1
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
2
|
Pechroj S, Kaewkod T, Sattayawat P, Inta A, Suriyaprom S, Yata T, Tragoolpua Y, Promputtha I. Multifunctional Nanoemulsified Clinacanthus nutans Extract: Synergistic Anti-Pathogenic, Anti-Biofilm, Anti-Inflammatory, and Metabolic Modulation Effects against Periodontitis. BIOLOGY 2024; 13:815. [PMID: 39452124 PMCID: PMC11505571 DOI: 10.3390/biology13100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
This study investigates the therapeutic potential of Clinacanthus nutans extracts, focusing on the 95% ethanol (95E) extract and its nanoemulsified form, against oral pathogens and their bioactive effects. The findings demonstrate potent antibacterial activity against Streptococcus mutans and Staphylococcus aureus, essential for combating periodontal diseases, and significant anti-biofilm properties crucial for plaque management. Additionally, the extracts exhibit promising inhibitory effects on α-glucosidase enzymes, indicating potential for diabetes management through glucose metabolism regulation. Their anti-inflammatory properties, evidenced by reduced nitric oxide production, underscore their potential for treating oral infections and inflammation. Notably, the nanoemulsified 95E extract shows higher efficiency than the conventional extract, suggesting a multifunctional treatment approach for periodontal issues and metabolic disorders. These results highlight the enhanced efficacy of the nanoemulsified extract, proposing it as an effective treatment modality for periodontal disease in diabetic patients. This research offers valuable insights into the development of innovative drug delivery systems using natural remedies for improved periodontal care in diabetic populations.
Collapse
Affiliation(s)
- Sirintip Pechroj
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teerapong Yata
- Premier Innova Co., Ltd., Nong Bon, Prawet, Bangkok 10250, Thailand;
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (T.K.); (P.S.); (A.I.); (S.S.); (Y.T.)
| |
Collapse
|
3
|
Zhang J, Gao L, Yu D, Song Y, Zhao Y, Feng Y. Three Artemisia pollens trigger the onset of allergic rhinitis via TLR4/MyD88 signaling pathway. Mol Biol Rep 2024; 51:319. [PMID: 38388914 DOI: 10.1007/s11033-024-09350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVE The prevalence of allergic rhinitis is high, making it a relatively common chronic condition. Countless patients suffer from seasonal Allergic rhinitis (AR). The objective of this investigation is to examine the potential involvement of common pollen allergens in seasonal allergic rhinitis, and study the proposed mechanism of Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response gene 88 (MyD88) signaling pathway in the induction of AR. METHOD A mouse AR model (sensitized group) was constructed with pollen extracts and ovalbumin (OVA) of Artemisia annua (An), Artemisia argyi (Ar) and Artemisia Sieversiana (Si), and thereafter, AR symptom score was performed. After successful modeling, mouse serum and nasal mucosa tissues were extracted for subsequent experiments. The expression levels of immunoglobulin E (IgE), Interleukin (IL)-4, IL-5, IL-13 and Tumor Necrosis Factor-α (TNF-α) in serum were detected using Enzyme-linked immunosorbent assay (ELISA); Hematoxylin-eosin (H&E) staining methods were used to observe the pathological changes of the nasal mucosal tissue; Utilizing immunohistochemistry (IHC) staining, the expression levels of TLR4, MyD88 and Nuclear factor kappa B (NF-κB) p65 in mouse nasal mucosa were quantified; The mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of sensitized mice were detected with Quantitative reverse transcription PCR (qRT-PCR) and Western Blot. Finally, the in vitro culture of Human nasal mucosal epithelial cells (HNEpC) cells was conducted, and cells were treated with 200 µg/ml Artemisia annua pollen extract and OVA for 24 h. Western Blot assay was used to detect the expression level of TLR4, MyD88 and NF-κB p65 proteins before and after HNEpC cells were treated with MyD88 inhibitor ST-2825. RESULT On the second day after AR stimulation, the mice showed obvious AR symptoms. H&E results showed that compared to the control group, the nasal mucosal tissue in the sensitized group was significantly more inflamed. Furthermore, ELISA assay showed increased expression levels of IgE, IL-4, IL-5, IL-13 and TNF-α in serum of mice induced by OVA and Artemisia annua pollen, Artemisia argyi pollen and Artemisia Sieversiana pollen than those of the control group. However, the expression level of IL-2 was lower than that of the control group (P < 0.05). Using Immunohistochemistry staining visually observed the expression levels of TLR4, MyD88 and NF-κB p65 in mouse nasal mucosa tissues and quantitatively analyzed. The expression levels of TLR4, MyD88 and NF-κB p65 in the sensitized group were higher than those in the control group, and the differences were statistically significant (P < 0.05). The results from qRT-PCR and Western Blot showed that the mRNA and protein expression levels of TLR4, MyD88 and NF-κB p65 in nasal mucosa of the sensitized group were significantly higher than those in the control group (P < 0.05). Finally, HNEpC cells were cultured in vitro and analyzed using Western Blot. The expression levels of TLR4, MyD88 and NF-κB p65 in OVA and An groups were significantly increased (P < 0.05). After ST-2825 treatment, TLR4 protein expression was significantly increased (P < 0.05) and MyD88 and NF-κB p65 protein expression were significantly decreased (P < 0.05). CONCLUSION To sum up, the occurrence and development of AR induced by OVA and pollen of Artemisia annua, Artemisia argyi and Artemisia Sieversiana were related to TLR4/MyD88 signal pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lu Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dongdong Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Song
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yan Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Iniyaval S, Saravanan V, Mai CW, Ramalingan C. Tetrazolopyrimidine-tethered phenothiazine molecular hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2024; 48:13384-13396. [DOI: 10.1039/d3nj05817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Molecular hybrids integrating phenothiazine and tetrazolopyrimidine structural motifs were designed, synthesized through a one-pot multi-component reaction and, evaluated for their radical scavenging, cytotoxicity and molecular docking studies.
Collapse
Affiliation(s)
- Shunmugam Iniyaval
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Vadivel Saravanan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chennan Ramalingan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| |
Collapse
|
5
|
Mustika A, Fatimah N, Safitri I, Susanti N, Noor NS. Clinacanthus nutans L Extracts Reduce the Serum Tumor Necrosis Factor-α, Malondialdehyde, and Interleukin-6 Levels and Improve the Langerhans Islet Area in Diabetic Rat Models. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231196462. [PMID: 37694133 PMCID: PMC10492484 DOI: 10.1177/11795514231196462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023] Open
Abstract
Background Diabetes mellitus-induced hyperglycemia increases oxidative stress and inflammatory cytokine production, which play a significant role in the damage and apoptosis of pancreatic β cells. Therefore, the administration of medications that can reduce oxidative stress and inflammation plays an important role in diabetes treatment. Objective To probe the Clinacanthus nutans leaf extract effect on oxidative stress and inflammatory markers and the Langerhans islet area in diabetic rat models. Design An experimental laboratory in the animal model. Methods Twenty-five diabetic rat models were randomly assigned into 5 clusters. Clusters 1, 2, and 3 were administered with C. nutans leaf extract in aqueous suspension with vehicle 1% Na-CMC at 75 mg/kg body weight (BW), 150 mg/kg BW, and 300 mg/kg BW, respectively. Cluster 4 was diabetic control rats administered with metformin at a 21 mg/rat dose. Cluster 5 was a control diabetic rat only administered with 1% Na-CMC suspension. Treatment was administered orally for 14 days. On the 15th day, the rats were sacrificed to obtain blood samples and pancreatic tissues. Serum interleukin (IL)-6, malondialdehyde (MDA), and tumor necrosis factor (TNF-α) were measured using the enzyme-linked immunosorbent assay (ELISA) method. Histopathological examination was performed by counting the Langerhans islet areas. Results The average IL-6, MDA, and TNF-α levels declined in the cluster receiving C. nutans extract and were significantly different from the untreated cluster (P < .05). Histopathological examination revealed a significant upsurge in the Langerhans islets area in diabetic rats receiving C. nutans extract at doses of 75 and 150 mg/kg (P < .05). Conclusion C. nutans leaf extract reduced the serum MDA, TNF-α, and IL-6 levels, and increased the Langerhans islets area in a diabetic rat model.
Collapse
Affiliation(s)
- Arifa Mustika
- Anatomy, Histology, and Pharmacology Department, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nurmawati Fatimah
- Anatomy, Histology, and Pharmacology Department, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Indri Safitri
- Biochemistry Department, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nurlaili Susanti
- Biomedical Department, Faculty of Medicine and Health Science, Maulana Malik Ibrahim State Islamic University, Malang, East Java, Indonesia
| | - Nurul Shahfiza Noor
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Farhadi M, Gorji A, Mirsalehi M, Müller M, Poletaev AB, Mahboudi F, Asadpour A, Ebrahimi M, Beiranvand M, Khaftari MD, Akbarnejad Z, Mahmoudian S. The human neuroprotective placental protein composition suppressing tinnitus and restoring auditory brainstem response in a rodent model of sodium salicylate-induced ototoxicity. Heliyon 2023; 9:e19052. [PMID: 37636471 PMCID: PMC10457515 DOI: 10.1016/j.heliyon.2023.e19052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery Westfälische Wilhelms-Universitat Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center Khatam Alanbia Hospital, Tehran, Iran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho-Neurology, Moscow, Russian Federation
- Medical Research Centre “Immunculus”, Moscow, Russian Federation
| | | | - Abdoreza Asadpour
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry∼Londonderry, Northern Ireland, UK
| | - Mohammad Ebrahimi
- The Research Center for New Technologies in Life Sciences Engineering, Tehran University, Tehran, Iran
| | - Mohaddeseh Beiranvand
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Dehghani Khaftari
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lin CM, Chen HH, Lung CW, Chen HJ. Antiviral and Immunomodulatory Activities of Clinacanthus nutans (Burm. f.) Lindau. Int J Mol Sci 2023; 24:10789. [PMID: 37445964 PMCID: PMC10342181 DOI: 10.3390/ijms241310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Clinacanthus nutans (Burm. f.) Lindau has been used as a traditional herbal medicine for treating snake bites, scalds, burns, and viral and bacterial infections. It has been attracting an increasing amount of attention because of its biological activities, including its antidiabetic, antioxidant, antibacterial, anticancer, anti-inflammatory, antiviral, and immunoregulatory activities. Here, we conducted a panoramic survey of the literature regarding the immunoregulatory, anti-inflammatory, and antiviral activities of C. nutans. We discovered that C. nutans extracts have virucidal activities against herpes simplex virus types 1 and 2, varicella-zoster virus, cyprinid herpesvirus 3, porcine reproductive and respiratory syndrome virus, mosquito-borne chikungunya virus, and potentially SARS-CoV-2; such activities likely result from C. nutans interfering with the entry, penetration, infection, and replication of viruses. We also reviewed the phytochemicals in C. nutans extracts that exhibit anti-inflammatory and immunoregulatory activities. This updated review of the antiviral, anti-inflammatory, and immunoregulatory activities of C. nutans may guide future agricultural practices and reveal clinical applications of C. nutans.
Collapse
Affiliation(s)
- Chung-Ming Lin
- Department of Biotechnology, School of Health Technology, Ming Chuan University, Taoyuan 33348, Taiwan;
| | - Hsin-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung 413305, Taiwan;
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
8
|
Ding M, Yu Y, Zhu Z, Tian H, Guo Y, Zan R, Tian Y, Jiang R, Li K, Sun G, Han R, Li D, Kang X, Yan F. Regulation of the MyD88 gene in chicken spleen inflammation induced by stress. J Anim Sci 2023; 101:skad060. [PMID: 36805927 PMCID: PMC10022378 DOI: 10.1093/jas/skad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In order to investigate the regulatory role of the myeloid differentiation factor 88 (MyD88) gene in the stress inflammatory response to chicken spleen, the chicken stress model and macrophage (HD11) inflammation model were constructed in this study. Enzyme-linked immunosorbent assay and quantitative real-time PCR were used to investigate the effects of MyD88 on immune and inflammatory indicators. The results demonstrated that the levels of IgG, CD3+ and CD4+ in the serum of chickens in the beak trimming stress and heat stress groups decreased significantly compared to the control group without stress (P < 0.05), and the inflammation-related indices IL-1β, TNF-α, IL-6 and NF-κB increased significantly (P < 0.05). Stress up-regulated the expression levels of MyD88, IL-1β, NF-κB and TLR4 in the spleen, stimulated the release of inflammatory factors. Overexpression of MyD88 significantly up-regulated the expression levels of the inflammatory factors IL-1β, TNF-α, IL-8, NF-κB and TLR4 in HD11 cells (P < 0.05). Co-treatment with lipopolysaccharide (LPS) further promoted the expression levels of the inflammatory cytokines in HD11 cells. Interference with the expression of MyD88 significantly reduced the expression level of inflammatory factors in HD11 cells (P < 0.05) and had an antagonistic effect with LPS to alleviate the inflammatory reaction. In conclusion, the MyD88 gene has a pro-inflammatory effect and is highly expressed in the beak trimming and heat stress models in chicks, regulating the inflammatory response in poultry. It was involved in regulating the expression of immune-related genes in HD11 cells and had a synergistic effect with LPS.
Collapse
Affiliation(s)
- Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruilong Zan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
9
|
Kongwattanakul S, Petchann N, Petroch P, Thanthong S, Tungfung S, Chamchod S, Pitiporn S, Nantajit D. Prophylactic management of radiation-induced mucositis using herbal mouthwash in patients with head and neck cancer: an assessor-blinded randomized controlled trial. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:771-780. [PMID: 35218685 DOI: 10.1515/jcim-2021-0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Radiation-induced mucositis (RIOM) is one of the most common side effects from head and neck radiotherapy. Several reagents have been introduced to manage the symptom; however, there is still a limited number of effective reagents. Herbal mouthwashes with payayor (Clinacanthus nutans Lindau) and fingerroot (Boesenbergia rotunda) were tested their efficacies in preventing and reducing severity of RIOM in comparison with normal saline with sodium bicarbonate. METHODS One hundred twenty patients with head and neck cancer undergoing radiotherapy participated in the study and were randomly assigned into three treatment groups using block randomization method. The participants were assigned one of the three mouthwashes for use throughout their radiotherapy course and were assessed for their mucositis scores from week one to six into their radiotherapy course as well as at one-month follow-up. Body mass index was also measured for comparison of nutritional status. RESULTS The two mouthwashes were similarly effective in prophylaxis of RIOM in term of severity. The averaged mucositis scores were less than two for all groups. For the onset of RIOM, both herbal mouthwashes could slightly delay the symptom but not statistically significant. Patients' body mass index across the three treatment groups was also comparable. The patients were largely satisfied with all the mouthwashes with no clear preference on any of them. CONCLUSIONS Prophylactic treatment of RIOM using herbal mouthwashes could substitute the current standard of normal saline with bicarbonate. A different formulation of the two herbs could potentially improve the prophylactic outcome. TRIAL REGISTRATION NO NCT03359187.
Collapse
Affiliation(s)
- Sirikorn Kongwattanakul
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nutjaree Petchann
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Petcharat Petroch
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Saengrawee Thanthong
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sunanta Tungfung
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sasikarn Chamchod
- Department of Radiation Oncology, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Supaporn Pitiporn
- Chaopraya Abhaiphubejhr Hospital, Prachinburi, Thailand
- Chaopraya Abhaiphubejhr Hospital Foundation, Prachinburi, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Centre for Host Microbiome Interactions, Faculty of Dentistry and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Noor Mohamed NMH, Lim V, Mohamed R, Ismail IS. Regulation of the Macrophage Cellular Response by Clinacanthus nutans Extracts in J774.2 Macrophages. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Azemi AK, Mokhtar SS, Sharif SET, Rasool AHG. Clinacanthus nutans attenuates atherosclerosis progression in rats with type 2 diabetes by reducing vascular oxidative stress and inflammation. PHARMACEUTICAL BIOLOGY 2021; 59:1432-1440. [PMID: 34693870 PMCID: PMC8553363 DOI: 10.1080/13880209.2021.1990357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Atherosclerosis predisposes individuals to adverse cardiovascular events. Clinacanthus nutans L. (Acanthaceae) is a traditional remedy used for diabetes and inflammatory conditions. OBJECTIVES To investigate the anti-atherosclerotic activity of a C. nutans leaf methanol extract (CNME) in a type 2 diabetic (T2D) rat model induced by a high-fat diet (HFD) and low-dose streptozotocin. MATERIALS AND METHODS Sixty male Sprague-Dawley rats were divided into five groups: non-diabetic fed a standard diet (C), C + CNME (500 mg/kg, orally), diabetic fed an HFD (DM), DM + CNME (500 mg/kg), and DM + Metformin (DM + Met; 300 mg/kg). Treatment with oral CNME and metformin was administered for 4 weeks. Fasting blood glucose (FBG), serum lipid profile, atherogenic index (AI), aortic tissue superoxide dismutase levels (SOD), malondialdehyde (MDA), and tumour necrosis factor-alpha (TNF-α) were measured. The rats' aortas were stained for histological analysis and intima-media thickness (IMT), a marker of subclinical atherosclerosis. RESULTS The CNME-treated diabetic rats had reduced serum total cholesterol (43.74%; p = 0.0031), triglycerides (80.91%; p = 0.0003), low-density lipoprotein cholesterol (56.64%; p = 0.0008), AI (51.32%; p < 0.0001), MDA (60.74%; p = 0.0026), TNF-α (61.78%; p = 0.0002), and IMT (39.35%; p < 0.0001) compared to untreated diabetic rats. SOD level, however, increased (53.36%; p = 0.0326). These CNME effects were comparable to those in the metformin-treated diabetic rats. CONCLUSIONS C. nutans possesses anti-atherosclerotic properties, which may be due to reductions in vascular tissue oxidative stress, inflammation, and serum AI. Continued studies on atherosclerotic animal models are suggested.
Collapse
Affiliation(s)
- Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Sharifah Emilia Tuan Sharif
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Kota Bharu, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Kota Bharu, Malaysia
- CONTACT Aida Hanum Ghulam Rasool ; Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia (Health Campus), 16150Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
12
|
Osteogenic Activity of Lupeol Isolated from Clinacanthus nutans Lindau: Activity and Mode of Action. J CHEM-NY 2021. [DOI: 10.1155/2021/6704999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clinacanthus nutans Lindau has been traditionally used for healing of bone fragility, but the mechanism of actions has not been clarified yet. In this study, the bone regeneration activity of lupeol derived from C. nutans was assessed using an in vitro model of osteoblast cells MC3T3-E1. The finding revealed that the compound was not significantly toxic to osteoblast cells at concentration of ≤40 μg/mL. Lupeol demonstrated the osteogenic activity through enhancement of alkaline phosphatase (ALP) of osteoblast cells up to 31.2%, 21%, and 12% at concentrations of 5, 10, and 20 µg/mL, respectively (
< 0.05). Besides, the mineralization activity was increased up to 170, 230, 185, and 117% at concentration of 5, 10, 20, and 40 μg/mL, respectively (
< 0.05). The marker genes related to osteoblast differentiation evaluated on the expression level in the presence of lupeol, including collagen I (col 1), osteopontin (opn), osterix (osx), and runx2, showed upregulated expression in all the test genes (
< 0.05). The Western blot analysis demonstrated a clear effect of lupeol on expression of p38/p-p38, and ERK/p-ERK proteins involved in the MAPK signaling pathway. Thus, lupeol isolated from C. nutans exhibited the osteogenic activity by enhancing expression of important markers of osteogenesis, as well as affected the MAPK signaling pathway relating to osteoblast differentiation. This is the first report on the detailed mechanism of action of lupeol on bone regeneration and also explains for the traditional use of this medicinal plant for bone healing.
Collapse
|
13
|
Zhou X, Ahn DU, Xia M, Zeng Q, Li X, Cai Z. Fab Fragment of Immunoglobulin Y Modulates NF-κB and MAPK Signaling through TLR4 and αVβ3 Integrin and Inhibits the Inflammatory Effect on R264.7 Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8747-8757. [PMID: 34337939 DOI: 10.1021/acs.jafc.1c03330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-purity Fab fragment and immunoglobulin Y (IgY) were prepared to evaluate their anti-inflammatory activity in the lipopolysaccharide (LPS)-induced Raw 264.7 macrophage system. Compared with IgY, the Fab fragment possessed a greater potency in inhibiting the inflammation by nitric oxide (NO)/inducible nitric oxide synthase (iNOS) and prostaglandin-E2 (PGE2)/cyclooxygenase-2 (COX-2) pathways. The Fab fragment attenuated the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) to 38.07 ± 1.86-48.39 ± 11.33 pg/mL (63.1-71.0% inhibition), 31.59 ± 3.91-38.08 ± 4.44 pg/mL (72.4-77.1% inhibition), and 20.62 ± 0.46-21.91 ± 0.65 pg/mL (50-53% inhibition), respectively. Additionally, the Fab fragment significantly inhibited the translocation of nuclear transcription factor-κB (NF-κB) p65 and the phosphorylation of mitogen-activated protein kinase (MAPK) proteins, including ERK1/2 (41.5/33.2%), JNK1/2 (44.2/39.6%), and p38 (42.2%). The Fab fragment could be internalized into cells, and the pretreatment of RAW 264.7 macrophages with the Fab fragment reduced the mRNA expression of the Toll-like receptor (TLR4, 32.7-44.4% inhibition) and αVβ3 integrin (76.1% inhibition). In conclusion, Fab fragments regulated the TLR4 and αVβ3 integrin-mediated inflammatory processes by blocking the NF-κB and MAPKs pathways in the LPS-induced RAW 264.7 macrophage system.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, United States
| | - Minquan Xia
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zeng
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomeng Li
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Nordin FJ, Pearanpan L, Chan KM, Kumolosasi E, Yong YK, Shaari K, Rajab NF. Immunomodulatory potential of Clinacanthus nutans extracts in the co-culture of triple-negative breast cancer cells, MDA-MB-231, and THP-1 macrophages. PLoS One 2021; 16:e0256012. [PMID: 34379689 PMCID: PMC8357171 DOI: 10.1371/journal.pone.0256012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is the main type of breast carcinoma that causes mortality among women because of the limited treatment options and high recurrence. Chronic inflammation has been linked with the tumor microenvironment (TME) in breast cancer progression. Clinacanthus nutans (CN) has gained much attention because of its anticancer properties, but its mechanism remains unclear. We aimed to study the qualitative phytochemical content and elucidate the cytotoxicity effects of CN on human triple-negative breast cancer (TNBC), MDA-MB-231 and human macrophage-like cells such as THP-1 by using sulforhodamine B (SRB) assay. As highly metastatic cells, MDA-MB-231 cells can migrate to the distal position, the effect of CN on migration were also elucidated using the scratch assay. The CN effects on ameliorating chronic inflammation in TME were studied following the co-culture of MDA-MB-231/THP-1 macrophages. The cytokine expression levels of IL-6, IL-1β and tumor necrosis factor-alpha (TNF-α) were determined using ELISA assays. The results showed that both ethanolic and aqueous CN extracts contained alkaloid, phenol and tannin, flavonoid, terpenoid, glycoside and steroid. However, saponin was only found in the aqueous extract of CN. CN was not cytotoxic to both MDA-MB-231 and THP-1 cells. The ability of MDA-MB-231 to migrate was also not halted by CN treatment. However, CN ethanol extract decreased IL-6 at 25 μg/mL (p = 0.02) and 100 μg/mL (p = 0.03) but CN aqueous extract increased IL-6 expression at 50 μg/mL (p = 0.08) and 100 μg/mL (p = 0.02). IL-1β showed decreased expression after treated with CN ethanol and CN aqueous both at 25 μg/mL (p = 0.03). TNF-α were significantly decreased after CN ethanol treatment at concentration 25- (p = 0.001), 50- (p = 0.000) and 100 μg/mL (p = 0.000). CN aqueous extract slightly inhibited TNF-α at all 25–50- and 100 μg/mL (p = 0.001, p = 0.000, p = 0.000, respectively). Overall, CN acts by ameliorating the pro-inflammatory condition in the TME and may be a potential strategy for its anticancer mechanism on highly metastatic breast cancer condition. The major pathways that link both cancer and inflammation were NF-κB and STATs thus further study on the upstream and downstream pathways is needed to fully understand the mechanism of CN extracts in cooling the inflamed TME in breast cancer.
Collapse
Affiliation(s)
- Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Lishantini Pearanpan
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Seri Kembangan, Selangor, Malaysia
| | - Khozirah Shaari
- Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Seri Kembangan, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
15
|
Taritla S, Kumari M, Kamat S, Bhat SG, Jayabaskaran C. Optimization of PhysicoChemical Parameters for Production of Cytotoxic Secondary Metabolites and Apoptosis Induction Activities in the Culture Extract of a Marine Algal-Derived Endophytic Fungus Aspergillus sp. Front Pharmacol 2021; 12:542891. [PMID: 33981211 PMCID: PMC8108993 DOI: 10.3389/fphar.2021.542891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/17/2021] [Indexed: 01/20/2023] Open
Abstract
The endophytic fungal community in the marine ecosystem has been demonstrated to be relevant source of novel and pharmacologically active secondary metabolites. The current study focused on the evaluation of cytotoxic and apoptosis induction potential in the culture extracts of endophytic fungi associated with Sargassum muticum, a marine brown alga. The cytotoxicity of the four marine endophytes, Aspergillus sp., Nigrospora sphaerica, Talaromyces purpureogenus, and Talaromyces stipitatus, was evaluated by the MTT assay on HeLa cells. Further, several physicochemical parameters, including growth curve, culture media, and organic solvents, were optimized for enhanced cytotoxic activity of the selected extract. The Aspergillus sp. ethyl acetate extract (ASE) showed maximum cytotoxicity on multiple cancer cell lines. Chemical investigation of the metabolites by gas chromatography–mass spectroscopy (GC-MS) showed the presence of several compounds, including quinoline, indole, 2,4-bis(1,1-dimethylethyl) phenol, and hexadecenoic acid, known to be cytotoxic in ASE. The ASE was then tested for cytotoxicity in vitro on a panel of six human cancer cell lines, namely, HeLa (cervical adenocarcinoma), MCF-7 (breast adenocarcinoma), Hep G2 (hepatocellular carcinoma), A-549 (lung carcinoma), A-431 (skin/epidermis carcinoma), and LN-229 (glioblastoma). HeLa cells were most vulnerable to ASE treatment with an IC50 value of 24 ± 2 μg/ml. The mechanism of cytotoxicity exhibited by the ASE was further investigated on Hela cells. The results showed that the ASE was capable of inducing apoptosis in HeLa cells through production of reactive oxygen species, depolarization of mitochondrial membrane, and activation of the caspase-3 pathway, which shows a possible activation of the intrinsic apoptosis pathway. It also arrested the HeLa cells at the G2/M phase of the cell cycle, eventually leading to apoptosis. Through this study, we add to the knowledge about the marine algae associated with fungal endophytes and report its potential for purifying specific compounds responsible for cytotoxicity.
Collapse
Affiliation(s)
- Sidhartha Taritla
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Dexmedetomidine attenuates lipopolysaccharide-induced acute liver injury in rats by inhibiting caveolin-1 downstream signaling pathway. Biosci Rep 2021; 41:227822. [PMID: 33558888 PMCID: PMC7938455 DOI: 10.1042/bsr20204279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: The aim of the present study is to investigate the anti-injury and anti-inflammatory effects of dexmedetomidine (Dex) in acute liver injury induced by lipopolysaccharide (LPS) in Sprague–Dawley rats and its possible mechanism. Methods: The acute liver injury model of male rats was established by injecting LPS into tail vein. The mean arterial pressure (MAP) of rats was recorded at 0–7 h, and lactic acid was detected at different time points. Wet/dry weight ratio (W/D) was calculated. Pathological changes of rat liver were observed by HE staining. ALT and AST levels in serum were detected. The activities of myeloperoxidase (MPO) and superoxide dismutase (SOD) in liver tissue homogenate and the levels of IL-1β and IL-18 in serum were detected by ELISA. Protein levels of Caveolin-1 (Cav-1), TLR-4 and NLRP3 in liver tissue were tested by immunohistochemistry method. The expression of Cav-1, TLR-4 and NLRP3 mRNA in liver tissue was detected by quantitative polymerase chain reaction (qPCR) to explore its related mechanism. Results: Compared with NS group, serum lactic acid, W/D of liver tissue, MPO, SOD, IL-1β and IL-18 were significantly increased and MAP decreased significantly in LPS group and D+L group. However, compared with NS group, D group showed no significant difference in various indicators. Compared with LPS group, MPO, SOD, IL-1β and IL-18 were significantly decreased and MAP was significantly increased in D+L group. D+L group could significantly increase the level of Cav-1 protein and decrease the level of TLR-4 and NLRP3 protein in liver tissue caused by sepsis. The expression of Cav-1 mRNA was significantly up-regulated and the expression of TLR-4 and NLRP3 mRNA was inhibited in D+L group. Conclusion: Dex pretreatment protects against LPS-induced actue liver injury via inhibiting the activation of the NLRP3 signaling pathway by up-regulating the expression of Cav-1 by sepsis.
Collapse
|
17
|
The anti-inflammatory properties of Acanthus Ebracteatus, Barleria Lupulina and Clinacanthus Nutans: a systematic review. Mol Biol Rep 2020; 47:9883-9894. [PMID: 33244664 DOI: 10.1007/s11033-020-06025-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023]
Abstract
This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants' anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.
Collapse
|
18
|
Kao MH, Wu JS, Cheung WM, Chen JJ, Sun GY, Ong WY, Herr DR, Lin TN. Clinacanthus nutans Mitigates Neuronal Death and Reduces Ischemic Brain Injury: Role of NF-κB-driven IL-1β Transcription. Neuromolecular Med 2020; 23:199-210. [PMID: 33025396 DOI: 10.1007/s12017-020-08618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammation has been shown to exacerbate ischemic brain injury, and is considered as a prime target for the development of stroke therapies. Clinacanthus nutans Lindau (C. nutans) is widely used in traditional medicine for treating insect bites, viral infection and cancer, due largely to its anti-oxidative and anti-inflammatory properties. Recently, we reported that an ethanol extract from the leaf of C. nutans could protect the brain against ischemia-triggered neuronal death and infarction. In order to further understand the molecular mechanism(s) for its beneficial effects, two experimental paradigms, namely, in vitro primary cortical neurons subjected to oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery (MCA) occlusion, were used to dissect the anti-inflammatory effects of C. nutans extract. Using promoter assays, immunofluorescence staining, and loss-of-function (siRNA) approaches, we demonstrated that transient OGD led to marked induction of IL-1β, IL-6 and TNFα, while pretreatment with C. nutans suppressed production of inflammatory cytokines in primary neurons. C. nutans inhibited IL-1β transcription via preventing NF-κB/p65 nuclear translocation, and siRNA knockdown of either p65 or IL-1β mitigated OGD-mediated neuronal death. Correspondingly, post-ischemic treatment of C. nutans attenuated IκBα degradation and decreased IL-1β, IL-6 and TNFα production in the ischemic brain. Furthermore, IL-1β siRNA post-ischemic treatment reduced cerebral infarct, thus mimicking the beneficial effects of C. nutans. In summary, our findings demonstrated the ability for C. nutans to suppress NF-κB nuclear translocation and inhibit IL-1β transcription in ischemic models. Results further suggest the possibility for using C. nutans to prevent and treat stroke patients.
Collapse
Affiliation(s)
- Mei-Han Kao
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jui-Sheng Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Wai-Mui Cheung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Jin-Jer Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, USA
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Teng-Nan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| |
Collapse
|
19
|
Clinacanthus nutans Leaves Extract Reverts Endothelial Dysfunction in Type 2 Diabetes Rats by Improving Protein Expression of eNOS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7572892. [PMID: 32879653 PMCID: PMC7448219 DOI: 10.1155/2020/7572892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
Collapse
|
20
|
Panya A, Pundith H, Thongyim S, Kaewkod T, Chitov T, Bovonsombut S, Tragoolpua Y. Antibiotic-Antiapoptotic Dual Function of Clinacanthus nutans (Burm. f.) Lindau Leaf Extracts against Bovine Mastitis. Antibiotics (Basel) 2020; 9:antibiotics9070429. [PMID: 32708141 PMCID: PMC7400556 DOI: 10.3390/antibiotics9070429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Mastitis caused by bacterial infection has negative impacts on milk quality and animal health, and ultimately causes economic losses to the dairy industry worldwide. Gram-negative bacteria and their component lipopolysaccharide (LPS) can trigger the inflammatory response of endothelial cells (ECs) and subsequently promote EC dysfunction or injury, which is a critical pathogenesis of mastitis-causing sepsis shock. To control the bacterial infection and to minimise the LPS negative effects on ECs, we thus aimed to identify the potential herb extracts that comprised antibacterial activity and protective ability to inhibit LPS-induced cell death. Extracts from seven types of herbs derived from antibacterial screening were investigated for their protective effects on LPS-stimulated bovine endothelial cell line. Clinacanthus nutans (Burm. f.) Lindau (C. nutans) extract appeared to be the most effective antiapoptotic extract against LPS stimulation. Treatment of C. nutans extract in LPS-stimulated cells significantly lowered apoptotic cell death through modulating pro-survival Bcl-2 and pro-apoptotic Bax expression. The investigation of bioactive compounds using solvent fractionation, HPLC, and LC-MS/MS analysis revealed glyceryl 1,3-disterate (C39H76O5), kaempferol 3-O-feruloyl-sophoroside 7-O-glucoside (C43H48O24), and hydroxypthioceranic acid (C46H92O3) as the candidate components. Our findings indicated that C. nutans extract has great potential to be further developed as an alternative therapeutic agent for mastitis treatment.
Collapse
Affiliation(s)
- Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (A.P.); (Y.T.); Tel.: +66-53-943346 (A.P.); +66-53-941946-48 (Y.T.)
| | - Hataichanok Pundith
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawadee Thongyim
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (H.P.); (S.T.); (T.K.); (T.C.); (S.B.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (A.P.); (Y.T.); Tel.: +66-53-943346 (A.P.); +66-53-941946-48 (Y.T.)
| |
Collapse
|
21
|
Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C. Molecular Hybrids Integrated with Benzimidazole and Pyrazole Structural Motifs: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. ACS OMEGA 2020; 5:10089-10098. [PMID: 32391496 PMCID: PMC7203960 DOI: 10.1021/acsomega.0c00630] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Shunmugam Iniyaval
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Vadivel Saravanan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Wei-Meng Lim
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
- Center
for Cancer and Stem Cell Research, Institute for Research, Development
and Innovation (IRDI), International Medical
University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| |
Collapse
|
22
|
Krishnan KG, Kumar CU, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C. Novel cyanoacetamide integrated phenothiazines: Synthesis, characterization, computational studies and in vitro antioxidant and anticancer evaluations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Sivaramakarthikeyan R, Iniyaval S, Lim WM, Hii LW, Mai CW, Ramalingan C. Pyrazolylphenanthroimidazole heterocycles: synthesis, biological and molecular docking studies. NEW J CHEM 2020; 44:19612-19622. [DOI: 10.1039/d0nj02214d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
The synthesis of a series of novel pyrazolylphenanthroimidazoles 6a–6j has been accomplished utilizing a multi-step synthetic protocol, and characterized through physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Ling-Wei Hii
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
24
|
Sivaramakarthikeyan R, Karuppasamy A, Iniyaval S, Padmavathy K, Lim WM, Mai CW, Ramalingan C. Phenothiazine and amide-ornamented novel nitrogen heterocyclic hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2020. [DOI: 10.1039/c9nj05489h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis of phenothiazine and amide-ornamented nitrogen heterocycles (25–34) has been accomplished utilizing a multi-step synthetic protocol and the structures have been established based on physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Ayyanar Karuppasamy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Malaysia
- Center for Cancer and Stem Cell Research
- Institute for Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
25
|
Nik Abd Rahman NMA, Nurliyana MY, Afiqah MNFNN, Osman MA, Hamid M, Lila MAM. Antitumor and antioxidant effects of Clinacanthus nutans Lindau in 4 T1 tumor-bearing mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:340. [PMID: 31783838 PMCID: PMC6884788 DOI: 10.1186/s12906-019-2757-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Background Clinacanthus nutans Lindau (C. nutans) is a species of in Acanthaceae family and primarily used in South East Asian countries. C. nutans is well known as Sabah snake grass in Malaysia, and its leaves have diverse medicinal potential in conventional applications, including cancer treatments. On the basis of literature search, there is less conclusive evidence of the involvement of phytochemical constituents in breast cancer, in particular, animal tumor models. The current study aimed to determine the antitumor and antioxidant activities of C. nutans extract in 4 T1 tumor-bearing mice. Methods C. nutans leaves were subjected to methanol extraction and divided into two different concentrations, 200 mg/kg (low-dose) and 1000 mg/kg (high-dose). The antitumor effects of C. nutans extracts were assessed using bone marrow smearing, clonogenic, and splenocyte immunotype analyses. In addition, hematoxylin and eosin, tumor weight and tumor volume profiles also used to indicate apoptosis appearance. Serum cytokine levels were examined using ELISA assay. In addition, nitric oxide assay reflecting antioxidant activity was performed. Results From the results obtained, the methanol extract of C. nutans leaves at 200 mg/kg (P < 0.05) and 1000 mg/kg (P < 0.05) showed a significant decrease in nitric oxide (NO) and malondialdehyde (MDA) levels in the blood. On the other hand, C. nutans extract (1000 mg/kg) also showed a significant decrease in the number of mitotic cells, tumor weight, and tumor volume. No inflammatory and adverse reactions related to splenocytes activities were found in all treated groups of mice. Despite its promising results, the concentration of both C. nutans extracts have also reduced the number of colonies formed in the liver and lungs. Conclusion In conclusion, C. nutans extracts exert antitumor and antioxidant activities against 4 T1 mouse breast model with no adverse effect and inflammatory response at high dose of 1000 mg/kg, indicating an effective and complementary approach for cancer prevention and treatment.
Collapse
|
26
|
Diao L, Tao J, Wang Y, Hu Y, He W. Co-Delivery Of Dihydroartemisinin And HMGB1 siRNA By TAT-Modified Cationic Liposomes Through The TLR4 Signaling Pathway For Treatment Of Lupus Nephritis. Int J Nanomedicine 2019; 14:8627-8645. [PMID: 31806961 PMCID: PMC6839745 DOI: 10.2147/ijn.s220754] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Systemic lupus erythematous (SLE) is an autoimmune disease caused by many factors. Lupus nephritis (LN) is a common complication of SLE and represents a major cause of morbidity and mortality. Previous studies have shown the advantages of multi-targeted therapy for LN and that TLR4 signaling is a target of anti-LN drugs. High-mobility group box 1 (HMGB1), a nuclear protein with a proinflammatory cytokine activity, binds specifically to TLR4 to induce inflammation. We aimed to develop PEGylated TAT peptide-cationic liposomes (TAT-CLs) to deliver anti-HMGB1 siRNA and dihydroartemisinin (DHA) to increase LN therapeutic efficiency and explore their treatment mechanism. Methods We constructed the TAT-CLs-DHA/siRNA delivery system using the thin film hydration method. The uptake and localization of Cy3-labeled siRNA were detected by confocal microscopy and flow cytometry. MTT assays were used to detect glomerular mesangial cell proliferation. Real-time PCR, Western blot analysis, and ELISA evaluated the anti-inflammatory mechanism of TAT-CLs-DHA/siRNA. Results We constructed the TAT-CLs-DHA/siRNA delivery system measuring approximately 140 nm with superior storage and serum stabilities. In vitro, it showed significantly greater uptake compared with unmodified liposomes and significant inhibition of glomerular mesangial cell proliferation. TAT-CLs-DHA/siRNA inhibited NF-κB activation in a concentration-dependent manner. Real-time PCR and Western blot analysis showed that TAT-CLs-DHA/siRNA downregulated expression of HMGB1 mRNA and protein. TAT-CLs-DHA/siRNA markedly diminished Toll-like receptor 4 (TLR4) expression and subsequent activation of MyD88, IRAK4, and NF-κB. Conclusion TAT-CLs-DHA/siRNA may have the potential for treatment of inflammatory diseases such as LN mediated by the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Yiqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
27
|
Hii LW, Lim SHE, Leong CO, Chin SY, Tan NP, Lai KS, Mai CW. The synergism of Clinacanthus nutans Lindau extracts with gemcitabine: downregulation of anti-apoptotic markers in squamous pancreatic ductal adenocarcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:257. [PMID: 31521140 PMCID: PMC6744713 DOI: 10.1186/s12906-019-2663-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy. METHODS We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p < 0.05) was considered statistical significance. RESULTS All extracts tested were not able to induce potent anti-proliferative effects. However, it was found that pancreatic ductal adenocarcinoma, PDAC (AsPC1, BxPC3 and SW1990) were the cell lines most sensitive cell lines to SN extracts. This is the first report of C. nutans SN extracts acting in synergy with gemcitabine, the first line chemotherapy for pancreatic cancer, as compared to conventional monotherapy. In the presence of SN extracts, we can reduce the dose of gemcitabine 2.38-5.28 folds but still maintain the effects of gemcitabine in PDAC. SN extracts potentiated the killing of gemcitabine in PDAC by apoptosis. Bax was upregulated while bcl-2, cIAP-2, and XIAP levels were downregulated in SW1990 and BxPC3 cells treated with gemcitabine and SN extracts. The synergism was independent of TLR-4 expression in pancreatic cancer cells. CONCLUSION These results provide strong evidence of C. nutans extracts being inefficacious as monotherapy for cancer. Hence, it should not be used as a total substitution for any chemotherapy agents. However, SN extracts may synergise with gemcitabine in the anti-tumor mechanism.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland, Seri Kembangan, 43400 Selangor Malaysia
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
| | - Swee-Yee Chin
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ngai-Paing Tan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, 43400 Selangor Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Seri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cells Research, Institute for Research Development and Innovation, International Medical University, Kuala Lumpur, 57000 Malaysia
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Siew YY, Yew HC, Neo SY, Seow SV, Lew SM, Lim SW, Lim CSES, Ng YC, Seetoh WG, Ali A, Tan CH, Koh HL. Evaluation of anti-proliferative activity of medicinal plants used in Asian Traditional Medicine to treat cancer. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:75-87. [PMID: 30599223 DOI: 10.1016/j.jep.2018.12.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The extensive biodiversity of plants in Southeast Asia and inadequate research hitherto warrant a continued investigation into medicinal plants. On the basis of a careful review of fresh medicinal plant usage to treat cancer from previous ethnobotanical interviews in Singapore and from the traditional uses of the indigenous plants, fresh leaves of seven locally grown medicinal plant species were evaluated for anti-proliferative activity. AIM OF THE STUDY To evaluate the anti-proliferative activity of local medicinal plant species Clausena lansium Skeels, Clinacanthus nutans (Burm. f.) Lindau, Leea indica (Burm. f.) Merr., Pereskia bleo (Kunth) DC., Strobilanthes crispus (L.) Blume, Vernonia amygdalina Delile and Vitex trifolia L. MATERIALS AND METHOD Fresh, healthy and mature leaves of the seven medicinal plants were harvested from various locations in Singapore and Malaysia for Soxhlet, ultrasonication and maceration extractions in three different solvents (water, ethanol and methanol). Cell proliferation assay using water soluble tetrazolium salt (WST-1) assay was performed on twelve human cancer cell lines derived from breast (MDA-MB-231, T47D), cervical (C33A), colon (HCT116), leukemia (U937), liver (HepG2, SNU-182, SNU-449), ovarian (OVCAR-5, PA-1, SK-OV-3) and uterine (MES-SA/DX5) cancer. RESULTS A total of 37 fresh leaf extracts from seven medicinal plants were evaluated for their anti-tumour activities in twelve human cancer cell lines. Of these, the extracts of C. lansium, L. indica, P. bleo, S. crispus, V. amygdalina and V. trifolia exhibited promising anti-proliferative activity against multiple cancer cell lines. Further investigation of selected promising leaf extracts indicated that maceration methanolic extract of L. indica was most effective overall against majority of the cancer cell lines, with best IC50 values of 31.5 ± 11.4 µg/mL, 37.5 ± 0.7 µg/mL and 43.0 ± 6.2 µg/mL in cervical C33A, liver SNU-449, and ovarian PA-1 cancer cell lines, respectively. CONCLUSION The results of this study provide new scientific evidence for the traditional use of local medicinal plant species C. lansium, L . indica, P. bleo, S. crispus, V. amygdalina and V. trifolia in cancer treatment. These results highlight the importance of the upkeep of these indigenous plants in modern society and their relevance as resources for drug discovery.
Collapse
Affiliation(s)
- Yin-Yin Siew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Hui-Chuing Yew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Soek-Ying Neo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - See-Voon Seow
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Affiliated National University Cancer Institute, National University Health System, Singapore 119074, Singapore.
| | - Si-Min Lew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Shun-Wei Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Claire Sophie En-Shen Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Yi-Cheng Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Wei-Guang Seetoh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| | - Azhar Ali
- Cancer Science Institute of Singapore, 14 Medical Drive, Singapore 117599, Singapore.
| | - Chay-Hoon Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, 16 Medical Drive, Block MD3, #04-01S, Singapore 117600, Singapore.
| | - Hwee-Ling Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
29
|
Roeslan MO, Ayudhya TDN, Yingyongnarongkul BE, Koontongkaew S. Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomed Pharmacother 2019; 113:108724. [DOI: 10.1016/j.biopha.2019.108724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
|
30
|
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38:162. [PMID: 30987642 PMCID: PMC6463646 DOI: 10.1186/s13046-019-1153-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME). MAIN BODY In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME. CONCLUSIONS It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.
Collapse
Affiliation(s)
- Chin-King Looi
- 0000 0000 8946 5787grid.411729.8School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Chee-Onn Leong
- 0000 0000 8946 5787grid.411729.8School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- 0000 0000 8946 5787grid.411729.8Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- 0000 0000 8946 5787grid.411729.8School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- 0000 0001 2231 800Xgrid.11142.37UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Sri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- 0000 0000 8946 5787grid.411729.8School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- 0000 0000 8946 5787grid.411729.8Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Koul B, Taak P, Kumar A, Kumar A, Sanyal I. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:201-226. [PMID: 30521980 PMCID: PMC7127090 DOI: 10.1016/j.jep.2018.11.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Psoralea (Fabaceae) harbours 105 accepted species that are extensively used by local peoples and medicinal practitioners of China, India, and other countries for treatment of tooth decay, psoriasis, leucoderma, leprosy, kidney problems, tuberculosis, indigestion, constipation and impotence. Presently, pharmacological research reports are available on only few species namely Bituminaria bituminosa (Syn: P. bituminosa), P. canescens, P. corylifolia, P. esculenta, P. plicata and P. glandulosa which are valued for their chemical constituents and traditional uses. AIM OF THE REVIEW This review article provides explicit information on traditional uses, phytochemistry, and pharmacological activities of selected Psoralea species. The possible trends and perspectives for future research on these plants are also discussed. MATERIALS AND METHODS An extensive and systematic review of the extant literature was carried out, and the data under various sections were identified using a computerized bibliographic search via the PubMed, Web of Science and Google Scholar, CAB Abstracts, MEDLINE, EMBASE, INMEDPLAN, NATTS as well as several websites. KEY FINDINGS A total of 291 bioactive compounds from 06 species of genus Psoralea have been isolated and characterized. However, P. bituminosa alone possess nearly 150 compounds. These bioactive compounds belong to different chemical classes, including flavonoids, coumarins, furanocoumarins, chalcones, quinines, terpenoids and some others due to which these species exhibit significant anti-oxidant, anti-bacterial, anti-fungal, anti-viral, anti-helmintic, anti-diabetic, diuretic, hepatoprotective, anti-cancer and anti-tumor activities. P. corylifolia L. (Babchi), a Chinese traditional medicinal plant has been used in traditional medicine for many decades for its healing properties against numerous skin diseases such as leprosy, psoriasis and leucoderma. CONCLUSIONS The in vitro studies and in vivo models have provided a simple bio-scientific justification for various ethnopharmacological uses of Psoralea species. From the toxicological perspective, the root, leaf, and seed extracts and their preparations have been proven to be safe when consumed in the recommended doses. But, meticulous studies on the pharmaceutical standardization, mode of action of the active constituents, and sustainable conservation of Psoralea species are needed, to meet the growing demands of the pharmaceutical industries, and to fully exploit their preventive and therapeutic potentials.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara , Punjab 144411, India.
| | - Pooja Taak
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara , Punjab 144411, India
| | - Arvind Kumar
- Chromatography and Mass Spectrometry Centre, CROM-MASS, CENIVAM, Industrial University of Santander, Carrera 27, Calle 9, Edificio 45, Bucaramanga, Colombia.
| | - Anil Kumar
- CSIR-National Botanical Research Institute, Plant Transgenic Laboratory, P.O. Box 436, Rana Pratap Marg, Lucknow 226001, U.P., India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Plant Transgenic Laboratory, P.O. Box 436, Rana Pratap Marg, Lucknow 226001, U.P., India.
| |
Collapse
|
32
|
Padmavathy K, Krishnan KG, Kumar CU, Sathiyaraj E, Sivaramakarthikeyan R, Lim WM, Mai CW, Ramalingan C. Novel acrylamide/acrylonitrile-tethered carbazoles: synthesis, structural, biological, and density functional theory studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj02170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The design and synthesis of novel carbazole-based heterocyclic chemical entities as anticancer agents were accomplished.
Collapse
Affiliation(s)
- Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Kannan Gokula Krishnan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Chandran Udhaya Kumar
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Ethiraj Sathiyaraj
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
- Institute for Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil – 626 126
- India
| |
Collapse
|
33
|
Sivaramakarthikeyan R, Iniyaval S, Padmavathy K, Liew HS, Looi CK, Mai CW, Ramalingan C. Phenothiazine and amide-ornamented dihydropyridines viaa molecular hybridization approach: design, synthesis, biological evaluation and molecular docking studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj03394g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of novel phenothiazinyldihydropyridine dicarboxamides7a–7jwas synthesized by adopting a multi-step synthetic strategy and characterized through physical and spectral techniques.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Shunmugam Iniyaval
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| | - Hui-Shan Liew
- School of Postgraduate Studies
- International Medical University
- Malaysia
| | - Chin-King Looi
- School of Postgraduate Studies
- International Medical University
- Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- International Medical University
- Malaysia
- Centre for Cancer and Stem Cell Research
| | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences
- Kalasalingam Academy of Research and Education, (Deemed to be University)
- India
| |
Collapse
|
34
|
Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, Tan CP, Shaari K, Tham CL, Abas F. 1 H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:46-61. [PMID: 30183131 DOI: 10.1002/pca.2789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/12/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage. OBJECTIVE Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach. METHODOLOGY The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings. RESULTS Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P < 0.05). A total of 56 metabolites were tentatively identified using 1 H-NMR metabolomics. A partial least square (PLS) biplot suggested that sulphur containing glucoside, sulphur containing compounds, phytosterols, triterpenoids, flavones and some organic and amino acids were among the potential NO inhibitors. LC-MS/MS targeted quantification further supported sonicated water extract was among the extract that possessed the most abundant C-glycosyl flavones. CONCLUSION The present study may serve as a preliminary reference for the selection of optimum extract in further C. nutans in vivo anti-inflammatory study.
Collapse
Affiliation(s)
- Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Audrey Siew Foong Kow
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - May Yen Ang
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Won Yin Chew
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur Campus, Cheras, Kuala Lumpur, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Krishnan KG, Ashothai P, Padmavathy K, Lim WM, Mai CW, Thanikachalam PV, Ramalingan C. Hydrazide-integrated carbazoles: synthesis, computational, anticancer and molecular docking studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01912j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel carbazolylmethylene isonictinohydrazides have been synthesized as anticancer agents against pancreatic cancer cells.
Collapse
Affiliation(s)
- Kannan Gokula Krishnan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | | | - Krishnaraj Padmavathy
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| | - Wei-Meng Lim
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
| | - Chun-Wai Mai
- School of Pharmacy
- International Medical University
- Bukit Jalil
- Malaysia
- Center for Cancer and Stem Cell Research
| | | | - Chennan Ramalingan
- Department of Chemistry
- School of Advanced Sciences (SAS)
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil
- India
| |
Collapse
|
36
|
Rasol NE, Ahmad FB, Mai CW, Bihud NV, Abdullah F, Awang K, Ismail NH. Styryl Lactones from Roots and Barks Goniothalamus lanceolatus. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new styryl lactone, 5 R,6 R-5-hydroxy-6-styryltetrahydropyrane-2-one 2 was isolated from the roots of an endemic Goniothalamus lanceolatus Miq. of Sarawak, Malaysia. Furthermore, seven previously undescribed diastereomers, 5 R,6 R-5-hydroxygoniothalamin 3, 5 R,6 R-5-acetylgoniothalamin 4, 6 S,7 S,8 S-goniodiol-7-monoacetate 5, 6 S,7 S,8 S-goniodiol-8-monoacetate 6, goniofupyrone B 7, deoxygoniopypyrone B 8 and 1 S,5 S,7 R,8 S,3- endo,7- endo-(+)-8- epi-9-deoxygoniopypyrone acetate 9, along with six known styryl lactones (1, 10–15) were also isolated and characterized. 6 S-goniothalamin 1 is reported for the first time from a Goniothalamus species. 1, 11 and 12 showed cytotoxic activity against human colon and lung cancer cell lines with IC50 values ranging from 2.38–7.59 μM.
Collapse
Affiliation(s)
- Nurulfazlina Edayah Rasol
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Fasihuddin Badruddin Ahmad
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Semarahan, Sarawak, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nur Vicky Bihud
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Fauziah Abdullah
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Herbal Product Development Programme, Natural Products Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia
| | - Khalijah Awang
- Faculty of Science, University of Malaya, Pantai Valley, 50603 Kuala Lumpur, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Products Discovery, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
37
|
Ng CT, Fong LY, Tan JJ, Rajab NF, Abas F, Shaari K, Chan KM, Juliana F, Yong YK. Water extract of Clinacanthus nutans leaves exhibits in vitro, ex vivo and in vivo anti-angiogenic activities in endothelial cell via suppression of cell proliferation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:210. [PMID: 29980198 PMCID: PMC6035421 DOI: 10.1186/s12906-018-2270-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Clinacanthus nutans (Burm. f.) Lindau. has traditionally been using in South East Asia countries to manage cancer. However, scientific evidence is generally lacking to support this traditional claim. This study aims to investigate the in vitro, ex-vivo and in vivo effects of C. nutans extracts on angiogenesis. METHODS C. nutans leaves was extracted with 50-100% ethanol or deionised water at 1% (w/v). Human umbilical veins endothelial cell (HUVEC) proliferation was examined using MTT assay. The in vitro anti-angiogenic effects of C. nutans were assessed using wound scratch, tube formation and transwell migration assays. The VEGF levels secreted by human oral squamous cell carcinoma (HSC-4) cell and HUVEC permeability were also measured. Besides, the rat aortic ring and chick embryo chorioallantoic membrane (CAM) assays, representing ex vivo and in vivo models, respectively, were performed. RESULTS The MTT assay revealed that water extract of C. nutans leaves exhibited the highest activity, compared to the ethanol extracts. Therefore, the water extract was chosen for subsequent experiments. C. nutans leaf extract significantly suppressed endothelial cell proliferation and migration in both absence and presence of VEGF. However, the water extract failed to suppress HUVEC transmigration, differentiation and permeability. C. nutans water extract also did not suppress HSC-4 cell-induced VEGF production. Importantly, C. nutans water extract significantly abolished the sprouting of vessels in aortic rings as well as in chick embryo CAM. CONCLUSION In conclusion, these findings reveal potential anti-angiogenic effects of C. nutans, providing new evidence for its potential application as an anti-angiogenic agent.
Collapse
|
38
|
A Comprehensive Review on Phytochemistry and Pharmacological Activities of Clinacanthus nutans (Burm.f.) Lindau. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9276260. [PMID: 30105077 PMCID: PMC6076923 DOI: 10.1155/2018/9276260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022]
Abstract
Clinacanthus nutans (Burm.f.) Lindau (Acanthaceae), commonly known as Sabah snake grass, is a vegetable and a well-known herb that is considered an alternative medicine for insect bites, skin rashes, herpes infection, inflammation, and cancer and for health benefits. Current review aims to provide a well-tabulated repository of the phytochemical screening, identification and quantification, and the pharmacological information of C. nutans according to the experimental design and the plant preparation methods which make it outstanding compared to existing reviews. This review has documented valuable data obtained from all accessible library databases and electronic searches. For the first time we analyzed the presence of flavonoids, triterpenoids, steroids, phytosterols, and glycosides in C. nutans based on the results from phytochemical screening which are then further confirmed by conventional phytochemical isolation methods and advanced spectroscopic techniques. Phytochemical quantification further illustrated that C. nutans is a good source of phenolics and flavonoids. Pharmacological studies on C. nutans revealed that its polar extract could be a promising anti-inflammation, antiviral, anticancer, immune and neuromodulating, and plasmid DNA protective agent; that its semipolar extract could be a promising antiviral, anticancer, and wound healing agent; and that its nonpolar extract could be an excellent anticancer agent.
Collapse
|
39
|
Mai CW, Kang YB, Hamzah AS, Pichika MR. Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation. Food Funct 2018; 9:3344-3350. [PMID: 29808897 DOI: 10.1039/c8fo00136g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vanilloid (4-hydroxy-3-methoxyphenyl benzenoid) containing foods are reported to possess many biological activities including anti-inflammatory properties. Homodimerisation of the Toll-like receptor-4 (TLR-4)/Myeloid differentiation factor 2 (MD-2) complex results in life-threatening complications in inflammatory disorders. In this study, we report activity of vanilloids in inhibition of TLR-4/MD-2 homodimersization and their molecular interactions with the receptor. The inhibitory activities of vanilloids were assessed in vitro by determining their antagonistic actions of lipopolysaccharide from Escherichia coli (LPSEc) in activation of TLR-4/MD-2 homodimerisation in TLR-4/MD-2/CD-14 transfected HEK-293 cells. The in vitro anti-inflammatory activity of vanilloids was also determined using RAW 264.7 cells. All the vanilloids were found to be active in the inhibition of TLR-4/MD-2 homodimersiation and nitric oxide production in RAW 264.7 cells. Rigid and flexible molecular docking studies were performed to gain insight into interactions between vanilloids and the binding site of the TLR-4/MD-2 complex.
Collapse
Affiliation(s)
- Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
40
|
Rasol NE, Ahmad FB, Lim XY, Chung FFL, Leong CO, Mai CW, Bihud NV, Zaki HM, Ismail NH. Cytotoxic lactam and naphthoquinone alkaloids from roots of Goniothalamus lanceolatus Miq. PHYTOCHEMISTRY LETTERS 2018. [DOI: 10.1016/j.phytol.2018.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Chong YS, Mai CW, Leong CO, Wong LC. Lutein improves cell viability and reduces Alu RNA accumulation in hydrogen peroxide challenged retinal pigment epithelial cells. Cutan Ocul Toxicol 2018; 37:52-60. [PMID: 28554225 DOI: 10.1080/15569527.2017.1335748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Dysfunction of the microRNA (miRNA)-processing enzyme DICER1 and Alu RNA accumulation are linked to the pathogenesis of age-related macular degeneration (AMD). This study determined the optimal dose of lutein (LUT) and zeaxanthin (ZEA) to protect human retinal pigment epithelium (RPE) cells against hydrogen peroxide (H2O2). The effect of the optimal dose of LUT and ZEA as DICER1 and Alu RNA modulators in cultured human RPE cells challenged with H2O2 was investigated. MATERIALS AND METHODS ARPE-19 cells were pre-treated with LUT, ZEA, or both for 24 h before 200 μM H2O2 challenge. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DICER1 and Alu RNA were quantified by western blotting and real-time polymerase chain reaction, respectively. RESULTS H2O2 increased cell Alu RNA expression and decreased cell viability of ARPE-19, but had no significant impact on the DICER1 protein level. LUT, alone and in combination with ZEA pre-treatment, prior to H2O2 challenge significantly improved cell viability of ARPE-19 and reduced the level of Alu RNA compared to the negative control. CONCLUSIONS These results support the use of LUT alone, and in combination with ZEA, in AMD prevention and treatment. This study is also the first to report LUT modulating effects on Alu RNA.
Collapse
Affiliation(s)
- You Sheng Chong
- a School of Medicine , International Medical University , Kuala Lumpur , Malaysia
| | - Chun Wai Mai
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Chee Onn Leong
- c Department of Life Sciences, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Lai Chun Wong
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| |
Collapse
|
42
|
Yeong KY, Tan SC, Mai CW, Leong CO, Chung FFL, Lee YK, Chee CF, Abdul Rahman N. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles. Chem Biol Drug Des 2018; 91:213-219. [PMID: 28719017 DOI: 10.1111/cbdd.13072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 07/08/2017] [Indexed: 02/05/2023]
Abstract
Both sirtuin and poly(ADP-ribose)polymerase (PARP) family of enzymes utilize NAD+ as co-substrate. Inhibitors of sirtuins and PARPs are important tools in drug discovery as they are reported to be linked to multiple diseases such as cancer. New potent sirtuin inhibitors (2,4,6-trisubstituted benzimidazole) were discovered from reported PARP inhibitor scaffold. Interestingly, the synthesized compounds have contrasting sirtuin and PARP-1 inhibitory activities. We showed that modification on benzimidazoles may alter their selectivity toward sirtuin or PARP-1 enzymes. This offers an opportunity for further discovery and development of new promising sirtuin inhibitors. Molecular docking studies were carried out to aid the rationalization of these observations. Preliminary antiproliferative studies of selected compounds against nasopharyngeal cancer cells also showed relatively promising results.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Bandar Sunway, Selangor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Soo Choon Tan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
43
|
Orlenko A, Moore JH, Orzechowski P, Olson RS, Cairns J, Caraballo PJ, Weinshilboum RM, Wang L, Breitenstein MK. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:460-471. [PMID: 29218905 PMCID: PMC5882490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.
Collapse
Affiliation(s)
- Alena Orlenko
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR. Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. PHARMACEUTICAL BIOLOGY 2017; 55:1093-1113. [PMID: 28198202 PMCID: PMC6130650 DOI: 10.1080/13880209.2017.1288749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 05/02/2023]
Abstract
CONTEXT Medicinal plants have attracted global attention for their hidden therapeutic potential. Clinacanthus nutans (Burm.f) Lindau (Acanthaceae) (CN) is endemic in Southeast Asia. CN contains phytochemicals common to medicinal plants, such as flavonoids. Traditionally, CN has been used for a broad range of human ailments including snake bites and cancer. OBJECTIVES This article compiles the ethnomedicinal uses of CN and its phytochemistry, and thus provides a phytochemical library of CN. It also discusses the known pharmacological and biological effects of CN to enable better investigation of CN. METHODS This literature review was limited to articles and websites published in the English language. MEDLINE and Google Scholar databases were searched from December 2014 to September 2016 using the following keywords: "Clinacanthus nutans" and "Belalai gajah". The results were reviewed to identify relevant articles. Information from relevant selected studies was systematically analyzed from contemporary ethnopharmacological sources, evaluated against scientific literature, and extracted into tables. RESULTS The literature search yielded 124 articles which were then further scrutinized revealing the promising biological activities of CN, including antimicrobial, antiproliferative, antitumorigenic and anti-inflammatory effects. Few articles discussed the mechanisms for these pharmacological activities. Furthermore, CN was beneficial in small-scale clinical trials for genital Herpes and aphthous stomatitis. CONCLUSION Despite the rich ethnomedicinal knowledge behind the traditional uses of CN, the current scientific evidence to support these claims remains scant. More research is still needed to validate these medicinal claims, beginning by increasing the understanding of the biological actions of this plant.
Collapse
Affiliation(s)
- Ihsan N. Zulkipli
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Rajan Rajabalaya
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Adi Idris
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Nurul Atiqah Sulaiman
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| | - Sheba R. David
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, Brunei Darussalam
| |
Collapse
|
45
|
Yew PN, Lee WL, Lim YY. Antioxidant and Intracellular Reactive Oxygen Species/Reactive Nitrogen Species Scavenging Activities of Three Porcupine Bezoars from Hystrix brachyura. Pharmacognosy Res 2017; 9:366-371. [PMID: 29263630 PMCID: PMC5717789 DOI: 10.4103/pr.pr_145_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Porcupine dates are phytobezoar stones that are used in Traditional Chinese Medicine (TCM) treatments against cancer, postsurgical recovery, dengue fever, etc. The medicinal values have not been scientifically investigated due to the availability and high pricing of the dates. OBJECTIVES This paper represents the first report on the phytochemical content, in vitro antioxidant and intracellular reactive oxygen species (ROS)/reactive nitrogen species (RNS) scavenging properties of the extracts of three porcupine dates: grassy date (GD), black date (BD), and powdery date (PD). MATERIALS AND METHODS Dried samples were extracted with methanol and lyophilized. Samples were screened for phytochemical constituents, in vitro antioxidant assays based on total phenolic content (TPC), free radical scavenging, and ferric reducing power (FRP) as well as intracellular ROS and RNS scavenging properties. RESULTS Phytochemical screening and total tannins assay revealed that tannins, cardiac glycosides, and terpenoids were found in all porcupine dates with tannins forming the major portion of the TPC. In comparison to GD, BD and PD were found to contain significantly high TPC, radical scavenging activity, and FRP. At 200 μg/ml, BD and PD remarkably scavenged 2, 2-azobis (2-amidinopropane) dihydrochloride-induced ROS in RAW264.7 cells and significantly reduced nitric oxide in lipopolysaccharide-stimulated cells. CONCLUSION Overall, BD and PD exhibited promising in vitro antioxidant as well as intracellular ROS/RNS scavenging properties. SUMMARY Tannins, cardiac glycoside, and terpenoids were found in all three types of porcupine dates with tannins being the major compoundsAntioxidant contents and properties of three dates were in the order black date (BD) > powdery date (PD) > grassy dateBD and PD extracts showed significant intracellular reactive oxygen species and reactive nitrogen species scavenging properties. Abbreviations Used: TCM: Traditional Chinese Medicine, BD: Black date, GD: Grassy date, PD: Powdery date, TPC: Total phenolic content, FRS: Free radical scavenging, FRP: Ferric reducing power, NO: Nitric oxide, ROS: Reactive oxygen species, RNS: Reactive nitrogen species, GAE: Gallic acid equivalent, AAE: Ascorbic acid equivalent, PVPP: Polyvinylpolypyrrolidone, DCFH-DA: Dichloro-dihydro-fluorescein diacetate, AAPH: 2, 2-azobis (2-amidinopropane) dihydrochloride, LPS: Lipopolysaccharide.
Collapse
Affiliation(s)
- Peng Nilan Yew
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
46
|
Kamarudin MNA, Sarker MMR, Kadir HA, Ming LC. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:245-266. [PMID: 28495603 DOI: 10.1016/j.jep.2017.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinacanthus nutans (Burm. f.) Lindau, a widely used medicinal plant, is extensively grown in tropical Asia and Southeast Asian countries. C. nutans, with its broad spectrum of pharmacological activities, has been traditionally used to treat cancer, inflammatory disorders, diabetes, insect bites, and skin problems, consumed as a vegetable, mixed with fresh juices, in concoctions, and as a whole plant. The present review analyzes the advances in the ethnopharmacology, phytochemistry, pharmacology, and toxicology of C. nutans. In addition, the needs and perspectives for future investigation of this plant are addressed. AIM OF THE REVIEW This review aims to provide a comprehensive report on the ethnomedicinal use, phytochemistry, pharmacological activities, molecular mechanisms, and nutritional values of C. nutans. The present review will open new avenues for further in-depth pharmacological studies of C. nutans for it to be developed as a potential nutraceutical and to improve the available products in the market. MATERIAL AND METHODS All the available information on C. nutans was collected using the key words "Clinacanthus nutans" and/or "ethnomedicine" and/or "phytochemicals" and/or "anticancer" and/or "anti-inflammatory" and/or "antiviral" through an electronic search of the following databases: PubMed, Web of Science, EMBASE, Cochrane Library, Clinical Trials.org, SciFinder Scholar, Scopus, and Google Scholar. In addition, unpublished materials, Ph.D. and M.Sc. dissertations, conference papers, and ethnobotanical textbooks were used. The Plant List (www.theplantlist.org) and International Plant Name Index databases were used to validate the scientific name of the plant. RESULTS The literature supported the ethnomedicinal uses of C. nutans as recorded in Thailand, Indonesia, and Malaysia for various purposes. Bioactivities experimentally proven for C. nutans include cytotoxic, anticancer, antiviral, anti-inflammatory, immunomodulatory, antidiabetic, antioxidant, antihyperlipidemic, antimicrobial, and chemotherapeutic (in aquaculture) activities. Most of these activities have so far only been investigated in chemical, cell-based, and animal assays. Various groups of phytochemicals including five sulfur-containing glycosides, eight chlorophyll derivatives, nine cerebrosides, and a monoacylmonogalactosyl glycerol are present in C. nutans. The presence of two glycerolipids, four sulfur-containing compounds, six known flavones, a flavanol, four flavonols, two phytosterols, one polypeptide, and various phenolics and fatty acids largely influences its diverse bioactivities. Numerous reports justify the ethnomedicinal use of C. nutans as an antiviral agent in treating herpes simplex virus and varicella-zoster virus infections and as part of a traditional anticancer anti-inflammatory concoction agent for various inflammatory diseases. C. nutans tea was reported to have a good percentage of carbohydrate, crude protein, minerals, essential amino acids, nonessential amino acids, and essential fatty acids. Acute, subacute, and subchronic toxicity studies demonstrated that oral administration of ethanol and methanol extracts of C. nutans to male Swiss albino mice and male Sprague-Dawley (SD) rats, respectively, did not lead to any toxicity or adverse effects on the animal behavior and organs when used in amounts as high as 2g/kg. CONCLUSION The collected literatures demonstrated that, as an important traditional medicine, C. nutans is a promising ethnomedicinal plant with various extracts and bioactive compounds exhibiting multifarious bioactivities. However, it is important for future studies to conduct further in vitro and in vivo bioactivity evaluations systematically, following the standard pharmacology guidelines. It is crucial to elucidate in-depth molecular mechanisms, structure-activity relationships, and potential synergistic and antagonistic effects of multi-component extracts and bioactive constituents derived from C. nutans. Further studies should also focus on comprehensive toxicity that includes long-term effects and adverse effects on target organs of C. nutans and bioactive compounds in correlation with the specific pharmacological effects.
Collapse
Affiliation(s)
- Muhamad Noor Alfarizal Kamarudin
- Department of Pharmacology, Faculty of Pharmacy, Lincoln University College, Jalan Stadium SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia; Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Moklesur Rahman Sarker
- Department of Pharmacology, Faculty of Pharmacy, Lincoln University College, Jalan Stadium SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia; Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Long Chiau Ming
- Pharmacy, School of Medicine, University of Tasmania, 7001 Hobart, Tasmania, Australia
| |
Collapse
|
47
|
Shang M, Sun J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr Med Chem 2017; 24:876-887. [PMID: 27915988 DOI: 10.2174/0929867323666161202150008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou. China
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, Chicago, IL, 60612. United States
| |
Collapse
|
48
|
Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci Rep 2017; 7:44822. [PMID: 28303957 PMCID: PMC5355992 DOI: 10.1038/srep44822] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Astragalus polysaccharides (APS), which is widely used as a remedy to promote immunity of breast cancer patients, can enhance immune responses and exert anti-tumor effects. In this study, we investigated the effects and mechanisms of APS on macrophage RAW 264.7 and EAC tumor-bearing mice. Griess reaction and ELISA assays revealed that the concentrations of nitric oxide, TNF-α, IL-1β and IL-6 were increased by APS. However, this effect was diminished in the presence of TAK-242 (TLR4 inhibitor) or ST-2825(MyD88 inhibitor). In C57BL/10J (TLR4+/+wild-type) and C57BL/6J (MyD88+/+wild-type) tumor-bearing mice, the tumor apoptosis rate, immune organ indexes and the levels of TNF-α, IL-1β and IL-6 in blood increased and the tumor weight decreased by oral administration of APS for 25 days. APS had no obvious effects on IL-12p70. However, these effects were not significant in C57BL/10ScNJ (TLR4-deficient) and C57BL/B6.129P2(SJL)-Myd88m1.1Defr/J (MyD88-deficient) tumor-bearing mice. qRT-PCR and Western blot indicated that APS stimulated the key nodes in the TLR4-MyD88 dependent signaling pathway, including TLR4, MyD88, TRAF-6, NF-κB and AP-1, both in vitro and in vivo. However, TRAM was an exception. Moreover, TRAF-6 and NF-κB were not triggered by APS in gene-deficient tumor-bearing mice. Therefore, APS may modulate immunity of host organism through activation of TLR4-mediated MyD88-dependent signaling pathway.
Collapse
|
49
|
Phytosterols isolated from Clinacanthus nutans induce immunosuppressive activity in murine cells. Int Immunopharmacol 2017; 44:203-210. [DOI: 10.1016/j.intimp.2017.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/18/2022]
|
50
|
Soo HC, Chung FFL, Lim KH, Yap VA, Bradshaw TD, Hii LW, Tan SH, See SJ, Tan YF, Leong CO, Mai CW. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway. PLoS One 2017; 12:e0170551. [PMID: 28107519 PMCID: PMC5249192 DOI: 10.1371/journal.pone.0170551] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
Collapse
Affiliation(s)
- Hsien-Chuen Soo
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor, Malaysia
| | - Veronica Alicia Yap
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor, Malaysia
| | - Tracey D. Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Si-Hoey Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sze-Jia See
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yuen-Fen Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|