1
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Didiasova M, Cesaro S, Feldhoff S, Bettin I, Tiegel N, Füssgen V, Bertoldi M, Tikkanen R. Functional Characterization of a Spectrum of Genetic Variants in a Family with Succinic Semialdehyde Dehydrogenase Deficiency. Int J Mol Sci 2024; 25:5237. [PMID: 38791277 PMCID: PMC11121183 DOI: 10.3390/ijms25105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Samuele Cesaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Nana Tiegel
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Vera Füssgen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy; (S.C.); (I.B.); (M.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, DE-35390 Giessen, Germany; (M.D.); (S.F.)
| |
Collapse
|
3
|
Didiasova M, Banning A, Tikkanen R. Development of precision therapies for rare inborn errors of metabolism: Functional investigations in cell culture models. J Inherit Metab Dis 2024; 47:509-516. [PMID: 37606592 DOI: 10.1002/jimd.12674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Due to the low number of patients, rare genetic diseases are a special challenge for the development of therapies, especially for diseases that result from numerous, patient-specific pathogenic variants. Precision medicine makes use of various kinds of molecular information about a specific variant, so that the possibilities for an effective therapy based on the molecular features of the variants can be elucidated. The attention to personalized precision therapies has increased among scientists and clinicians, since the "single drug for all patients" approach does not allow the classification of individuals in subgroups according to the differences in the disease genotype or phenotype. This review article summarizes some approaches of personalized precision medicine that can be used for a cost-effective and fast development of therapies, even for single patients. We have focused on specific examples on inborn errors of metabolism, with special attention on drug repurposing. Furthermore, we provide an overview of cell culture models that are suitable for precision medicine approaches.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Medical Faculty, Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Antje Banning
- Medical Faculty, Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Ritva Tikkanen
- Medical Faculty, Institute of Biochemistry, University of Giessen, Giessen, Germany
| |
Collapse
|
4
|
Jung-Kc K, Tristán-Noguero A, Altankhuyag A, Piñol Belenguer D, Prestegård KS, Fernandez-Carasa I, Colini Baldeschi A, Sigatulina Bondarenko M, García-Cazorla A, Consiglio A, Martinez A. Tetrahydrobiopterin (BH 4) treatment stabilizes tyrosine hydroxylase: Rescue of tyrosine hydroxylase deficiency phenotypes in human neurons and in a knock-in mouse model. J Inherit Metab Dis 2024; 47:494-508. [PMID: 38196161 DOI: 10.1002/jimd.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.
Collapse
Affiliation(s)
- Kunwar Jung-Kc
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Alba Tristán-Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma Barcelona, Barcelona, Spain
| | | | - David Piñol Belenguer
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Maria Sigatulina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Angeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Servín Muñoz IV, Ortuño-Sahagún D, Griñán-Ferré C, Pallàs M, González-Castillo C. Alterations in Proteostasis Mechanisms in Niemann-Pick Type C Disease. Int J Mol Sci 2024; 25:3806. [PMID: 38612616 PMCID: PMC11011983 DOI: 10.3390/ijms25073806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and β-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.
Collapse
Affiliation(s)
- Iris Valeria Servín Muñoz
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Mexico
| |
Collapse
|
6
|
Mohamed FE, Al-Jasmi F. Exploring the efficacy and safety of Ambroxol in Gaucher disease: an overview of clinical studies. Front Pharmacol 2024; 15:1335058. [PMID: 38414738 PMCID: PMC10896849 DOI: 10.3389/fphar.2024.1335058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Gaucher disease (GD) is mainly caused by glucocerebrosidase (GCase) enzyme deficiency due to genetic variations in the GBA1 gene leading to the toxic accumulation of sphingolipids in various organs, which causes symptoms such as anemia, thrombocytopenia, hepatosplenomegaly, and neurological manifestations. GD is clinically classified into the non-neuronopathic type 1, and the acute and chronic neuronopathic forms, types 2 and 3, respectively. In addition to the current approved GD medications, the repurposing of Ambroxol (ABX) has emerged as a prospective enzyme enhancement therapy option showing its potential to enhance mutated GCase activity and reduce glucosylceramide accumulation in GD-affected tissues of different GBA1 genotypes. The variability in response to ABX varies across different variants, highlighting the diversity in patients' therapeutic outcomes. Its oral availability and safety profile make it an attractive option, particularly for patients with neurological manifestations. Clinical trials are essential to explore further ABX's potential as a therapeutic medication for GD to encourage pharmaceutical companies' investment in its development. This review highlights the potential of ABX as a pharmacological chaperone therapy for GD and stresses the importance of addressing response variability in clinical studies to improve the management of this rare and complex disorder.
Collapse
Affiliation(s)
- Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Rudinskiy M, Pons-Vizcarra M, Soldà T, Fregno I, Bergmann TJ, Ruano A, Delgado A, Morales S, Barril X, Bellotto M, Cubero E, García-Collazo AM, Pérez-Carmona N, Molinari M. Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors. PLoS One 2023; 18:e0294437. [PMID: 38019733 PMCID: PMC10686464 DOI: 10.1371/journal.pone.0294437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase β-galactosidase (β-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) β-Gal and four disease-related β-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing β-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università Della Svizzera Italiana, Lugano, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maria Pons-Vizcarra
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Tatiana Soldà
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ilaria Fregno
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Timothy Jan Bergmann
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ana Ruano
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Aida Delgado
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Sara Morales
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Xavier Barril
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
- Facultat de Farmacia, IBUB & IQTC, Universitat de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Elena Cubero
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | - Maurizio Molinari
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Gul R, Firasat S, Schubert M, Ullah A, Peña E, Thuesen ACB, Gjesing AP, Hussain M, Tufail M, Saqib M, Afshan K, Hansen T. Identification of genetic variants associated with a wide spectrum of phenotypes clinically diagnosed as Sanfilippo and Morquio syndromes using whole genome sequencing. Front Genet 2023; 14:1254909. [PMID: 37772257 PMCID: PMC10524275 DOI: 10.3389/fgene.2023.1254909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Mucopolysaccharidoses (MPSs) are inherited lysosomal storage disorders (LSDs). MPSs are caused by excessive accumulation of mucopolysaccharides due to missing or deficiency of enzymes required for the degradation of specific macromolecules. MPS I-IV, MPS VI, MPS VII, and MPS IX are sub-types of mucopolysaccharidoses. Among these, MPS III (also known as Sanfilippo) and MPS IV (Morquio) syndromes are lethal and prevalent sub-types. This study aimed to identify causal genetic variants in cases of MPS III and MPS IV and characterize genotype-phenotype relations in Pakistan. We performed clinical, biochemical and genetic analysis using Whole Genome Sequencing (WGS) in 14 Pakistani families affected with MPS III or MPS IV. Patients were classified into MPS III by history of aggressive behaviors, dementia, clear cornea and into MPS IV by short trunk, short stature, reversed ratio of upper segment to lower segment with a short upper segment. Data analysis and variant selections were made based on segregation analysis, examination of known MPS III and MPS IV genes, gene function, gene expression, the pathogenicity of variants based on ACMG guidelines and in silico analysis. In total, 58 individuals from 14 families were included in the present study. Six families were clinically diagnosed with MPS III and eight families with MPS IV. WGS revealed variants in MPS-associated genes including NAGLU, SGSH, GALNS, GNPTG as well as the genes VWA3B, BTD, and GNPTG which have not previously associated with MPS. One family had causal variants in both GALNS and BTD. Accurate and early diagnosis of MPS in children represents a helpful step for designing therapeutic strategies to protect different organs from permanent damage. In addition, pre-natal screening and identification of genetic etiology will facilitate genetic counselling of the affected families. Identification of novel causal MPS genes might help identifying new targeted therapies to treat LSDs.
Collapse
Affiliation(s)
- Rutaba Gul
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elionora Peña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne C. B. Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annete P. Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mulazim Hussain
- The Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Muhammad Tufail
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saqib
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Khyber Pakhtunkhwa, Pakistan
| | - Kiran Afshan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Chittiboina P, Mandal D, Bugarini A, Asuzu DT, Mullaney D, Mastorakos P, Stoica S, Alvarez R, Scott G, Maric D, Elkahloun A, Zhuang Z, Chew EY, Yang C, Linehan M, Lonser RR. Proteostasis Modulation in Germline Missense von Hippel Lindau Disease. Clin Cancer Res 2023; 29:2199-2209. [PMID: 37018064 PMCID: PMC10330138 DOI: 10.1158/1078-0432.ccr-22-3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE Missense mutated von Hippel Lindau (VHL) protein (pVHL) maintains intrinsic function but undergoes proteasomal degradation and tumor initiation and/or progression in VHL disease. Vorinostat can rescue missense mutated pVHL and arrest tumor growth in preclinical models. We asked whether short-term oral vorinostat could rescue pVHL in central nervous system hemangioblastomas in patients with germline missense VHL. PATIENTS AND METHODS We administered oral vorinostat to 7 subjects (ages 46.0 ± 14.5 years) and then removed symptomatic hemangioblastomas surgically (ClinicalTrials.gov identifier NCT02108002). RESULTS Vorinostat was tolerated without serious adverse events by all patients. pVHL expression was elevated in neoplastic stromal cells compared with untreated hemangioblastomas from same patients. We found transcriptional suppression of downstream hypoxia-inducible factor (HIF) effectors. Mechanistically, vorinostat prevented Hsp90 recruitment to mutated pVHL in vitro. The effects of vorinostat on the Hsp90-pVHL interaction, pVHL rescue, and transcriptional repression of downstream HIF effectors was independent of the location of the missense mutation on the VHL locus. We confirmed a neoplastic stromal cell-specific effect in suppression of protumorigenic pathways with single-nucleus transcriptomic profiling. CONCLUSIONS We found that oral vorinostat treatment in patients with germline missense VHL mutations has a potent biologic effect that warrants further clinical study. These results provide biologic evidence to support the use of proteostasis modulation for the treatment of syndromic solid tumors involving protein misfolding. Proteostasis modulation with vorinostat rescues missense mutated VHL protein. Further clinical trials are needed to demonstrate tumor growth arrest.
Collapse
Affiliation(s)
- Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Alejandro Bugarini
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurological Surgery, Geisinger Health System, Danville, PA
| | - David T. Asuzu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurological Surgery, University of Virginia Health Science Center, University of Virginia, Charlottesville, VA
| | - Dustin Mullaney
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Panagiotis Mastorakos
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurological Surgery, University of Virginia Health Science Center, University of Virginia, Charlottesville, VA
| | - Stefan Stoica
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Reinier Alvarez
- Department of Neurological Surgery, University of Colorado, Aurora, CO
| | - Gretchen Scott
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Abdel Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Chunzhang Yang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Russell R. Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
12
|
Enzyme Replacement Therapy for FABRY Disease: Possible Strategies to Improve Its Efficacy. Int J Mol Sci 2023; 24:ijms24054548. [PMID: 36901983 PMCID: PMC10003632 DOI: 10.3390/ijms24054548] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.
Collapse
|
13
|
Shaimardanova AA, Solovyeva VV, Issa SS, Rizvanov AA. Gene Therapy of Sphingolipid Metabolic Disorders. Int J Mol Sci 2023; 24:3627. [PMID: 36835039 PMCID: PMC9964151 DOI: 10.3390/ijms24043627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay-Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective.
Collapse
Affiliation(s)
- Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
14
|
Campkin DM, Shimadate Y, Bartholomew B, Bernhardt PV, Nash RJ, Sakoff JA, Kato A, Simone MI. Borylated 2,3,4,5-Tetrachlorophthalimide and Their 2,3,4,5-Tetrachlorobenzamide Analogues: Synthesis, Their Glycosidase Inhibition and Anticancer Properties in View to Boron Neutron Capture Therapy. Molecules 2022; 27:3447. [PMID: 35684388 PMCID: PMC9182199 DOI: 10.3390/molecules27113447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7-870 μM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver β-glucosidase and β-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.
Collapse
Affiliation(s)
- David M. Campkin
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Barbara Bartholomew
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Paul V. Bernhardt
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Robert J. Nash
- Phytoquest Ltd., Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK; (B.B.); (R.J.N.)
| | - Jennette A. Sakoff
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
- Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.S.); (A.K.)
| | - Michela I. Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Drug Development, University of Newcastle, Callaghan, NSW 2308, Australia;
| |
Collapse
|
15
|
Monticelli M, Liguori L, Allocca M, Bosso A, Andreotti G, Lukas J, Monti MC, Morretta E, Cubellis MV, Hay Mele B. Drug Repositioning for Fabry Disease: Acetylsalicylic Acid Potentiates the Stabilization of Lysosomal Alpha-Galactosidase by Pharmacological Chaperones. Int J Mol Sci 2022; 23:ijms23095105. [PMID: 35563496 PMCID: PMC9105905 DOI: 10.3390/ijms23095105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.
Collapse
Affiliation(s)
- Maria Monticelli
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Ludovica Liguori
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
| | - Mariateresa Allocca
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (L.L.); (M.A.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Andrea Bosso
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Institute of Biochemistry and Cellular Biology, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (M.C.M.); (E.M.)
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (M.C.M.); (E.M.)
| | - Maria Vittoria Cubellis
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
- Correspondence: ; Tel.: +39-081-679152
| | - Bruno Hay Mele
- Department Biology, University of Napoli « Federico II », Complesso Universitario Monte Sant’Angelo, Via Cinthia, 80126 Napoli, Italy; (M.M.); (A.B.); (B.H.M.)
| |
Collapse
|
16
|
Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Li YX, Fleet G, Yu CY. Trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines as potent and selective β-glucosidase inhibitors: Pharmacological chaperones for gaucher disease. Eur J Med Chem 2022; 238:114499. [DOI: 10.1016/j.ejmech.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
|
17
|
Kimura S, Kamishina H, Hirata Y, Furuta K, Furukawa Y, Yamato O, Maeda S, Kamatari YO. Novel oxindole compounds inhibit the aggregation of amyloidogenic proteins associated with neurodegenerative diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130114. [PMID: 35217127 DOI: 10.1016/j.bbagen.2022.130114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
Amyloidogenic proteins form aggregates in cells, thereby leading to neurodegenerative disorders, including Alzheimer's and prion's disease, amyotrophic lateral sclerosis (ALS) in humans, and degenerative myelopathy (DM) and cognitive dysfunction in dogs. Hence, many small-molecule compounds have been screened to examine their inhibitory effects on amyloidogenic protein aggregation. However, no effective drug suitable for transition to clinical use has been found. Here we examined several novel oxindole compounds (GIF compounds) for their inhibitory effects on aggregate formation of the canine mutant superoxide dismutase 1 (cSOD1 E40K), a causative mutation resulting in DM, using Thioflavin-T fluorescence. Most GIF compounds inhibited the aggregation of cSOD1 E40K. Among the compounds, GIF-0854-r and GIF-0890-r were most effective. Their inhibitory effects were also observed in cSOD1 E40K-transfected cells. Additionally, GIF-0890-r effectively inhibited the aggregate formation of human SOD1 G93A, a causative mutation of ALS. GIF-0827-r and GIF-0856-r also effectively inhibited aggregate formation of human prion protein (hPrP). Subsequently, the correlation between their inhibitory effects on cSOD1 and hPrP aggregation was shown, indicating GIF compounds inhibited the aggregate formation of multiple amyloidogenic proteins. Conclusively, the novel oxindole compounds (GIF-0827-r, GIF-0854-r, GIF-0856-r, and GIF-0890-r) are proposed as useful therapeutic candidates for amyloidogenic neurodegenerative disorders.
Collapse
Affiliation(s)
- Shintaro Kimura
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Kyoji Furuta
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Furukawa
- Department of Chemistry, Laboratory for Mechanistic Chemistry of Biomolecules, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Life Science Research Center, Gifu University,1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
18
|
Stütz AE, Thonhofer M, Weber P, Wolfsgruber A, Wrodnigg TM. Pharmacological Chaperones for β-Galactosidase Related to G M1 -Gangliosidosis and Morquio B: Recent Advances. CHEM REC 2021; 21:2980-2989. [PMID: 34816592 DOI: 10.1002/tcr.202100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A short survey on selected β-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal β-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| |
Collapse
|
19
|
Rubino M, Monda E, Lioncino M, Caiazza M, Palmiero G, Dongiglio F, Fusco A, Cirillo A, Cesaro A, Capodicasa L, Mazzella M, Chiosi F, Orabona P, Bossone E, Calabrò P, Pisani A, Germain DP, Biagini E, Pieroni M, Limongelli G. Diagnosis and Management of Cardiovascular Involvement in Fabry Disease. Heart Fail Clin 2021; 18:39-49. [PMID: 34776082 DOI: 10.1016/j.hfc.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fabry disease (FD, OMIM 301500) is an X-linked lysosomal storage disease caused by pathogenic variants in the GLA gene. Cardiac involvement is common in FD and is responsible for impaired quality of life and premature death. The classic cardiac involvement is a nonobstructive form of hypertrophic cardiomyopathy, usually manifesting as concentric left ventricular hypertrophy, with subsequent arrhythmogenic intramural fibrosis. Treatment of patients with FD should be directed to prevent the disease progression to irreversible organ damage and organ failure. The aim of this review is to describe the current state of knowledge regarding cardiovascular involvement in FD, focusing on clinical and instrumental features, cardiovascular management, and targeted therapy.
Collapse
Affiliation(s)
- Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Francesca Dongiglio
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Laura Capodicasa
- Department of Nephrology, Monaldi Hospital, Via L. Bianchi, Naples 80131, Italy
| | - Marialuisa Mazzella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Flavia Chiosi
- Department of Ophthalmology, Monaldi Hospital, Via L. Bianchi, Naples 80131, Italy
| | - Paolo Orabona
- Department of Ophthalmology, Monaldi Hospital, Via L. Bianchi, Naples 80131, Italy
| | - Eduardo Bossone
- Division of Cardiology, Antonio Cardarelli Hospital, Via A. Cardarelli, Naples 80131, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy
| | - Antonio Pisani
- Department of Public Health, University Federico II of Naples, Via Pansini, Naples 80131, Italy
| | - Dominique P Germain
- French Referral Centre for Fabry Disease, Division of Medical Genetics, Hôpital Raymond-Poincare, AP-HP, Garches 92380, France
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, Naples 80131, Italy; Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, Grower Street, London WC1E 6DD, UK.
| |
Collapse
|
20
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
21
|
A molecular genetics view on Mucopolysaccharidosis Type II. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108392. [PMID: 34893157 DOI: 10.1016/j.mrrev.2021.108392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis Type II (MPS II) is an X-linked recessive genetic disorder that primarily affects male patients. With an incidence of 1 in 100,000 male live births, the disease is one of the orphan diseases. MPS II symptoms are caused by mutations in the lysosomal iduronate-2-sulfatase (IDS) gene. The mutations cause a loss of enzymatic performance and result in the accumulation of glycosaminoglycans (GAGs), heparan sulfate and dermatan sulfate, which are no longer degradable. This inadvertent accumulation causes damage in multiple organs and leads either to a severe neurological course or to an attenuated course of the disease, although the exact relationship between mutation, extent of GAG accumulation and disease progression is not yet fully understood. This review is intended to present current diagnostic procedures and therapeutic interventions. In times when the genetic profile of patients plays an increasingly important role in the assessment of therapeutic success and future drug design, we chose to further elucidate the impact of genetic diversity within the IDS gene on disease phenotype and potential implications in current diagnosis, prognosis and therapy. We report recent advances in the structural biological elucidation of I2S enzyme that that promises to improve our future understanding of the molecular damage of the hundreds of IDS gene variants and will aid damage prediction of novel mutations in the future.
Collapse
|
22
|
Safary A, Moghaddas-Sani H, Akbarzadeh-Khiavi M, Khabbazzi A, Rafi MA, Omidi Y. Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses. Expert Opin Biol Ther 2021; 21:1181-1197. [PMID: 33653197 DOI: 10.1080/14712598.2021.1895746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS), as a group of inherited lysosomal storage disorders (LSDs), are clinically heterogeneous and characterized by multi-systemic manifestations, such as skeletal abnormalities and neurological dysfunctions. The currently used enzyme replacement therapy (ERT) might be associated with several limitations including the low biodistribution of the enzymes into the main targets, immunological responses against foreign enzymes, and the high cost of the treatment procedure. Therefore, a suitable combination approach can be considered for the successful treatment of each type of MPS. AREAS COVERED In this review, we provide comprehensive insights into the ERT-based combination therapies of MPS by reviewing the published literature on PubMed and Scopus. We also discuss the recent advancements in the treatment of MPS and bring up the hopes and hurdles in the futuristic treatment strategies. EXPERT OPINION Given the complex pathophysiology of MPS and its involvement in different tissues, the ERT of MPS in combination with stem cell therapy or gene therapy is deemed to provide a personalized precision treatment modality with the highest therapeutic responses and minimal side effects. By the same token, new combinational approaches need to be evaluated by using drugs that target alternative and secondary pathological pathways.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazzi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida USA
| |
Collapse
|
23
|
Carubbi F, Barbato A, Burlina AB, Francini F, Mignani R, Pegoraro E, Landini L, De Danieli G, Bruni S, Strazzullo P. Nutrition in adult patients with selected lysosomal storage diseases. Nutr Metab Cardiovasc Dis 2021; 31:733-744. [PMID: 33589321 DOI: 10.1016/j.numecd.2020.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of clinically heterogeneous disorders affecting the function of lysosomes and are characterized by an accumulation of undigested substrates within several cell types. In recent years there have been substantial advances in supportive care and drug treatment for some LSDs, leading to improved patient survival, as seen in Gaucher, Pompe and Fabry disease and some Mucopolysaccharidoses; however, many symptoms still persist. Thus it is now even more important to improve patients' quality of life and reduce symptoms and comorbidities. One potential way of achieving this goal is through adjunct nutritional therapy, which is challenging as patients may be overweight with associated consequences, or malnourished, or underweight. Furthermore, drugs used to treat LSDs can modify the metabolic status and needs of patients. There are currently not enough data to make specific dietary recommendations for individual LSDs; however, suggestions can be made for managing clinical manifestations of the diseases, as well as treatment-associated adverse events. The metabolic and nutritional status of adult patients must be regularly assessed and individualized dietary plans may be created to cater to a patient's specific needs. Damage to the autophagic process is a common feature in LSDs that is potentially sensitive to dietary manipulation and needs to be assessed in clinical studies.
Collapse
Affiliation(s)
- Francesca Carubbi
- U.O.C. Medicina metabolica AOU Modena, Metabolic Medicine Unit, Modena University Hospital, Modena, Italy.
| | - Antonio Barbato
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Major Operational Unit of Hereditary Metabolic Diseases, Azienda Ospedaliera di Padova, Padua, Italy
| | - Francesco Francini
- U.O. Nutrizione Clinica, Department of Medicine, Azienda Ospedaliera di Padova, Padua, Italy
| | - Renzo Mignani
- U.O. di Nefrologia e Dialisi dell'Ospedale Infermi di Rimini, Nephrology Operational Unit of the Infermi Hospital in Rimini, Rimini, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padua, Italy
| | - Linda Landini
- S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria - Sestri Levante Hospital, Italy
| | | | | | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, "Federico II" University Hospital, Naples, Italy
| |
Collapse
|
24
|
Suzuki Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev 2021; 43:45-54. [PMID: 32736903 DOI: 10.1016/j.braindev.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.
Collapse
|
25
|
Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Front Genet 2020; 11:570355. [PMID: 33173538 PMCID: PMC7538668 DOI: 10.3389/fgene.2020.570355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal genetic disease characterized by high serum low-density lipoprotein (LDL) content leading to premature coronary artery disease. The main genetic and molecular causes of FH are mutations in low-density lipoprotein receptor gene (LDLR) resulting in the non-clearance of LDL from the blood by hepatocytes and consequently the formation of plaques. LDLR is synthesized and glycosylated in the endoplasmic reticulum (ER) and then transported to the plasma membrane via Golgi. It is estimated that more than 50% of reported FH-causing mutations in LDLR result in misfolded proteins that are transport-defective and hence retained in ER. ER accumulation of misfolded proteins causes ER-stress and activates unfolded protein response (UPR). UPR aids protein folding, blocks further protein synthesis, and eliminates misfolded proteins via ER-associated degradation (ERAD) to alleviate ER stress. Various studies demonstrated that ER-retained LDLR mutants are subjected to ERAD. Interestingly, chemical chaperones and genetic or pharmacological inhibition of ERAD have been reported to rescue the transport defective mutant LDLR alleles from ERAD and restore their ER-Golgi transport resulting in the expression of functional plasma membrane LDLR. This suggests the possibility of pharmacological modulation of proteostasis in the ER as a therapeutic strategy for FH. In this review, we picture a detailed analysis of UPR and the ERAD processes activated by ER-retained LDLR mutants associated with FH. In addition, we discuss and critically evaluate the potential role of chemical chaperones and ERAD modulators in the therapeutic management of FH.
Collapse
Affiliation(s)
- Deepu Oommen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Aseel A Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
26
|
La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020; 9:E1902. [PMID: 32824006 PMCID: PMC7465195 DOI: 10.3390/cells9081902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex and still not fully understood, the approval of disease-specific therapies and the rapid emergence of novel diagnostic methods led to the implementation of extensive national newborn screening (NBS) programs in several countries. In the near future, this will help the development of standardized workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and discuss the opportunities and challenges arising from genomics applications in screening, diagnosis, and research.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39, 95124 Catania, Italy;
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, Via S. Sofia, 78, 95123 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| |
Collapse
|
27
|
Proteostasis regulators modulate proteasomal activity and gene expression to attenuate multiple phenotypes in Fabry disease. Biochem J 2020; 477:359-380. [PMID: 31899485 PMCID: PMC6993862 DOI: 10.1042/bcj20190513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
The lysosomal storage disorder Fabry disease is characterized by a deficiency of the lysosomal enzyme α-Galactosidase A. The observation that missense variants in the encoding GLA gene often lead to structural destabilization, endoplasmic reticulum retention and proteasomal degradation of the misfolded, but otherwise catalytically functional enzyme has resulted in the exploration of alternative therapeutic approaches. In this context, we have investigated proteostasis regulators (PRs) for their potential to increase cellular enzyme activity, and to reduce the disease-specific accumulation of the biomarker globotriaosylsphingosine in patient-derived cell culture. The PRs also acted synergistically with the clinically approved 1-deoxygalactonojirimycine, demonstrating the potential of combination treatment in a therapeutic application. Extensive characterization of the effective PRs revealed inhibition of the proteasome and elevation of GLA gene expression as paramount effects. Further analysis of transcriptional patterns of the PRs exposed a variety of genes involved in proteostasis as potential modulators. We propose that addressing proteostasis is an effective approach to discover new therapeutic targets for diseases involving folding and trafficking-deficient protein mutants.
Collapse
|
28
|
D TK, Jain N, Kumar S U, Jena PP, Ramamoorthy S, Priya Doss C G, Zayed H. Molecular dynamics simulations to decipher the structural and functional consequences of pathogenic missense mutations in the galactosylceramidase (GALC) protein causing Krabbe’s disease. J Biomol Struct Dyn 2020; 39:1795-1810. [DOI: 10.1080/07391102.2020.1742790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Jain
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Prangya Paramita Jena
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
29
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, Ali BR. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet 2020; 139:657-673. [PMID: 32219518 DOI: 10.1007/s00439-020-02153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with β-galactosidase (β-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated β-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y β-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y β-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type β-Gal against thermal degradation. Although NN-DGJ showed higher affinity to β-Gal, it did not show a significant enhancement in p.D151Y β-Gal activity. However, NB-DGJ promoted p.D151Y β-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
30
|
Martínez-Bailén M, Carmona AT, Cardona F, Matassini C, Goti A, Kubo M, Kato A, Robina I, Moreno-Vargas AJ. Synthesis of multimeric pyrrolidine iminosugar inhibitors of human β-glucocerebrosidase and α-galactosidase A: First example of a multivalent enzyme activity enhancer for Fabry disease. Eur J Med Chem 2020; 192:112173. [PMID: 32146376 DOI: 10.1016/j.ejmech.2020.112173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/29/2022]
Abstract
The synthesis of a chemical library of multimeric pyrrolidine-based iminosugars by incorporation of three pairs of epimeric pyrrolidine-azides into different alkyne scaffolds via CuAAC is presented. The new multimers were evaluated as inhibitors of two important therapeutic enzymes, human α-galactosidase A (α-Gal A) and lysosomal β-glucocerebrosidase (GCase). Structure-activity relationships were established focusing on the iminosugar inhitope, the valency of the dendron and the linker between the inhitope and the central scaffold. Remarkable is the result obtained in the inhibition of α-Gal A, where one of the nonavalent compounds showed potent inhibition (0.20 μM, competitive inhibition), being a 375-fold more potent inhibitor than the monovalent reference. The potential of the best α-Gal A inhibitors to act as pharmacological chaperones was analyzed by evaluating their ability to increase the activity of this enzyme in R301G fibroblasts from patients with Fabry disease, a genetic disorder related with a reduced activity of α-Gal A. The best enzyme activity enhancement was obtained for the same nonavalent compound, which increased 5.2-fold the activity of the misfolded enzyme at 2.5 μM, what constitutes the first example of a multivalent α-Gal A activity enhancer of potential interest in the treatment of Fabry disease.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Ana T Carmona
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| | - Francesca Cardona
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Camilla Matassini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy
| | - Andrea Goti
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy; Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), 70125, Bari, Italy
| | - Moemi Kubo
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, Toyama, 930-0194, Japan
| | - Inmaculada Robina
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Prof. García González, 1, 41012, Sevilla, Spain.
| |
Collapse
|
31
|
Disorders of FZ-CRD; insights towards FZ-CRD folding and therapeutic landscape. Mol Med 2019; 26:4. [PMID: 31892318 PMCID: PMC6938638 DOI: 10.1186/s10020-019-0129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/13/2019] [Indexed: 02/08/2023] Open
Abstract
The ER is hub for protein folding. Proteins that harbor a Frizzled cysteine-rich domain (FZ-CRD) possess 10 conserved cysteine motifs held by a unique disulfide bridge pattern which attains a correct fold in the ER. Little is known about implications of disease-causing missense mutations within FZ-CRD families. Mutations in FZ-CRD of Frizzled class receptor 4 (FZD4) and Muscle, skeletal, receptor tyrosine kinase (MuSK) and Receptor tyrosine kinase-like orphan receptor 2 (ROR2) cause Familial Exudative Vitreoretinopathy (FEVR), Congenital Myasthenic Syndrome (CMS), and Robinow Syndrome (RS) respectively. We highlight reported pathogenic inherited missense mutations in FZ-CRD of FZD4, MuSK and ROR2 which misfold, and traffic abnormally in the ER, with ER-associated degradation (ERAD) as a common pathogenic mechanism for disease. Our review shows that all studied FZ-CRD mutants of RS, FEVR and CMS result in misfolded proteins and/or partially misfolded proteins with an ERAD fate, thus we coin them as “disorders of FZ-CRD”. Abnormal trafficking was demonstrated in 17 of 29 mutants studied; 16 mutants were within and/or surrounding the FZ-CRD with two mutants distant from FZ-CRD. These ER-retained mutants were improperly N-glycosylated confirming ER-localization. FZD4 and MuSK mutants were tagged with polyubiquitin chains confirming targeting for proteasomal degradation. Investigating the cellular and molecular mechanisms of these mutations is important since misfolded protein and ER-targeted therapies are in development. The P344R-MuSK kinase mutant showed around 50% of its in-vitro autophosphorylation activity and P344R-MuSK increased two-fold on proteasome inhibition. M105T-FZD4, C204Y-FZD4, and P344R-MuSK mutants are thermosensitive and therefore, might benefit from extending the investigation to a larger number of chemical chaperones and/or proteasome inhibitors. Nonetheless, FZ-CRD ER-lipidation it less characterized in the literature and recent structural data sheds light on the importance of lipidation in protein glycosylation, proper folding, and ER trafficking. Current treatment strategies in-place for the conformational disease landscape is highlighted. From this review, we envision that disorders of FZ-CRD might be receptive to therapies that target FZ-CRD misfolding, regulation of fatty acids, and/or ER therapies; thus paving the way for a newly explored paradigm to treat different diseases with common defects.
Collapse
|
32
|
Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the Development of Pharmacological Chaperones for the Mucopolysaccharidoses. Int J Mol Sci 2019; 21:ijms21010232. [PMID: 31905715 PMCID: PMC6981736 DOI: 10.3390/ijms21010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of 11 lysosomal storage diseases (LSDs) produced by mutations in the enzymes involved in the lysosomal catabolism of glycosaminoglycans. Most of the mutations affecting these enzymes may lead to changes in processing, folding, glycosylation, pH stability, protein aggregation, and defective transport to the lysosomes. It this sense, it has been proposed that the use of small molecules, called pharmacological chaperones (PCs), can restore the folding, trafficking, and biological activity of mutated enzymes. PCs have the advantages of wide tissue distribution, potential oral administration, lower production cost, and fewer issues of immunogenicity than enzyme replacement therapy. In this paper, we will review the advances in the identification and characterization of PCs for the MPS. These molecules have been described for MPS II, IVA, and IVB, showing a mutation-dependent enhancement of the mutated enzymes. Although the results show the potential of this strategy, further studies should focus in the development of disease-specific cellular models that allow a proper screening and evaluation of PCs. In addition, in vivo evaluation, both pre-clinical and clinical, should be performed, before they can become a real therapeutic strategy for the treatment of MPS patients.
Collapse
Affiliation(s)
- Juan Camilo Losada Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Jacobo Cepeda del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Edwin Alexander Rodriguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4140); Fax: +57-1-3208320 (ext. 4099)
| |
Collapse
|
33
|
Abstract
Lysosomes are membrane-bound organelles with roles in processes involved in degrading and recycling cellular waste, cellular signalling and energy metabolism. Defects in genes encoding lysosomal proteins cause lysosomal storage disorders, in which enzyme replacement therapy has proved successful. Growing evidence also implicates roles for lysosomal dysfunction in more common diseases including inflammatory and autoimmune disorders, neurodegenerative diseases, cancer and metabolic disorders. With a focus on lysosomal dysfunction in autoimmune disorders and neurodegenerative diseases - including lupus, rheumatoid arthritis, multiple sclerosis, Alzheimer disease and Parkinson disease - this Review critically analyses progress and opportunities for therapeutically targeting lysosomal proteins and processes, particularly with small molecules and peptide drugs.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signalling, Illkirch, France.
- Laboratory of Excellence Medalis, Team Neuroimmunology and Peptide Therapy, Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Strasbourg, France.
- University of Strasbourg Institute for Advanced Study, Strasbourg, France.
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France.
| |
Collapse
|
34
|
Abstract
Fabry disease is a rare lysosomal disorder characterized by deficient or absent α-galactosidase A activity resulting from mutations in the GLA gene. Migalastat (Galafold™), a pharmacological chaperone, stabilizes and facilitates trafficking of amenable mutant forms of α-galactosidase A enzyme from the endoplasmic reticulum to lysosomes and increases its lysosomal activity. Oral migalastat is the first pharmacological chaperone approved for treating patients [aged ≥ 18 years (USA and Canada) or ≥ 16 years in other countries] with Fabry disease who have a migalastat-amenable GLA mutation. In the FACETS trial in enzyme replacement therapy (ERT)-naive patients with GLA mutations amenable or non-amenable to migalastat, there was no significant difference between the migalastat and placebo groups for the proportion of patients achieving a ≥ 50% reduction in the number of globotriaosylceramide (GL-3) inclusions/kidney interstitial capillary (KIC) at 6 months [primary endpoint; intent-to-treat (ITT) population]. In the modified ITT population (i.e. patients with migalastat-amenable GLA mutations), relative to placebo, migalastat treatment significantly reduced the mean number of GL-3 inclusions/KIC and plasma lyso-globotriaosylsphingosine levels at 6 months. Among evaluable patients, migalastat maintained renal function and reduced cardiac mass after ≤ 24 months’ therapy. In the ATTRACT trial in ERT-experienced patients, renal function was maintained during 18 months of migalastat or ERT; however, migalastat significantly reduced cardiac mass compared with ERT. Migalastat was generally well tolerated in both of these trials. Given its convenient oral regimen and the limited therapeutic options available, migalastat is an important treatment option for Fabry disease in patients with migalastat-amenable GLA mutations.
Collapse
|
35
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Zaabi N, Al-Shamsi A, Almansoori TM, Al-Gazali L, Al-Dirbashi OY, Al-Jasmi F, Ali BR. A Novel Homozygous Missense Variant in the NAGA Gene with Extreme Intrafamilial Phenotypic Heterogeneity. J Mol Neurosci 2019; 70:45-55. [PMID: 31468281 DOI: 10.1007/s12031-019-01398-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023]
Abstract
Schindler disease is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in alpha-N-acetylgalactosaminidase (α-NAGA) activity due to defects in the NAGA gene. Accumulation of the enzyme's substrates results in clinically heterogeneous symptoms ranging from asymptomatic individuals to individuals with severe neurological manifestations. Here, a 5-year-old Emirati male born to consanguineous parents presented with congenital microcephaly and severe neurological manifestations. Whole genome sequencing revealed a homozygous missense variant (c.838C>A; p.L280I) in the NAGA gene. The allele is a reported SNP in the ExAC database with a 0.0007497 allele frequency. The proband's asymptomatic sister and cousin carry the same genotype in a homozygous state as revealed from the family screening. Due to the extreme intrafamilial heterogeneity of the disease as seen in previously reported cases, we performed further analyses to establish the pathogenicity of this variant. Both the proband and his sister showed abnormal urine oligosaccharide patterns, which is consistent with the diagnosis of Schindler disease. The α-NAGA activity was significantly reduced in the proband and his sister with 5.9% and 12.1% of the mean normal activity, respectively. Despite the activity loss, p.L280I α-NAGA processing and trafficking were not affected. However, protein molecular dynamic simulation analysis revealed that this amino acid substitution is likely to affect the enzyme's natural dynamics and hinders its ability to bind to the active site. Functional analysis confirmed the pathogenicity of the identified missense variant and the diagnosis of Schindler disease. Extreme intrafamilial clinical heterogeneity of the disease necessitates further studies for proper genetic counseling and management.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 17666, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Nuha Al-Zaabi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Aisha Al-Shamsi
- Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Taleb M Almansoori
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Y Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates.
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
36
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
37
|
Griffith AS, Zhang TD, Burkert SC, Adiguzel Z, Acilan C, Star A, Saunders WS. Characterizing the Cellular Response to Nitrogen-Doped Carbon Nanocups. NANOMATERIALS 2019; 9:nano9060887. [PMID: 31208132 PMCID: PMC6631063 DOI: 10.3390/nano9060887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Carbon nanomaterials, specifically, carbon nanotubes (CNTs) have many potential applications in biology and medicine. Currently, this material has not reached its full potential for application due to the potential toxicity to mammalian cells, and the incomplete understanding of how CNTs interface with cells. The chemical composition and structural features of CNTs have been shown to directly affect their biological compatibility. The incorporation of nitrogen dopants to the graphitic lattice of CNTs results in a unique cup shaped morphology and minimal cytotoxicity in comparison to its undoped counterpart. In this study, we investigate how uniquely shaped nitrogen-doped carbon nanocups (NCNCs) interface with HeLa cells, a cervical cancer epithelial cultured cell line, and RPE-1 cells, an immortalized cultured epithelial cell line. We determined that NCNCs do not elicit a cytotoxic response in cells, and that they are uptaken via endocytosis. We have conjugated fluorescently tagged antibodies to NCNCs and shown that the protein-conjugated material is also capable of entering cells. This primes NCNCs to be a good candidate for subsequent protein modifications and applications in biological systems.
Collapse
Affiliation(s)
- Amber S Griffith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Thomas D Zhang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Zelal Adiguzel
- TUBITAK, Marmara Research Center, Genetic Engineering and Biotechnology Institute, 41470 Gebze/Kocaeli, Turkey.
| | - Ceyda Acilan
- School of Medicine, Koc University, 34450 Sarıyer, Turkey.
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - William S Saunders
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
38
|
Vinje T, Laerdahl JK, Bjune K, Leren TP, Strøm TB. Characterization of the mechanisms by which missense mutations in the lysosomal acid lipase gene disrupt enzymatic activity. Hum Mol Genet 2019; 28:3043-3052. [DOI: 10.1093/hmg/ddz114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hydrolysis of cholesteryl esters and triglycerides in the lysosome is performed by lysosomal acid lipase (LAL). In this study we have investigated how 23 previously identified missense mutations in the LAL gene (LIPA) (OMIM# 613497) affect the structure of the protein and thereby disrupt LAL activity. Moreover, we have performed transfection studies to study intracellular transport of the 23 mutants. Our main finding was that most pathogenic mutations result in defective enzyme activity by affecting the normal folding of LAL. Whereas, most of the mutations leading to reduced stability of the cap domain did not alter intracellular transport, nearly all mutations that affect the stability of the core domain gave rise to a protein that was not efficiently transported from the endoplasmic reticulum (ER) to the Golgi apparatus. As a consequence, ER stress was generated that is assumed to result in ER-associated degradation of the mutant proteins. The two LAL mutants Q85K and S289C were selected to study whether secretion-defective mutants could be rescued from ER-associated degradation by the use of chemical chaperones. Of the five chemical chaperones tested, only the proteasomal inhibitor MG132 markedly increased the amount of mutant LAL secreted. However, essentially no increased enzymatic activity was observed in the media. These data indicate that the use of chemical chaperones to promote the exit of folding-defective LAL mutants from the ER, may not have a great therapeutic potential as long as these mutants appear to remain enzymatically inactive.
Collapse
Affiliation(s)
- Terje Vinje
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Zoidl M, Wolfsgruber A, Schalli M, Nasseri SA, Weber P, Stütz AE, Withers SG, Wrodnigg TM. Synthesis of modified 1,5-imino-d-xylitols as ligands for lysosomal β-glucocerebrosidase. MONATSHEFTE FUR CHEMIE 2019; 150:831-842. [PMID: 31178604 PMCID: PMC6534063 DOI: 10.1007/s00706-019-02427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT Modified 1,5-dideoxy-1,5-imino-d-xylitol analogues with different substitution patterns involving position C-1 and/or the ring nitrogen were prepared, which were designed to serve as precursors for the preparation of iminoxylitol-based ligands and tools for the elucidation and modulation of human lysosomal β-glucocerebrosidase. Biological evaluation of the synthesized glycomimetics with a series of glycoside hydrolases revealed that these substitution patterns elicit excellent β-glucosidase selectivities. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Manuel Zoidl
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Andreas Wolfsgruber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Michael Schalli
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Seyed A. Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Patrick Weber
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Arnold E. Stütz
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Tanja M. Wrodnigg
- Institute of Organic Chemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
40
|
Rísquez-Cuadro R, Matsumoto R, Ortega-Caballero F, Nanba E, Higaki K, García Fernández JM, Ortiz Mellet C. Pharmacological Chaperones for the Treatment of α-Mannosidosis. J Med Chem 2019; 62:5832-5843. [PMID: 31017416 DOI: 10.1021/acs.jmedchem.9b00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Mannosidosis (AM) results from deficient lysosomal α-mannosidase (LAMAN) activity and subsequent substrate accumulation in the lysosome, leading to severe pathology. Many of the AM-causative mutations compromise enzyme folding and could be rescued with purpose-designed pharmacological chaperones (PCs). We found that PCs combining a LAMAN glycone-binding motif based on the 5 N,6 O-oxomethylidenemannojirimycin (OMJ) glycomimetic core and different aglycones, in either mono- or multivalent displays, elicit binding modes involving glycone and nonglycone enzyme regions that reinforce the protein folding and stabilization potential. Multivalent derivatives exhibited potent enzyme inhibition that generally prevailed over the chaperone effect. On the contrary, monovalent OMJ derivatives with LAMAN aglycone binding area-fitting substituents proved effective as activity enhancers for several mutant LAMAN forms in AM patient fibroblasts and/or transfected MAN2 B1-KO cells. This translated into a significant improvement in endosomal/lysosomal function, reverting not only the primary LAMAN substrate accumulation but also the additional downstream consequences such as cholesterol accumulation.
Collapse
Affiliation(s)
- Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Reimi Matsumoto
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ) , CSIC-Universidad de Sevilla , Avda. Américo Vespucio 49, Isla de la Cartuja , 41092 Sevilla , Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| |
Collapse
|
41
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
42
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Artola M, Hedberg C, Rowland RJ, Raich L, Kytidou K, Wu L, Schaaf A, Ferraz MJ, van der Marel GA, Codée JDC, Rovira C, Aerts JMFG, Davies GJ, Overkleeft HS. α-d-Gal-cyclophellitol cyclosulfamidate is a Michaelis complex analog that stabilizes therapeutic lysosomal α-galactosidase A in Fabry disease. Chem Sci 2019. [DOI: 10.1039/c9sc03342d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
α-d-Gal-cyclophellitol cyclosulfamidate is a new class of neutral, conformationally-constrained competitive glycosidase inhibitor that stabilizes α-gal A and prevents its degradation both in vitro and in cellulo by mimicry of the Michaelis complex conformation.
Collapse
|
44
|
Abstract
Lysosomal storage disorders are a heterogeneous group of genetic diseases characterized by defective function in one of the lysosomal enzymes. In this review paper, we describe neuroradiological findings and clinical characteristics of neuronopathic lysosomal disorders with a focus on differential diagnosis. New insights regarding pathogenesis and therapeutic perspectives are also briefly discussed.
Collapse
|
45
|
MacLean GE, Argyriou C, Di Pietro E, Sun X, Birjandian S, Saberian P, Hacia JG, Braverman NE. Zellweger spectrum disorder patient-derived fibroblasts with the PEX1-Gly843Asp allele recover peroxisome functions in response to flavonoids. J Cell Biochem 2018; 120:3243-3258. [PMID: 30362618 DOI: 10.1002/jcb.27591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/08/2018] [Indexed: 01/03/2023]
Abstract
Zellweger spectrum disorder (ZSD) results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele in the patient population that is associated with milder disease. In prior work using a PEX1-G843D/null patient fibroblast line expressing a green fluorescent protein (GFP) reporter with a peroxisome-targeting signal (GFP-PTS1), we demonstrated that treatments with the chemical chaperone betaine and flavonoid acacetin diacetate recovered peroxisome functions. To identify more effective compounds for preclinical investigation, we evaluated 54 flavonoids using this cell-based phenotype assay. Diosmetin showed the most promising combination of potency and efficacy (EC50 2.5 µM). All active 5',7'-dihydroxyflavones showed greater average efficacy than their corresponding flavonols, whereas the corresponding flavanones, isoflavones, and chalcones tested were inactive. Additional treatment with the proteostasis regulator bortezomib increased the percentage of import-rescued cells over treatment with flavonoids alone. Cotreatments of diosmetin and betaine showed the most robust additive effects, as confirmed by three independent functional assays in primary PEX1-G843D patient cells, but neither agent was active alone or in combination in patient cells homozygous for the PEX1 c.2097_2098insT null allele. Moreover, diosmetin treatment increased PEX1, PEX6, and PEX5 protein levels in PEX1-G843D patient cells, but none of these proteins increased in PEX1 null cells. We propose that diosmetin acts as a pharmacological chaperone that improves the stability, conformation, and functions of PEX1/PEX6 exportomer complexes required for peroxisome assembly. We suggest that diosmetin, in clinical use for chronic venous disease, and related flavonoids warrant further preclinical investigation for the treatment of PEX1-G843D-associated ZSD.
Collapse
Affiliation(s)
- Gillian E MacLean
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Catherine Argyriou
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erminia Di Pietro
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Xuting Sun
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Sara Birjandian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Panteha Saberian
- Department of Biotechnology, McGill University, Montreal, Quebec, Canada
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Los Angeles, California
| | - Nancy E Braverman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
46
|
Koyama R, Hakamata W, Hirano T, Nishio T. Identification of Small-Molecule Inhibitors of Human Golgi Mannosidase via a Drug Repositioning Screen. Chem Pharm Bull (Tokyo) 2018. [DOI: 10.1248/cpb.c17-01009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryosuke Koyama
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Wataru Hakamata
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Takako Hirano
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| | - Toshiyuki Nishio
- Department of Chemistry and Life Science, College of Bioresource Sciences, Nihon University
| |
Collapse
|
47
|
Revel-Vilk S, Szer J, Mehta A, Zimran A. How we manage Gaucher Disease in the era of choices. Br J Haematol 2018; 182:467-480. [PMID: 29808905 DOI: 10.1111/bjh.15402] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment of Gaucher Disease (GD) is now beset with the abundance of therapeutic options for an individual patient, making the choice of therapy complex for both expert and non-expert clinicians. The pathogenesis of all disease manifestations is a gene mutation-driven deficiency of glucocerebrosidase, but the clinical expression and response of each of the clinical manifestations to different therapies can be difficult to predict. Enzyme replacement therapy has been available since 1991 and is well-established, with known efficacy and minimal toxicity. Of interest, the three available enzymes are distinct molecules and were registered as new products, not biosimilars. Oral substrate reduction therapy has undergone a revitalisation with a newly approved agent in this class for which some efficacy and toxicity questions have been raised. Herein we present our approach to the management of GD in the era of choices, including a new algorithm for how to manage a newly diagnosed patient.
Collapse
Affiliation(s)
- Shoshana Revel-Vilk
- Gaucher Clinic, Shaare Zedek Medical Centre, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - Jeff Szer
- Royal Melbourne Hospital and Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Atul Mehta
- Department of Haematology, Royal Free Hospital, London, UK
| | - Ari Zimran
- Gaucher Clinic, Shaare Zedek Medical Centre, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|