martínez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
| | - Sergio Roberto Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (E.R.-J.); (K.G.-G.); (A.L.-M.); (S.R.A.-R.)
| | | | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico;
| | | | - Verónica Rocío Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico; (M.d.l.Á.R.-T.); (V.R.V.-G.)
- Correspondence:
| |
Collapse
|
17
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
18
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
19
|
miR-200a-3p Regulates PRKACB and Participates in Aluminium-Induced Tau Phosphorylation in PC12 Cells. Neurotox Res 2022; 40:1963-1978. [PMID: 36459375 PMCID: PMC9797464 DOI: 10.1007/s12640-022-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Aluminium (Al) is an environmental neurotoxin that humans are widely exposed to, but the molecular mechanism of its toxic effects is not fully understood. Many studies have shown that exposure to Al can cause abnormal phosphorylation of the tau protein that is believed as one of pathological features of Alzheimer's disease. Increasing evidence indicates that microRNAs (miRNAs) may be involved in the pathological processes of neurodegenerative diseases and are potential regulatory factors for related target genes. Phosphorylation at Ser-133 of cAMP response element-binding protein (CREB) is one of the major pathways of CREB activation, and phosphorylation at this site is controlled by protein kinase A (PKA). The catalytic subunit of PKA, cAMP-dependent protein kinase catalytic subunit beta (PRKACB), phosphorylates CREB. The target gene prediction software TargetScan showed that PRKACB was one of the target mRNAs of miR-200a-3p. The purpose of this study was to investigate whether miR-200a-3p regulates the PKA/CREB pathway by targeting PRKACB and leads to abnormal phosphorylation of the tau protein in nerve cells. The results showed that Al exposure increased the expression level of miR-200a-3p, and miR-200a-3p increased the expression of targeted downregulated PRKACB, and then decreased the PKA/CREB signalling pathway activity, leading to abnormal hyperphosphorylation of tau.
Collapse
|
20
|
Zhang QH, Huang HZ, Qiu M, Wu ZF, Xin ZC, Cai XF, Shang Q, Lin JZ, Zhang DK, Han L. Traditional Uses, Pharmacological Effects, and Molecular Mechanisms of Licorice in Potential Therapy of COVID-19. Front Pharmacol 2021; 12:719758. [PMID: 34899289 PMCID: PMC8661450 DOI: 10.3389/fphar.2021.719758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen-Feng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhan-Chang Xin
- Gansu Qilian Mountain Pharmaceutical Limited Liability Company, Jiuquan, China
| | - Xin-Fu Cai
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Qiang Shang
- Sichuan Guangda Pharmaceutical Co. Ltd, Pengzhou, China.,National Engineering Research Center for Modernization of Traditional Chinese Medicine, Pengzhou, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Suppression of MGAT3 expression and the epithelial–mesenchymal transition of lung cancer cells by miR-188-5p. Biomed J 2021; 44:678-685. [PMID: 35166206 PMCID: PMC8847825 DOI: 10.1016/j.bj.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background To investigate the effect of miR-188-5p overexpression on the invasion and migration of cultured lung cancer cells, and on related cellular mechanisms that underlie epithelial mesenchymal transition (EMT). Methods Human lung cancer cell line 95D was transfected with miR-188-5p mimic. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to quantify the expression levels of genes including E-cadherin, Snail, α-SMA, and MGAT3. Changes in cell motility, invasion and proliferation were studied using scratch migration assay, transwell invasion assay, and colony formation assay, respectively. The expression levels of EMT-related proteins and MGAT3 protein were also determined via immunofluorescent staining. The ability of miR-188-5p to regulate its target gene, MGAT3, was assessed using dual luciferase activity assay. Results Lung cancer cell line 95D showed the lowest miR-188-5p expression level thus was used in this study. Transfection with miR-188-5p mimic significantly suppressed migration, invasion and clonal formation potency of 95D cells. Dual luciferase activity assay implicated that miR-188-5p exerts its negative regulatory effect on MGAT3 expression through recognizing the 3′ untranslated region (3′UTR) of the MGAT3 gene. Over-expression of miR-188-5p in 95D cells also remarkably increased E-cadherin protein expression and decreased the expression levels of Snail and α-SMA, which suppressed the EMT process. Conclusion MiR-188-5p reduces the expression of MGAT3 and inhibits the metastatic properties of a highly invasive lung cancer cell line, probably via targeted regulation of EMT process. Further research to explore the potential therapeutic value of miR-188-5p, both as a biomarker and as a drug candidate for the management of metastatic lung cancer may be warranted.
Collapse
|
22
|
Evaluation of microRNA expression in a sheep model for lung fibrosis. BMC Genomics 2021; 22:827. [PMID: 34789159 PMCID: PMC8596952 DOI: 10.1186/s12864-021-08073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibroproliferative disorder that has one of the poorest prognoses amongst interstitial lung diseases. Recently, the finding of aberrant expression levels of miRNAs in IPF patients has drawn significant attention to the involvement of these molecules in the pathogenesis of this disease. Clarification of the differential expression of miRNAs in health and disease may identify novel therapeutic strategies that can be employed in the future to combat IPF. This study evaluates the miRNA expression profiles in a sheep model for lung fibrosis and compares them to the miRNA profiles of both IPF patients and the mouse bleomycin model for pulmonary fibrosis. Pathway enrichment analyses were performed on differentially expressed miRNAs to illustrate which biological mechanisms were associated with lung fibrosis. RESULTS We discovered 49 differentially expressed miRNAs in the sheep fibrosis model, in which 32 miRNAs were significantly down regulated, while 17 miRNAs were significantly upregulated due to bleomycin-induced lung injury. Moreover, the miRNA families miR-29, miR-26, miR-30, let-7, miR-21, miR-19, miR-17 and miR-199 were aberrantly expressed in both sheep and mouse models, with similar differential miRNAs expression observed in IPF cases. Importantly, 18 miRNAs were aberrantly expressed in both the sheep model and IPF patients, but not in mice. CONCLUSION Together with pathway enrichment analyses, these results show that the sheep model can potentially be used to characterize previously unrecognized biological pathways associated with lung fibrosis.
Collapse
|
23
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
24
|
Kawami M, Takenaka S, Kadekaru Y, Akai M, Konaka T, Yumoto R, Takano M. Evaluation on epithelial-mesenchymal state and microRNAs focusing on isolated alveolar epithelial cells from bleomycin injured rat lung. Toxicology 2021; 461:152903. [PMID: 34425168 DOI: 10.1016/j.tox.2021.152903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Several studies using bleomycin (BLM)-induced lung injury rat model revealed that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Conversely, microRNAs (miRNAs) are considered as useful markers of various diseases. In the present study, we aimed to characterize the EMT state through focusing on alveolar epithelial cells and identify the miRNAs that can be used as markers to predict pulmonary fibrosis using a BLM-induced lung injury rat model. Intratracheal administration of BLM increased hydroxyproline, a component of collagen, in lung tissues at day 14, but not at day 7. However, BLM induced EMT at day 7, which was accompanied with increased mRNA expression of α-smooth muscle actin, a representative EMT marker, in alveolar epithelium, thereby suggesting that EMT occurs prior to pulmonary fibrosis in alveolar epithelial cells. Using this rat model, the expression levels of several EMT-associated miRNAs were examined, and miR-222 was found to be upregulated in alveolar epithelial cells as well as bronchoalveolar lavage fluid from day 3. Our findings indicate that EMT in alveolar epithelial cells may occur before pulmonary fibrosis, and miR-222 may be used as a potential marker for early prediction of pulmonary fibrosis.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Shinnosuke Takenaka
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuri Kadekaru
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mizuki Akai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Konaka
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
25
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
26
|
ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J Clin Med 2021; 10:jcm10153373. [PMID: 34362154 PMCID: PMC8347979 DOI: 10.3390/jcm10153373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation. Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting to support a key role of ADAM17 in the induction of the proliferation, migration and progression of tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a central morphologic conversion that occurs in adults during wound healing, tumour progression and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express mesenchymal markers and have migratory properties. This transition is characterised by loss of epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including vimentin and a-smooth muscle actin. The present review discusses the current understanding of molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative therapeutic strategies using ADAM17-related pathways.
Collapse
|
27
|
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases. Cells 2021; 10:cells10071706. [PMID: 34359876 PMCID: PMC8304879 DOI: 10.3390/cells10071706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
Collapse
|
28
|
Huang G, Zhang J, Qing G, Liu D, Wang X, Chen Y, Wu Y, Li Y, Guo S. Downregulation of miR‑483‑5p inhibits TGF‑β1‑induced EMT by targeting RhoGDI1 in pulmonary fibrosis. Mol Med Rep 2021; 24:538. [PMID: 34080651 PMCID: PMC8170182 DOI: 10.3892/mmr.2021.12177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) serves a significant role in pulmonary fibrosis (PF). Increasing evidence indicates that microRNAs (miRNAs or miRs) contribute to PF pathogenesis via EMT regulation. However, the role of miR-483-5p in PF remains unclear. Therefore, the present study investigated the potential effect of miR-483-5p on TGF-β1-induced EMT in PF. It was found that the expression of miR-483-5p was upregulated in both PF tissue and A549 cells treated with TGF-β1, whereas expression of Rho GDP dissociation inhibitor 1 (RhoGDI1) was downregulated. miR-483-5p mimic transfection promoted TGF-β1-induced EMT; by contrast, miR-483-5p inhibitor inhibited TGF-β1-induced EMT. Also, miR-483-5p mimic decreased RhoGDI1 expression, whereas miR-483-5p inhibitor increased RhoGDI1 expression. Furthermore, dual-luciferase reporter gene assay indicated that miR-483-5p directly regulated RhoGDI1. Moreover, RhoGDI1 knockdown eliminated the inhibitory effect of the miR-483-5p inhibitor on TGF-β1-induced EMT via the Rac family small GTPase (Rac)1/PI3K/AKT pathway. In conclusion, these data indicated that miR-483-5p inhibition ameliorated TGF-β1-induced EMT by targeting RhoGDI1 via the Rac1/PI3K/Akt signaling pathway in PF, suggesting a potential role of miR-483-5p in the prevention and treatment of PF.
Collapse
Affiliation(s)
- Guichuan Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Qing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Daishun Liu
- Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xin Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yongchang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Yang K, Shen Z, Zou Y, Gao K. Rosmarinic acid inhibits migration, invasion, and p38/AP-1 signaling via miR-1225-5p in colorectal cancer cells. J Recept Signal Transduct Res 2021; 41:284-293. [PMID: 32838607 DOI: 10.1080/10799893.2020.1808674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/27/2023]
Abstract
Elucidating the molecular mechanism of the migration and invasion is critical for identifying novel therapeutic targets and may significantly improve the prognosis of colorectal cancer. Emerging evidence suggests an involvement of dysregulated microRNAs in the process of tumorigenesis. Here, we show that miR-1225-5p prevents migration and invasion of colorectal cancer cells. Overexpression of miR-1225-5p significantly decreases the expression of Matrix Metalloproteases (MMPs)-1, 3, and 9. Knockdown of miR-1225-5p elevates ROS level via regulating Keap1/Nrf2 pathway. Furthermore, miR-1225-5p attenuates IL-17A-induced p38/AP-1-signaling pathway by suppressing IL-17RA expression. We also examined the biological effects of Rosmarinic acid (RA) on metastatic colorectal cancer cells. RA inhibited EMT via the p38/AP-1 signaling, and miR-1225-5p is essential for RA-mediated anti-metastatic effects.
Collapse
Affiliation(s)
- Kaiyan Yang
- Department of Gastrointestinal surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaolong Shen
- Department of Gastrointestinal surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yueyi Zou
- Department of Gastrointestinal surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kai Gao
- Department of Gastrointestinal surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Liu Y, Nie H, Ding Y, Hou Y, Mao K, Cui Y. MiRNA, a New Treatment Strategy for Pulmonary Fibrosis. Curr Drug Targets 2021; 22:793-802. [PMID: 32988351 DOI: 10.2174/1874609813666200928141822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Pulmonary fibrosis (PF) is the most common chronic, progressive interstitial lung disease, mainly occurring in the elderly, with a median survival of 2-4 years after diagnosis. Its high mortality rate attributes to the delay in diagnosis due to its generic symptoms, and more importantly, to the lack of effective treatments. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are involved in many essential cellular processes, including extracellular matrix remodeling, alveolar epithelial cell apoptosis, epithelial-mesenchymal transition, etc. We summarized the dysregulated miRNAs in TGF-β signaling pathway-mediated PF in recent years with dual effects, such as anti-fibrotic let-7 family and pro-fibrotic miR-21 members. Therefore, this review will set out the latest application of miRNAs to provide a new direction for PF treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Role of pirfenidone in TGF-β pathways and other inflammatory pathways in acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection: a theoretical perspective. Pharmacol Rep 2021; 73:712-727. [PMID: 33880743 PMCID: PMC8057922 DOI: 10.1007/s43440-021-00255-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pulmonary injury or multiple-organ injury by various pathological pathways. Transforming growth factor-beta (TGF-β) is a key factor that is released during SARS-CoV-2 infection. TGF-β, by internalization of the epithelial sodium channel (ENaC), suppresses the anti-oxidant system, downregulates the cystic fibrosis transmembrane conductance regulator (CFTR), and activates the plasminogen activator inhibitor 1 (PAI-1) and nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-kB). These changes cause inflammation and lung injury along with coagulopathy. Moreover, reactive oxygen species play a significant role in lung injury, which levels up during SARS-CoV-2 infection. Drug Suggestion Pirfenidone is an anti-fibrotic drug with an anti-oxidant activity that can prevent lung injury during SARS-CoV-2 infection by blocking the maturation process of transforming growth factor-beta (TGF-β) and enhancing the protective role of peroxisome proliferator-activated receptors (PPARs). Pirfenidone is a safe drug for patients with hypertension or diabetes and its side effect tolerated well. Conclusion The drug as a theoretical perspective may be an effective and safe choice for suppressing the inflammatory response during COVID-19. The recommendation would be a combination of pirfenidone and N-acetylcysteine to achieve maximum benefit during SARS-CoV-2 treatment.
Collapse
|
32
|
Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, Chen Z, Liang Y. The MIR155 host gene/microRNA-627/HMGB1/NF-κB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci 2021; 269:119085. [PMID: 33482190 DOI: 10.1016/j.lfs.2021.119085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis (PF), which is characterized by excessive matrix formation, may ultimately lead to irreversible lung damage and thus death. Fibroblast activation has been regarded as a central event during PF pathogenesis. In our previous study, we confirmed that the miR-627/high-mobility group box protein 1 (HMGB1)/Nuclear factor kappa beta (NF-κB) axis modulates transforming growth factor beta 1 (TGFβ1)-induced pulmonary fibrosis. In the present study, we investigated the upstream factors leading to miR-627 dysregulation in the process of pulmonary fibroblast activation and PF. The lncRNA MIR155 host gene (MIR155HG) was found to be abnormally upregulated in pulmonary fibrosis tissues and TGFβ1-stimulated normal human primary lung fibroblasts (NHLFs). By directly binding to miR-627, MIR155HG inhibited miR-627 expression. MIR155HG overexpression enhanced TGFβ1-induced increases in HMGB1 protein expression and p65 phosphorylation, NHLF proliferation, and extracellular matrix (ECM) deposition. In contrast, miR-627 overexpression attenuated the TGFβ1-induced changes in NHLFs and significantly reversed the effects of MIR155HG overexpression. Under TGFβ1 stimulation, miR-627 inhibition promoted, whereas JSH-23 treatment inhibited NF-κB activation; in NHLFs, NF-κB overexpression upregulated, whereas JSH-23 treatment downregulated MIR155HG expression. In tissue samples, HMGB1 protein levels and p65 phosphorylation were increased; MIR155HG was negatively correlated with miR-627 and positively correlated with HMGB1. In conclusion, we validated that the MIR155HG/miR-627/HMGB1/NF-κB axis formed a regulatory loop that modulates TGFβ1-induced NHLF activation. Considering the critical role of NHLF activation in PF pathogenesis, the NF-κB/MIR155HG/miR-627/HMGB1 regulatory loop could exert a vital effect on PF pathogenesis. Further in vivo and clinical investigations are required to confirm this model.
Collapse
Affiliation(s)
- Jie Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Xueyu Zhang
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Tao Wang
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Jinghong Li
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Qi Su
- Medical Department, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Cheng Zhong
- Department of Internal Medicine, Jiangxi Chest Hospital, Nanchang 330006, China
| | - Zhongshu Chen
- Department of Thoracic Surgery, Jiangxi Chest Hospital, Nanchang 330006, China.
| | - Ying Liang
- Department of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
33
|
Wang J, Zhao X, Feng W, Li Y, Peng C. Inhibiting TGF-[Formula: see text] 1-Mediated Cellular Processes as an Effective Strategy for the Treatment of Pulmonary Fibrosis with Chinese Herbal Medicines. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1965-1999. [PMID: 34961416 DOI: 10.1142/s0192415x21500932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xingtao Zhao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yunxia Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
34
|
P KM, Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci 2020; 266:118883. [PMID: 33316266 PMCID: PMC7831549 DOI: 10.1016/j.lfs.2020.118883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.
Collapse
Affiliation(s)
- Krishna Murthy P
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| | - Rajasekaran Subbiah
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhauri, Madhya Pradesh, India
| | - Vilwanathan Ravikumar
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
35
|
Ou SC, Bai KJ, Cheng WH, Chen JY, Lin CH, Wen HC, Chen BC. TGF-β Induced CTGF Expression in Human Lung Epithelial Cells through ERK, ADAM17, RSK1, and C/EBPβ Pathways. Int J Mol Sci 2020; 21:ijms21239084. [PMID: 33260349 PMCID: PMC7731197 DOI: 10.3390/ijms21239084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Lung epithelial cells play critical roles in idiopathic pulmonary fibrosis. Methods: In the present study, we investigated whether transforming growth factor-β (TGF-β)-induced expression of connective tissue growth factor (CTGF) was regulated by the extracellular signal-regulated kinase (ERK)/a disintegrin and metalloproteinase 17 (ADAM17)/ribosomal S6 kinases 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ) signaling pathway in human lung epithelial cells (A549). Results: Our results revealed that TGF-β-induced CTGF expression was weakened by ADAM17 small interfering RNA (ADAM17 siRNA), TNF-α processing inhibitor-0 (TAPI-0, an ADAM17 inhibitor), U0126 (an ERK inhibitor), RSK1 siRNA, and C/EBPβ siRNA. TGF-β-induced ERK phosphorylation as well as ADAM17 phosphorylation was attenuated by U0126. The TGF-β-induced increase in RSK1 phosphorylation was inhibited by TAPI-0 and U0126. TGF-β-induced C/EBPβ phosphorylation was weakened by U0126, ADAM17 siRNA, and RSK1 siRNA. In addition, TGF-β increased the recruitment of C/EBPβ to the CTGF promoter. Furthermore, TGF-β enhanced fibronectin (FN), an epithelial–mesenchymal transition (EMT) marker, and CTGF mRNA levels and reduced E-cadherin mRNA levels. Moreover, TGF-β-stimulated FN protein expression was reduced by ADAM17 siRNA and CTGF siRNA. Conclusion: The results suggested that TGF-β induces CTGF expression through the ERK/ADAM17/RSK1/C/EBPβ signaling pathway. Moreover, ADAM17 and CTGF participate in TGF-β-induced FN expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Shu-Ching Ou
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Respiratory Therapy, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Yun Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (S.-C.O.); (K.-J.B.); (H.-C.W.)
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-H.C.); (J.-Y.C.); (C.-H.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661; Fax: +886-2-27391143
| |
Collapse
|
36
|
MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2020; 29:167-182. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Few reports have documented the ability of phosphodiesterase-5 inhibitors (PDE-5-Is) to ameliorate idiopathic pulmonary fibrosis (IPF) mainly by their anti-inflammatory/antioxidant capacities, without unveiling the possible molecular mechanisms involved. Because of the recent role of miR-200 family and Sonic Hedgehog (SHH) trajectory in IPF, we have studied their impact on the anti-fibrotic potential of tadalafil against bleomycin-induced pulmonary fibrosis. Animals were allocated into normal-control, bleomycin-fibrotic control, and bleomycin post-treated with tadalafil or dexamethasone, as the reference drug. On the molecular level, tadalafil has reverted the bleomycin effect on all the assessed parameters. Tadalafil upregulated the gene expression of miR-200a, but decreased the smoothened (SMO) and the transcription factors glioma-associated oncogene homolog (Gli-1, Gli-2), members of SHH pathway. Additionally, tadalafil ebbed transforming growth factor (TGF)-β, its canonical (SMAD-3/alpha smooth muscle actin [α-SMA] and Snail), and non-canonical (p-Akt/p-Forkhead box O3 (FOXO3) a) pathways. Besides, a strong negative correlation between miR-200a and the analyzed pathways was proved. The effect of tadalafil was further confirmed by the improved lung structure and the reduced Ashcroft score/collagen deposition. The results were comparable to that of dexamethasone. In conclusion, our study has highlighted the involvement of miR-200a in the anti-fibrotic effect of tadalafil with the inhibition of SHH hub and the pro-fibrotic pathways (TGF-β/ SMAD-3/α-SMA, Snail and p-AKT/p-FOXO3a). Potential anti-fibrotic effect of tadalafil. Modulation of miR200a/SHH/canonical and non-canonical TGF-β trajectories. → : stimulatory effect; ┴: inhibitory effect.
Collapse
|
37
|
Sun B, Xu S, Yan Y, Li Y, Li H, Zheng G, Dong T, Bai J. miR-205 Suppresses Pulmonary Fibrosis by Targeting GATA3 Through Inhibition of Endoplasmic Reticulum Stress. Curr Pharm Biotechnol 2020; 21:720-726. [PMID: 31820686 DOI: 10.2174/1389201021666191210115614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the role of miR-205 and GATA3 in Pulmonary Fibrosis (PF). METHODS Bleomycin (BLM) was used to induce PF in SD rats and in vitro PF model was established by using TGFβ1-induced RLE-6TN cells. miR-205 mimics were used for the overexpression of miR- 205. The expression of miR-205, GATA3, α-SMA, Collagen I, CHOP and GRP78 were measured using RT-qPCR or western blotting. Dual-luciferase reporter assay was used to confirm binding between GATA3 3'-UTR and miR-205. RESULTS The expression of miR-205 was significantly down-regulated, while the expression of GATA3 was remarkably up-regulated in the model rats. GATA3 levels were remarkably decreased when miR-205 was overexpressed. When miR-205 was overexpressed, the lung injury by BLM-induced fibrosis was improved. The expression of α-SMA, Collagen I, as well as GRP78 and CHOP, was significantly up-regulated in both in vivo and in vitro PF models, and overexpression of miR-205 remarkably reversed the effects. Dual-luciferase reporter assay showed that miR-205 directly targeted and negatively regulated GATA3. CONCLUSION miR-205 improved pulmonary fibrosis through inhibiting ER-stress by targeting GATA3.
Collapse
Affiliation(s)
- Bingke Sun
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Shumin Xu
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Yanli Yan
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Yusheng Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Guizhen Zheng
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Tiancao Dong
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tong Ji University, Shanghai 200120, China
| |
Collapse
|
38
|
Fu J, Wu B, Zhong S, Deng W, Lin F. miR-29a-3p suppresses hepatic fibrosis pathogenesis by modulating hepatic stellate cell proliferation via targeting PIK3R3 gene expression. Biochem Biophys Res Commun 2020; 529:922-929. [PMID: 32819600 DOI: 10.1016/j.bbrc.2020.06.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatic stellate cells (HSC) activation and proliferation mediated the pathogenic development of hepatic fibrosis (HF). However, the underlying mechanisms remain poorly understood. In this study, we aimed to investigate the miR-29a-3p and its effects on PIK3R3 expression in HF pathogenesis. METHODS LX-2 cells treated with TGF-β1 was used as the in vitro HF model. The expression of microRNAs and proteins in LX-2 cells were detected by quantitative RT-PCR and western blotting. Then, miR-29a-3p expression in LX-2 cells were altered via transfection with specific mimics or inhibitors, followed by cell proliferation measured through CCK-8, Edu staining and colony formation. The dual luciferase reporter assay was done to assess binding of miR-29a-3p with PIK3R3 gene sequences. Moreover, PIK3R3 gene overexpression in LX-2 cell was realized through transfection with recombinant pcDNA3.0-PIK3R3 plasmids. RESULTS Successful establishment of cellular HF model was validated through the increased Col-I and a-SMA expression in TGF-β1-treated LX-2 cells shown by qRT-PCR and Western blot. In such model, miR-29a-3p expression in LX-2 cells showed the greatest decrease among four candidate microRNAs in response to TGF-β1 treatment. Also, miR-29a-3p directly binds with the 3' UTR region of the PIK3R3 gene to suppress its expression in LX-2 cells. Furthermore, PIK3R3 gene overexpression effectively abrogated the changes of LX-2 cell proliferation, AKT phosphorylation and Col-I and a-SMA expression caused by miR-29a-3p mimics. CONCLUSION MiR-29a-3p regulates hepatic stellate cell proliferation and hepatic fibrosis pathogenesis by targeting PIK3R3 expression and modulating the PI-3K/AKT signaling.
Collapse
Affiliation(s)
- Juan Fu
- Department of Infectious Disease, Hainan General Hospital, Haikou, China.
| | - Biao Wu
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| | - Shaohua Zhong
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Feng Lin
- Department of Infectious Disease, Hainan General Hospital, Haikou, China
| |
Collapse
|
39
|
Croston TL, Lemons AR, Barnes MA, Goldsmith WT, Orandle MS, Nayak AP, Germolec DR, Green BJ, Beezhold DH. Inhalation of Stachybotrys chartarum Fragments Induces Pulmonary Arterial Remodeling. Am J Respir Cell Mol Biol 2020; 62:563-576. [PMID: 31671270 DOI: 10.1165/rcmb.2019-0221oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stachybotrys chartarum is a fungal contaminant within the built environment and a respiratory health concern in the United States. The objective of this study was to characterize the mechanisms influencing pulmonary immune responses to repeatedly inhaled S. chartarum. Groups of B6C3F1/N mice repeatedly inhaled viable trichothecene-producing S. chartarum conidia (strain A or strain B), heat-inactivated conidia, or high-efficiency particulate absolute-filtered air twice per week for 4 and 13 weeks. Strain A was found to produce higher amounts of respirable fragments than strain B. Lung tissue, serum, and BAL fluid were collected at 24 and 48 hours after final exposure and processed for histology, flow cytometry, and RNA and proteomic analyses. At 4 weeks after exposure, a T-helper cell type 2-mediated response was observed. After 13 weeks, a mixed T-cell response was observed after exposure to strain A compared with a T-helper cell type 2-mediated response after strain B exposure. After exposure, both strains induced pulmonary arterial remodeling at 13 weeks; however, strain A-exposed mice progressed more quickly than strain B-exposed mice. BAL fluid was composed primarily of eosinophils, neutrophils, and macrophages. Both the immune response and the observed pulmonary arterial remodeling were supported by specific cellular, molecular, and proteomic profiles. The immunopathological responses occurred earlier in mice exposed to high fragment-producing strain A. The rather striking induction of pulmonary remodeling by S. chartarum appears to be related to the presence of fungal fragments during exposure.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajay P Nayak
- Allergy and Clinical Immunology Branch.,Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine, and Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Dori R Germolec
- Toxicology Branch, National Toxicology Program Division, National Institute of Environmental Health Sciences, Durham, North Carolina
| | | | - Donald H Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
40
|
Zhang K, Yang R, Chen J, Qi E, Zhou S, Wang Y, Fu Q, Chen R, Fang X. Let-7i-5p Regulation of Cell Morphology and Migration Through Distinct Signaling Pathways in Normal and Pathogenic Urethral Fibroblasts. Front Bioeng Biotechnol 2020; 8:428. [PMID: 32478052 PMCID: PMC7240038 DOI: 10.3389/fbioe.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/14/2020] [Indexed: 12/05/2022] Open
Abstract
microRNAs regulate subcellular functions through distinct molecular mechanisms. In this study, we used normal and pathogenic fibroblasts in pelvic fracture urethral distraction defects (PFUDD) patients. PFUDD is a common disease that could severely affect patients’ life quality, yet little is known about the molecular mechanism associated with pathogenic fibrosis in PFUDD. Our data showed that let-7i-5p performs a multi-functional role in distinct signaling transduction pathways involved in cell morphology and cell migration in both normal and pathogenic fibroblasts. By analyzing the molecular mechanism associated with its functions, we found that let-7i-5p regulates through its direct target genes involved in collagen metabolism, cell proliferation and differentiation, TGF-beta signaling, DNA repair and ubiquitination, gene silencing and oxygen homeostasis. We conclude that let-7i-5p plays an essential role in regulating cell shape and tissue elasticity, cell migration, cell morphology and cytoskeleton, and could serve as a potential target for clinical treatment of urethral stricture patients.
Collapse
Affiliation(s)
- Kaile Zhang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Ranxin Yang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jun Chen
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Er Qi
- Shanghai Xuhui District Xietu Street Community Health Service Center, Shanghai, China
| | - Shukui Zhou
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Rong Chen
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Xiaolan Fang
- The Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China.,Shanghai Xuhui District Xietu Street Community Health Service Center, Shanghai, China
| |
Collapse
|
41
|
Gao X, Xu D, Li S, Wei Z, Li S, Cai W, Mao N, Jin F, Li Y, Yi X, Liu H, Xu H, Yang F. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:851-865. [PMID: 32464548 PMCID: PMC7256439 DOI: 10.1016/j.omtn.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
To identify potential therapeutic targets for pulmonary fibrosis induced by silica, we studied the effects of this disease on the expression of microRNAs (miRNAs) in the lung. Rattus norvegicus pulmonary silicosis models were used in conjunction with high-throughput screening of lung specimens to compare the expression of miRNAs in control and pulmonary silicosis tissues. A total of 70 miRNAs were found to be differentially expressed between control and pulmonary silicosis tissues. This included 41 miRNAs that were upregulated and 29 that were downregulated relative to controls. Among them, miR-292-5p, miR-155-3p, miR-1193-3p, miR-411-3p, miR-370-3p, and miR-409a-5p were found to be similarly altered in rat lung and transforming growth factor (TGF)-β1-induced cultured fibroblasts. Using miRNA mimics and inhibitors, we found that miR-1193-3p, miR-411-3p, and miR-370-3p exhibited potent anti-fibrotic effects, while miR-292-5p demonstrated pro-fibrotic effects in TGF-β1-stimulated lung fibroblasts. Moreover, we also found that miR-411-3p effectively reduced pulmonary silicosis in the mouse lung by regulating Mrtfa expression, as demonstrated using biochemical and histological assays. In conclusion, our findings indicate that miRNA expression is perturbed in pulmonary silicosis and suggest that therapeutic interventions targeting specific miRNAs might be effective in the treatment of this occupational disease.
Collapse
Affiliation(s)
- Xuemin Gao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Dingjie Xu
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shifeng Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Xue Yi
- Department of Basic Medicine, Fujian Collaborative Innovation Center for Accurate Medicine of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023 Fujian, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| |
Collapse
|
42
|
Min H, Ma D, Zou W, Wu Y, Ding Y, Zhu C, Lin A, Song S, Liang Q, Chen B, Zhang B, Wan Y, Ye M, Pan Y, Wen Y, Yi L, Gao Q. FLCN-regulated miRNAs suppressed reparative response in cells and pulmonary lesions of Birt-Hogg-Dubé syndrome. Thorax 2020; 75:476-485. [PMID: 32184379 PMCID: PMC7279199 DOI: 10.1136/thoraxjnl-2019-213225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 12/21/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
Background Birt-Hogg-Dubé Syndrome (BHDS) characterised by skin fibrofolliculomas, kidney tumour and pulmonary cysts/pneumothorax is caused by folliculin (FLCN) germline mutations. The pathology of both neoplasia and focused tissue loss of BHDS strongly features tissue-specific behaviour of the gene. Isolated cysts/pneumothorax is the most frequent atypical presentation of BHDS and often misdiagnosed as primary spontaneous pneumothorax (PSP). Deferential diagnosis of BHDS with isolated pulmonary presentation (PSP-BHD) from PSP is essential in lifelong surveillance for developing renal cell carcinoma. Methods The expression profiles of microRNAs (miRNAs) in cystic lesions of PSP-BHD and PSP were determined via microarray. The selected upregulated miRNAs were further confirmed in the plasma of an expanded cohort of PSP-BHD patients by reverse transcription quantitative PCR (RT-qPCR). Their diagnostic accuracy was evaluated. Moreover, the cellular functions and targeted signalling pathways of FLCN-regulated miRNAs were assessed in various cell lines and in the lesion tissue contexts. Results Cystic lesions of PSP-BHD and PSP showed different miRNAs profiles with a significant upregulation of miR-424–5p and let-7d-5p in PSP-BHD. The combination of the two effectively predicted BHDS patients. In vitro studies revealed a suppressive effect of FLCN on miR-424–5p and let-7d-5p expressions specifically in lung epithelial cells. The ectopic miRNAs triggered epithelial apoptosis and epithelial transition of mesenchymal cells and suppressed the reparative responses in cells and tissues with FLCN deficiency. Conclusion The upregulation of miR-424–5p and let-7d-5p by FLCN deficiency occurred in epithelial cells and marked the PSP-BHD condition, which contributed to a focused degenerative pathology in the lung of PSP-BHD patients.
Collapse
Affiliation(s)
- Haiyan Min
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Wei Zou
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Yongzheng Wu
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Anqi Lin
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shiyu Song
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qiao Liang
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Bin Zhang
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yueming Wan
- Department of Pathology, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Minhua Ye
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yanqing Pan
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China
| | - Yanting Wen
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Long Yi
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qian Gao
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China .,Center for Translational Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
DROSHA-Dependent miRNA and AIM2 Inflammasome Activation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21051668. [PMID: 32121297 PMCID: PMC7084700 DOI: 10.3390/ijms21051668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease. Chronic lung inflammation is linked to the pathogenesis of IPF. DROSHA, a class 2 ribonuclease III enzyme, has an important role in the biogenesis of microRNA (miRNA). The function of miRNAs has been identified in the regulation of the target gene or protein related to inflammatory responses via degradation of mRNA or inhibition of translation. The absent-in-melanoma-2 (AIM2) inflammasome is critical for inflammatory responses against cytosolic double stranded DNA (dsDNA) from pathogen-associated molecular patterns (PAMPs) and self-DNA from danger-associated molecular patterns (DAMPs). The AIM2 inflammasome senses double strand DNA (dsDNA) and interacts with the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which recruits pro-caspase-1 and regulates the maturation and secretion of interleukin (IL)-1β and IL-18. A recent study showed that inflammasome activation contributes to lung inflammation and fibrogenesis during IPF. In the current review, we discuss recent advances in our understanding of the DROSHA-miRNA-AIM2 inflammasome axis in the pathogenesis of IPF.
Collapse
|
44
|
Wu G, Xie B, Lu C, Chen C, Zhou J, Deng Z. microRNA-30a attenuates TGF-β1-induced activation of pulmonary fibroblast cell by targeting FAP-α. J Cell Mol Med 2020; 24:3745-3750. [PMID: 31991519 PMCID: PMC7131934 DOI: 10.1111/jcmm.15020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Idiopathic interstitial pulmonary fibrosis is a common diffuse interstitial lung disease and has poor prognosis. And one of the pathological features of it is persistent fibroblast activation. It was reported that microRNA‐30a was down‐regulated in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. But whether miR‐30a is involved in fibroblast activation and its specific mechanism is unclear. In this study, we aimed to investigate the role of miR‐30a in fibroblast activation induced by TGF‐β1. We found miR‐30a could targetedly suppress FAP‐α expression. In MRC5 cells, miR‐30a was not only involved in regulating the expression of FAP‐α, col1a and α‐SMA induced by TGF‐β1 but also had a role in cell proliferation with or without TGF‐β1 treatment via regulating FAP‐α expression. Thus, the results indicated that miR‐30a alleviated fibroblast activation by regulating the expression of FAP‐α.
Collapse
Affiliation(s)
- Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
45
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
46
|
Label-Free MicroRNA Optical Biosensors. NANOMATERIALS 2019; 9:nano9111573. [PMID: 31698769 PMCID: PMC6915498 DOI: 10.3390/nano9111573] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection of miRNA. The optical approach for a label-free miRNA sensor is very promising and many assays have demonstrated ultra-sensitivity (aM) with a fast response time. Here, we review the most relevant label-free microRNA optical biosensors and the nanomaterials used to enhance the performance of the optical biosensors.
Collapse
|
47
|
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T, Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis 2019; 10:670. [PMID: 31511493 PMCID: PMC6739313 DOI: 10.1038/s41419-019-1873-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/15/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β1, a main profibrogenic cytokine in the progression of idiopathic pulmonary fibrosis (IPF), induces differentiation of pulmonary fibroblasts to myofibroblasts that produce high levels of collagen, leading to concomitantly loss of lung elasticity and function. Recent studies implicate the importance of microRNAs (miRNAs) in IPF but their regulation and individual pathological roles remain largely unknown. We used both RNA sequencing and quantitative RT-PCR strategies to systematically study TGF-β1-induced alternations of miRNAs in human lung fibroblasts (HFL). Our data show that miR-133a was significantly upregulated by TGF-β1 in a time- and concentration-dependent manner. Surprisingly, miR-133a inhibits TGF-β1-induced myofibroblast differentiation whereas miR-133a inhibitor enhances TGF-β1-induced myofibroblast differentiation. Interestingly, quantitative proteomics analysis indicates that miR-133a attenuates myofibroblast differentiation via targeting multiple components of TGF-β1 profibrogenic pathways. Western blot analysis confirmed that miR-133a down-regulates TGF-β1-induced expression of classic myofibroblast differentiation markers such as ɑ-smooth muscle actin (ɑ-SMA), connective tissue growth factor (CTGF) and collagens. miRNA Target Searcher analysis and luciferase reporter assays indicate that TGF-β receptor 1, CTGF and collagen type 1-alpha1 (Col1a1) are direct targets of miR-133a. More importantly, miR-133a gene transferred into lung tissues ameliorated bleomycin-induced pulmonary fibrosis in mice. Together, our study identified TGF-β1-induced miR-133a as an anti-fibrotic factor. It functions as a feed-back negative regulator of TGF-β1 profibrogenic pathways. Thus, manipulations of miR-133a expression may provide a new therapeutic strategy to halt and perhaps even partially reverse the progression of IPF.
Collapse
Affiliation(s)
- Peng Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Yapei Huang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Qin Ma
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Junfeng Hao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, 64804, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, 68178, USA.
| |
Collapse
|
48
|
DROSHA-Dependent AIM2 Inflammasome Activation Contributes to Lung Inflammation during Idiopathic Pulmonary Fibrosis. Cells 2019; 8:cells8080938. [PMID: 31434287 PMCID: PMC6721825 DOI: 10.3390/cells8080938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has been linked to chronic lung inflammation. Drosha ribonuclease III (DROSHA), a class 2 ribonuclease III enzyme, plays a key role in microRNA (miRNA) biogenesis. However, the mechanisms by which DROSHA affects the lung inflammation during idiopathic pulmonary fibrosis (IPF) remain unclear. Here, we demonstrate that DROSHA regulates the absent in melanoma 2 (AIM2) inflammasome activation during idiopathic pulmonary fibrosis (IPF). Both DROSHA and AIM2 protein expression were elevated in alveolar macrophages of patients with IPF. We also found that DROSHA and AIM2 protein expression were increased in alveolar macrophages of lung tissues in a mouse model of bleomycin-induced pulmonary fibrosis. DROSHA deficiency suppressed AIM2 inflammasome-dependent caspase-1 activation and interleukin (IL)-1β and IL-18 secretion in primary mouse alveolar macrophages and bone marrow-derived macrophages (BMDMs). Transduction of microRNA (miRNA) increased the formation of the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks, which is required for AIM2 inflammasome activation in BMDMs. Our results suggest that DROSHA promotes AIM2 inflammasome activation-dependent lung inflammation during IPF.
Collapse
|
49
|
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019; 10:904. [PMID: 31474862 PMCID: PMC6707424 DOI: 10.3389/fphar.2019.00904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
Collapse
Affiliation(s)
| | - Ahmad Fahim Hedayat
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
50
|
Yang L, Liu X, Zhang N, Chen L, Xu J, Tang W. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem 2019; 120:11022-11032. [PMID: 30767300 PMCID: PMC6593700 DOI: 10.1002/jcb.28380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Pulmonary fibrosis is a lethal inflammatory disease. In this study, we aimed to explore the potential-related circular RNAs (circRNAs) and genes that are associated with pulmonary fibrosis. Pulmonary fibrosis rat models were constructed and the fibrosis deposition was detected using hematoxylin and eosin and Masson staining. The differentially expressed circRNAs were obtained through RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further performed to uncover the key function and pathways in pulmonary fibrosis. The interaction networks between circRNAs and their downstream micro RNAs (miRNAs) and genes were constructed by Cytoscape Software. The quantitative polymerase chain reaction was performed to validate the expression of 10 candidate circRNAs and five of them were performed ringwise sequencing in pulmonary fibrosis rats. We further selected five candidate circRNAs target miRNAs and messenger RNAs and validated by real-time polymerase chain reaction. The pulmonary fibrosis models were successfully constructed according to the pathological examination. circRNAs were differentially expressed between the pulmonary fibrosis and normal pulmonary tissues. GO analysis verified that the differentially expressed circRNAs were significantly clustered in the cellular component, molecular function, and biological process. In the KEGG analysis, circRNAs were enriched in the following pathways: antigen processing and presentation, phagosome, PI3K-AKt signaling pathway, HTLV-I infection, and Herpes simplex infection. After validation in pulmonary fibrosis rat models, it was found that five of those circRNAs (chr9:113534327|113546234 [down], chr1:200648164|200672411 [down], chr5:150850432|150865550 [up], chr20:14319170|14326640 [down], and chr10:57634023|57634588 [down]) showed a relatively consistent trend with predictions. Validation of these circRNAs target miRNAs and genes showed that chr9:113534327|113546234, chr20:14319170|14326640, and chr10:57634023|57634588 were implicated in Notch1 activated transforming growth factor-β (TGF-β) signaling pathway. The study demonstrated that a series of circRNAs are differentially expressed in pulmonary fibrosis rats. These circRNAs, especially TGF-β- and Notch1-related circRNAs might play an important role in regulating pulmonary fibrogenesis.
Collapse
Affiliation(s)
- Liteng Yang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Xin Liu
- Department of Traditional Chinese Medicine, Zunyi Medical and Pharmaceutical CollegeGuizhouZunyiChina
| | - Ning Zhang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Lifang Chen
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Jingyi Xu
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| | - Wencheng Tang
- Department of Respiratory MedicineShenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen UniversityGuangdongShenzhenChina
| |
Collapse
|