1
|
Martinez J, Ingram N, Kapur N, Jayne DG, Beales PA. Vesicle-based formulations for pain treatment: a narrative review. Pain Rep 2024; 9:e1196. [PMID: 39399306 PMCID: PMC11469894 DOI: 10.1097/pr9.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Pain, a complex and debilitating condition, necessitates innovative therapeutic strategies to alleviate suffering and enhance patients' quality of life. Vesicular systems hold the potential to enhance precision of drug localisation and release, prolong the duration of therapeutic action and mitigate adverse events associated with long-term pharmacotherapy. This review critically assesses the current state-of-the-art in vesicle-based formulations (liposomes, polymersomes, ethosomes, and niosomes) for pain management applications. We highlight formulation engineering strategies used to optimise drug pharmacokinetics, present preclinical findings of experimental delivery systems, and discuss the clinical evidence for the benefits of clinically approved formulations. We present the challenges and outlook for future improvements in long-acting anaesthetic and analgesic formulation development.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nicola Ingram
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David G. Jayne
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
- The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, United Kingdom
| | - Paul A. Beales
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
2
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Pan Q, Xin X, Mahto S, Dong Y, Kumar V, Hyde RK, Gupta N, Bhatt VR, Mahato RI. Anti-CLL1 liposome loaded with miR-497-5p and venetoclax as a novel therapeutic strategy in acute myeloid leukemia. Mol Ther 2024; 32:4058-4074. [PMID: 39369272 DOI: 10.1016/j.ymthe.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy. Chemotherapy resistance results in a dismal survival rate of 1-2 years in older adults with AML. Therefore, novel therapies are urgently required. In this context, microRNA (miRNA)-based treatments remain an untapped strategy in AML. Using patient-derived specimens, we found increased inflammatory cytokines, including interleukin-6 (IL-6) in the serum of older adults with AML, and decreased miR-497-5p in CD34+ leukemic blasts. Target prediction revealed that miR-497-5p could directly target mitogen-activated protein kinase-1 (MAP2K1) mRNA to indirectly target cytokines and the JAK/STAT signaling pathway through the p38-MAPK signaling pathway, potentially inhibiting leukemic growth and overcoming chemoresistance from venetoclax. To improve miRNA delivery and minimize off-target effects, which represent key barriers to clinical translation, we developed liposomes for co-delivery of miR-497-5p and venetoclax. We decorated our liposomes with a peptide targeting CLL1, which is present on 92% of leukemia blasts while being absent in normal hematopoietic cells. This targeted approach demonstrated high efficacy in inhibiting AML growth in mice with minimal toxicity, as well as reduced exposure to chemoresistance. Our findings suggested that anti-CLL1-decorated, miR-497-5p, and venetoclax-loaded liposomes represent a promising novel miRNA-based therapeutic, which should be investigated further as a strategy to reduce venetoclax resistance in AML.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/administration & dosage
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Liposomes
- Animals
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Disease Models, Animal
- Female
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Male
Collapse
Affiliation(s)
- Qiaoyu Pan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaofei Xin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sohan Mahto
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Gupta
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijaya R Bhatt
- Division of Hematology and Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Liu SS, Lang J, Wen S, Chen P, Shu H, Shindler S, Tang W, Ma X, Serota MD, Yang R. Transtympanic delivery of V 2O 5 nanowires with a tympanic-membrane penetrating peptide. Biomater Sci 2024. [PMID: 39494483 PMCID: PMC11533110 DOI: 10.1039/d4bm00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Otitis media is a prevalent pediatric condition. Local delivery of antimicrobial agents to treat otitis media is hindered by the low permeability of the stratum corneum layer in the tympanic membrane. While nanozymes, often inorganic nanoparticles, have been developed to cure otitis media in an antibiotic-free manner in a chinchilla animal model, the tympanic membrane creates an impenetrable barrier that prevents the local and non-invasive delivery of nanozymes. Here, we use a newly developed vanadium pentoxide (V2O5) nanowire as an example, which catalyzes the metabolic products of an otitis media pathogen (Streptococcus pneumoniae) into antiseptics, to explore the transtympanic delivery strategies for antimicrobial nanozymes. V2O5 nanowires with smaller dimensions (<300 nm in length) were synthesized by optimizing the synthesis conditions. To enhance penetrations across intact tympanic membranes, the nanowire was mixed or surface-modified with a trans-tympanic peptide, TMT3. The peptide-modified nanowires were characterized for their physical properties, catalytic activities, and antimicrobial activities. The cytotoxicity profile and permeation across ex vivo tympanic membrane samples were analyzed for the mixed and surface-modified nanozyme formulations.
Collapse
Affiliation(s)
- Sophie S Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Jiayan Lang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Shuxian Wen
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Pengyu Chen
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Haonian Shu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Simon Shindler
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Wenjing Tang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Xiaojing Ma
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Max D Serota
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
5
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
6
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
7
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
9
|
Wang J, Fan D, Cai D, Jin Y. Targeted delivery of rhein via hyaluronic acid modified liposomes for suppression of growth and metastasis of breast cancer. Int J Biol Macromol 2024; 282:137105. [PMID: 39486702 DOI: 10.1016/j.ijbiomac.2024.137105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Targeting and suppressing the malignant growth and metastasis of breast cancer has been challenging for years. Herein, a nanocarrier based on hyaluronic acid (HA)-modified cationic liposomes was developed for targeted delivery of rhein to achieve breast cancer therapy. The optimum HA-Lip-rhein had spherical and core-shell-like morphologies with an appropriate size of 189.7 ± 5.2 nm. Moreover, the HA-Lip-rhein exhibited higher cellular uptake in 4 T1 cells and enhanced cytotoxicity compared with unmodified liposomal rhein. Furthermore, in vitro cell migration and invasion inhibition assays showed that the HA-Lip-rhein exhibited superior inhibitory effects on breast cancer metastasis. HA-Lip-rhein improved the tumor targeting ability, anti-breast cancer activity, with good safety profile in the 4 T1 breast cancer-bearing mice compared with free rhein and Lip-rhein. The appearance of metastatic tumor nodules in the lungs and H&E staining of liver and lung organs confirmed that HA-Lip-rhein exerted strong antitumor efficacy and inhibited distant metastasis of breast cancer. Overall, the developed HA-Lip-rhein exhibited a good antitumor effect and suppression effect of distant metastasis, making it a novel and promising nanoplatform for further development.
Collapse
Affiliation(s)
- Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, PR China; Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Dijing Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Yingxue Jin
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, PR China.
| |
Collapse
|
10
|
Aekwattanaphol N, Das SC, Khadka P, Nakpheng T, Ali Khumaini Mudhar Bintang M, Srichana T. Development of a proliposomal pretomanid dry powder inhaler as a novel alternative approach for combating pulmonary tuberculosis. Int J Pharm 2024; 664:124608. [PMID: 39163929 DOI: 10.1016/j.ijpharm.2024.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.
Collapse
Affiliation(s)
- Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
11
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2024:1-29. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
12
|
Carnamucio F, Foti C, Cordaro M, Saija F, Cassone G, da Rocha SRP, Giuffrè O. Metal Complexation for the Rational Design of Gemcitabine Formulations in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56789-56800. [PMID: 39378358 PMCID: PMC11503523 DOI: 10.1021/acsami.4c12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Nanoformulation of chemotherapies represents a promising strategy to enhance outcomes in cancer therapy. Gemcitabine is a chemotherapeutic agent approved by the Food and Drug Administration for the treatment of various solid tumors. Nevertheless, its therapeutic effectiveness is constrained by its poor metabolic stability and pharmacokinetic profile. Nanoformulations of gemcitabine in lipid and polymer nanocarriers usually lead to poor loading capability and an inability to effectively control its release profile due to the physicochemical characteristics of the drug and matrices. Here, we propose metal-gemcitabine complexation with biorelevant metal cations as a strategy to alter the properties of gemcitabine in a noncovalent manner, paving the way for the development of novel nanoformulations. A speciation study on gemcitabine and Mn2+, Zn2+, and Ca2+ was performed with the aim of investigating the extent of the interaction between the drug and the proposed metal cations, and selecting the best conditions of temperature, pH, and drug-to-metal molar ratio that optimize such interactions. Also, a series of density functional theory calculations and spin-polarized ab initio molecular dynamics simulations were carried out to achieve insights on the atomistic modalities of these interactions. Mn2+-gemcitabine species demonstrated the ability to maintain gemcitabine's biological activity in vitro. The scientific relevance of this study lies in its potential to propose metal-gemcitabine as a valuable strategy for developing nanoformulations with optimized quality target product profiles. The work is also clinically relevant because it will lead to improved treatment outcomes, including enhanced efficacy and pharmacokinetics, decreased toxicity, and new clinical possibilities for this potent therapeutic molecule.
Collapse
Affiliation(s)
- Federica Carnamucio
- Department
of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences
- School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
| | - Claudia Foti
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Franz Saija
- Institute
for Chemical-Physical Processes National Research Council of Italy, Viale Ferdinando Stagno d’Alcontres,
37, 98158 Messina, Italy
| | - Giuseppe Cassone
- Institute
for Chemical-Physical Processes National Research Council of Italy, Viale Ferdinando Stagno d’Alcontres,
37, 98158 Messina, Italy
| | - Sandro R. P. da Rocha
- Department
of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences
- School of Pharmacy, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
| | - Ottavia Giuffrè
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| |
Collapse
|
13
|
Motezakker A, Greca LG, Boschi E, Siqueira G, Lundell F, Rosén T, Nyström G, Söderberg LD. Stick, Slide, or Bounce: Charge Density Controls Nanoparticle Diffusion. ACS NANO 2024; 18:28636-28648. [PMID: 39378149 PMCID: PMC11503907 DOI: 10.1021/acsnano.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The diffusion and interaction dynamics of charged nanoparticles (NPs) within charged polymer networks are crucial for understanding various biological and biomedical applications. Using a combination of coarse-grained molecular dynamics simulations and experimental diffusion studies, we investigate the effects of the NP size, relative surface charge density (ζ), and concentration on the NP permeation length and time. We propose a scaling law for the relative diffusion of NPs with respect to concentration and ζ, highlighting how these factors influence the NP movement within the network. The analyses reveal that concentration and ζ significantly affect NP permeation length and time, with ζ being critical, as critical as concentration. This finding is corroborated by controlled release experiments. Further, we categorize NP dynamics into sticking, sliding, and bouncing regimes, demonstrating how variations in ζ, concentration, and NP size control these behaviors. Through normalized attachment time (NAT) analyses, we elucidate the roles of electrostatic interactions, steric hindrance, and hydrodynamic forces in governing NP dynamics. These insights provide guidance for optimizing NP design in targeted drug delivery and advanced material applications, enhancing our understanding of NP behavior in complex environments.
Collapse
Affiliation(s)
- Ahmad
Reza Motezakker
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Stockholm, SE 100 44, Sweden
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Luiz G. Greca
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Enrico Boschi
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Gilberto Siqueira
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Fredrik Lundell
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Stockholm, SE 100 44, Sweden
| | - Tomas Rosén
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Gustav Nyström
- Laboratory
for Cellulose and Wood Materials, Swiss
Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - L. Daniel Söderberg
- Wallenberg
Wood Science Center, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Stockholm, SE 100 44, Sweden
| |
Collapse
|
14
|
Berger B, Vietor HM, Scott DW, Lee H, Hashemipour S, Im W, Wittenberg NJ, Glover KJ. Physicochemical Properties of Seed Oil Blends and Their Potential for the Creation of Synthetic Oleosomes with Modulated Polarities. ACS OMEGA 2024; 9:43193-43202. [PMID: 39464465 PMCID: PMC11500134 DOI: 10.1021/acsomega.4c07512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
There is an increasing demand within the pharmaceutical and cosmetic industries for biofriendly lipid-based active ingredient delivery systems. Micelles, liposomes, and lipid nanoparticles are currently the most used systems despite their limitations. Oleosomes, also known as lipid droplets, are promising alternatives to the existing strategies. Oleosomes are typically found in plant cells and are characterized by a nonpolar triacylglycerol core surrounded by a phospholipid monolayer punctuated with the protein oleosin. Producing oleosomes synthetically allows the customization of their lipid content, size, protein content, and oil core characteristics, expanding their versatility. Herein we demonstrate a proof of concept for the use of synthetic oleosomes to sequester polar molecules by modulating their core polarity with blends of sunflower and castor oils. The physical properties (density, refractive index, and permittivity) of the oil blends are characterized and demonstrate ideal mixing of the oils, which is supported by molecular dynamics simulations. Spectroscopic examination of the oil blends using fluorescent probes shows that the polarity of oil blends increases as the fraction of castor oil increases. Finally, we show that the uptake of a polar fluorescent probe (NBD-glucose) into synthetic oleosomes is enhanced by increasing the polarity of the oil core, but large charged molecules are excluded from the core regardless of polarity. These experiments show that synthetic oleosomes with tunable oil cores can expand the range of molecules that can be loaded into a biofriendly package as desired for biotechnology applications.
Collapse
Affiliation(s)
- Brett
A. Berger
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Henry M. Vietor
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Dane W. Scott
- Department
of Chemistry, East Tennessee State University, P.O. Box 70695, Johnson City, Tennessee 37614, United States
| | - Hwayoung Lee
- Department
of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Sanaz Hashemipour
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments
of Biological Sciences and Bioengineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Kerney Jebrell Glover
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
15
|
Hari Priya VM, Ganapathy A A, Veeran MG, Raphael M S, Kumaran A. Nanotechnology-based drug delivery platforms for erectile dysfunction: addressing efficacy, safety, and bioavailability concerns. Pharm Dev Technol 2024:1-20. [PMID: 39392251 DOI: 10.1080/10837450.2024.2414379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Erectile dysfunction (ED), is a common and multidimensional sexual disorder, which comprises changes among any of the processes of the erectile response such as organic, relational, and psychological. However, both endocrine and nonendocrine causes of ED produce substantial health implications including depression and anxiety due to poor sexual performance, eventually affecting man's life eminence. Marginally invasive interventions following ED consist of lifestyle modifications, oral drugs, injections, vacuum erection devices, etc. Nevertheless, these conventional treatment regimens follow certain drawbacks such as efficacy and safety issues, and navigate to the development of novel therapeutic approaches such as nanomedicine for ED management. Nanotechnology-centred drug delivery platforms are being explored to minimize these limitations with better in vitro and in vivo effectiveness. Moreover, nanomedicine and nanocarrier-linked approaches are rapidly developing science in the nanoscale range, which contributes to site-specific delivery in a controlled manner and has generated considerable interest prominent to their potential to enhance bioavailability, decrease side effects, and avoidance of first-pass metabolism. This review provides an overview of recent discoveries regarding various nanocarriers and nano-delivery methods, along with current trends in the clinical aspects of ED. Additionally, strategies for clinical translation have been incorporated.
Collapse
Affiliation(s)
- Vijayakumari Mahadevan Hari Priya
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anand Ganapathy A
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Midhu George Veeran
- Corporate Research and Development Centre (CRDC), HLL Lifecare Ltd, Akkulam, Thiruvananthapuram, India
| | - Shyni Raphael M
- Department of Chemistry, Government College for Women, Thiruvananthapuram, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Gao R, Lin P, Yang W, Fang Z, Gao C, Cheng B, Fang J, Yu W. Bio-Inspired Nanodelivery Platform: Platelet Membrane-Cloaked Genistein Nanosystem for Targeted Lung Cancer Therapy. Int J Nanomedicine 2024; 19:10455-10478. [PMID: 39430311 PMCID: PMC11491070 DOI: 10.2147/ijn.s479438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Background Genistein (Gen), a natural polyphenolic compound, has emerged as a promising candidate for lung cancer treatment. However, the potential clinical application of Gen is limited due to its poor solubility, low bioavailability, and toxic side effects. To address these challenges, a biomimetic delivery platform with cell membranes derived from natural cells as carrier material was constructed. This innovative approach aims to facilitate targeted drug delivery and solve the problem of biocompatibility of synthetic materials. Methods First, the liposomes (LPs) loaded with Gen (LPs@Gen) was prepared using the ethanol injection method. Subsequently, PLTM-LPs@Gen was obtained through co-extrusion after mixing platelet membrane (PLTM) and LPs@Gen. Additionally, the biological and physicochemical properties of PLTM-LPs@Gen were investigated. Finally, the targeting ability, therapeutic efficacy, and safety of PLTM-LPs@Gen for lung cancer were evaluated using both a cell model and a tumor-bearing nude mouse model. Results The optimal preparation ratio for LPs@Gen was Gen: soybean lecithin: cholesterol: DSPE-PEG2000 (3:30:5:10, mass ratio), while the ideal fusion ratio of LPs@Gen and PLTM was 1:1. The particle size of PLTM-LPs@Gen was 108.33 ± 1.06 nm, and the encapsulation efficiency and drug loading were 94.29% and 3.09% respectively. Gen was released continuously and slowly from PLTM-LPs@Gen. Moreover, PLTM-LPs@Gen exhibited good stability within one week. The results of in vitro cellular uptake and in vivo distribution experiments indicated that the carrier material, PLTM-LPs, has the immune escape ability and tumor targeting ability. Consequently, it showed better therapeutic effects than free drugs and traditional LPs in vitro and in vivo tumor models. In addition, safety experiments demonstrated that PLTM-LPs@Gen possesses good biocompatibility. Conclusion Biomimetic nanomedicine provides a new strategy for the precision treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Chunxiao Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315500, People’s Republic of China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, People’s Republic of China
| |
Collapse
|
17
|
Van de Cauter L, Jawale YK, Tam D, Baldauf L, van Buren L, Koenderink GH, Dogterom M, Ganzinger KA. High-Speed Imaging of Giant Unilamellar Vesicle Formation in cDICE. ACS OMEGA 2024; 9:42278-42288. [PMID: 39431092 PMCID: PMC11483911 DOI: 10.1021/acsomega.4c04825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Giant unilamellar vesicles (GUVs) are widely used as in vitro model membranes in biophysics and as cell-sized containers in synthetic biology. Despite their ubiquitous use, there is no one-size-fits-all method for their production. Numerous methods have been developed to meet the demanding requirements of reproducibility, reliability, and high yield while simultaneously achieving robust encapsulation. Emulsion-based methods are often praised for their apparent simplicity and good yields; hence, methods like continuous droplet interface crossing encapsulation (cDICE), which make use of this principle, have gained popularity. However, the underlying physical principles governing the formation of GUVs in cDICE and related methods remain poorly understood. To this end, we have developed a high-speed microscopy setup that allows us to visualize GUV formation in real time. Our experiments reveal a complex droplet formation process occurring at the capillary orifice, generating >30 μm-sized droplets and only in some cases GUV-sized (∼15 μm) satellite droplets. According to existing theoretical models, the oil-water interface should allow for the crossing of all droplets, but based on our observations and scaling arguments on the fluid dynamics within the system, we find a size-selective crossing of GUV-sized droplets only. The origin of these droplets remains partly unclear; we hypothesize that some small GUVs might be formed from large droplets sitting at the second interface. Finally, we demonstrate that proteins in the inner solution affect GUV formation by increasing the viscosity and altering the lipid adsorption kinetics. These results will not only contribute to a better understanding of GUV formation processes in cDICE but ultimately also aid in the development of more reliable and efficient methods for GUV production.
Collapse
Affiliation(s)
| | - Yash K. Jawale
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Daniel Tam
- Laboratory
for Aero and Hydrodynamics, Delft University
of Technology, Delft 2629 HZ, The Netherlands
| | - Lucia Baldauf
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Lennard van Buren
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Marileen Dogterom
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | | |
Collapse
|
18
|
Li C, Fang Y, Xu S, Zhao J, Dong D, Li S. Nanomedicine in HNSCC therapy-a challenge to conventional therapy. Front Pharmacol 2024; 15:1434994. [PMID: 39469621 PMCID: PMC11513379 DOI: 10.3389/fphar.2024.1434994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a difficult-to-treat cancer and treatment is challenging due to recurrence or metastasis. Therefore, there is an urgent need to explore more effective targeted therapies to improve the clinical outcomes and survival of HNSCC patients. The nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer therapy. In this review, we summarize some important signaling pathways and present the current and potential roles of various nanomaterial drug-delivery formulations in HNSCC treatment, aiming to understand the pathogenesis of HNSCC and further improve the therapeutic efficacy of nanomaterial HNSCC. This article seeks to highlight the exciting potential of novel nanomaterials for targeted cancer therapy in HNSCC and thus provide motivation for further research in this field.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuan Fang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sanchun Xu
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Clinical Laboratory Center, Central Hospital of Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Bérot A, Maniti O, El Alaoui S, Granjon T, El Alaoui M. Generation of Anti-Epidermal Growth Factor Receptor-2 (HER2) Immunoliposomes Using Microbial Transglutaminase (mTG)-Mediated Site-Specific Conjugated Antibodies. ACS Pharmacol Transl Sci 2024; 7:3034-3044. [PMID: 39416960 PMCID: PMC11475288 DOI: 10.1021/acsptsci.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation. In this study, we report the use of the patented COVISOLINK technology and the strain-promoted alkyne-azide cycloaddition (SPAAC) to generate immunoliposomes that target HER2 positive breast cancer with Trastuzumab as the antibody to be coupled. The efficacy of our two-step functionalization strategy and the successful specific coupling of the antibodies were validated by high-performance liquid chromatography-size exclusion chromatography (HPLC-SEC), which allowed a precise quantification of antibodies conjugated to liposomes and confirmed by cryo-TEM and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. We also demonstrate by flow cytometry and epifluorescence microscopy that the produced anti-HER2 immunoliposomes were able to interact specifically with their target cells (SK-BR-3) while remaining negative with cells that express HER2 at a low level (MDA-MB-231). Hence, for the first time, our COVISOLINK strategy using microbial transglutaminase (mTG) enables the preparation and production of well-characterized immunoliposomes that could be used in different applications, including therapies.
Collapse
Affiliation(s)
- Anna Bérot
- Covalab, 1B Rue Jacques Monod, 69500 Bron, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | - Ofelia Maniti
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | | | - Thierry Granjon
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires
ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
| | | |
Collapse
|
20
|
Okafor NI. Microencapsulation Techniques in HIV Pediatric Formulations: Advances and Future Outlook. Adv Pharmacol Pharm Sci 2024; 2024:5081655. [PMID: 39421019 PMCID: PMC11483870 DOI: 10.1155/2024/5081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 10/19/2024] Open
Abstract
The treatment of human immunodeficiency virus (HIV) in children has persistently been complex and tedious on a global scale. This is because adult and pediatric HIV treatments follow a similar therapeutic approach. Due to the dearth of clinically licensed pediatric antiretroviral drug (ARVD) therapy, children with HIV worldwide are prescribed unlicensed drugs each year. This has triggered likelihood of poor drug adherence, therapeutic failure, and even adverse reactions brought on by a variety of factors, including pill size and quantity, which is the main cause of swallowing difficulties, repeated administration of these various ARVDs, many of which have poor solubility and cause severe side effects in children, and unpalatability of the drug, which is one of the criteria for pediatric formulations. Thus, there is a necessity for investigation into several advanced microencapsulation techniques that could curb these challenges. Microencapsulation techniques have explored in drug delivery for encapsulation and manufacture of different nanoparticles that have shown significant potential in mitigating and surmounting different constraints, such as taste masking, enhanced drug solubility and bioavailability, and production of micronized fine powders for treatment of varying diseases. Nevertheless, the usage of these technologies in HIV pediatric formulations has garnered relatively little attention. Thus, this review has paid a keen interest in examining several microencapsulation strategies for potential utilization in the development of HIV pediatric formulations.
Collapse
Affiliation(s)
- Nnamdi Ikemefuna Okafor
- Department of Pharmaceutical Sciences, University of the Western Cape, Robert Sobukwe Drive, Bellville, Cape Town, South Africa
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
22
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
23
|
Singh A, Reynolds JNJ. Therapeutic ultrasound: an innovative approach for targeting neurological disorders affecting the basal ganglia. Front Neuroanat 2024; 18:1469250. [PMID: 39417047 PMCID: PMC11480080 DOI: 10.3389/fnana.2024.1469250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.
Collapse
Affiliation(s)
| | - John N. J. Reynolds
- Translational Brain Plasticity Laboratory, Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
25
|
Li H, Wang M, Huang Y. Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective. Biomed Pharmacother 2024; 179:117312. [PMID: 39167843 DOI: 10.1016/j.biopha.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.
Collapse
Affiliation(s)
- Hansheng Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Meilun Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
26
|
Song Q, Li J, Li T, Li H. Nanomaterials that Aid in the Diagnosis and Treatment of Alzheimer's Disease, Resolving Blood-Brain Barrier Crossing Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403473. [PMID: 39101248 PMCID: PMC11481234 DOI: 10.1002/advs.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Indexed: 08/06/2024]
Abstract
As a form of dementia, Alzheimer's disease (AD) suffers from no efficacious cure, yet AD treatment is still imperative, as it ameliorates the symptoms or prevents it from deteriorating or maintains the current status to the longest extent. The human brain is the most sensitive and complex organ in the body, which is protected by the blood-brain barrier (BBB). This yet induces the difficulty in curing AD as the drugs or nanomaterials that are much inhibited from reaching the lesion site. Thus, BBB crossing capability of drug delivery system remains a significant challenge in the development of neurological therapeutics. Fortunately, nano-enabled delivery systems possess promising potential to achieve multifunctional diagnostics/therapeutics against various targets of AD owing to their intriguing advantages of nanocarriers, including easy multifunctionalization on surfaces, high surface-to-volume ratio with large payloads, and potential ability to cross the BBB, making them capable of conquering the limitations of conventional drug candidates. This review, which focuses on the BBB crossing ability of the multifunctional nanomaterials in AD diagnosis and treatment, will provide an insightful vision that is conducive to the development of AD-related nanomaterials.
Collapse
Affiliation(s)
- Qingting Song
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Junyou Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Ting Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Hung‐Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
27
|
Singh R, Yadav D, Ingole PG, Ahn YH. Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications. BIOMATERIALS ADVANCES 2024; 163:213948. [PMID: 38959651 DOI: 10.1016/j.bioadv.2024.213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The use of nanoparticles has increased significantly over the past few years in a number of fields, including diagnostics, biomedicine, environmental remediation, and water treatment, generating public interest. Among various types of nanoparticles, magnetic nanoparticles (MNPs) have emerged as an essential tool for biomedical applications due to their distinct physicochemical properties compared to other nanoparticles. This review article focuses on the recent growth of MNPs and comprehensively reviews the advantages, multifunctional approaches, biomedical applications, and latest research on MNPs employed in various biomedical techniques. Biomedical applications of MNPs hold on to their ability to rapidly switch magnetic states under an external field at room temperature. Ideally, these MNPs should be highly susceptible to magnetization when the field is applied and then lose that magnetization just as quickly once the field is removed. This unique property allows MNPs to generate heat when exposed to high-frequency magnetic fields, making them valuable tools in developing treatments for hyperthermia and other heat-related illnesses. This review underscores the role of MNPs as tools that hold immense promise in transforming various aspects of healthcare, from diagnostics and imaging to therapeutic treatments, with discussion on a wide range of peer-reviewed articles published on the subject. At the conclusion of this work, challenges and potential future advances of MNPs in the biomedical field are highlighted.
Collapse
Affiliation(s)
- Randeep Singh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
28
|
Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: Chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol 2024; 278:135022. [PMID: 39182895 DOI: 10.1016/j.ijbiomac.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
Collapse
Affiliation(s)
- Ira Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Shalinee Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Yang Y, Du J, Gan J, Song X, Shu J, An C, Lu L, Wei H, Che J, Zhao X. Neutrophil-Mediated Nanozyme Delivery System for Acute Kidney Injury Therapy. Adv Healthc Mater 2024; 13:e2401198. [PMID: 38899383 DOI: 10.1002/adhm.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) scavenging of nanozymes toward acute kidney injury (AKI) is a current promising strategy, however, the glomerular filtration barrier (GFB) limits their application for treating kidney related diseases. Here, a neutrophil-mediated delivery system able to hijack neutrophil to transport nanozyme-loaded cRGD-liposomes to inflamed kidney for AKI treatment by cRGD targeting integrin αvβ1 is reported. The neutrophil-mediated nanozyme delivery system demonstrated great antioxidant and anti-apoptosis ability in HK-2 and NRK-52E cell lines. Moreover, in ischemia-reperfusion (I/R) induced AKI mice, a single dose of LM@cRGD-LPs 12 h post-ischemia significantly reduces renal function indicators, alleviates renal pathological changes, and inhibits apoptosis of renal tubular cells and the expression of renal tubular injured marker, thus remarkably reducing the damage of AKI. Mechanistically, the treatment of LM@cRGD-LPs markedly inhibits the process of Nrf2 to the nucleus and reduces the expression of the downstream HO-1, achieves a 99.51% increase in renal tissue Nrf2 levels, and an 86.31% decrease in HO-1 levels after LM@cRGD-LPs treatment. In short, the strategy of neutrophil-mediated nanozyme delivery system hold great promise as a potential therapy for AKI or other inflammatory diseases.
Collapse
Affiliation(s)
- Yu Yang
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiang Du
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jingjing Gan
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiang Song
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Chaoli An
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Lu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junyi Che
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
30
|
Villa A, Crescenti D, De Mitri Z, Crippa E, Rosa S, Rizzi N, Shojaei-Ghahrizjani F, Rebecchi M, Vincenti S, Selmin F, Brunialti E, Simonotti N, Maspero M, Dei Cas M, Recordati C, Paltrinieri S, Giordano A, Paroni R, Galassi M, Ladisa V, Arienti F, Cilurzo F, Mazzaferro V, Ciana P. Preclinical pharmacology of patient-derived extracellular vesicles for the intraoperative imaging of tumors. Theranostics 2024; 14:6301-6318. [PMID: 39431003 PMCID: PMC11488097 DOI: 10.7150/thno.98671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024] Open
Abstract
Extracellular vesicles (EVs) derived from the plasma of oncological patients exhibit significant tumor-targeting properties, unlike those from healthy individuals. We have previously shown the feasibility of formulating the near-infrared (NIR) fluorescent dye indocyanine green (ICG) with patient-derived extracellular vesicles (PDEVs) for selective delivery to neoplastic tissue. This staining protocol holds promise for clinical application in intraoperative tumor margin imaging, enabling precise neoplastic tissue resection. To this end, we propose the ONCOGREEN protocol, involving PDEV isolation, ICG loading, and reinfusion into the same patients. Methods: By in vivo studies on mice, we outlined key pharmacological parameters of PDEVs-ICG for intraoperative tumor imaging, PDEV biodistribution kinetics, and potential treatment-related toxicological effects. Additionally, we established a plasmapheresis-based protocol for isolating autologous PDEVs, ensuring the necessary large-scale dosage for human treatment. A potential lyophilization-based preservation method was also explored to facilitate the storage and transport of PDEVs. Results: The study identified the effective dose of PDEVs-ICG necessary for clear intraoperative tumor margin imaging. The biodistribution kinetics of PDEVs showed favorable targeting to neoplastic tissues, without off-target distribution. Toxicological assessments revealed no significant adverse effects associated with the treatment. The plasmapheresis-based isolation protocol successfully yielded a sufficient quantity of autologous PDEVs, and the lyophilization preservation method maintained the functional integrity of PDEVs for subsequent clinical application. Conclusions: Our research lays the groundwork for the direct clinical application of autologous PDEVs, initially focusing on intraoperative imaging. Utilizing autologous PDEVs has the potential to accelerate the integration of EVs as a targeted delivery tool for anti-neoplastic agents to cancerous tissue. This approach promises to enhance the precision of neoplastic tissue resection and improve overall surgical outcomes for oncological patients.
Collapse
Affiliation(s)
- Alessandro Villa
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Zemira De Mitri
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Silvia Rosa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nicoletta Rizzi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Monica Rebecchi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Vincenti
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Nicolò Simonotti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marianna Maspero
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Michele Dei Cas
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Margherita Galassi
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Vito Ladisa
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Flavio Arienti
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- HPB Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS Foundation (INT), Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Liu F, Chen Y, Huang Y, Jin Q, Ji J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J Mater Chem B 2024; 12:9173-9198. [PMID: 39192670 DOI: 10.1039/d4tb01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| |
Collapse
|
32
|
Kumar A, Maiti A, Verma S, Daschakraborty S. How do Photoswitchable Lipids Influence the Intercalation of Anticancer Drug in Lipid Membrane? Investigation using Molecular Dynamics Simulation. Chem Asian J 2024; 19:e202400416. [PMID: 38949780 DOI: 10.1002/asia.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Photoswitchable lipids, particularly azobenzene-derivatized phosphatidylcholine (azoPC) lipids, offer a unique mechanism for reversible modification of membrane properties upon exposure to ultraviolet (UV) radiation. Through all-atom molecular dynamics simulations, we explore how UV irradiation-induced trans-to-cis photoisomerization (TCPI) of AzoPC lipid influences the structure and dynamics of a lipid membrane, composed of dipalmitoylphosphatidylcholine (DPPC) and cholesterol with similar composition to that of the DOXIL®. Structural and dynamical analyses of two states of the membrane, 'dark' state (containing cis-azoPC lipid) and 'bright' state (containing 85 % cis-azoPC and 15 % trans-azoPC lipids) reveal that the TCPI reduces membrane packing density and increases diffusivity of lipids. We have demonstrated an enhanced intercalation of doxorubicin (DOX), an anticancer drug, in the 'bright' state of the membrane compared to that in the 'dark' state. This study - elucidating the complex interplay between lipid composition, photoswitching, and lipid-drug interactions - contributes to the design of lipid-based systems for targeted drug delivery and biomedical applications.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India
| | - Sahil Verma
- Department of Chemistry, Indian Institute of Technology Patna, Bihar, 801106, India
| | | |
Collapse
|
33
|
Vázquez-Villar V, Das C, Swift T, Elies J, Tolosa J, García-Martínez JC, Ruiz A. Oligo(styryl)benzenes liposomal AIE-dots for bioimaging and phototherapy in an in vitro model of prostate cancer. J Colloid Interface Sci 2024; 670:585-598. [PMID: 38776693 DOI: 10.1016/j.jcis.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Whilst the development of advanced organic dots with aggregation-induced emission characteristics (AIE-dots) is being intensively studied, their clinical translation in efficient biotherapeutic devices has yet to be tackled. This study explores the synergistic interplay of oligo(styryl)benzenes (OSBs), potent fluorogens with an increased emission in the aggregate state, and Indocyanine green (ICG) as dual Near Infrared (NIR)-visible fluorescent nanovesicles with efficient reactive oxygen species (ROS) generation capacity for cancer treatment using photodynamic therapy (PDT). The co-loading of OSBs and ICG in different nanovesicles has been thoroughly investigated. The nanovesicles' physicochemical properties were manipulated via molecular engineering by modifying the structural properties of the lipid bilayer and the number of oligo(ethyleneoxide) chains in the OSB structure. Diffusion Ordered Spectroscopy (DOSY) NMR and spectrofluorometric studies revealed key differences in the structure of the vesicles and the arrangement of the OSB and ICG in the bilayer. The in vitro assessment of these OSB-ICG nanovesicles revealed that the formulations can increase the temperature and generate ROS after photoirradiation, showing for the first time their potential as dual photothermal/photodynamic (PTT/PDT) agents in the treatment of prostate cancer. Our study provides an exciting opportunity to extend the range of applications of OSB derivates to potentiate the toxicity of phototherapy in prostate and other types of cancer.
Collapse
Affiliation(s)
- Víctor Vázquez-Villar
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain
| | - Chandrima Das
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Thomas Swift
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Jacobo Elies
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Juan Tolosa
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain.
| | - Joaquín C García-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Regional Center for Biomedical Research (CRIB), C/ Almansa 13, 02008 Albacete, Spain.
| | - Amalia Ruiz
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
34
|
Neupane KR, Aryal SP, Harvey BT, Ramon GS, Chun B, McCorkle JR, Kolesar JM, Kekenes-Huskey PM, Richards CI. Organelle Specific Macrophage Engineered Vesicles Differentially Reprogram Macrophage Polarization. Adv Healthc Mater 2024:e2401906. [PMID: 39240019 DOI: 10.1002/adhm.202401906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Tumor-associated macrophages (TAMs) represent the majority of the immune cells present in the tumor microenvironment. These macrophages exhibit an anti-inflammatory (M2)-like physiological state and execute immune-suppressive and tumor-supporting properties. With TAMs being plastic, there is a growing interest in reprogramming them toward a pro-inflammatory (M1)-like phenotype that exhibits anti-tumoral properties. Recent studies have demonstrated that both engineered vesicles derived from macrophages and endogenous extracellular vesicles produced by macrophages can be programmed to alter macrophage phenotype. Here it is demonstrated that pro-inflammatory macrophage-engineered subcellular vesicles (MEVs) have differential properties based on their organelle of origin. Endoplasmic reticulum specific MEVs (erMEVs) treated M2 macrophages exhibit enhanced pro-inflammatory cytokine production compared to plasma membrane specific MEVs (pmMEVs) treated M2 macrophages. In addition, under in vitro co-culture conditions, erMEVs elicit superior efficacy in suppressing the viability of cancer cells compared to the same concentration of pmMEVs. Furthermore, erMEVs and pmMEVs maintain differences in their membrane proteins, that regulate the repolarization efficacy of M2 macrophages toward an M1-like phenotype. In addition, The M2 to M1 repolarizing efficacy of MEVs can be altered by changing the activity of the membrane proteins present on erMEVs or pmMEVs.
Collapse
Affiliation(s)
- Khaga R Neupane
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Brock T Harvey
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Geraldine San Ramon
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | - Byeong Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | - J Robert McCorkle
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, 40508, USA
| | - Jill M Kolesar
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, 40508, USA
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, 60153, USA
| | | |
Collapse
|
35
|
Porbaha P, Ansari R, Kiafar MR, Bashiry R, Khazaei MM, Dadbakhsh A, Azadi A. A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles. AAPS PharmSciTech 2024; 25:208. [PMID: 39237678 DOI: 10.1208/s12249-024-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.
Collapse
Affiliation(s)
- Pedram Porbaha
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Ansari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Rahman Bashiry
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
36
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
37
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
38
|
Oldham ML, Zuhaib Qayyum M, Kalathur RC, Rock CO, Radka CD. Cryo-EM reconstruction of oleate hydratase bound to a phospholipid membrane bilayer. J Struct Biol 2024; 216:108116. [PMID: 39151742 PMCID: PMC11385989 DOI: 10.1016/j.jsb.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA. OhyA is a dimeric flavoenzyme whose carboxy terminus is identified as the membrane binding domain; however, understanding how OhyA binds to cellular membranes is not complete until the membrane-bound structure has been elucidated. All available OhyA structures depict the solution state of the protein outside its functional environment. Here, we employ liposomes to solve the cryo-electron microscopy structure of the functional unit: the OhyA•membrane complex. The protein maintains its structure upon membrane binding and slightly alters the curvature of the liposome surface. OhyA preferentially associates with 20-30 nm liposomes with multiple copies of OhyA dimers assembling on the liposome surface resulting in the formation of higher-order oligomers. Dimer assembly is cooperative and extends along a formed ridge of the liposome. We also solved an OhyA dimer of dimers structure that recapitulates the intermolecular interactions that stabilize the dimer assembly on the membrane bilayer as well as the crystal contacts in the lattice of the OhyA crystal structure. Our work enables visualization of the molecular trajectory of membrane binding for this important interfacial enzyme.
Collapse
Affiliation(s)
- Michael L Oldham
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - M Zuhaib Qayyum
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ravi C Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles O Rock
- Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher D Radka
- Department of Host Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
39
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
40
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Skrinda-Melne M, Locs J, Grava A, Dubnika A. Calcium phosphates enhanced with liposomes - the future of bone regeneration and drug delivery. J Liposome Res 2024; 34:507-522. [PMID: 37988074 DOI: 10.1080/08982104.2023.2285973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Effective healing and regeneration of various bone defects is still a major challenge and concern in modern medicine. Calcium phosphates have emerged as extensively studied bone substitute materials due to their structural and chemical resemblance to the mineral phase of bone, along with their versatile properties. Calcium phosphates present promising biological characteristics that make them suitable for bone substitution, but a critical limitation lies in their low osteoinductivity. To supplement these materials with properties that promote bone regeneration, prevent infections, and cure bone diseases locally, calcium phosphates can be biologically and therapeutically modified. A promising approach involves combining calcium phosphates with drug-containing liposomes, renowned for their high biocompatibility and ability to provide controlled and sustained drug delivery. Surprisingly, there is a lack of research focused on liposome-calcium phosphate composites, where liposomes are dispersed within a calcium phosphate matrix. This raises the question of why such studies are limited. In order to provide a comprehensive overview of existing liposome and calcium phosphate composites as bioactive substance delivery systems, the authors review the literature exploring the interactions between calcium phosphates and liposomes. Additionally, it seeks to identify potential interactions between calcium ions and liposomes, which may impact the feasibility of developing liposome-containing calcium phosphate composite materials. Liposome capacity to protect bioactive compounds and facilitate localized treatment can be particularly valuable in scenarios involving bone regeneration, infection prevention, and the management of bone diseases. This review explores the implications of liposomes and calcium phosphate material containing liposomes on drug delivery, bioavailability, and stability, offering insights into their advantages.
Collapse
Affiliation(s)
- Marite Skrinda-Melne
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Andra Grava
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubnika
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
43
|
Shirakura T, Krishnamoorthy L, Paliwal P, Hird G, McCluskie K, McWilliams P, He M, Ismaili MHA. In vitro treatment with liposome-encapsulated Mannose-1-phosphate restores N-glycosylation in PMM2-CDG patient-derived fibroblasts. Mol Genet Metab 2024; 143:108531. [PMID: 39053125 DOI: 10.1016/j.ymgme.2024.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Abstract
PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao He
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
44
|
Almeida DRS, Gil JF, Guillot AJ, Li J, Pinto RJB, Santos HA, Gonçalves G. Advances in Microfluidic-Based Core@Shell Nanoparticles Fabrication for Cancer Applications. Adv Healthc Mater 2024; 13:e2400946. [PMID: 38736024 DOI: 10.1002/adhm.202400946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.
Collapse
Affiliation(s)
- Duarte R S Almeida
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - João Ferreira Gil
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Ricardo J B Pinto
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, Aveiro, 3810-193, Portugal
- Intelligent Systems Associate Laboratory (LASI), Guimarães, 4800-058, Portugal
| |
Collapse
|
45
|
Zhang L, Lou W, Wang J. Advances in nucleic acid therapeutics: structures, delivery systems, and future perspectives in cancer treatment. Clin Exp Med 2024; 24:200. [PMID: 39196428 PMCID: PMC11358240 DOI: 10.1007/s10238-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cancer has emerged as a significant threat to human health. Nucleic acid therapeutics regulate the gene expression process by introducing exogenous nucleic acid fragments, offering new possibilities for tumor remission and even cure. Their mechanism of action and high specificity demonstrate great potential in cancer treatment. However, nucleic acid drugs face challenges such as low stability and limited ability to cross physiological barriers in vivo. To address these issues, various nucleic acid delivery vectors have been developed to enhance the stability and facilitate precise targeted delivery of nucleic acid drugs within the body. In this review article, we primarily introduce the structures and principles of nucleic acid drugs commonly used in cancer therapy, as well as their cellular uptake and intracellular transportation processes. We focus on the various vectors commonly employed in nucleic acid drug delivery, highlighting their research progress and applications in recent years. Furthermore, we propose potential trends and prospects of nucleic acid drugs and their carriers in the future.
Collapse
Affiliation(s)
- Leqi Zhang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wenting Lou
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
46
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
47
|
Zaleski MH, Omo-Lamai S, Nong J, Chase LS, Myerson JW, Glassman PM, Lee F, Reyes-Esteves S, Wang Z, Patel MN, Peshkova AD, Komatsu H, Axelsen PH, Muzykantov VR, Marcos-Contreras OA, Brenner JS. Nanocarriers' repartitioning of drugs between blood subcompartments as a mechanism of improving pharmacokinetics, safety, and efficacy. J Control Release 2024; 374:425-440. [PMID: 39103056 DOI: 10.1016/j.jconrel.2024.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
For medical emergencies, such as acute ischemic stroke, rapid drug delivery to the target site is essential. For many small molecule drugs, this goal is unachievable due to poor solubility that prevents intravenous administration, and less obviously, by extensive partitioning to plasma proteins and red blood cells (RBCs), which greatly slows delivery to the target. Here we study these effects and how they can be solved by loading into nanoscale drug carriers. We focus on fingolimod, a small molecule drug that is FDA-approved for treatment of multiple sclerosis, which has also shown promise in the treatment of stroke. Unfortunately, fingolimod has poor solubility and very extensive partitioning to plasma proteins and RBCs (in whole blood, 86% partitions to RBCs, 13.96% to plasma proteins, and 0.04% is free). We develop a liposomal formulation that slows the partitioning of fingolimod to RBCs and plasma proteins, enables intravenous delivery, and additionally prevents fingolimod toxicity to RBCs. The liposomal formulation nearly completely prevented fingolimod adsorption to plasma proteins (association with plasma proteins was 98.4 ± 0.4% for the free drug vs. 5.6 ± 0.4% for liposome-loaded drug). When incubated with whole blood in vitro, the liposomal formulation greatly slowed partitioning of fingolimod to RBCs and also eliminated deleterious effects of fingolimod on RBC rigidity, morphology, and hemolysis. In vivo, the liposomal formulation delayed fingolimod partitioning to RBCs for over 30 min, a critical time window for stroke. Fingolimod-loaded liposomes showed improved efficacy in a mouse model of post-stroke neuroinflammation, completely sealing the leaky blood-brain barrier (114 ± 11.5% reduction in albumin leak into the brain for targeted liposomes vs. 38 ± 16.5% reduction for free drug). This effect was only seen for liposomes modified with antibodies to enable targeted delivery to the site of action, and not in unmodified, long-circulating liposomes. Thus, loading fingolimod into liposomes prevented partitioning to RBCs and associated toxicities and enabled targeted delivery. This paradigm can be used for tuning the blood distribution of small molecule drugs for the treatment of acute illnesses requiring rapid pharmacologic intervention.
Collapse
Affiliation(s)
- Michael H Zaleski
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Serena Omo-Lamai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Nong
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liam S Chase
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Florence Lee
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Zhicheng Wang
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manthan N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alina D Peshkova
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroaki Komatsu
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul H Axelsen
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oscar A Marcos-Contreras
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Alam MI, Paget T, Moosa NY, Alghurairy H, Elkordy AA. Liposomal Drug Delivery against Helicobacter pylori Using Furazolidone and N-Acetyl Cysteine in Augmented Therapy. Pharmaceutics 2024; 16:1123. [PMID: 39339161 PMCID: PMC11435436 DOI: 10.3390/pharmaceutics16091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a significant global health concern, affecting approximately 50% of the world's population and leading to gastric ulcers, gastritis, and gastric cancer. The increase in antibiotic resistance has compromised the efficacy of existing therapeutic regimens, necessitating novel approaches for effective eradication. This study aimed to develop a targeted liposomal drug delivery system incorporating furazolidone and N-acetylcysteine (NAC) to enhance mucopenetration and improve Helicobacter pylori eradication. Liposomes were formulated with furazolidone, NAC, and Pluronic F-127 using a modified reverse-phase evaporation technique. The formulations were categorized based on charge as neutral, negative, and positive and tested for mucopenetration using a modified silicon tube method with coumarin-6 as a fluorescent marker. The encapsulation efficiency and particle size were analyzed using HPLC and an Izon q-nano particle size analyzer. The results indicated that charged liposomes showed a higher encapsulation efficiency than neutral liposomes with Pluronic F-127. Notably, combining furazolidone with 1% NAC achieved complete eradication of H. pylori in 2.5 h, compared to six hours without NAC. The findings of this study suggest that incorporating NAC and Pluronic F-127 into liposomal formulations significantly enhances mucopenetration and antimicrobial efficacy.
Collapse
Affiliation(s)
- Muhammad Irfan Alam
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Timothy Paget
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | - Najla Yussuf Moosa
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| | | | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
| |
Collapse
|
49
|
Silli EK, Zheng Z, Zhou X, Li M, Tang J, Guo R, Tan C, Wang Y. Design optimization of Fucoidan-coating Cationic Liposomes for enhance Gemcitabine delivery. Invest New Drugs 2024:10.1007/s10637-024-01455-x. [PMID: 39154300 DOI: 10.1007/s10637-024-01455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Abstract
Obstacles facing chemotherapeutic drugs for cancers led scientists to load Gemcitabine (GEM) into nanocarriers like liposomes, known for their nontoxicity profile and targeting capacity. The liposomal nanostructures containing GEM were coated with Fucoidan (FU) due to its anti-tumor properties by targeting cancer cells. Thus four different cationic liposomes formulations were prepared by thin-film hydration method in optimal conditions: DOTAP (formulation A); DPPC/DOTAP (4:1 molar ratio, formulation B), DPPC/DMPC/DOTAP (4:1:1 molar ratio, formulation C) and DPPC/DMPC/DOTAP/DSPE-mPEG2000 (4:1:1:0.1 molar ratio, formulation D). They were studied to identify lipid-compositions offering effective GEM-entrapment and successful coating of FU on the liposome surface. Additional qualitative characteristics, such as particle size, polydispersity index, zeta potential, stability and in vitro drug release were then evaluated. Formulation C gave the best GEM-entrapment efficiency (EE) but formed aggregates when coated with FU, giving non-homogenous large size particles then not suitable for effective delivery. It was the same situation with formulation A and B. Only the formulation D showed a good GEM-EE (> 80%) and affinity by successful coating FU from three different algae species. The PEGylated formulation D coated of FU, with regard to storage stability and drug release studies, revealed to be a promising approach on design of optimal drug delivery system.
Collapse
Affiliation(s)
- Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | | | - Xintao Zhou
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jiali Tang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ruizhe Guo
- School of Chinese Medicine Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
50
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|