1
|
Feng F, Ko HA, Truong TMT, Song WJ, Ko EJ, Kang I. Ginsenoside Rg3, enriched in red ginseng extract, improves lipopolysaccharides-induced suppression of brown and beige adipose thermogenesis with mitochondrial activation. Sci Rep 2024; 14:9157. [PMID: 38644456 PMCID: PMC11033271 DOI: 10.1038/s41598-024-59758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 μM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.
Collapse
Affiliation(s)
- Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Hyun-A Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Thi My Tien Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
| | - Woo-Jin Song
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
2
|
By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238202. [PMID: 36500294 PMCID: PMC9736987 DOI: 10.3390/molecules27238202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Red ginseng (RG), which is obtained from heated Panax ginseng and is produced by steaming followed by drying, is a valuable herb in Asian countries. Steamed ginseng dew (SGD) is a by-product produced in processing red ginseng. In the present study, phytochemical profiling of extracts of red ginseng and steamed ginseng dew was carried out using gas chromatography-mass spectrometry (GC-MS) and rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) analysis. Additionally, antioxidant activities (DPPH, ·OH, and ABTS scavenging ability) and whitening activities (tyrosinase and elastase inhibitory activity) were analyzed. Phytochemical profiling revealed the presence of 66 and 28 compounds that were non-saponin components in chloroform extracts of red ginseng and steamed ginseng dew (RG-CE and SGD-CE), respectively. Meanwhile, there were 20 ginsenosides identified in n-butanol extracts of red ginseng and steamed ginseng dew (RG-NBE and SGD-NBE). By comparing the different polar extracts of red ginseng and steamed ginseng dew, it was found that the ethyl acetate extract of red ginseng (RG-EAE) had the best antioxidant capacity and whitening effect, the water extract of steamed ginseng dew (SGD-WE) had stronger antioxidant capacity, and the SGD-NBE and SGD-CE had a better whitening effect. This study shows that RG and SGD have tremendous potential to be used in the cosmetic industries.
Collapse
|
3
|
Kim R, Kim JW, Lee SJ, Bae GU. Ginsenoside Rg3 protects glucocorticoid‑induced muscle atrophy in vitro through improving mitochondrial biogenesis and myotube growth. Mol Med Rep 2022; 25:94. [PMID: 35059739 PMCID: PMC8809047 DOI: 10.3892/mmr.2022.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Ginsenoside Rg3 (Rg3), amplified by iterative heating processing with fresh ginseng, has a broad range of pharmacological activities and improves mitochondrial biogenesis in skeletal muscle. However, thus far no study has examined how Rg3 affects myotube growth or muscle atrophy, to the best of the authors' knowledge. The present study was conducted to examine the myogenic effect of Rg3 on dexamethasone (DEX)‑induced myotube atrophy and the underlying molecular mechanisms. Rg3 activated Akt/mammalian target of rapamycin signaling to prevent DEX‑induced myotube atrophy thereby stimulating the expression of muscle‑specific genes, including myosin heavy chain and myogenin, and suppressing muscle‑specific ubiquitin ligases as demonstrated by immunoblotting and immunostaining assays. Furthermore, Rg3 efficiently prevented DEX‑triggered mitochondrial dysfunction of myotubes through peroxisome proliferator‑activated receptor‑γ coactivator1α activities and its mitochondrial biogenetic transcription factors, nuclear respiratory factor‑1 and mitochondrial transcription factor A. These were confirmed by immunoblotting, luciferase assays, RT‑qPCR and mitochondrial analysis measuring the levels of ROS, ATP and membrane potential. By providing a mechanistic insight into the effect of Rg3 on myotube atrophy, the present study suggested that Rg3 has potential as a therapeutic or nutraceutical remedy to intervene in muscle aging or diseases including cancer cachexia.
Collapse
Affiliation(s)
- Ryuni Kim
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jee Won Kim
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon 16419, Republic of Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
4
|
Li J, Gong L, Xu Q. Purinergic 2X7 receptor is involved in adipogenesis and lipid degradation. Exp Ther Med 2021; 23:81. [PMID: 34934450 PMCID: PMC8652400 DOI: 10.3892/etm.2021.11004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and dyslipidemia are two metabolic syndrome disorders that have serious effects on the health of patients. Purinergic 2X receptor ligand-gated ion channel 7 (P2X7R) has been reported to play a role in regulating lipid storage and metabolism. However, the role and potential mechanism of P2X7R in adipogenesis and lipid degradation remain unknown. In the present study, a mouse model of obesity was established by feeding mice a high-fat diet, and the 3T3-L1 cell line was used to analyze the function of P2X7R in vitro. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of P2X7R, sterol regulatory element-binding protein 1 (SREBP1) and other associated transcription factors. Bioinformatics analysis was used to predict the potential target gene of P2X7R and a dual luciferase reporter assay was used to confirm this prediction. Oil Red O staining was used to evaluate the adipogenic capacity of preadipocytes. AdipoRed assay, cholesterol assay and a free glycerol reagent were used to measure the expression levels of triglyceride (TGs), total cholesterol (TC) and glycerin, respectively. The results indicated that P2X7R was highly expressed in obese mice and that it was involved in adipogenic differentiation in vitro. SREBP1 enhanced the transcription activities of P2X7R to promote its expression. Inhibition of P2X7R significantly reduced the adipogenic capacity of preadipocytes, decreased the expression levels of adipogenesis-associated transcription factors (peroxisome proliferator-activated receptor γ, CCAAT-enhancer-binding protein α and fatty-acid-binding protein 4), enhanced the expression levels of lipolytic enzymes (adipose triglyceride lipase, phosphorylated hormone-sensitive lipase and monoacylglycerol lipase) and regulated the expression of TG, TC and glycerin in mature 3T3-L1 cells. These effects were reversed by a small interfering RNA targeting Wnt3a. Therefore, the results suggested that P2X7R, the transcription activities of which were regulated by SREBP1, regulated adipogenesis and lipid degradation by targeting SREBP1, indicating its potential effects on obesity-associated metabolism.
Collapse
Affiliation(s)
- Jing Li
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| | - Linxia Gong
- Pediatric Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210024, P.R. China
| | - Qiaolan Xu
- Pediatric Department, Yancheng Third People's Hospital, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
5
|
Han NR, Ko SG, Moon PD, Park HJ. Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway. J Ginseng Res 2021; 45:610-616. [PMID: 34803431 PMCID: PMC8587510 DOI: 10.1016/j.jgr.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) acts as a master switch for inflammatory responses. Ginsenoside Rg3 (Rg3) which is an active ingredient of Panax ginseng Meyer (Araliaceae) is known to possess various therapeutic effects. However, a modulatory effect of Rg3 on TSLP expression in the inflammatory responses remains poorly understood. Methods We investigated antiinflammatory effects of Rg3 on an in vitro model using HMC-1 cells stimulated by PMA plus calcium ionophore (PMACI), as well as an in vivo model using PMA-induced mouse ear edema. TSLP and vascular endothelial growth factor (VEGF) levels were detected using enzyme-linked immunosorbent assay or real-time PCR analysis. Murine double minute 2 (MDM2) and hypoxia-inducible factor 1α (HIF1α) expression levels were detected using Western blot analysis. Results Rg3 treatment restrained the production and mRNA expression levels of TSLP and VEGF in activated HMC-1 cells. Rg3 down-regulated the MDM2 expression level increased by PMACI stimulation. The HIF1α expression level was also reduced by Rg3 in activated HMC-1 cells. In addition, Rg3-administered mice showed the decreased redness and ear thickness in PMA-irritated ear edema. Rg3 inhibited the TSLP and VEGF levels in the serum and ear tissue homogenate. Moreover, the MDM2 and HIF1α expression levels in the ear tissue homogenate were suppressed by Rg3. Conclusion Taken together, the current study identifies new mechanistic evidence about MDM2/HIF1α pathway in the antiinflammatory effect of Rg3, providing a new effective therapeutic strategy for the treatment of skin inflammatory diseases.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Liu MY, Liu F, Gao YL, Yin JN, Yan WQ, Liu JG, Li HJ. Pharmacological activities of ginsenoside Rg5 (Review). Exp Ther Med 2021; 22:840. [PMID: 34149886 PMCID: PMC8210315 DOI: 10.3892/etm.2021.10272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ginseng, a perennial plant belonging to genus Panax, has been widely used in traditional herbal medicine in East Asia and North America. Ginsenosides are the most important pharmacological component of ginseng. Variabilities in attached positions, inner and outer residues and types of sugar moieties may be associated with the specific pharmacological activities of each ginsenoside. Ginsenoside Rg5 (Rg5) is a minor ginsenoside synthesized during ginseng steaming treatment that exhibits superior pharmaceutical activity compared with major ginsenosides. With high safety and various biological functions, Rg5 may act as a potential therapeutic candidate for diverse diseases. To date, there have been no systematic studies on the activity of Rg5. Therefore, in this review, all available literature was reviewed and discussed to facilitate further research on Rg5.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fei Liu
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Li Gao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia-Ning Yin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei-Qun Yan
- Department of Tissue Engineering, School of Pharmaceutical Sciences in Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jian-Guo Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Department of Immunity, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
7
|
The Aging of Adipocytes Increases Expression of Pro-Inflammatory Cytokines Chronologically. Metabolites 2021; 11:metabo11050292. [PMID: 34062781 PMCID: PMC8147339 DOI: 10.3390/metabo11050292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is a significant producer of pro-inflammatory cytokines in obese and old individuals. However, there is no direct evidence of whether and how aged adipocytes enhance the production of pro-inflammatory markers. We aimed to investigate whether the aging adipocytes increase pro-inflammatory markers. Swiss mouse embryonic-tissue-derived 3T3-L1 cells were differentiated into adipocytes and maintained for 60 days in the conditioned medium or 35 days in the unconditioned medium. Additionally, 20-month-old male C57BL/6 mice were fed a standard chow diet for 37 weeks until they were extremely aged, when ~75% of mice died because of aging. Accumulated lipids, pro-inflammatory markers, and nuclear factor kappa B (NF-κB) pathway markers from differentiated adipocytes were analyzed. Pro-inflammatory markers and NF-κB pathway markers of epididymal white adipose tissues (EWATs) and adipocytes from EWATs were also analyzed. We found that the aging adipocytes chronologically accumulated lipids and increased pro-inflammatory markers interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α); at the same time, NF-κB p50 markers were also increased while IκBα protein was decreased significantly in conditioned medium. Similar results were observed when differentiated adipocytes were maintained in the unconditioned medium and the adipocytes from EWATs of aged mice. We demonstrated that aging augmented chronic inflammation through the NF-κB signaling pathway in adipocytes and adipose tissue.
Collapse
|
8
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss. Front Pharmacol 2021; 11:601751. [PMID: 33841133 PMCID: PMC8027240 DOI: 10.3389/fphar.2020.601751] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of individuals who are overweight or obese is rising rapidly globally. Currently, majority of drugs used to treat obesity are ineffective or are accompanied by obvious side effects; hence, the options are very limited. Therefore, it is necessary to find more effective and safer anti-obesity drugs. It has been proven in vivo and in vitro that the active ingredient notoginsenosides isolated from traditional Chinese medicine Panax notoginseng (Burk.) F. H. Chen exhibits anti-obesity effects. Notoginsenosides can treat obesity by reducing lipid synthesis, inhibiting adipogenesis, promoting white adipose tissue browning, increasing energy consumption, and improving insulin sensitivity. Although notoginsenosides are potential drugs for the treatment of obesity, their effects and mechanisms have not been analyzed in depth. In this review, the anti-obesity potential and mechanism of action of notoginsenosides were analyzed; thus laying emphasis on the timely prevention and treatment of obesity.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Effects of Ginsenoside Rg3 on Inhibiting Differentiation, Adipogenesis, and ER Stress-Mediated Cell Death in Brown Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6668665. [PMID: 33815558 PMCID: PMC7990545 DOI: 10.1155/2021/6668665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Objectives Ginsenoside Rg3 (Rg3), a main active component of Panax ginseng, has various therapeutic properties in literatures, and it has been studied for its potential use in obesity control due to its antiadipogenic effects in white adipocytes. However, little is known about its effects on brown adipocytes. Methods The mechanisms through which Rg3 inhibits differentiation, adipogenesis, and ER stress-mediated cell death in mouse primary brown adipocytes (MPBAs) are explored. Results Rg3 significantly induced cytotoxicity in differentiated MPBAs but not in undifferentiated MPBAs. Rg3 treatment downregulated the expression of differentiation and adipogenesis markers and the level of perilipin in MPBAs while upregulating the expression of lipolytic Kruppel-like factor genes. Rg3 also induced lipolysis and efflux of triglycerides from MPBAs and subsequently increased proinflammatory cytokine levels. Notably, Rg3 treatment resulted in elevation of ER stress and proapoptotic markers in MPBAs. Conclusions Our results demonstrate that Rg3 is able to selectively exert cytotoxicity in differentiated MPBAs while leaving undifferentiated MPBAs intact, resulting in the induction of ER stress and subsequent cell death in MPBAs via regulation of various genes related to adipocyte differentiation, adipogenesis, lipolysis, and inflammation. These results indicate that further studies on the potential therapeutic applications of Rg3 are warranted.
Collapse
|
10
|
Zhang L, Virgous C, Si H. How Does Ginsenoside Rh2 Mitigate Adipogenesis in Cultured Cells and Obese Mice? Molecules 2020; 25:E2412. [PMID: 32455850 PMCID: PMC7287807 DOI: 10.3390/molecules25102412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rh2, an intermediate metabolite of ginseng, but not naturally occurring, has recently drawn attention because of its anticancer effect. However, it is not clear if and how Rh2 inhibits preadipocytes differentiation. In the present study, we hypothesized that ginsenoside Rh2 attenuates adipogenesis through regulating the peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway both in cells and obese mice. Different concentrations of Rh2 were applied both in 3T3-L1 cells and human primary preadipocytes to determine if Rh2 inhibits cell differentiation. Dietary Rh2 was administered to obese mice to determine if Rh2 prevents obesity in vivo. The mRNA and protein expression of PPAR-γ pathway molecules in cells and tissues were measured by real-time polymerase chain reaction (RT-PCR) and Western blot, respectively. Our results show that Rh2 dose-dependently (30-60 μM) inhibited cell differentiation in 3T3-L1 cells (44.5% ± 7.8% of control at 60 μM). This inhibitory effect is accompanied by the attenuation of the protein and/or mRNA expression of adipogenic markers including PPAR-γ and CCAAT/enhancer binding protein alpha, fatty acid synthase, fatty acid binding protein 4, and perilipin significantly (p < 0.05). Moreover, Rh2 significantly (p < 0.05) inhibited differentiation in human primary preadipocytes at much lower concentrations (5-15 μM). Furthermore, dietary intake of Rh2 (0.1 g Rh2/kg diet, w/w for eight weeks) significantly (p < 0.05) reduced protein PPAR-γ expression in liver and hepatic glutathione reductase and lowered fasting blood glucose. These results suggest that ginsenoside Rh2 dose-dependently inhibits adipogenesis through down-regulating the PPAR-γ pathway, and Rh2 may be a potential agent in preventing obesity in vivo.
Collapse
Affiliation(s)
- Longyun Zhang
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Carlos Virgous
- Animal Care Facility, Meharry Medical College, Nashville, TN 37208, USA;
| | - Hongwei Si
- Department of Human Sciences, Tennessee State University, Nashville, TN 37209, USA;
| |
Collapse
|
11
|
Kim K, Nam KH, Yi SA, Park JW, Han JW, Lee J. Ginsenoside Rg3 Induces Browning of 3T3-L1 Adipocytes by Activating AMPK Signaling. Nutrients 2020; 12:nu12020427. [PMID: 32046061 PMCID: PMC7071202 DOI: 10.3390/nu12020427] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ginsenoside Rg3, one of the major components in Panax ginseng, has been reported to possess several therapeutic effects including anti-obesity properties. However, its effect on the browning of mature white adipocytes as well as the underlying mechanism remains poorly understood. In this study, we suggested a novel role of Rg3 in the browning of mature 3T3-L1 adipocytes by upregulating browning-related gene expression. The browning effects of Rg3 on differentiated 3T3-L1 adipocytes were evaluated by analyzing browning-related markers using quantitative PCR, immunoblotting, and immunostaining. In addition, the size and sum area of lipid droplets in differentiated 3T3-L1 adipocytes were measured using Oil-Red-O staining. In mature 3T3-L1 adipocytes, Rg3 dose-dependently induced the expression of browning-related genes such as Ucp1, Prdm16, Pgc1α, Cidea, and Dio2. Moreover, Rg3 induced the expression of beige fat-specific genes (CD137 and TMEM26) and lipid metabolism-associated genes (FASN, SREBP1, and MCAD), which indicated the activation of lipid metabolism by Rg3. We also demonstrated that activation of 5' adenosine monophosphate-activated protein kinase (AMPK) is required for Rg3-mediated up-regulation of browning gene expression. Moreover, Rg3 inhibited the accumulation of lipid droplets and reduced the droplet size in mature 3T3-L1 adipocytes. Taken together, this study identifies a novel role of Rg3 in browning of white adipocytes, as well as suggesting a potential mechanism of an anti-obesity effect of Panax ginseng.
Collapse
|
12
|
Lim S, Park J, Um JY. Ginsenoside Rb1 Induces Beta 3 Adrenergic Receptor-Dependent Lipolysis and Thermogenesis in 3T3-L1 Adipocytes and db/db Mice. Front Pharmacol 2019; 10:1154. [PMID: 31680950 PMCID: PMC6803469 DOI: 10.3389/fphar.2019.01154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity is constantly rising into a major health threat worldwide. Activation of brown-like transdifferentiation of white adipocytes (browning) has been proposed as a promising molecular target for obesity treatment. In this study, we investigated the effect of ginsenoside Rb1 (Rb1), a saponin derived from Panax ginseng Meyer, on browning. We used 3T3-L1 murine adipocytes and leptin receptor mutated db/db mice. The lipid accumulation, AMP-activated protein kinase alpha (AMPKα)-related pathways, lipolytic and thermogenic factors were measured after Rb treatment in 3T3-L1 adipocytes. Body weight change and lipolysis-thermogenesis factors were investigated in Rb1-treated db/db mice. Beta 3 adrenergic receptor activation (β3AR) changes were measured in Rb1-treated 3T3-L1 cells with or without β3AR inhibitor L748337 co-treatment. As a result, Rb1 treatment decreased lipid droplet size in 3T3-L1 adipocytes. Rb1 also induced phosphorylations of AMPKα pathway and sirtuins. Moreover, lipases and thermogenic factors such as uncoupling protein 1 were increased by Rb1 treatment. Through these results, we could expect that the non-shivering thermogenesis program can be induced by Rb1. In db/db mice, 6-week injection of Rb1 resulted in decreased inguinal white adipose tissue (iWAT) weight associated with shrunken lipid droplets and increased lipolysis and thermogenesis. The thermogenic effect of Rb1 was possibly due to β3AR, as L748337 pre-treatment abolished the effect of Rb1. In conclusion, we suggest Rb1 as a potential lipolytic and thermogenic therapeutic agent which can be used for obesity treatment.
Collapse
Affiliation(s)
- Seona Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Basic Research Laboratory for Comorbidity Research and Comorbidity Research Institute, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
13
|
Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK. Nutrients 2018; 10:E830. [PMID: 29954059 PMCID: PMC6073290 DOI: 10.3390/nu10070830] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides Rg1 is one of the major pharmacologically active saponins in ginseng, which as an antioxidant reduces oxidative damage in the liver and can also be used to prevent cardiovascular diseases and diabetes. However, there is no research targeting the effect of lipid metabolism in high-fat diet (HFD)-induced mice. In this study, we evaluated the anti-obesity effects of Rg1 in 3T3-L1 adipocyte cells and HFD-induced obese C57BL/6J mice. Administration of Rg1 to HFD-induced obese mice significantly decreased body weight, total cholesterol, and total triglyceride levels. In addition to effects in 3T3-L1 cells, Rg1 reduced the accumulation of lipid droplets in a dose-dependent manner. Furthermore, Rg1 exhibits an anti-adipogenic effect via regulation of the expression of the transcriptional factors and lipid metabolism-related genes in vivo and in vitro. We observed that Rg1 administration significantly increased the phosphorylation level of AMP-activated protein kinase (AMPK) in both epididymal white adipose tissue and 3T3-L1 cells. These results indicated that Rg1 works both in an anti-adipogenic and anti-obesity manner through inducing AMPK activation, inhibiting lipogenesis, and decreasing intracellular lipid content, adipocyte size, and adipose weight.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jing Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Meihong Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Hongyu Zhao
- Chinese Medicine Science Academy of Jilin Province, Changchun, Jilin 130118, China.
| | - Sanabil Yaqoob
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Mingzhu Zheng
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Dan Cai
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
14
|
Park HS, Cho JH, Kim KW, Chung WS, Song MY. Effects of Panax ginseng on Obesity in Animal Models: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2719794. [PMID: 29861768 PMCID: PMC5976977 DOI: 10.1155/2018/2719794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine the antiobesity effects of Panax ginseng in animals. METHODS We conducted a systematic search for all controlled trials (up to March 2017) that assessed the antiobesity effects of P. ginseng in animal obesity models in the PubMed, EMBASE, Cochrane library, Web of Science, and Scopus databases. The primary outcome was final body weight measured at the longest follow-up time after administration of the intervention. The secondary outcome was the lipid profile. We assessed methodological quality using the SYRCLE risk of bias tool, and RevMan 5.3 was used to perform a meta-analysis. Finally, a subgroup analysis of parameters including intervention duration, animal models, and type of ginseng was performed. RESULT We identified 16 studies that met the inclusion criteria. Data from the meta-analysis indicated that the intervention group had a significantly lower body weight than the control group (SMD: -1.50, 95% CI: -1.90 to -1.11, χ2: 78.14, P < 0.0001, I2 = 58%). Final body weight was lower in an animal obesity model induced by high-fat diet than in genetic models. Also the intervention group had a significantly higher serum HDL level and lower serum LDL, TG, and TC level than the control group. CONCLUSION Our meta-analysis indicated that oral administration of P. ginseng significantly inhibits weight gain and improves serum lipid profiles in animal obesity models. However, causes of obesity and type of ginseng may affect treatment effects.
Collapse
Affiliation(s)
- Hye-Sung Park
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jae-Heung Cho
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Koh-Woon Kim
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Won-Seok Chung
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Mi-Yeon Song
- Department of Korean Rehabilitation Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| |
Collapse
|
15
|
New Insights into the Mechanisms of Chinese Herbal Products on Diabetes: A Focus on the "Bacteria-Mucosal Immunity-Inflammation-Diabetes" Axis. J Immunol Res 2017; 2017:1813086. [PMID: 29164155 PMCID: PMC5661076 DOI: 10.1155/2017/1813086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes, especially type 2, has been rapidly increasing all over the world. Although many drugs have been developed and used to treat diabetes, side effects and long-term efficacy are of great challenge. Therefore, natural health product and dietary supplements have been of increasing interest alternatively. In this regard, Chinese herbs and herbal products have been considered a rich resource of product development. Although increasing evidence has been produced from various scientific studies, the mechanisms of action are lacking. Here, we have proposed that many herbal monomers and formulae improve glucose homeostasis and diabetes through the BMID axis; B represents gut microbiota, M means mucosal immunity, I represents inflammation, and D represents diabetes. Chinese herbs have been traditionally used to treat diabetes, with minimal side and toxic effects. Here, we reviewed monomers such as berberine, ginsenoside, M. charantia extract, and curcumin and herbal formulae such as Gegen Qinlian Decoction, Danggui Liuhuang Decoction, and Huanglian Wendan Decoction. This review was intended to provide new perspectives and strategies for future diabetes research and product.
Collapse
|
16
|
Kang A, Xie T, Zhu D, Shan J, Di L, Zheng X. Suppressive Effect of Ginsenoside Rg3 against Lipopolysaccharide-Induced Depression-Like Behavior and Neuroinflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6861-6869. [PMID: 28762741 DOI: 10.1021/acs.jafc.7b02386] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ginsenoside Rg3 (Rg3), a major active ingredient enriched in red ginseng, possesses well-confirmed immunoregulatory effects. Immune disturbance is a common trigger and aggravating factor of depression. The aim of this study was to explore the effects of Rg3 on lipopolysaccharide (LPS)-induced depression-like behavior in mice and the involvement of immune regulation. Pretreatment with Rg3 (i.g., 20 and 40 mg/kg) effectively ameliorated LPS (i.p., 0.83 mg/kg) induced body weight loss, anorexia, and immobility time in both the tail suspension test and the forced swimming test. Rg3 attenuated the disturbed turnover of tryptophan and serotonin in the hippocampus, accompanied by decreased mRNA expression of pro-inflammatory cytokines and indoleamine-2,3-dioxygenase (IDO). These central benefits were partially linked to the regulation of microglia activation and nuclear factor kappa B (NF-κB) pathway. In addition, Rg3 significantly reduced LPS-induced elevation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in plasma, and restored the systemic balance of tryptophan-kynurenine metabolism. Taken together, our results demonstrated that Rg3 was effective in ameliorating depressive-like behavior induced by immune activation, adding new evidence to support its health benefits by immunoregulation.
Collapse
Affiliation(s)
- An Kang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine , Nanjing 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, China
| | - Dong Zhu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine , Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, China
| | - Liuqing Di
- Jiangsu Key Laboratory of Pediatric Respiratory Disease and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine , Nanjing 210023, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|