1
|
Medwid S, Kim RB. Implementation of pharmacogenomics: Where are we now? Br J Clin Pharmacol 2024; 90:1763-1781. [PMID: 36366858 DOI: 10.1111/bcp.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pharmacogenomics (PGx), examining the effect of genetic variation on interpatient variation in drug disposition and response, has been widely studied for several decades. However, as cost, as well as turnaround time associated with PGx testing, has significantly improved, the use of PGx in the clinical setting has been gaining momentum. Nevertheless, challenges have emerged in the broader clinical implementation of PGx. In this review, we will outline current models of PGx delivery and methodologies of evaluation, and discuss clinically relevant PGx tests and associated medications. Additionally, we will describe our approach for the broad implementation of pre-emptive DPYD genotyping in patients taking fluoropyrimidines in Ontario, Canada, as an example of clinically actionable PGx testing with sufficient clinical evidence of patient benefit that can become a new standard of patient care. We will highlight challenges associated with PGx testing, including a lack of diversity in PGx studies as well as general limitations that impact the broad adoption of PGx testing. Lastly, we examine the future of PGx, discussing new clinical targets, methodologies and analysis approaches.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| | - Richard B Kim
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
2
|
Chidiac L, Yazbeck H, Mahfouz R, Zgheib NK. Pharmacogenomics in Lebanon: current status, challenges and opportunities. THE PHARMACOGENOMICS JOURNAL 2024; 24:16. [PMID: 38778046 DOI: 10.1038/s41397-024-00336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Pharmacogenomics (PGx) research and applications are of utmost relevance in Lebanon considering its population genetic diversity. Moreover, as a country with regional leadership in medicine and higher education, Lebanon holds a strong potential in contributing to PGx research and clinical implementation. In this manuscript, we first review and evaluate the available PGx research conducted in Lebanon, then describe the current status of PGx practice in Lebanon while reflecting on the local and regional challenges, and highlighting areas for action, and opportunities to move forward. We specifically expand on the status of PGx at the American University of Beirut Faculty of Medicine and Medical Center as a case study and guide for the further development of local and regional comprehensive PGx research, teaching, and clinical implementation programs. We also delve into the status of PGx knowledge and education, and prospects for further advancement such as with online courses and certificates.
Collapse
Affiliation(s)
- Lorenzo Chidiac
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hady Yazbeck
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rami Mahfouz
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Kruger B, Shamley D, Soko ND, Dandara C. Pharmacogenetics of tamoxifen in breast cancer patients of African descent: Lack of data. Clin Transl Sci 2024; 17:e13761. [PMID: 38476074 PMCID: PMC10933661 DOI: 10.1111/cts.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator, is used to treat hormone receptor-positive breast cancer. Tamoxifen acts as a prodrug, with its primary therapeutic effect mediated by its principal metabolite, endoxifen. However, tamoxifen has complex pharmacokinetics involving several drug-metabolizing enzymes and transporters influencing its disposition. Genes encoding enzymes involved in tamoxifen disposition exhibit genetic polymorphisms which vary widely across world populations. This review highlights the lack of data on tamoxifen pharmacogenetics among African populations. Gaps in data are described in this study with the purpose that future research can address this dearth of research on the pharmacogenetics of tamoxifen among African breast cancer patients. Initiatives such as the African Pharmacogenomics Network (APN) are crucial in promoting comprehensive pharmacogenetics studies to pinpoint important variants in pharmacogenes that could be used to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Bianca Kruger
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Delva Shamley
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nyarai Desiree Soko
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Department of Pharmaceutical Technology, School of Allied Health SciencesHarare Institute of TechnologyHarareZimbabwe
| | - Collet Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED)South African Medical Research CouncilCape TownSouth Africa
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
4
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
5
|
Ramírez G, Vital M, Vergara C, Carusso F, Neffa F, Valle AD, Esperón P. CYP2D6 genotyping and the clinical impact on outcomes in breast cancer tamoxifen-treated patients. Per Med 2023; 20:477-483. [PMID: 37947089 DOI: 10.2217/pme-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Aims: To report the distribution of allele frequencies of CYP2D6 gene and to evaluate their influence on the clinical outcomes of a group of breast cancer patients receiving adjuvant tamoxifen treatment from Uruguay. Patients & methods: 199 samples were genotyped through real-time polymerase chain reaction assays. Metabolization profiles were inferred from the genotypes. Correlations were evaluated using Pearson's χ2 test. Results: Phenotype frequencies were 0.65 normal (NM), 0.30 intermediate (IM) and 0.05 poor metabolizers (PM). Similar clinical outcomes between NM and (PM + IM) patient groups (odds ratio = 1.011, 95% CI = 0.2703-3.7826; p = 0.987) were found. Conclusion: CYP2D6 allele frequencies were analyzed for the first time in a cohort from Uruguay. Results did not support any impact of CYP2D6 gene polymorphisms on clinical outcomes.
Collapse
Affiliation(s)
- Gabriel Ramírez
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
| | - Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
| | - Carolina Vergara
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Florencia Carusso
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Florencia Neffa
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Adriana Della Valle
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, 11800, Uruguay
- Grupo Colaborativo Uruguayo, Dirección Nacional de Sanidad de las Fuerzas Armadas, Montevideo, 11600, Uruguay
| |
Collapse
|
6
|
El Desoky ES, Taha AF, Mousa HS, Ibrahim A, Saleh MA, Abdelrady MA, Hareedy MS. Value of therapeutic drug monitoring of endoxifen in Egyptian premenopausal patients with breast cancer given tamoxifen adjuvant therapy: A pilot study. J Oncol Pharm Pract 2023; 29:1673-1686. [PMID: 36567618 DOI: 10.1177/10781552221146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The complex metabolic profile of tamoxifen anticancer drug and polymorphism in its metabolizing enzymes particularly CYP2D6 contribute to the high-observed inter-individual variability in its main active metabolite endoxifen. Therapeutic drug monitoring of endoxifen may play a key role in optimizing tamoxifen therapy, and control of both adverse effects and cancer recurrence. This pilot study aims to assess the clinical benefits of applying endoxifen measurement during tamoxifen therapy in patients with breast cancer. METHODS Adult premenopausal breast cancer patients ≥ 18 years who received tamoxifen at a fixed dose of 20 mg daily were included. The primary endpoint was to identify the inter-subject variability in serum concentration of the drug and its metabolites especially endoxifen, through fixation of the tamoxifen dose. The secondary endpoint was to check the correlation between endoxifen metabolite concentration and the development of tamoxifen's adverse effects and cancer recurrence. RESULTS Sixty patients were included in the study with a mean age of 38.4 ± 0.6 years (range: 26-50). The mean concentration of tamoxifen and endoxifen was 181 ± 9.6 ng/mL and 31.49 ng/mL, respectively. The inter-individual variability in concentrations for the drug and its active metabolite as estimated by the coefficient of variation percentage was in 41% and 31%, respectively. Cancer recurrence was observed in a group of patients (n = 16) with an average endoxifen level of 24.48 ng/mL. Another group of patients (n = 25) developed different tamoxifen adverse effects including hot flashes, vaginal bleeding, endometrial thickness, and ovarian cysts with the average endoxifen level of 38.61 ng/mL. The rest of the patients (n = 19) who responded smoothly to the drug with no complications had an average endoxifen level of 31.37 ng/mL. Analysis of variance test showed a significant difference in endoxifen levels between the three groups (p = 0.002). CONCLUSION The measurement of the endoxifen active metabolite of tamoxifen in breast cancer patients can help dose optimization in light of the observed wide inter-individual variability in drug fixed-dose related concentration of the metabolite. Monitoring of serum concentration of endoxifen can help to reveal, reduce and control tamoxifen's adverse effects and cancer recurrence.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt
| | - Heba Salah Mousa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Egypt
| | - Medhat A Saleh
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
7
|
Mbavha BT, Thelingwani RS, Chikwambi Z, Nyakabau AM, Masimirembwa C. Pharmacogenetics and pharmacokinetics of tamoxifen in a Zimbabwean breast cancer cohort. Br J Clin Pharmacol 2023; 89:3209-3216. [PMID: 37337448 PMCID: PMC10529681 DOI: 10.1111/bcp.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Tamoxifen is the most used hormonal therapy for oestrogen receptor-positive breast cancer. CYP2D6 is the main enzyme in the metabolic pathway of tamoxifen to endoxifen. Variations in endoxifen plasma concentrations are associated with CYP2D6 polymorphisms. This study aimed to determine the association between the CYP2D6 polymorphisms and endoxifen plasma concentrations in a cohort of Zimbabwean breast cancer patients (n = 40). TaqMan genotyping and copy number assays were done to determine CYP2D6 genotypes. Tamoxifen and metabolites were quantitated using LC-MS/MS. The population had high frequencies of the CYP2D6 reduced function alleles, *17 (15%) and *29 (18%). The median endoxifen concentration was 4.78 ng/mL, and in 55% of the patients, mostly intermediate metabolizers were below the endoxifen therapeutic threshold of 5.97 ng/mL. The CYP2D6 phenotypes and activity scores were significantly associated with endoxifen plasma concentrations (P = 0.0151) and with endoxifen to N-desmethyl-tamoxifen ratios (P = 0.0006).
Collapse
Affiliation(s)
- Bianza Tinotenda Mbavha
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Roslyn Stella Thelingwani
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
| | - Zedias Chikwambi
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Department of Biotechnology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Anna Mary Nyakabau
- Parirenyatwa Hospital Radiotherapy and Oncology Center, Harare, Zimbabwe
| | - Collen Masimirembwa
- Department of Genomic Medicine, African Institute of Biomedical Science and Technology (AiBST), 911 Boronia Township, Beatrice, Zimbabwe
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand, Johannesburg 2000, South Africa
| | | |
Collapse
|
8
|
Chiwambutsa SM, Ayeni O, Kapungu N, Kanji C, Thelingwani R, Chen WC, Mokone DH, O’Neil DS, Neugut AI, Jacobson JS, Ruff P, Cubasch H, Joffe M, Masimirembwa C. Effects of Genetic Polymorphisms of Drug Metabolizing Enzymes and co-Medications on Tamoxifen Metabolism in Black South African Women with Breast Cancer. Clin Pharmacol Ther 2023; 114:127-136. [PMID: 37042388 PMCID: PMC11016593 DOI: 10.1002/cpt.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/02/2023] [Indexed: 04/13/2023]
Abstract
Clinical outcomes of tamoxifen (TAM) treatment show wide interindividual variability. Comedications and genetic polymorphisms of enzymes involved in TAM metabolism contributes to this variability. Drug-drug and drug-gene interactions have seldom been studied in African Black populations. We evaluated the effects of commonly co-administered medicines on TAM pharmacokinetics in a cohort of 229 South African Black female patients with hormone-receptor positive breast cancer. We also investigated the pharmacokinetic effects of genetic polymorphism in enzymes involved in TAM metabolism, including the variants CYP2D6*17 and *29, which have been mainly reported in people of African descent. TAM and its major metabolites, N-desmethyltamoxifen (NDM), 4-OH-tamoxifen, and endoxifen (ENDO), were quantified in plasma using the liquid chromatography-mass spectrometry. The GenoPharm open array was used to genotype CYP2D6, CYP3A5, CYP3A4, CYP2B6, CYP2C9, and CYP2C19. Results showed that CYP2D6 diplotype and CYP2D6 phenotype significantly affected endoxifen concentration (P < 0.001 and P < 0.001). CYP2D6*17 and CYP2D6*29 significantly reduced the metabolism of NDM to ENDO. Antiretroviral therapy had a significant effect on NDM levels and the TAM/NDM and NDM/ENDO metabolic ratios but did not result in significant effects on ENDO levels. In conclusion, CYP2D6 polymorphisms affected endoxifen concentration and the variants CYP2D6*17 and CYP2D6*29 significantly contributed to low exposure levels of ENDO. This study also suggests a low risk of drug-drug interaction in patients with breast cancer on TAM.
Collapse
Affiliation(s)
- Shingirai M. Chiwambutsa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oluwatosin Ayeni
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Radiation Oncology, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyasha Kapungu
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Comfort Kanji
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Roslyn Thelingwani
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Dikeledi H. Mokone
- Department of Surgery, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Ga-Rankuwa, South Africa
| | - Daniel S. O’Neil
- Comprehensive Cancer Center and Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alfred I. Neugut
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Judith S. Jacobson
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul Ruff
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Herbert Cubasch
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maureen Joffe
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South Africa Medical Research Council Common Epithelial Cancers Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- SAMRC/Wits Developmental Pathways to Health Research Unit, Department of Pediatrics, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, Johannesburg, South Africa
| | - Collen Masimirembwa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Khor CC, Winter S, Sutiman N, Mürdter TE, Chen S, Lim JSL, Li Z, Li J, Sim KS, Ganchev B, Eccles D, Eccles B, Tapper W, Zgheib NK, Tfayli A, Ng RCH, Yap YS, Lim E, Wong M, Wong NS, Ang PCS, Dent R, Tremmel R, Klein K, Schaeffeler E, Zhou Y, Lauschke VM, Eichelbaum M, Schwab M, Brauch HB, Chowbay B, Schroth W. Cross-Ancestry Genome-Wide Association Study Defines the Extended CYP2D6 Locus as the Principal Genetic Determinant of Endoxifen Plasma Concentrations. Clin Pharmacol Ther 2023; 113:712-723. [PMID: 36629403 DOI: 10.1002/cpt.2846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
The therapeutic efficacy of tamoxifen is predominantly mediated by its active metabolites 4-hydroxy-tamoxifen and endoxifen, whose formation is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6). Yet, known CYP2D6 polymorphisms only partially determine metabolite concentrations in vivo. We performed the first cross-ancestry genome-wide association study with well-characterized patients of European, Middle-Eastern, and Asian descent (n = 497) to identify genetic factors impacting active and parent metabolite formation. Genome-wide significant variants were functionally evaluated in an independent liver cohort (n = 149) and in silico. Metabolite prediction models were validated in two independent European breast cancer cohorts (n = 287, n = 189). Within a single 1-megabase (Mb) region of chromosome 22q13 encompassing the CYP2D6 gene, 589 variants were significantly associated with tamoxifen metabolite concentrations, particularly endoxifen and metabolic ratio (MR) endoxifen/N-desmethyltamoxifen (minimal P = 5.4E-35 and 2.5E-65, respectively). Previously suggested other loci were not confirmed. Functional analyses revealed 66% of associated, mostly intergenic variants to be significantly correlated with hepatic CYP2D6 activity or expression (ρ = 0.35 to -0.52), and six hotspot regions in the extended 22q13 locus impacting gene regulatory function. Machine learning models based on hotspot variants (n = 12) plus CYP2D6 activity score (AS) increased the explained variability (~ 9%) compared with AS alone, explaining up to 49% (median R2 ) and 72% of the variability in endoxifen and MR endoxifen/N-desmethyltamoxifen, respectively. Our findings suggest that the extended CYP2D6 locus at 22q13 is the principal genetic determinant of endoxifen plasma concentration. Long-distance haplotypes connecting CYP2D6 with adjacent regulatory sites and nongenetic factors may account for the unexplained portion of variability.
Collapse
Affiliation(s)
- Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Clinical Pharmacology, SingHealth, Singapore, Singapore
| | - Stefan Winter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Natalia Sutiman
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Thomas E Mürdter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Sylvia Chen
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Joanne Siok Liu Lim
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Zheng Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kar Seng Sim
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Boian Ganchev
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Diana Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Bryony Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - William Tapper
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Arafat Tfayli
- Hematology-Oncology Division, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Elaine Lim
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Mabel Wong
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nan Soon Wong
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Peter Cher Siang Ang
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Michel Eichelbaum
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Hiltrud B Brauch
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Balram Chowbay
- Clinical Pharmacology, SingHealth, Singapore, Singapore.,Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore.,Centre for Clinician-Scientist Development, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen. J Pers Med 2023; 13:jpm13020272. [PMID: 36836506 PMCID: PMC9961245 DOI: 10.3390/jpm13020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6*17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
Collapse
|
11
|
Keller DN, Medwid SJ, Ross CD, Wigle TJ, Kim RB. Impact of organic anion transporting polypeptide, P-glycoprotein, and breast cancer resistance protein transporters on observed tamoxifen and endoxifen concentration and adverse effects. Pharmacogenet Genomics 2023; 33:10-18. [PMID: 36373739 DOI: 10.1097/fpc.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Drug transporters are important determinants of drug disposition and response. Tamoxifen is an antiestrogen for breast cancer therapy known for adverse drug reactions (ADRs). In this study, the involvement of OATP transporters in tamoxifen and endoxifen transport was studied in vitro while the impact of single nucleotide variation (SNV) in OATP and efflux transporters P-glycoprotein ( ABCB1 ) and Breast Cancer Resistance Protein ( ABCG2 ) on ADRs during tamoxifen therapy were assessed. METHODS Patients receiving tamoxifen for breast cancer, who were CYP2D6 normal metabolizers were enrolled ( n = 296). Patients completed a survey that captured ADRs and a blood sample was collected. Tamoxifen and endoxifen plasma concentration were measured, while DNA was genotyped for SNVs in ABCB1, ABCG2, SLCO1A2, SLCO1B1 , and SLCO2B1 . HEK293T cells were used to determine the extent of OATP-mediated transport of tamoxifen and endoxifen. RESULTS Common SNVs of ABCB1, ABCG2, SLCO1A2 , and SLCO1B1 were not associated with tamoxifen or endoxifen concentration. However, tamoxifen concentration was significantly higher in carriers of SLCO2B1 c.935G>A (129.8 ng/mL) compared to wildtype (114.9 ng/mL; P = 0.036). Interestingly, subjects who carried SLCO1A2 c.38A>G reported significantly less dizziness ( P = 0.016). In-vitro analysis demonstrated increased cellular accumulation of tamoxifen in cells overexpressing OATP1A2 and 1B1, but endoxifen uptake was not effected in OATP overexpressing cells. CONCLUSIONS We showed that OATP1A2 , a transporter known to be expressed at the blood-brain barrier, is capable of tamoxifen transport. Additionally, OATP1A2 c.38A>G was associated with reduced ADRs. Taken together, our findings suggest genetic variation in OATP transporters may be an important predictor of tamoxifen ADRs.
Collapse
Affiliation(s)
| | | | - Cameron D Ross
- Department of Medicine, University of Western Ontario, Canada
| | | | - Richard B Kim
- Department of Medicine, University of Western Ontario, Canada
| |
Collapse
|
12
|
Dilli Batcha JS, Raju AP, Matcha S, Raj S. EA, Udupa KS, Gota V, Mallayasamy S. Factors Influencing Pharmacokinetics of Tamoxifen in Breast Cancer Patients: A Systematic Review of Population Pharmacokinetic Models. BIOLOGY 2022; 12:51. [PMID: 36671744 PMCID: PMC9855885 DOI: 10.3390/biology12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tamoxifen is useful in managing breast cancer and it is reported to have significant variability in its pharmacokinetics. This review aimed to summarize reported population pharmacokinetics studies of tamoxifen and to identify the factors affecting the pharmacokinetics of tamoxifen in adult breast cancer patients. METHOD A systematic search was undertaken in Scopus, Web of Science, and PubMed for papers published in the English language from inception to 20 August 2022. Studies were included in the review if the population pharmacokinetic modeling was based on non-linear mixed-effects modeling with a parametric approach for tamoxifen in breast cancer patients. RESULTS After initial selection, 671 records were taken for screening. A total of five studies were selected from Scopus, Web of Science, PubMed, and by manual searching. The majority of the studies were two-compartment models with first-order absorption and elimination to describe tamoxifen and its metabolites' disposition. The CYP2D6 phenotype and CYP3A4 genotype were the main covariates that affected the metabolism of tamoxifen and its metabolites. Other factors influencing the drug's pharmacokinetics included age, co-medication, BMI, medication adherence, CYP2B6, and CYP2C19 genotype. CONCLUSION The disposition of tamoxifen and its metabolites varies primarily due to the CYP2D6 phenotype and CYP3A4 genotype. However, other factors, such as anthropometric characteristics and menopausal status, should also be addressed when accounting for this variability. All these studies should be externally evaluated to assess their applicability in different populations and to use model-informed dosing in the clinical setting.
Collapse
Affiliation(s)
- Jaya Shree Dilli Batcha
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Saikumar Matcha
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Elstin Anbu Raj S.
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
- Public Health Evidence South Asia, Department of Health Information, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Karthik S. Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Mumbai 410 210, Maharashtra, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
- Center for Pharmacometrics, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| |
Collapse
|
13
|
Prediction of Drug-Drug-Gene Interaction Scenarios of ( E)-Clomiphene and Its Metabolites Using Physiologically Based Pharmacokinetic Modeling. Pharmaceutics 2022; 14:pharmaceutics14122604. [PMID: 36559098 PMCID: PMC9781104 DOI: 10.3390/pharmaceutics14122604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Clomiphene, a selective estrogen receptor modulator (SERM), has been used for the treatment of anovulation for more than 50 years. However, since (E)-clomiphene ((E)-Clom) and its metabolites are eliminated primarily via Cytochrome P450 (CYP) 2D6 and CYP3A4, exposure can be affected by CYP2D6 polymorphisms and concomitant use with CYP inhibitors. Thus, clomiphene therapy may be susceptible to drug-gene interactions (DGIs), drug-drug interactions (DDIs) and drug-drug-gene interactions (DDGIs). Physiologically based pharmacokinetic (PBPK) modeling is a tool to quantify such DGI and DD(G)I scenarios. This study aimed to develop a whole-body PBPK model of (E)-Clom including three important metabolites to describe and predict DGI and DD(G)I effects. Model performance was evaluated both graphically and by calculating quantitative measures. Here, 90% of predicted Cmax and 80% of AUClast values were within two-fold of the corresponding observed value for DGIs and DD(G)Is with clarithromycin and paroxetine. The model also revealed quantitative contributions of different CYP enzymes to the involved metabolic pathways of (E)-Clom and its metabolites. The developed PBPK model can be employed to assess the exposure of (E)-Clom and its active metabolites in as-yet unexplored DD(G)I scenarios in future studies.
Collapse
|
14
|
El Akil S, Elouilamine E, Ighid N, Izaabel EH. Explore the distribution of (rs35742686, rs3892097 and rs1065852) genetic polymorphisms of cytochrome P4502D6 gene in the Moroccan population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
The CYP2D6 gene encodes a crucial enzyme involved in the metabolic pathways of many commonly used drugs. It is a highly polymorphic gene inducing an interethnic and interindividual variability in disease susceptibility and treatment response. The aim of this study is to evaluate the frequency of the three CYP2D6 most investigated alleles (CYP2D6*3, CYP2D6*4, and CYP2D6*10 alleles) in Morocco compared to other populations.
This study enrolled 321 healthy Moroccan subjects. CYP2D6 genotypes and allele frequencies were assessed using a restriction fragment length polymorphism–polymerase chain reaction genotyping method. The Principal Component Analysis (PCA) and dendrogram were conducted to evaluate genetic proximity between Moroccans and other populations depending on CYP2D6 allele frequencies.
Results
According to the current study, the results observed the homozygous wild type of the three studied SNPs were predominant among the Moroccan population, while 1.4% of Moroccans carried the CYP2D6*4 allele responsible for a Poor Metabolizer phenotype and associated with low enzyme activity which may induce a treatment failure. The PCA and cluster dendrogram tools revealed genetic proximity between Moroccans and Mediterranean, European and African populations, versus a distancing from Asian populations.
Conclusion
The distribution of CYP2D6 polymorphisms within Morocco follows the patterns generally found among the Mediterranean, European and African populations. Furthermore, these results will help to lay a basis for clinical studies, aimed to introduce and optimize a personalized therapy in the Moroccan population.
Collapse
|
15
|
Nahid NA, Johnson JA. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin Drug Metab Toxicol 2022; 18:769-785. [PMID: 36597259 PMCID: PMC9891304 DOI: 10.1080/17425255.2022.2160317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION CYP2D6 contributes to the metabolism of approximately 20-25% of drugs. However, CYP2D6 is highly polymorphic and different alleles can lead to impacts ranging from null to increase in activity. Moreover, there are commonly used drugs that potently inhibit the CYP2D6, thus causing 'phenoconversion' which can convert the genotypic normal metabolizer into phenotypic poor metabolizer. Despite growing literature on the clinical implications of non-normal CYP2D6 genotype and phenoconversion on patient-related outcomes, implementation of CYP2D6 pharmacogenetics and phenoconversion to guide prescribing is rare. This review focuses on providing the clinical importance of CYP2D6 pharmacogenetics and phenoconversion in precision medicine and summarizes the challenges and approaches to implement these into clinical practice. AREAS COVERED A literature search was performed using PubMed and clinical studies documenting the effects of CYP2D6 genotypes and/or CYP2D6 inhibitors on pharmacokinetics, pharmacodynamics or treatment outcomes of CYP2D6-metabolized drugs, and studies on implementation challenges and approaches. EXPERT OPINION Considering the extent and impact of genetic polymorphisms of CYP2D6, phenoconversion by the comedications, and contribution of CYP2D6 in drug metabolism, CYP2D6 pharmacogenetics is essential to ensure drug safety and efficacy. Utilization of proper guidelines incorporating both CYP2D6 pharmacogenetics and phenoconversion in clinical care assists in optimizing drug therapy.
Collapse
Affiliation(s)
- Noor A. Nahid
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, FL, USA
| |
Collapse
|
16
|
Ismail Al-Khalil W, Al-Salhi L, Rijjal S, Aljamali M, Youssef LA. The frequencies of CYP2D6 alleles and their impact on clinical outcomes of adjuvant tamoxifen therapy in Syrian breast cancer patients. BMC Cancer 2022; 22:1067. [PMID: 36243690 PMCID: PMC9571463 DOI: 10.1186/s12885-022-10148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tamoxifen is one of the fundamental pillars of adjuvant endocrine therapy for hormone receptor-positive breast cancer; however, 30–50% of patients receiving tamoxifen experience tumor relapse. CYP2D6, encoded by an extremely polymorphic CYP2D6 gene, is the rate-limiting enzyme of tamoxifen bioactivation. This study aimed at determining the frequencies of the most clinically relevant CYP2D6 alleles and evaluating their impact on the responsiveness to tamoxifen in a cohort of Syrian breast cancer patients. Methods This case–control study encompassed positive estrogen and/or progesterone receptor, stage 1–3 breast cancer female patients receiving tamoxifen at Al-Bairouni University Hospital, the major National Oncology Center in Syria. Successfully genotyped eligible patients (n = 97) were classified according to their response into; no recurrence group (n = 39) who had completed a five-year recurrence-free adjuvant tamoxifen therapy, and recurrence group (n = 58) who had experienced recurrence. Several star alleles including CYP2D6*4, CYP2D6*10, CYP2D6*41, and CYP2D6*69 were identified via targeted sequencing of specific polymerase chain reaction (PCR) products and phenotypes were assigned according to activity score (AS). The correlation between genotypes and disease-free survival (DFS) was assessed using Kaplan–Meier method and log-rank test. Hazard ratios were estimated using Cox proportional hazards regression models. Results The allelic frequencies of CYP2D6*41, CYP2D6*10, CYP2D6*4, and CYP2D6*69 were found to be 9.28%, 7.22%, 7.22%, and 2.58%, respectively. No statistically significant differences were observed in the frequencies of CYP2D6 phenotypes between the two arms (P = 0.24), nor the incidence of tamoxifen-induced hot flashes (P = 0.109). Poor metabolizers (PMs) tended to display shorter DFS than intermediate metabolizers (IMs) and normal metabolizers (NMs) combined (adjusted HR = 2.34, 95% CI = 0.84–6.55, P = 0.104). Notably, patients homozygous for the null CYP2D6*4 allele (1847A/A) had an elevated risk of disease recurrence compared to patients with 1847G/G genotype (adjusted HR = 5.23, 95% CI = 1.22–22.49, P = 0.026). Conclusions Our findings show no association between CYP2D6 phenotype and treatment outcomes of tamoxifen in Syrian breast cancer patients. Nevertheless, a worse DFS was revealed in patients with 1847A/A genotype (*4/*4). Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10148-8.
Collapse
Affiliation(s)
- Wouroud Ismail Al-Khalil
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Lana Al-Salhi
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Sara Rijjal
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic
| | - Majd Aljamali
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic.,Faculty of Pharmacy, International University for Science and Technology (IUST), Ghabagheb, Daraa, Syrian Arab Republic.,National Commission for Biotechnology (NCBT), Damascus, Syrian Arab Republic
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, Program of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Damascus University, Mezzeh Autostrad, Damascus, Syrian Arab Republic. .,Faculty of Pharmacy, International University for Science and Technology (IUST), Ghabagheb, Daraa, Syrian Arab Republic. .,National Commission for Biotechnology (NCBT), Damascus, Syrian Arab Republic.
| |
Collapse
|
17
|
Verdez S, Albuisson J, Duffourd Y, Boidot R, Reda M, Thauvin-Robinet C, Fumet JD, Ladoire S, Nambot S, Callier P, Faivre L, Ghiringhelli F, Picard N. Detection of relevant pharmacogenetic information through exome sequencing in oncology. Pharmacogenomics 2022; 23:759-770. [PMID: 36043386 DOI: 10.2217/pgs-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Germline sequencing of individual genomes can detect alleles responsible for adverse drug reactions (ADRs) in relation to chemotherapy, targeted agents, antiemetics or pain treatment. Materials & methods: To evaluate the interest of such pharmacogenetic information, the authors retrospectively analyzed genes known to have an impact on cancer therapy in a cohort of 445 solid cancers patients. Results: Six patients treated with 5-fluorouracil carrying one DPYD variant classified as 1A showed decreased drug mean clearance (p = 0.01). Regarding CYP2D6, all patients (n = 5) with predicted CYP2D6 poor or ultra-rapid metabolizer status experienced adverse drug reactions related to opioid therapy. Conclusion: Genomic germline sequencing performed for theragnostic issues in patients with a solid tumor, can provide relevant information about common pharmacogenetic alleles.
Collapse
Affiliation(s)
- Simon Verdez
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - Juliette Albuisson
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Genomic & Immunotherapy Medical Institute, Dijon, 21000, France
| | - Yannis Duffourd
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - Romain Boidot
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Genomic & Immunotherapy Medical Institute, Dijon, 21000, France.,Department of Tumour Biology & Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France
| | - Manon Reda
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Department of Tumour Biology & Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue Professeur Marion, Dijon, 21000, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France.,Genomic & Immunotherapy Medical Institute, Dijon, 21000, France.,Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - Jean-David Fumet
- Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue Professeur Marion, Dijon, 21000, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue Professeur Marion, Dijon, 21000, France
| | - Sophie Nambot
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France.,Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - Patrick Callier
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - Laurence Faivre
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France.,Genomic & Immunotherapy Medical Institute, Dijon, 21000, France.,Centre de Référence Maladies Rares "Anomalies du Développement et Syndromes Malformatifs", Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, 21000, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Genomic & Immunotherapy Medical Institute, Dijon, 21000, France.,Department of Tumour Biology & Pathology, Georges François Leclerc Cancer Center - UNICANCER, Dijon, 21000, France.,Department of Medical Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue Professeur Marion, Dijon, 21000, France
| | - Nicolas Picard
- Inserm U1248, Service de Pharmacologie et Toxicologie, Université de Limoges, CHU de Limoges, Limoges, 87000, France
| |
Collapse
|
18
|
Factors affecting inter-individual variability in endoxifen concentrations in patients with breast cancer: results from the prospective TOTAM trial. Breast Cancer Res Treat 2022; 195:65-74. [PMID: 35842520 PMCID: PMC9338137 DOI: 10.1007/s10549-022-06643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Endoxifen-the principal metabolite of tamoxifen-is subject to a high inter-individual variability in serum concentration. Numerous attempts have been made to explain this, but thus far only with limited success. By applying predictive modeling, we aimed to identify factors that determine the inter-individual variability. Our purpose was to develop a prediction model for endoxifen concentrations, as a strategy to individualize tamoxifen treatment by model-informed dosing in order to prevent subtherapeutic exposure (endoxifen < 16 nmol/L) and thus potential failure of therapy. METHODS Tamoxifen pharmacokinetics with demographic and pharmacogenetic data of 303 participants of the prospective TOTAM study were used. The inter-individual variability in endoxifen was analyzed according to multiple regression techniques in combination with multiple imputations to adjust for missing data and bootstrapping to adjust for the over-optimism of parameter estimates used for internal model validation. RESULTS Key predictors of endoxifen concentration were CYP2D6 genotype, age and weight, explaining altogether an average-based optimism corrected 57% (95% CI 0.49-0.64) of the inter-individual variability. CYP2D6 genotype explained 54% of the variability. The remaining 3% could be explained by age and weight. Predictors of risk for subtherapeutic endoxifen (< 16 nmol/L) were CYP2D6 genotype and age. The model showed an optimism-corrected discrimination of 90% (95% CI 0.86-0.95) and sensitivity and specificity of 66% and 98%, respectively. Consecutively, there is a high probability of misclassifying patients with subtherapeutic endoxifen concentrations based on the prediction rule. CONCLUSION The inter-individual variability of endoxifen concentration could largely be explained by CYP2D6 genotype and for a small proportion by age and weight. The model showed a sensitivity and specificity of 66 and 98%, respectively, indicating a high probability of (misclassification) error for the patients with subtherapeutic endoxifen concentrations (< 16 nmol/L). The remaining unexplained inter-individual variability is still high and therefore model-informed tamoxifen dosing should be accompanied by therapeutic drug monitoring.
Collapse
|
19
|
(Z)-Endoxifen and Early Recurrence of Breast Cancer: An Explorative Analysis in a Prospective Brazilian Study. J Pers Med 2022; 12:jpm12040511. [PMID: 35455627 PMCID: PMC9030524 DOI: 10.3390/jpm12040511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adherence to treatment and use of co-medication, but also molecular factors such as CYP2D6 genotype, affect tamoxifen metabolism, with consequences for early breast cancer prognosis. In a prospective study of 149 tamoxifen-treated early-stage breast cancer patients from Brazil followed up for 5 years, we investigated the association between the active tamoxifen metabolite (Z)-endoxifen at 3 months and event-free survival (EFS) adjusted for clinico-pathological factors. Twenty-five patients (16.8%) had recurred or died at a median follow-up of 52.3 months. When we applied a putative 15 nM threshold used in previous independent studies, (Z)-endoxifen levels below the threshold showed an association with shorter EFS in univariate analysis (p = 0.045) and after adjustment for stage (HR 2.52; 95% CI 1.13–5.65; p = 0.024). However, modeling of plasma concentrations with splines instead of dichotomization did not verify a significant association with EFS (univariate analysis: p = 0.158; adjusted for stage: p = 0.117). Hence, in our small exploratory study, the link between impaired tamoxifen metabolism and early breast cancer recurrence could not be unanimously demonstrated. This inconsistency justifies larger modeling studies backed up by mechanistic pharmacodynamic analyses to shed new light on this suspected association and the stipulation of an appropriate predictive (Z)-endoxifen threshold.
Collapse
|
20
|
Talebi Z, Sparreboom A, Colace SI. Pharmacogenomics in Targeted Therapy and Supportive Care Therapies for Cancer. Methods Mol Biol 2022; 2547:47-61. [PMID: 36068460 DOI: 10.1007/978-1-0716-2573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Targeted therapies have significantly altered the landscape of available cancer therapies across all diagnoses and patient populations, and supportive care therapies have steadily improved throughout the years to make therapy more tolerable for patients. Even so, these therapies have varied efficacy and toxicity among patients with cancer, and pharmacogenomics presents an opportunity to identify which patients are most at risk of toxicities and most likely to benefit from them. While the field of pharmacogenomics in targeted cancer therapy is still growing, we review current knowledge, hypotheses, and clinical practices in this chapter, along with a brief review of pharmacogenomics in supportive therapies in cancer treatment.
Collapse
Affiliation(s)
- Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susan I Colace
- Division of Hematology, Oncology, and Blood & Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.
- The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
21
|
van der Lee M, Allard WG, Vossen RHAM, Baak-Pablo RF, Menafra R, Deiman BALM, Deenen MJ, Neven P, Johansson I, Gastaldello S, Ingelman-Sundberg M, Guchelaar HJ, Swen JJ, Anvar SY. Toward predicting CYP2D6-mediated variable drug response from CYP2D6 gene sequencing data. Sci Transl Med 2021; 13:13/603/eabf3637. [PMID: 34290055 DOI: 10.1126/scitranslmed.abf3637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.
Collapse
Affiliation(s)
- Maaike van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - William G Allard
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Renée F Baak-Pablo
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Roberta Menafra
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Birgit A L M Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Department of Clinical Pharmacy, Catharina Hospital Eindhoven, 5623 EJ Eindhoven, Netherlands
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, 171 77 Solna, Sweden
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands
| | - Seyed Yahya Anvar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands. .,Leiden Network for Personalised Therapeutics, 2333 ZA Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
22
|
Cura Y, Pérez Ramírez C, Sánchez Martín A, Martínez Martínez F, Calleja Hernández MÁ, Ramírez Tortosa MDC, Jiménez Morales A. Genetic polymorphisms on the effectiveness or safety of breast cancer treatment: Clinical relevance and future perspectives. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108391. [PMID: 34893156 DOI: 10.1016/j.mrrev.2021.108391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Breast cancer (BC) is the most frequent neoplasm and one of the main causes of death in women. The pharmacological treatment of BC consists of hormonal therapy, chemotherapeutic agents and targeted therapy. The response to BC therapy is highly variable in clinical practice. This variability can be explained by the presence of genetic polymorphisms in genes involved in the pharmacokinetics, pharmacodynamics or immune response of patients. The abundant evidence of associations between low-activity alleles CYP2D6*3, *4, *5, *6, *10 and *41 and poor results with tamoxifen therapy, and between DPYD gene polymorphisms rs3918290, rs55886062, rs67376798 and rs75017182 and increased risk of toxicity to fluoropyrimidine therapy, justify the existence of clinical pharmacogenetic guidelines. The NQO1 rs1800566 polymorphism is related to poorer results in BC therapy with chemotherapy agents. The polymorphism rs1695 of the GSTP1 gene has been associated with the effectiveness and toxicity of fluorouracil, cyclophosphamide and epirubicin therapy. Finally, the HLA-DQA1*02:01 allele is significantly associated with the occurrence of liver toxicity events in patients receiving lapatinib. There is moderate evidence to support the aforementioned associations and, therefore, a high probability of these being considered as future predictive genetic biomarkers of response. However, further studies are required to reinforce or clarify their clinical relevance.
Collapse
Affiliation(s)
- Yasmin Cura
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Cristina Pérez Ramírez
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen Macarena, Seville, Spain.
| | - Almudena Sánchez Martín
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Fernando Martínez Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | - Alberto Jiménez Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, Granada, Spain.
| |
Collapse
|
23
|
Helland T, Alsomairy S, Lin C, Søiland H, Mellgren G, Hertz DL. Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer. J Pers Med 2021; 11:jpm11030201. [PMID: 33805613 PMCID: PMC8000933 DOI: 10.3390/jpm11030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to the lack of measured metabolite concentrations in tamoxifen clinical trials. CYP2D6 activity is the primary determinant of endoxifen concentration. Inconclusive results from studies investigating whether CYP2D6 genotype is associated with tamoxifen efficacy may be due to the imprecision in using CYP2D6 genotype as a surrogate of endoxifen concentration without incorporating the influence of other genetic and clinical variables. This review summarizes the evidence that active metabolite concentrations determine tamoxifen efficacy. We then introduce a novel approach to validate this relationship by generating a precision endoxifen prediction algorithm and comprehensively review the factors that must be incorporated into the algorithm, including genetics of CYP2D6 and other pharmacogenes. A precision endoxifen algorithm could be used to validate metabolic resistance in existing tamoxifen clinical trial cohorts and could then be used to select personalized tamoxifen doses to ensure all patients achieve adequate endoxifen concentrations and maximum benefit from tamoxifen treatment.
Collapse
Affiliation(s)
- Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Correspondence: ; Tel.: +47-92847793
| | - Sarah Alsomairy
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Chenchia Lin
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| |
Collapse
|
24
|
Wang T, Zhou Y, Cao G. Pharmacogenetics of tamoxifen therapy in Asian populations: from genetic polymorphism to clinical outcomes. Eur J Clin Pharmacol 2021; 77:1095-1111. [PMID: 33515076 DOI: 10.1007/s00228-021-03088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Compared with western countries, Asian breast cancer patients have unique pathological and biological characteristics. Most of them are premenopausal women with HR positive. Tamoxifen as the first-line drug for premenopausal women with HR+ is involved in multiple enzymes and transporters during metabolizing and transporting process. Variants that cause decreased or inactive gene products leading to abnormal responses in tamoxifen therapy have well been studied in western countries, whereas such information is much less reported in Asian populations. OBJECTIVE In order to elucidate the relationship between genetic variants and tamoxifen-induced individual drug reactions in different Asian populations and further identify genotypes/phenotypes with potential therapeutic significance. METHODS We reviewed the frequencies of genetic variants in major enzymes and transporter genes involved in the metabolism and transport of tamoxifen across Asian populations as well as significant correlations between genotypes/metabolic phenotypes and metabolites concentrations or BC clinical outcomes. RESULTS Significant inter-ethnic differences in allele frequencies was found among Asian populations, such as CYP2D6*4, *10, *41, CYP2C9*2, ABCB1 C3435T and SLCO1B1*5, and CYP2D6*10/*10 is the most common genotype correlated with adverse clinical outcomes. Moreover, we summarized the barriers and controversies of implementing pharmacogenetics in tamoxifen therapy and concluded that more population-specific pharmacogenetic studies are needed in the future. CONCLUSION This review revealed more systematic pharmacogenomics of genes involved in the metabolism and transport besides CYP2D6, are required to optimize the genotyping strategies and guide the personalized tamoxifen therapy in Asian populations.
Collapse
Affiliation(s)
- Tingyu Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Guosheng Cao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
25
|
Robin C, Hennart B, Broly F, Gruchala P, Robin G, Catteau-Jonard S. Could Cytochrome P450 2D6, 3A4 and 3A5 Polymorphisms Explain the Variability in Clinical Response to Clomiphene Citrate of Anovulatory PCOS Women? Front Endocrinol (Lausanne) 2021; 12:718917. [PMID: 34690927 PMCID: PMC8535872 DOI: 10.3389/fendo.2021.718917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Cytochrome P450 2D6, 3A4 and 3A5 are involved in the metabolism of many drugs. These enzymes have a genetic polymorphism responsible for different metabolic phenotypes. They play a role in the metabolism of clomiphene citrate (CC), which is used to induce ovulation. Response to CC treatment is variable, and no predictive factors have thus far been identified. OBJECTIVE To study a possible link between the cytochrome P450 2D6, 3A4 and 3A5 polymorphisms and clinical response to CC. STUDY DESIGN Seventy-seven women with anovulatory Polycystic Ovarian Syndrome (PCOS) treated with CC were included which determined their cytochrome P450 2D6, 3A4 and 3A5 genotypes and used the results to predict ovarian response to this drug. Predicted responses based on the cytochrome genotypes were compared with the observed clinical responses using the calculation of a weighted Kappa coefficient. MAIN OUTCOME MEASURES Number of dominant follicles assessed by ultrasound at the end of the follicular phase and confirmation of ovulation by blood progesterone assay in the luteal phase. RESULTS Concordance between the predicted and observed responses for the combination of the three cytochromes was 36.71%, with a negative Kappa coefficient (K = -0.0240), which corresponds to a major disagreement. Similarly, for predictions based on the cytochrome P450 2D6 genotype alone, only 39.24% of predictions were verified (coefficient K = -0.0609). CONCLUSION The genetic polymorphism of cytochromes P450 2D6, 3A4 and 3A5 does not appear to influence clinical response to CC used to induce ovulation in anovulatory PCOS women.
Collapse
Affiliation(s)
- Camille Robin
- University of Lille, Centre Hospitalier Universitaire (CHU) Lille, Department of Reproductive Medicine, Lille, France
- *Correspondence: Camille Robin,
| | - Benjamin Hennart
- University of Lille, CHU Lille, Service de Toxicologie et Génopathies, Pôle de Biochimie et Biologie Moléculaire, Centre de Biologie Pathologie, Lille, France
| | - Franck Broly
- University of Lille, CHU Lille, Service de Toxicologie et Génopathies, Pôle de Biochimie et Biologie Moléculaire, Centre de Biologie Pathologie, Lille, France
| | - Philippine Gruchala
- University of Lille, Centre Hospitalier Universitaire (CHU) Lille, Department of Reproductive Medicine, Lille, France
| | - Geoffroy Robin
- University of Lille, Centre Hospitalier Universitaire (CHU) Lille, Department of Reproductive Medicine, Lille, France
- University of Lille, CHU Lille, EA 4308 “Gametogenesis and Gamete Quality”, Lille, France
| | - Sophie Catteau-Jonard
- University of Lille, Centre Hospitalier Universitaire (CHU) Lille, Department of Reproductive Medicine, Lille, France
- University of Lille, CHU Lille, INSERM U1172, Lille, France
| |
Collapse
|
26
|
Puszkiel A, Arellano C, Vachoux C, Evrard A, Le Morvan V, Boyer JC, Robert J, Delmas C, Dalenc F, Debled M, Venat-Bouvet L, Jacot W, Dohollou N, Bernard-Marty C, Laharie-Mineur H, Filleron T, Roché H, Chatelut E, Thomas F, White-Koning M. Model-Based Quantification of Impact of Genetic Polymorphisms and Co-Medications on Pharmacokinetics of Tamoxifen and Six Metabolites in Breast Cancer. Clin Pharmacol Ther 2020; 109:1244-1255. [PMID: 33047329 DOI: 10.1002/cpt.2077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
Variations in clinical response to tamoxifen (TAM) may be related to polymorphic cytochromes P450 (CYPs) involved in forming its active metabolite endoxifen (ENDO). We developed a population pharmacokinetic (PopPK) model for tamoxifen and six metabolites to determine clinically relevant factors of ENDO exposure. Concentration-time data for TAM and 6 metabolites come from a prospective, multicenter, 3-year follow-up study of adjuvant TAM (20 mg/day) in patients with breast cancer, with plasma samples drawn every 6 months, and genotypes for 63 genetic polymorphisms (PHACS study, NCT01127295). Concentration data for TAM and 6 metabolites from 928 patients (n = 27,433 concentrations) were analyzed simultaneously with a 7-compartment PopPK model. CYP2D6 phenotype (poor metabolizer (PM), intermediate metabolizer (IM), normal metabolizer (NM), and ultra-rapid metabolizer (UM)), CYP3A4*22, CYP2C19*2, and CYP2B6*6 genotypes, concomitant CYP2D6 inhibitors, age, and body weight had a significant impact on TAM metabolism. Formation of ENDO from N-desmethyltamoxifen was decreased by 84% (relative standard error (RSE) = 14%) in PM patients and by 47% (RSE = 9%) in IM patients and increased in UM patients by 27% (RSE = 12%) compared with NM patients. Dose-adjustment simulations support an increase from 20 mg/day to 40 and 80 mg/day in IM patients and PM patients, respectively, to reach ENDO levels similar to those in NM patients. However, when considering Antiestrogenic Activity Score (AAS), a dose increase to 60 mg/day in PM patients seems sufficient. This PopPK model can be used as a tool to predict ENDO levels or AAS according to the patient's CYP2D6 phenotype for TAM dose adaptation.
Collapse
Affiliation(s)
- Alicja Puszkiel
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Cécile Arellano
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Christelle Vachoux
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Alexandre Evrard
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France.,IRCM, Inserm, Université de Montpellier, ICM, Montpellier, France
| | - Valérie Le Morvan
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Jean-Christophe Boyer
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France
| | - Jacques Robert
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Caroline Delmas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florence Dalenc
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | | | | | - William Jacot
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Henri Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Etienne Chatelut
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Fabienne Thomas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
27
|
Gusella M, Pasini F, Corso B, Bertolaso L, De Rosa G, Falci C, Modena Y, Barile C, Da Corte Z D, Fraccon A, Toso S, Cretella E, Brunello A, Modonesi C, Segati R, Oliani C, Minicuci N, Padrini R. Predicting steady-state endoxifen plasma concentrations in breast cancer patients by CYP2D6 genotyping or phenotyping. Which approach is more reliable? Pharmacol Res Perspect 2020; 8:e00646. [PMID: 32813313 PMCID: PMC7437348 DOI: 10.1002/prp2.646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
In previous studies, steady-state Z-endoxifen plasma concentrations (ENDOss) correlated with relapse-free survival in women on tamoxifen (TAM) treatment for breast cancer. ENDOss also correlated significantly with CYP2D6 genotype (activity score) and CYP2D6 phenotype (dextromethorphan test). Our aim was to ascertain which method for assessing CYP2D6 activity is more reliable in predicting ENDOss. The study concerned 203 Caucasian women on tamoxifen-adjuvant therapy (20 mg q.d.). Before starting treatment, CYP2D6 was genotyped (and activity scores computed), and the urinary log(dextromethorphan/dextrorphan) ratio [log(DM/DX)] was calculated after 15 mg of oral dextromethorphan. Plasma concentrations of TAM, N-desmethyl-tamoxifen (ND-TAM), Z-4OH-tamoxifen (4OH-TAM) and ENDO were assayed 1, 4, and 8 months after first administering TAM. Multivariable regression analysis was used to identify the clinical and laboratory variables predicting log-transformed ENDOss (log-ENDOss). Genotype-derived CYP2D6 phenotypes (PM, IM, NM, EM) and log(DM/DX) correlated independently with log-ENDOss. Genotype-phenotype concordance was almost complete only for poor metabolizers, whereas it emerged that 34% of intermediate, normal, and ultrarapid metabolizers were classified differently based on log(DM/DX). Multivariable regression analysis selected log(DM/DX) as the best predictor, with patients' age, weak inhibitor use, and CYP2D6 phenotype decreasingly important: log-ENDOss = 0.162 - log(DM/DX) × 0.170 + age × 0.0063 - weak inhibitor use × 0.250 + IM × 0.105 + (NM + UM) × 0.210; (R2 = 0.51). In conclusion, log(DM/DX) seems superior to genotype-derived CYP2D6 phenotype in predicting ENDOss.
Collapse
Affiliation(s)
| | - Felice Pasini
- Oncology UnitCasa di Cura PederzoliPeschiera del GardaItaly
| | - Barbara Corso
- National Research CouncilNeuroscience InstitutePadovaItaly
| | | | - Giovanni De Rosa
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | - Cristina Falci
- Oncology Unit 2Istituto Oncologico Veneto (IOV)IRCCS PadovaPadovaItaly
| | | | | | | | | | | | | | | | | | | | | | - Nadia Minicuci
- National Research CouncilNeuroscience InstitutePadovaItaly
| | - Roberto Padrini
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | | |
Collapse
|
28
|
Mueller-Schoell A, Klopp-Schulze L, Schroth W, Mürdter T, Michelet R, Brauch H, Huisinga W, Joerger M, Neven P, Koolen SLW, Mathijssen RHJ, Copson E, Eccles D, Chen S, Chowbay B, Tfayli A, Zgheib NK, Schwab M, Kloft C. Obesity Alters Endoxifen Plasma Levels in Young Breast Cancer Patients: A Pharmacometric Simulation Approach. Clin Pharmacol Ther 2020; 108:661-670. [PMID: 32578187 DOI: 10.1002/cpt.1960] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023]
Abstract
Endoxifen is one of the most important metabolites of the prodrug tamoxifen. High interindividual variability in endoxifen steady-state concentrations (CSS,min ENDX ) is observed under tamoxifen standard dosing and patients with breast cancer who do not reach endoxifen concentrations above a proposed therapeutic threshold of 5.97 ng/mL may be at a 26% higher recurrence risk compared with patients with endoxifen concentrations exceeding this value. In this investigation, 10 clinical tamoxifen studies were pooled (1,388 patients) to investigate influential factors on CSS,min ENDX using nonlinear mixed-effects modeling. Age and body weight were found to significantly impact CSS,min ENDX in addition to CYP2D6 phenotype. Compared with postmenopausal patients, premenopausal patients had a 30% higher risk for subtarget CSS,min ENDX at tamoxifen 20 mg per day. In treatment simulations for distinct patient subpopulations, young overweight patients had a 3.1-13.8-fold higher risk for subtarget CSS,min ENDX compared with elderly low-weight patients. Considering ever-rising obesity rates and the clinical importance of tamoxifen for premenopausal patients, this subpopulation may benefit most from individualized tamoxifen dosing.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Lena Klopp-Schulze
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and of German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Markus Joerger
- Department of Medical Oncology and Haematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Patrick Neven
- Vesalius Research Center - VIB, University Hospitals Leuven, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ellen Copson
- Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diana Eccles
- Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sylvia Chen
- Clinical Pharmacology Laboratory, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
| | - Balram Chowbay
- Clinical Pharmacology Laboratory, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
- Center for Clinician-Scientist Development, Duke-NUS Medical School, Singapore
- SingHealth Clinical Pharmacology, SingHealth, Singapore
| | - Arafat Tfayli
- Hematology-Oncology Division, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- German Cancer Consortium (DKTK) and of German Cancer Research Center (DKFZ), Heidelberg, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
29
|
CYP2D6 gene polymorphisms and breast cancer risk in Moroccan population: A case-control study. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Thorén L, Lindh JD, Ackehed G, Kringen MK, Hall P, Bergh J, Molden E, Margolin S, Eliasson E. Impairment of endoxifen formation in tamoxifen-treated premenopausal breast cancer patients carrying reduced-function CYP2D6 alleles. Br J Clin Pharmacol 2020; 87:1243-1252. [PMID: 32713032 PMCID: PMC9328423 DOI: 10.1111/bcp.14500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Aims Tamoxifen is bioactivated to endoxifen by polymorphic CYP2D6‐dependent metabolism. Here, endoxifen levels were compared to CYP2D6 diplotypes, tentative target concentrations and side effects. Methods In total, 118 Swedish premenopausal breast cancer patients diagnosed 2006–2014, with on‐going postoperative tamoxifen treatment January 2017, were included. Biobanked DNA from peripheral blood was used for CYP2D6 genotyping by TaqMan real‐time polymerase chain reaction (CYP2D6*1, *3, *4, *5, *6, *9, *10, *41, *1xN). Plasma levels of tamoxifen and 3 major metabolites were quantified by liquid chromatography–tandem mass spectrometry. Clinical information on treatment and side effects was retrospectively obtained from medical records. Results In the final analysis of 114 patients, a clear relationship between CYP2D6 genotype and plasma endoxifen levels was evident. Low endoxifen (1.6–5.2 ng/mL), i.e. below the suggested threshold for clinical efficacy, was found in all patients with 2 reduced‐function alleles, 2 null‐alleles, or a null/reduced‐function combination. CYP2D6*41 was the most common reduced‐function allele (82%) and 17 of 21 CYP2D6*41‐carriers exhibited a lower CYP2D6 activity than predicted from published guidelines. No difference in endoxifen levels was observed between carriers of 2 null‐alleles vs patients homozygous for CYP2D6*41 or the corresponding heterozygous combination (P = .338). In patients with endoxifen levels <5.9 ng/mL (36/114), side effects were either mild or absent. At higher endoxifen levels moderate‐to‐severe side effects were reported in a concentration‐dependent manner. Conclusion Significantly reduced endoxifen levels were observed not only in all homozygous carriers of CYP2D6 null‐alleles, but also in carriers of 2 reduced‐function alleles. This finding may be highly relevant for future, genotype‐based dose considerations.
Collapse
Affiliation(s)
- Linda Thorén
- Department of Clinical Science and Education at Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, South General Hospital, Stockholm, Sweden
| | - Jonatan D Lindh
- Department of Laboratory Medicine, Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Gerd Ackehed
- Department of Laboratory Medicine, Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet and Breast Cancer Center, Cancer Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Sara Margolin
- Department of Clinical Science and Education at Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, South General Hospital, Stockholm, Sweden
| | - Erik Eliasson
- Department of Laboratory Medicine, Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Kisoi M, Imai M, Yamamura M, Sakaguchi Y, Murata S, Ichikawa A, Kinoshita K. Unique Genotyping Protocol of CYP2D6 Allele Frequency Using Real Time Quantitative PCR from Japanese Healthy Women. Biol Pharm Bull 2020; 43:904-907. [PMID: 32378566 DOI: 10.1248/bpb.b19-00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CYP2D6 is an important drug-metabolizing enzyme involved in the metabolism of 20-25% of commonly prescribed drugs. Genetic polymorphism of CYP has clinically significant modifications in patients' drug-metabolizing capacities. Since gene copy number variation (CNV) and single nucleotide polymorphism (SNP) frequently occur in the CYP2D6 gene, which the activity of CYP2D6 particularly depend on the genetic factors. This study aimed to investigate the frequencies of CYP2D6 genotypes in a Japanese female subject of 216 healthy volunteers. The volunteers were genotyped for CNV Exon 9 and four CYP2D6 genetic variants (*2, *5, *10, *14, *41) performed by TaqMan® genotyping assays. The CNV allele frequencies were 82.9% for two copies, 11.6% for one copy, 4.6% for three copies and 0.9% for zero copy, respectively. The frequencies of CYP2D6*1, *2, *5, *10, *14, and *41 were 38.7, 16.7, 6.3, 34.7, 0.2, and 1.2%, respectively. CYP2D6*5 and *14 were the major defective alleles. However, this genotyping is labor intensive, time consuming, and costly. We report an optimized novel protocol for the determination of CNV and SNP in CYP2D6 gene by real-time quantitative PCR. This can lower the cost and accurately determine CNV and SNP in the CYP2D6 gene with a higher output and enabling reliable estimates of disease prediction in large epidemiological samples.
Collapse
Affiliation(s)
- Madoka Kisoi
- School of Pharmaceutical Sciences, Mukogawa Women's University
| | - Miho Imai
- School of Pharmaceutical Sciences, Mukogawa Women's University
| | - Miwako Yamamura
- School of Pharmaceutical Sciences, Mukogawa Women's University
| | - Yui Sakaguchi
- School of Pharmaceutical Sciences, Mukogawa Women's University
| | - Shigenori Murata
- School of Pharmaceutical Sciences, Mukogawa Women's University.,Institute of Biosciences, Mukogawa Women's University
| | - Atsushi Ichikawa
- Institute of Biosciences, Mukogawa Women's University.,Bio Education Laboratory
| | - Kenji Kinoshita
- School of Pharmaceutical Sciences, Mukogawa Women's University.,Institute of Biosciences, Mukogawa Women's University.,Bio Education Laboratory
| |
Collapse
|
32
|
Klopp-Schulze L, Mueller-Schoell A, Neven P, Koolen SLW, Mathijssen RHJ, Joerger M, Kloft C. Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision Dosing of Tamoxifen. Front Pharmacol 2020; 11:283. [PMID: 32296331 PMCID: PMC7136483 DOI: 10.3389/fphar.2020.00283] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction At tamoxifen standard dosing, ∼20% of breast cancer patients do not reach proposed target endoxifen concentrations >5.97 ng/mL. Thus, better understanding the large interindividual variability in tamoxifen pharmacokinetics (PK) is crucial. By applying non-linear mixed-effects (NLME) modeling to a pooled ‘real-world’ clinical PK database, we aimed to (i) dissect several levels of variability and identify factors predictive for endoxifen exposure and (ii) assess different tamoxifen dosing strategies for their potential to increase the number of patients reaching target endoxifen concentrations. Methods Tamoxifen and endoxifen concentrations with genetic and demographic data of 468 breast cancer patients from six reported studies were used to develop a NLME parent-metabolite PK model. Different levels of variability on model parameters or measurements were investigated and the impact of covariates thereupon explored. The model was subsequently applied in a simulation-based comparison of three dosing strategies with increasing degree of dose individualization for a large virtual breast cancer population. Interindividual variability of endoxifen concentrations and the fraction of patients at risk for not reaching target concentrations were assessed for each dosing strategy. Results and Conclusions The integrated NLME model enabled to differentiate and quantify four levels of variability (interstudy, interindividual, interoccasion, and intraindividual). Strong influential factors, i.e., CYP2D6 activity score, drug–drug interactions with CYP3A and CYP2D6 inducers/inhibitors and age, were reliably identified, reducing interoccasion variability to <20% CV. Yet, unexplained interindividual variability in endoxifen formation remained large (47.2% CV). Hence, therapeutic drug monitoring seems promising for achieving endoxifen target concentrations. Three tamoxifen dosing strategies [standard dosing (20 mg QD), CYP2D6-guided dosing (20, 40, and 60 mg QD) and individual model-informed precision dosing (MIPD)] using three therapeutic drug monitoring samples (5–120 mg QD) were compared, leveraging the model. The proportion of patients at risk for not reaching target concentrations was 22.2% in standard dosing, 16.0% in CYP2D6-guided dosing and 7.19% in MIPD. While in CYP2D6-guided- and standard dosing interindividual variability in endoxifen concentrations was high (64.0% CV and 68.1% CV, respectively), it was considerably reduced in MIPD (24.0% CV). Hence, MIPD demonstrated to be the most promising strategy for achieving target endoxifen concentrations.
Collapse
Affiliation(s)
- Lena Klopp-Schulze
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| | - Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Free University of Berlin, Berlin, Germany.,Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Patrick Neven
- Vesalius Research Center, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, St., Gallen, Switzerland
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Free University of Berlin, Berlin, Germany
| |
Collapse
|
33
|
He W, Grassmann F, Eriksson M, Eliasson E, Margolin S, Thorén L, Hall P, Czene K. CYP2D6 Genotype Predicts Tamoxifen Discontinuation and Prognosis in Patients With Breast Cancer. J Clin Oncol 2019; 38:548-557. [PMID: 31800347 PMCID: PMC7030887 DOI: 10.1200/jco.19.01535] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To examine the association between CYP2D6 genotype, discontinuation of tamoxifen therapy, and prognosis for breast cancer. PATIENTS AND METHODS We conducted a prospective-retrospective study linking data from a clinical breast cancer register, the Swedish Prescribed Drug Register, and self-reported questionnaires. We genotyped CYP2D6 in 1,309 patients with breast cancer who were treated with tamoxifen and were diagnosed from 2005 to 2012; they were categorized as poor, intermediate, normal, or ultrarapid CYP2D6 metabolizers. We investigated whether metabolizer status was associated with tamoxifen discontinuation and prognosis for breast cancer using Cox regression analysis. RESULTS The 6-month discontinuation rates of tamoxifen among poor, intermediate, normal, and ultrarapid CYP2D6 metabolizers were 7.1%, 7.6%, 6.7%, and 18.8%, respectively. A U-shaped association was found between CYP2D6 metabolizer status and breast cancer–specific mortality, with adjusted hazard ratios of 2.59 (95% CI, 1.01 to 6.67) for poor, 1.48 (95% CI, 0.72 to 3.05) for intermediate, 1 (reference) for normal, and 4.52 (95% CI, 1.42 to 14.37) for ultrarapid CYP2D6 metabolizers. CONCLUSION Both poor and ultrarapid CYP2D6 metabolizers of tamoxifen have a worse prognosis for breast cancer compared with normal metabolizers after receiving a standard dose of tamoxifen. This U-shaped association might call for individualized tamoxifen dosage.
Collapse
Affiliation(s)
- Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Eliasson
- Department of Laboratory Medicine, Clinical Pharmacology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology, South General Hospital, Stockholm, Sweden.,Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Linda Thorén
- Department of Oncology, South General Hospital, Stockholm, Sweden.,Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, South General Hospital, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Nardin JM, Schroth W, Almeida TA, Mürdter T, Picolotto S, Vendramini ECL, Hoppe R, Kogin JP, Miqueleto D, de Moraes SDR, Schwab M, Pecoits-Filho RF, Brauch H, Casali-da-Rocha JC. The Influences of Adherence to Tamoxifen and CYP2D6 Pharmacogenetics on Plasma Concentrations of the Active Metabolite (Z)-Endoxifen in Breast Cancer. Clin Transl Sci 2019; 13:284-292. [PMID: 31573754 PMCID: PMC7070802 DOI: 10.1111/cts.12707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Tamoxifen efficacy in breast cancer is suspected to depend on adherence and intact drug metabolism. We evaluated the role of adherence behavior and pharmacogenetics on the formation rate of (Z)-endoxifen. In 192 Brazilian patients, we assessed plasma levels of tamoxifen and its metabolites at 3, 6, and 12 months of treatment (liquid-chromatography tandem mass spectrometry), adherence behavior (Morisky, Green, and Levine medication adherence scale), and cytochrome P450 2D6 (CYP2D6) and other pharmacogene polymorphisms (matrix-assisted laser-desorption-ionization time of flight) mass spectrometry, real-time polymerase chain reaction). Adherence explained 47% of the variability of tamoxifen plasma concentrations (P < 0.001). Although CYP2D6 alone explained 26.4%, the combination with adherence explained 40% of (Z)-endoxifen variability at 12 months (P < 0.001). The influence of low adherence to not achieving relevant (Z)-endoxifen levels was highest in patients with noncompromised CYP2D6 function (relative risk 3.65; 95% confidence interval 1.48-8.99). As a proof-of-concept, we demonstrated that (Z)-endoxifen levels are influenced both by patient adherence to tamoxifen and CYP2D6, which is particularly relevant for patients with full CYP2D6 function.
Collapse
Affiliation(s)
- Jeanine Marie Nardin
- Clinical Research Department, Erasto Gaertner Hospital, Curitiba, Brazil.,School of Health Science, UniBrasil, Curitiba, Brazil.,Pontifical Catholic University of Parana, Curitiba, Brazil
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | | | | | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | | | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,iFIT Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
| | - José Claudio Casali-da-Rocha
- Pontifical Catholic University of Parana, Curitiba, Brazil.,Department of Oncogenetics, Erasto Gaertner Hospital, Curitiba, Brazil
| |
Collapse
|
35
|
Ahmed JH, Makonnen E, Fotoohi A, Aseffa A, Howe R, Aklillu E. CYP2D6 Genotype Predicts Plasma Concentrations of Tamoxifen Metabolites in Ethiopian Breast Cancer Patients. Cancers (Basel) 2019; 11:cancers11091353. [PMID: 31547390 PMCID: PMC6770728 DOI: 10.3390/cancers11091353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Tamoxifen displays wide inter-individual variability (IIV) in its pharmacokinetics and treatment outcome. Data on tamoxifen pharmacokinetics and pharmacogenetics from black African breast cancer patient populations is lacking. We investigated the pharmacokinetic and pharmacogenetic profile of tamoxifen and its major active metabolite, endoxifen, in Ethiopian breast cancer patients. A total of 81 female breast cancer patients on adjuvant tamoxifen therapy were enrolled. Tamoxifen (Tam) and its major metabolites, N-desmethyltamoxifen (NDM), 4-hydroxy-tamoxifen (4-HT), and (Z)-endoxifen (E) were quantified using LC-MS/MS. Genotyping for CYP2D6, CYP2C9, CYP2C19, CYP3A5, POR, and ABCB1 and UGT2B15 and copy number variation for CYP2D6 were done. The proportion of patients with low endoxifen level (<5.9 ng/mL) was 35.8% (median concentration 7.94 ng/mL). The allele frequency of CYP2D6 gene deletion (*5) and duplication (*1×N or *2×N) was 4.3% and 14.8%, respectively. Twenty-six percent of the patients carried duplicated or multiplicated CYP2D6 gene. An increase in CYP2D6 activity score was associated with increased endoxifen concentration and MRE/NDM (p < 0.001). The IIV in endoxifen concentration and MRE/NDM was 74.6% and 59%, respectively. CYP2D6 diplotype explained 28.2% and 44% of the variability in absolute endoxifen concentration and MRE/NDM, respectively. The explanatory power of CYP2D6 diplotype was improved among ABCB1c.4036G carriers (43% and 65.2%, respectively for endoxifen concentration and MRE/NDM) compared to A/A genotype. CYP2C9, CYP2C19, and CYP3A5 genotypes had no significant influence on endoxifen concentration or MRE/NDM. In conclusion, we report a high rate of low endoxifen level as well as large IIV in tamoxifen and its metabolite concentrations. CYP2D6 is significant predictor of plasma endoxifen level in a gene-dose dependent manner.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
- Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia.
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Solna Stockholm 171 76, Sweden.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia.
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden.
| |
Collapse
|
36
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
37
|
Hennig EE, Piątkowska M, Goryca K, Pośpiech E, Paziewska A, Karczmarski J, Kluska A, Brewczyńska E, Ostrowski J. Non- CYP2D6 Variants Selected by a GWAS Improve the Prediction of Impaired Tamoxifen Metabolism in Patients with Breast Cancer. J Clin Med 2019; 8:jcm8081087. [PMID: 31344832 PMCID: PMC6722498 DOI: 10.3390/jcm8081087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
A certain minimum plasma concentration of (Z)-endoxifen is presumably required for breast cancer patients to benefit from tamoxifen therapy. In this study, we searched for DNA variants that could aid in the prediction of risk for insufficient (Z)-endoxifen exposure. A metabolic ratio (MR) corresponding to the (Z)-endoxifen efficacy threshold level was adopted as a cutoff value for a genome-wide association study comprised of 287 breast cancer patients. Multivariate regression was used to preselect variables exhibiting an independent impact on the MR and develop models to predict below-threshold MR values. In total, 15 single-nucleotide polymorphisms (SNPs) were significantly associated with below-threshold MR values. The strongest association was with rs8138080 (WBP2NL). Two alternative models for MR prediction were developed. The predictive accuracy of Model 1, including rs7245, rs6950784, rs1320308, and the CYP2D6 genotype, was considerably higher than that of the CYP2D6 genotype alone (AUC 0.879 vs 0.758). Model 2, which was developed using the same three SNPs as for Model 1 plus rs8138080, appeared as an interesting alternative to the full CYP2D6 genotype testing. In conclusion, the four novel SNPs, tested alone or in combination with the CYP2D6 genotype, improved the prediction of impaired tamoxifen-to-endoxifen metabolism, potentially allowing for treatment optimization.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Elżbieta Brewczyńska
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
38
|
Khalaj Z, Baratieh Z, Nikpour P, Schwab M, Schaeffeler E, Mokarian F, Khanahmad H, Salehi R, Mürdter TE, Salehi M. Clinical Trial: CYP2D6 Related Dose Escalation of Tamoxifen in Breast Cancer Patients With Iranian Ethnic Background Resulted in Increased Concentrations of Tamoxifen and Its Metabolites. Front Pharmacol 2019; 10:530. [PMID: 31178724 PMCID: PMC6543868 DOI: 10.3389/fphar.2019.00530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/26/2019] [Indexed: 12/30/2022] Open
Abstract
Introduction: The polymorphic enzyme cytochrome P450 2D6 (CYP2D6) catalyzes a major step in the bioactivation of tamoxifen. Genotyping of clinically relevant CYP2D6 alleles and subsequent dose adjustment is a promising approach to individualize breast cancer therapy. The aim of this study was to investigate the relationship between the plasma levels of tamoxifen and its metabolites and different CYP2D6 genotypes under standard (20 mg/day) and dose-adjusted therapy (Registration ID in Iranian Registry of Clinical Trials: IRCT2015082323734N1). Materials and Methods: Using TaqMan® assays common alleles of CYP2D6 (∗1, ∗2, ∗4, ∗5, ∗6, ∗10, ∗17, and ∗41) and gene duplication were identified in 134 breast cancer patients. Based on CYP2D6 genotypes patients with an activity score 1 (n = 15) and 0-0.5 (n = 2) were treated with tamoxifen adjusted dosage of 30 and 40 mg/day, respectively. The concentration of tamoxifen and its metabolites before and after 4 and 8 months of dose adjustment were measured using LC-MS/MS technology. Results: At baseline, (Z)-endoxifen plasma concentrations (33 ± 15.5, 28.1 ± 14, 26.6 ± 23.4, 14.3 ± 8.6, and 10.7 ± 5.5 nmol/l for EM/EM, EM/IM, EM/PM, IM/IM and PM/PM, respectively) and the metabolic ratio (Z)-Endoxifen/N-desmethyltamoxifen (0.0558 ± 0.02, 0.0396 ± 0.0111, 0.0332 ± 0.0222, 0.0149 ± 0.0026, and 0.0169 ± 0.0177 for EM/EM, EM/IM, EM/PM, IM/IM, and PM/PM, respectively) correlated with CYP2D6 genotype (Kruskal-Wallis p = 0.013 and p < 0.0001, respectively). Dose escalation to 30 and 40 mg/day in patients with a CYP2D6 activity score of 1 (n = 15) and 0-0.5 (n = 2) resulted in a significant increase in (Z)-endoxifen plasma levels (22.17 ± 24.42, 34.43 ± 26.54, and 35.77 ± 28.89 nmol/l at baseline, after 4 and 8 months, respectively, Friedman p = 0.0388) along with the plasma concentrations of tamoxifen and its other metabolites. No severe side effects were recorded during dose escalation. Conclusion: For the first time, we show the feasibility of dose escalation of tamoxifen in breast cancer patients with compromised CYP2D6 activity and Iranian ethnic background to increase the plasma concentrations of (Z)-endoxifen.
Collapse
Affiliation(s)
- Zahra Khalaj
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Baratieh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Fariborz Mokarian
- Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Sanchez-Spitman A, Swen J, Dezentje V, Moes D, Gelderblom H, Guchelaar H. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev Clin Pharmacol 2019; 12:523-536. [DOI: 10.1080/17512433.2019.1610390] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- A.B. Sanchez-Spitman
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J.J. Swen
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - V.O. Dezentje
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - D.J.A.R. Moes
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - H.J. Guchelaar
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Puszkiel A, Arellano C, Vachoux C, Evrard A, Le Morvan V, Boyer JC, Robert J, Delmas C, Dalenc F, Debled M, Venat-Bouvet L, Jacot W, Suc E, Sillet-Bach I, Filleron T, Roché H, Chatelut E, White-Koning M, Thomas F. Factors Affecting Tamoxifen Metabolism in Patients With Breast Cancer: Preliminary Results of the French PHACS Study. Clin Pharmacol Ther 2019; 106:585-595. [PMID: 30786012 DOI: 10.1002/cpt.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022]
Abstract
In addition to the effect of cytochrome P450 (CYP) 2D6 genetic polymorphisms, the metabolism of tamoxifen may be impacted by other factors with possible consequences on therapeutic outcome (efficacy and toxicity). This analysis focused on the pharmacokinetic (PK)-pharmacogenetic evaluation of tamoxifen in 730 patients with adjuvant breast cancer included in a prospective multicenter study. Plasma concentrations of tamoxifen and six major metabolites, the genotype for 63 single-nucleotide polymorphisms, and comedications were obtained 6 months after treatment initiation. Plasma concentrations of endoxifen were significantly associated with CYP2D6 diplotype (P < 0.0001), CYP3A4*22 genotype (P = 0.0003), and concomitant intake of potent CYP2D6 inhibitors (P < 0.001). Comparison of endoxifen levels showed that the CYP2D6 phenotype classification could be improved by grouping intermediate metabolizer (IM)/IM and IM/poor metabolizer diplotype into IM phenotype for future use in tamoxifen therapy optimization. Finally, the multivariable regression analysis showed that formation of tamoxifen metabolites was independently impacted by CYP2D6 diplotype and CYP3A4*22, CYP2C19*2, and CYP2B6*6 genetic polymorphisms.
Collapse
Affiliation(s)
- Alicja Puszkiel
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Cécile Arellano
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Christelle Vachoux
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Alexandre Evrard
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes-Carémeau, Nîmes, France.,IRCM, Inserm, Université de Montpellier, ICM, Montpellier, France
| | | | | | | | - Caroline Delmas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florence Dalenc
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | | | | | - William Jacot
- IRCM, Inserm, Université de Montpellier, ICM, Montpellier, France.,Institut du Cancer de Montpellier, Montpellier, France
| | - Etienne Suc
- Clinique Saint Jean du Languedoc, Toulouse, France
| | | | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Henri Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Etienne Chatelut
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Fabienne Thomas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| |
Collapse
|
41
|
Cavallari LH, Van Driest SL, Prows CA, Bishop JR, Limdi NA, Pratt VM, Ramsey LB, Smith DM, Tuteja S, Duong BQ, Hicks JK, Lee JC, Obeng AO, Beitelshees AL, Bell GC, Blake K, Crona DJ, Dressler L, Gregg RA, Hines LJ, Scott SA, Shelton RC, Weitzel KW, Johnson JA, Peterson JF, Empey PE, Skaar TC. Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing. Genet Med 2019; 21:2255-2263. [PMID: 30894703 PMCID: PMC6754805 DOI: 10.1038/s41436-019-0484-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. Methods: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. Results: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy number variation and 9 common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. Conclusion: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.
Collapse
Affiliation(s)
- Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA.
| | - Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cynthia A Prows
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Nita A Limdi
- Department of Neurology and Hugh Kaul Personalized Medicine Institute, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Laura B Ramsey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D Max Smith
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - Sony Tuteja
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Q Duong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - James C Lee
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Aniwaa Owusu Obeng
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Gillian C Bell
- Personalized Medicine Program, Mission Health, Asheville, NC, USA
| | - Kathryn Blake
- Center for Pharmacogenomics and Translational Research, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - Lynn Dressler
- Personalized Medicine Program, Mission Health, Asheville, NC, USA
| | | | - Lindsay J Hines
- Department of Psychology, University of North Dakota, Grand Forks, ND; Sanford Brain and Spine Center and Sanford Imagenetics, Fargo, ND, USA
| | - Stuart A Scott
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY and Sema4, a Mount Sinai venture, Stamford, CT, USA
| | - Richard C Shelton
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristin Wiisanen Weitzel
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - Josh F Peterson
- Departments of Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd C Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
42
|
Lam YWF. Principles of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
43
|
CYP2D6-inhibiting medication use and inherited CYP2D6 variation in relation to adverse breast cancer outcomes after tamoxifen therapy. Cancer Causes Control 2018; 30:103-112. [PMID: 30542984 DOI: 10.1007/s10552-018-1117-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Tamoxifen is widely used to reduce the risk of breast cancer (BC) recurrence and extend disease-free survival among women with estrogen-sensitive breast cancers. Tamoxifen efficacy is thought to be attributable to its active metabolite, which is formed through a reaction catalyzed by the P450 enzyme, CYP2D6. Inhibition of tamoxifen metabolism as a result of germline genetic variation and/or use of CYP2D6-inhibiting medications ("inhibitors") is hypothesized to increase the risk of adverse BC outcomes among women taking tamoxifen. METHODS The present cohort study of 960 women diagnosed with early-stage BC between 1993 and 1999 examined the association between concomitant use of CYP2D6 inhibitors and adjuvant tamoxifen and the risk of adverse BC outcomes (recurrence, second primary BC, BC mortality), both overall and according to CYP2D6 metabolic phenotype. RESULTS Six or more months of CYP2D6 inhibitor use concomitant with tamoxifen was not associated with any appreciable increase in risk of recurrence or second primary BC or BC mortality, and there was no clear evidence of variation by CYP2D6 metabolic phenotype. CONCLUSIONS These results are consistent with the relatively few other large, population-based studies conducted to date that have not observed an increased risk of adverse BC outcomes associated with CYP2D6 inhibition.
Collapse
|
44
|
Haslemo T, Eliasson E, Jukić MM, Ingelman-Sundberg M, Molden E. Significantly lower CYP2D6 metabolism measured as the O/N-desmethylvenlafaxine metabolic ratio in carriers of CYP2D6*41 versus CYP2D6*9 or CYP2D6*10: a study on therapeutic drug monitoring data from 1003 genotyped Scandinavian patients. Br J Clin Pharmacol 2018; 85:194-201. [PMID: 30312494 DOI: 10.1111/bcp.13788] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS CYP2D6*9, CYP2D6*10 and CYP2D6*41 are the most frequent reduced-function CYP2D6 alleles in Caucasians. Despite lacking in vivo evidence, they are collectively classified with an enzyme activity score of 0.5. Thus, the aim of this study was to compare the functional impact of CYP2D6*9, CYP2D6*10 and CYP2D6*41 on CYP2D6 metabolism in a large patient population. METHODS A total of 1003 patients (mainly Caucasians) with data on CYP2D6 genotype and serum concentrations of venlafaxine and metabolites were included from a therapeutic drug monitoring service in Oslo, Norway. The O-desmethyl-to-N-desmethyl-venlafaxine metabolic ratio (MR) was applied as CYP2D6 biomarker and compared (Mann-Whitney) between carriers of CYP2D6*9-10 (merged) and CYP2D6*41, either combined with CYP2D6*1 or non-coding (null) alleles. MR subgroup estimates were obtained by multiple linear regression for calculations of CYP2D6*9-10 and CYP2D6*41 activity scores. RESULTS MR was significantly lower in carriers of CYP2D6*41 than CYP2D6*9-10 (P < 0.002). The majority of CYP2D6*41/null carriers (86.7%) had MR in the observed range of CYP2D6null/null carriers compared with the minority of CYP2D6*9-10/null carriers (17.4%). CYP2D6 genotype explained 60.7% of MR variability in the multivariate analysis providing subgroup estimates of 9.54 (95% CI; 7.45-12.20), 3.55 (2.06-6.10), 1.33 (0.87-2.05) and 0.47 (0.35-0.61) in carriers of CYP2D6*1/null (n = 269), CYP2D6*9-10/null (n = 17), CYP2D6*41/null (n = 30) and CYP2D6null/null (n = 95), respectively. Based on these estimates, the calculated activity score of CYP2D6*41 was 0.095 compared to 0.34 for CYP2D6*9-10. CONCLUSIONS CYP2D6 metabolism measured as the O/N-desmethylvenlafaxine ratio is significantly lower in Scandinavian carriers of CYP2D6*41 vs. CYP2D6*9-10. Thus, these alleles should be differentiated when classifying CYP2D6 phenotype from genotype.
Collapse
Affiliation(s)
- Tore Haslemo
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik Eliasson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marin M Jukić
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Bai Y, Wu HW, Zhang YH. Effects of CYP2D6*10 polymorphism on tamoxifen pharmacokinetics in patients with breast cancer in Asia: a meta-analysis. Cancer Chemother Pharmacol 2018; 83:71-79. [PMID: 30357449 DOI: 10.1007/s00280-018-3703-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Insufficient serum metabolite concentrations of tamoxifen can compromise treatment efficacy in patients with breast cancer. The purpose of this meta-analysis was to explore correlations between cytochrome P450 (CYP) 2D6*10 gene polymorphisms and serum concentrations of tamoxifen and its active metabolites in patients with breast cancer in Asia. METHODS The study included a systematic literature search for cohort studies published before March 2018 in English databases (PubMed, Embase, Cochrane Library, and Web of Science) and Chinese databases (Chinese National Knowledge Infrastructure and Wan Fang database). The meta-analysis was performed using RevMan 5.3 software. Pooled means and standard deviations were calculated with 95% confidence intervals. Publication bias and sensitivity analyses were also performed using STATA 14.0. RESULTS In total, 7 studies and 552 patients were included in the meta-analysis. Serum concentrations of endoxifen were significantly different in each CYP2D6*10 genotype group (p < 0.05). The CC genotype was associated with higher concentrations of 4-OH-TAM than the CT/TT genotype (p < 0.05). However, there were no statistically significant between-group differences in serum concentrations of TAM (p > 0.05). Publication bias and sensitivity analyses confirmed that the meta-analysis results were stable and reliable. CONCLUSIONS CYP2D6*10 polymorphisms influence the pharmacokinetics of tamoxifen in patients with breast cancer in Asia.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, No.52, Fu Cheng Road, Hai Dian District, Beijing, 100142, People's Republic of China
| | - Hai-Wei Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, No.52, Fu Cheng Road, Hai Dian District, Beijing, 100142, People's Republic of China
| | - Yan-Hua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, No.52, Fu Cheng Road, Hai Dian District, Beijing, 100142, People's Republic of China.
| |
Collapse
|
46
|
Lan B, Ma F, Chen S, Wang W, Li Q, Fan Y, Luo Y, Cai R, Wang J, Yuan P, Zhang P, Li Q, Xu B. Toremifene, rather than tamoxifen, might be a better option for the adjuvant endocrine therapy in CYP2D6*10T/T genotype breast cancer patients in China. Int J Cancer 2018; 143:2499-2504. [PMID: 29978573 DOI: 10.1002/ijc.31639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/06/2022]
Abstract
Toremifene (TOR) is a valid and safe alternative to tamoxifen (TAM) for adjuvant endocrine therapy in breast cancer patients with a metabolic pathway that differs from that of TAM. TOR might have a therapeutic advantage in certain subgroups of patients, such as Chinese women with the CYP2D6 *10 (c.100C > T) T/T genotype, who would get less benefit when receiving adjuvant TAM treatment. A total of 230 breast cancer patients who received adjuvant TAM (n = 115) or TOR (n = 115) at the National Cancer Center were analyzed. The CYP2D6 *10 genotype was not significantly associated with DFS in patients who received TOR (p = 0.737). Patients treated with TOR had a higher 5-year disease-free survival (DFS) rate than those treated with TAM (89.6% vs. 80.9%, p = 0.009). TOR treatment remained an independent prognostic marker of DFS in multivariate analysis compared with TAM (hazard ratio = 0.51; p = 0.014). For all of the 50 CYP2D6 *10 T/T genotype patients, TOR treatment group had a significantly higher 5-year DFS rate than TAM group (90.9% vs. 67.9%, p = 0.031). For the remaining 170 CYP2D6 *10 C/C or C/T genotype patients, there was no significant difference between the 5-year DFS rates of the TOR and TAM groups (89.2% vs. 85.1%, p = 0.188). The advantage of adjuvant TOR over TAM in Chinese breast cancer patients might be caused by the significant benefit obtained by the CYP2D6 *10 T/T patients, who accounted for one-fifth of the overall population. TOR might be a good option for adjuvant endocrine therapy in this subgroup of patients in China.
Collapse
Affiliation(s)
- Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenna Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
47
|
de Vries Schultink AHM, Huitema ADR, Beijnen JH. Therapeutic Drug Monitoring of endoxifen as an alternative for CYP2D6 genotyping in individualizing tamoxifen therapy. Breast 2018; 42:38-40. [PMID: 30153552 DOI: 10.1016/j.breast.2018.08.100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022] Open
Abstract
Different strategies have been proposed to individualize tamoxifen treatment in order to improve recurrence-free survival in estrogen receptor (ER)-positive breast cancer. To date, the debate remains on which strategy should be used. The objective of this viewpoint is to highlight Therapeutic Drug Monitoring of endoxifen, the active tamoxifen metabolite, as the preferred methodology compared to CYP2D6 genotyping for individualizing tamoxifen therapy for ER-positive breast cancer patients treated in the adjuvant setting.
Collapse
Affiliation(s)
- Aurelia H M de Vries Schultink
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
48
|
Goetz MP, Sangkuhl K, Guchelaar HJ, Schwab M, Province M, Whirl-Carrillo M, Symmans WF, McLeod HL, Ratain MJ, Zembutsu H, Gaedigk A, van Schaik RH, Ingle JN, Caudle KE, Klein TE. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin Pharmacol Ther 2018; 103:770-777. [PMID: 29385237 PMCID: PMC5931215 DOI: 10.1002/cpt.1007] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022]
Abstract
Tamoxifen is biotransformed by CYP2D6 to 4-hydroxytamoxifen and 4-hydroxy N-desmethyl tamoxifen (endoxifen), both with greater antiestrogenic potency than the parent drug. Patients with certain CYP2D6 genetic polymorphisms and patients who receive strong CYP2D6 inhibitors exhibit lower endoxifen concentrations and a higher risk of disease recurrence in some studies of tamoxifen adjuvant therapy of early breast cancer. We summarize evidence from the literature and provide therapeutic recommendations for tamoxifen based on CYP2D6 genotype.
Collapse
Affiliation(s)
- Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Michael Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - W. Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark J. Ratain
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL
| | - Hitoshi Zembutsu
- Division of Human Genetics, National Cancer Center, Research Institute, Tokyo, Japan
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Ron H. van Schaik
- International Expertcenter Pharmacogenetics, Dept Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
- LKCH UMC Utrecht, The Netherlands
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| |
Collapse
|