1
|
Tang C, Wang H, Guo L, Cui Y, Zou C, Hu J, Zhang H, Yang G, Zhou W. Multifunctional Nanomedicine for Targeted Atherosclerosis Therapy: Activating Plaque Clearance Cascade and Suppressing Inflammation. ACS NANO 2025; 19:3339-3361. [PMID: 39812806 DOI: 10.1021/acsnano.4c12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression. Herein, we introduce a multifunctional nanomedicine (CEZP) targeting AS pathogenesis via a "cell efferocytosis-lipid degradation-cholesterol efflux" paradigm, with additional anti-inflammatory properties. CEZP comprises poly(lactic-co-glycolic acid) nanoparticles encapsulated within a metal-organic framework shell coordinated with zinc ions (Zn2+) and epigallocatechin gallate (EGCG), enabling CpG encapsulation. Upon intravenous administration, CEZP accumulates at AS plaque sites, facilitating macrophage uptake and orchestrating AS treatment through synergistic mechanisms. CpG enhances cellular efferocytosis, Zn2+ promotes intracellular lipid degradation, and EGCG upregulates adenosine 5'-triphosphate-binding cassette transporters for cholesterol efflux while also exhibiting antioxidant and anti-inflammatory effects. In vivo validation confirms CEZP's ability to stabilize plaques, reduce lipid burden, and modulate the macrophage phenotype. Moreover, CEZP is excreted from the body without safety concerns, offering a low-toxicity nonsurgical strategy for AS plaque eradication.
Collapse
Affiliation(s)
- Cui Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Chan Zou
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jianming Hu
- First Department of Pathology, Affiliated Hospital, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City 832002, China
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, Hunan 410000, China
- Hunan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Affiliated Hospital, Shihezi University, Shihezi City, Xinjiang 832002, China
| |
Collapse
|
2
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Smyth A, Hankey GJ, Langhorne P, Reddin C, Ryglewicz D, Rosengren A, Xavier D, Canavan M, Oveisgharan S, Wang X, Jaramillo PL, Damasceno A, Czlonkowska A, Iversen HK, Lanas F, Yusuf S, O’Donnell M. Tea and coffee consumption and risk of acute stroke: The INTERSTROKE Study. Int J Stroke 2024; 19:1053-1063. [PMID: 38887998 PMCID: PMC11523547 DOI: 10.1177/17474930241264685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Stroke is a leading global cause of death and disability. Daily tea/coffee intake is consumed by > 50% of populations and may represent an important population-level exposure. Therefore, it is first essential that we better understand the associations between the tea/coffee intake and stroke. AIMS This research aims to generate hypotheses about the global associations between tea and coffee intake and stroke. These insights will identify interventions for stroke prevention that can be further explored using alternative study designs. METHODS INTERSTROKE is a large international matched case-control study of first stroke from 32 countries. Participants were asked "how many cups do you drink each day?" of coffee, green tea, black tea, and other tea. Multivariable conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between intake and stroke. RESULTS We included 13,462 cases and 13,488 controls from INTERSTROKE; mean age was 61.7 (13.4) years and 59.6% (n = 16,010) were male. Overall, 19.4% (n = 5239) did not consume tea/coffee, 47.0% (n = 12,666) consumed tea only, 14.9% (n = 4024) consumed coffee alone, and 18.6% (n = 5021) consumed both, with significant regional variations. After multivariable adjustment, there was no association between low/moderate coffee intake and stroke, but high consumption (> 4/day) was associated with higher odds of all stroke (OR = 1.37 (95% CI = 1.06-1.77)) or ischemic stroke (OR = 1.32 (95% CI = 1.00-1.74)). Tea consumption was associated with lower odds of all (OR = 0.81 (95% CI = 0.69-0.94) for highest intake) or ischemic stroke (OR = 0.81 (95% CI = 0.68-0.98) for highest intake). CONCLUSIONS High coffee consumption was associated with higher odds of all or ischemic stroke; low-moderate coffee had no association with stroke. In contrast, tea consumption was associated with lower odds of stroke. These associations suggest that individuals consider avoiding high coffee consumption (⩾ five cups/day) to impact future stroke risk. DATA ACCESS STATEMENT The design and rationale of INTERSTROKE was published previously. Individual participant data, or other documents are not available.
Collapse
Affiliation(s)
- Andrew Smyth
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Graeme J Hankey
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Peter Langhorne
- Academic Section of Geriatric Medicine, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | - Catriona Reddin
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | | | - Annika Rosengren
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dennis Xavier
- St John’s Medical College and Research Institute, Bangalore, India
| | - Michelle Canavan
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Shahram Oveisgharan
- RUSH Alzheimer Disease Research Center, RUSH University Medical Center, Chicago, IL, USA
| | - Xingyu Wang
- Beijing Hypertension League Institute, Beijing, China
| | - Patricio Lopez Jaramillo
- Masira Research Institute, Universidad de Santander, Bucaramanga, Colombia
- Facultad de Medicina Eugenio Espejo, Universidad UTI, Quito, Ecuador
| | | | | | | | - Fernando Lanas
- Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin O’Donnell
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Broadaway KA, Brotman SM, Rosen JD, Currin KW, Alkhawaja AA, Etheridge AS, Wright F, Gallins P, Jima D, Zhou YH, Love MI, Innocenti F, Mohlke KL. Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits. Am J Hum Genet 2024; 111:1899-1913. [PMID: 39173627 PMCID: PMC11393674 DOI: 10.1016/j.ajhg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan D Rosen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abdalla A Alkhawaja
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy S Etheridge
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Fred Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Paul Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Li T, Fang F, Yin H, Zhang Z, Wang X, Wang E, Yu H, Shen Y, Wang G, He W, Liu X. Epigallocatechin-3-gallate inhibits osteogenic differentiation of vascular smooth muscle cells through the transcription factor JunB. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 38826134 DOI: 10.3724/abbs.2024060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Medial arterial calcification (MAC) accompanying chronic kidney disease (CKD) leads to increased vessel wall stiffness, myocardial ischemia, heart failure, and increased cardiovascular morbidity and mortality. Unfortunately, there are currently no drugs available to treat MAC. The natural polyphenol epigallocatechin-3-gallate (EGCG) has been demonstrated to protect against cardiovascular disease; however, whether EGCG supplementation inhibits MAC in CKD remains unclear. In this study, we utilize a CKD-associated MAC model to investigate the effects of EGCG on vascular calcification and elucidate the underlying mechanisms involved. Our findings demonstrate that EGCG treatment significantly reduces calcium phosphate deposition and osteogenic differentiation of VSMCs in vivo and in vitro in a dose-dependent manner. In addition, through RNA sequencing (RNA-seq) analysis, we show a significant activation of the transcription factor JunB both in CKD mouse arteries and in osteoblast-like VSMCs. Notably, EGCG effectively suppresses CKD-associated MAC by inhibiting the activity of JunB. In addition, overexpression of JunB can abolish while knockdown of JunB can enhance the inhibitory effect of EGCG on the osteogenic differentiation of VSMCs. Furthermore, EGCG supplementation inhibits MAC in CKD via modulation of the JunB-dependent Ras/Raf/MEK/ERK signaling pathway. In conclusion, our study highlights the potential therapeutic value of EGCG for managing CKD-associated MAC, as it mitigates this pathological process through targeted inactivation of JunB.
Collapse
Affiliation(s)
- Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongmei Yin
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Cardiology, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
| |
Collapse
|
6
|
Li A, Wang Q, Li P, Zhao N, Liang Z. Effects of green tea on lipid profile in overweight and obese women. INT J VITAM NUTR RES 2024; 94:239-251. [PMID: 37082776 DOI: 10.1024/0300-9831/a000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The effect of green tea administration on serum lipids' concentrations remains unclear as various investigations, which have explored this topic, have produced conflicting results. Gender might be one of the factors influencing the impact of green tea on the lipid profile. Hence, we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effect of green tea intake on the lipid profile in overweight and obese women. We searched five databases (Web of Science, SCOPUS, Embase, PubMed/Medline, and Google Scholar) using a combination of MeSH and non-MeSH terms. Results were expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs) and synthesized with a random-effects model. In total, 15 eligible RCTs with 16 arms (1818 participants) were included in the meta-analysis. The combined effect size revealed a significant reduction in total cholesterol (TC) (WMD: -4.45 mg/dl, 95% CI: -6.63, -2.27, P<0.001) and low-density lipoprotein cholesterol (LDL-C) (WMD: -4.49 mg/dl, 95% CI: -7.50 to -1.47, P=0.003) concentrations following green tea supplementation in overweight and/or obese women. In addition, a more pronounced reduction of triglyceride (TG) levels occurred when the baseline TG value was ≥150 mg/dL (WMD: -24.45 mg/dL, 95% CI: -40.63 to -8.26, P=0.003). Moreover, a significant decrease in TG concentrations occurred in RCTs conducted on overweight subjects (BMI: 25-29.99 kg/m2) (WMD: -5.88 mg/dl, 95% CI: -10.76 to -0.99, P=0.01). In the subgroup analyses based on the study population, a notable increase in high-density lipoprotein cholesterol (HDL-C) values was observed in obese individuals (>30 kg/m2) (WMD: 2.63 mg/dl, 95% CI: 0.10 to 5.16, P=0.041). Consumption of green tea causes a reduction in LDL-C and TC concentrations in overweight and obese women. The decline in TG levels was notable particularly in overweight patients with hypertriglyceridemia at baseline. In addition, a significant increase in HDL-C was detected in obese subjects following intake of green tea.
Collapse
Affiliation(s)
- Aixin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Qian Wang
- Cardiac Catheterization Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Li
- Department of Neurology, Jiamusi Central Hospital, Jiamusi, China
| | - Na Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Zhaoguang Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Yoshitomi R, Kumazoe M, Lee KW, Marugame Y, Fujimura Y, Tachibana H. Regulatory effect of Epigallocatechin-3-O-gallate on circular RNA expression in mouse liver. J Nutr Biochem 2024; 124:109506. [PMID: 37890708 DOI: 10.1016/j.jnutbio.2023.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
There are few studies on the connection between food components and circular RNA (circRNA), a type of noncoding RNA that is significant for living organisms. (-)-Epigallocatechin-3-O-gallate (EGCG) has been reported to have various biological effects, and elucidation of the molecular mechanism is important for clarifying the functionality of EGCG. In the current study, we looked at how EGCG regulates the expression of circRNA in the liver, which expresses a lot of circRNAs. Mice were given EGCG (10 mg/kg b.w.) orally for one week before circRNA microarray testing was done on their livers. The microarray analysis revealed that mice treated with EGCG had altered expression of 35 circRNAs in their livers. To clarify the function of mmu_circRNA_011775, one of the circRNAs upregulated by EGCG, mouse liver cells after the mmu_circRNA_011775 expression vector was transfected into NMuLi cells, next-generation sequencing (NGS) was used to analyze the gene expression. NGS analysis shows that the expression of the genes responsible for liver fibrosis and inflammation. Gene ontology (GO) analysis showed that mmu_circRNA_011775 changed the meaning of GO terms associated with the cardiovascular system. In the microarray, EGCG altered 35 genes expression. Among them, pre-ribosomal RNA-derived circRNA mmu_circRNA_011775 regulated the expression of various genes related to liver fibrosis and cardiovascular system.
Collapse
Affiliation(s)
- Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kwan-Woo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
8
|
Wang TT, Yang CY, Peng L, Li L, Chen NT, Feng X, Xie J, Wu TC, Xu T, Chen YZ. QiShenYiQi pill inhibits atherosclerosis by promoting TTC39B-LXR mediated reverse cholesterol transport in liver. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155192. [PMID: 37951148 DOI: 10.1016/j.phymed.2023.155192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Tetranucleotide repeat domain protein 39B (TTC39B) was found to combine with ubiquitin ligase E3, and promote the ubiquitination modification of liver X receptor (LXR), which led to the inhibition of reverse cholesterol transport and development of atherosclerosis. QiShenYiQi pill (QSYQ) is a modern Chinese patent drug for treating ischemic cardiovascular diseases, the underlying mechanism is found to promote the expression of LXR-α/ ATP-binding cassette transporter G5 (ABCG5) in the liver of atherosclerotic mice. PURPOSE The aim of this study is to investigate the effect of QSYQ on TTC39B-LXR mediated reverse cholesterol transport in atherosclerotic mice. STUDY DESIGN AND METHODS Male apolipoprotein E gene knockout mice (7 weeks old) were fed with high-fat diet and treated with low dose of QSYQ (QSYQ-l, 0.3 g/kg·d), high dose of QSYQ (QSYQ-H, 1.2 g/kg·d) and LXR-α agonist (LXR-A, GW3965 10 mg/kg·d) for 8 weeks. C57BL/6 J mice were fed with normal diet and used as negative control. Oil red O staining, HE staining, ELISA, RNA sequencing, western blot, immunohistochemistry, RT-PCR, cell culture and RNA interference were performed to analyze the effect of QSYQ on atherosclerosis. RESULTS HE staining showed that QSYQ reduced the atherosclerotic lesion significantly when compared to the control group. ELISA measurement showed that QSYQ decreased serum VLDL and increased serum ApoA1. Oil Red O staining showed that QSYQ reduced the lipid content of liver and protect liver function. Comparative transcriptome RNA-sequence of liver showed that DEGs after QSYQ treatment enriched in high-density lipoprotein particle, ubiquitin ligase complex, bile secretion, etc. Immunohistochemical staining and western blot proved that QSYQ increased the protein expression of hepatic SR-B1, LXR-α, LXR-β, CYP7A1 and ABCG5. Targeted inhibiting Ttc39b gene in vitro further established that QSYQ inhibited the gene expression of Ttc39b, increased the protein expression of SR-B1, LXR-α/β, CYP7A1 and ABCG5 in rat hepatocyte. CONCLUSION Our results demonstrated the new anti-atherosclerotic mechanism of QSYQ by targeting TTC39B-LXR mediated reverse cholesterol transport in liver. QSYQ not only promoted reverse cholesterol transport, but also improved fatty liver and protected liver function.
Collapse
Affiliation(s)
- Tao-Tao Wang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Cheng-Yong Yang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Li Peng
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Li Li
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Nan-Ting Chen
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xue Feng
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Jing Xie
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Ting-Chun Wu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Tao Xu
- Department of Cardiovascular Internal Medicine, Second Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yun-Zhi Chen
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
9
|
Xu H, Zhong X, Wang T, Wu S, Guan H, Wang D. (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules 2023; 28:7832. [PMID: 38067561 PMCID: PMC10708200 DOI: 10.3390/molecules28237832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Perfluorodecanoic acid (PFDA), an enduring and harmful organic pollutant, is widely employed in diverse food-related sectors. Our previous studies have provided evidence that PFDA has the potential to facilitate obesity and hepatic fat accumulation induced by high-fat diet (HFD) intake. Epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, has been suggested to possess potential preventive effects against metabolic abnormalities and fatty liver. The purpose of this research was to investigate the effects of EGCG on PFDA-exacerbated adiposity and hepatic lipid accumulation in HFD-fed mice. The results showed that EGCG reduced body weight gain; tissue and organ weights; blood glucose, serum insulin, HOMA-IR, leptin, and lipid parameters; serum inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α); and hepatic lipid accumulation in PFDA-exposed mice fed an HFD. Further work showed that EGCG improved liver function and glucose homeostasis in mice fed an HFD and co-exposed to PFDA. The elevated hepatic mRNA levels of SREBP-1 and associated lipogenic genes, NLRP3, and caspase-1 in PFDA-exposed mice fed an HFD were significantly decreased by EGCG. Our work provides evidence for the potential anti-obesity effect of EGCG on co-exposure to HFD and PFDA and may call for further research on the bioactivity of EGCG to attenuate the endocrine disruption effects of long-term exposure to pollutants.
Collapse
Affiliation(s)
- Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.X.); (X.Z.)
| | - Xu Zhong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.X.); (X.Z.)
| | - Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, China;
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.X.); (X.Z.)
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (H.X.); (X.Z.)
| |
Collapse
|
10
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Chen Y, Zhang Y, Zhang M, Yang H, Wang Y. Consumption of coffee and tea with all-cause and cause-specific mortality: a prospective cohort study. BMC Med 2022; 20:449. [PMID: 36397104 PMCID: PMC9673438 DOI: 10.1186/s12916-022-02636-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous studies suggested that moderate coffee and tea consumption are associated with lower risk of mortality. However, the association between the combination of coffee and tea consumption with the risk of mortality remains unclear. This study aimed to evaluate the separate and combined associations of coffee and tea consumption with all-cause and cause-specific mortality. METHODS This prospective cohort study included 498,158 participants (37-73 years) from the UK Biobank between 2006 and 2010. Coffee and tea consumption were assessed at baseline using a self-reported questionnaire. All-cause and cause-specific mortalities, including cardiovascular disease (CVD), respiratory disease, and digestive disease mortality, were obtained from the national death registries. Cox regression analyses were conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS After a median follow-up of 12.1 years, 34,699 deaths were identified. The associations of coffee and tea consumption with all-cause and cause-specific mortality attributable to CVD, respiratory disease, and digestive disease were nonlinear (all P nonlinear < 0.001). The association between separate coffee consumption and the risk of all-cause mortality was J-shaped, whereas that of separate tea consumption was reverse J-shaped. Drinking one cup of coffee or three cups of tea per day seemed to link with the lowest risk of mortality. In joint analyses, compared to neither coffee nor tea consumption, the combination of < 1-2 cups/day of coffee and 2-4 cups/day of tea had lower mortality risks for all-cause (HR, 0.78; 95% CI: 0.73-0.85), CVD (HR, 0.76; 95% CI: 0.64-0.91), and respiratory disease (HR, 0.69; 95% CI: 0.57-0.83) mortality. Nevertheless, the lowest HR (95% CI) of drinking both < 1-2 cup/day of coffee and ≥ 5 cups/day of tea for digestive disease mortality was 0.42 (0.34-0.53). CONCLUSIONS In this large prospective study, separate and combined coffee and tea consumption were inversely associated with all-cause and cause-specific mortality.
Collapse
Affiliation(s)
- Yanchun Chen
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Mengnan Zhang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Hongxi Yang
- School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China
| | - Yaogang Wang
- School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping District, Tianjin, 300070, China.
| |
Collapse
|
12
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
13
|
Li Y, Ge J, Ma K, Kong J. Epigallocatechin-3-gallate exerts protective effect on epithelial function via PI3K/AKT signaling in thrombosis. Microvasc Res 2022; 144:104408. [PMID: 35878868 DOI: 10.1016/j.mvr.2022.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Venous thrombosis (VT) is one of the most frequent cardiovascular diseases, which seriously endangers people's health. Recently, the protective role of epigallocatechin-3-gallate (EGCG) against multiple cardiovascular diseases has been well studied. Nevertheless, whether EGCG is implicated in the progression of VT is still unclear. METHODS Rat models of VT were established by inferior vena cava (IVC) ligation. Histological characterization of the IVC tissues was examined by hematoxylin-eosin (H&E) staining. TUNEL assay was utilized to detect cell apoptosis in IVC tissues. The concentrations of the oxidative stress biomarkers, malondialdehyde (MDA) and superoxide dismutase (SOD), were estimated by corresponding kits. In addition, the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 in rat plasma were estimated by ELISA. Further, the expression levels of apoptosis markers (Bax, Bcl-2, and Cleaved-caspase 3) as well as key molecules p-PI3K and p-AKT in phosphoinositide 3-kinase (PI3K)/AKT signaling pathway were assessed by western blot. RESULTS Compared to the sham group, the model group showed obvious thrombus formation in IVC tissues, while the EGCG treatment significantly repressed thrombosis. EGCG inhibited cell apoptosis in IVC tissues of VT rat models. The decreased SOD concentration and increased MDA concentration in the plasma of VT rats were reversed by EGCG treatment. Additionally, the elevated levels of TNF-α, IL-6 and IL-8 in the plasma of VT rats can be partially reduced by the treatment of EGCG. Finally, we also found that EGCG reduced the levels of phosphorylated (p)-PI3K and p-AKT in IVC tissues of VT rat models, indicating that the hyperactivation of the PI3K/AKT signaling pathway was inhibited by EGCG. CONCLUSION This study proves that EGCG alleviates thrombosis, cell apoptosis, inflammatory response, and oxidative stress injury in VT by inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jingping Ge
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Ke Ma
- Department of Acupuncture, Qinhuai District Hospital of Traditional Chinese Medicine, Nanjing 210000, Jiangsu, China
| | - Jie Kong
- Department of Vascular and Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
14
|
Mehmood S, Maqsood M, Mahtab N, Khan MI, Sahar A, Zaib S, Gul S. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies. J Food Biochem 2022; 46:e14189. [PMID: 35474461 DOI: 10.1111/jfbc.14189] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described. PRACTICAL APPLICATIONS: The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
Collapse
Affiliation(s)
- Shomaila Mehmood
- Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Nazia Mahtab
- School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Sania Zaib
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Macêdo APA, Gonçalves MDS, Barreto Medeiros JM, David JM, Villarreal CF, Macambira SG, Soares MBP, Couto RD. Potential therapeutic effects of green tea on obese lipid profile - a systematic review. Nutr Health 2022; 28:401-415. [PMID: 35014893 DOI: 10.1177/02601060211073236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Green tea, obtained from the plant Camellis sinensis, is one of the oldest drinks in the world and contains numerous bioactive compounds. Studies have demonstrated the efficacy of green tea in preventing obesity and cardiovascular diseases that may be related to the reduction of lipid levels. Aim: This study aimed to evidence, through a systematic review, the therapeutic potential of green tea on the lipid profile in preclinical studies in obese animals and clinical studies in obese individuals. Methods: This systematic review follows the recommendations of the preferred report items for systematic reviews and meta-analyses. The electronic databases, PubMed (Medline), Science Direct, Scopus, and Web of Science were consulted. Articles from January 2009 to December 2019 were selected. Results: This search resulted in twenty-nine articles were included cirtically reviewed. In experimental studies, green tea administration has been shown to reduce total cholesterol, triglycerides and low-density lipoprotein cholesterol in animals exposed to obesity-inducing diet. In humans' studies green tea was not shown to be effective for obese lipid control. Because supplementation with green tea extract reduced total cholesterol, triglycerides, low-density lipoprotein for three months at a specific dose. Conclusion: Therefore, green tea appears to act as a protective agent for dyslipidemia in obesity-induced animals. In human studies, green tea has not been shown to be effective in controlling obese lipids.
Collapse
Affiliation(s)
- Ana Paula Azevêdo Macêdo
- Postgraduate Program in Food Sciences, Faculty of Pharmacy, 28111Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mariane Dos Santos Gonçalves
- Postgraduate Program in Food Sciences, Faculty of Pharmacy, 28111Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Jorge Mauricio David
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Simone Garcia Macambira
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Milena Botelho Pereira Soares
- Laboratory of Tissue Engineering and Immuno Pharmacology, 42509Research Center Gonçalo Moniz, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Ricardo David Couto
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
16
|
Deng Y, Zhang X, Chen F, Huang J, Zhang D, Luo J. HO-1 mediated by PI3K/Akt/Nrf2 signaling pathway is involved in (-)-epigallocatechin-3-gallate-rescueing impaired cognitive function induced by chronic cerebral hypoperfusion in rat model. Exp Aging Res 2022; 48:428-443. [DOI: 10.1080/0361073x.2021.2011689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yu Deng
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Xiong Zhang
- Neuroscience Research Center, Chongqing Medical University, Chongqing, China
| | - Fei Chen
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Huang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Daijiang Zhang
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| | - Jie Luo
- Department of Geratology, Chongqing Mental Health Center, Chongqing, China
| |
Collapse
|
17
|
Hasheminasabgorji E, Jha JC. Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines 2021; 9:biomedicines9111602. [PMID: 34829831 PMCID: PMC8615779 DOI: 10.3390/biomedicines9111602] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
The prevalence of diabetes is growing at an alarming rate with increased disability, morbidity, and often premature mortality because of the various complications of this disorder. Chronic hyperglycemia, dyslipidemia, and other metabolic alterations lead to the development and progression of macro- and microvascular complications of diabetes including cardiovascular, retinal and kidney disease. Despite advances in glucose and lipid lowering treatments, a large number of diabetic individuals develop one or more types of these complications, ultimately leading to end-organ damage over the time. Atherosclerosis is the major macro-vascular complications of diabetes and the primary underlying cause of cardiovascular disease (CVD) posing heavy burden on the health care system. In this review, we discuss the involvement of dyslipidemia in the progression of atherosclerosis by activating the pro-inflammatory cytokines and oxidative stress-related factors. In addition, we also provide information on various pharmacological agents that provides protection against diabetic atherosclerosis by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Jay C. Jha
- Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Correspondence:
| |
Collapse
|
18
|
Esmaeelpanah E, Razavi BM, Hosseinzadeh H. Green tea and metabolic syndrome: A 10-year research update review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1159-1172. [PMID: 35083002 PMCID: PMC8751745 DOI: 10.22038/ijbms.2021.52980.11943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/22/2021] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome (MetS) has turned into a prevalent condition that has imposed a tremendous financial strain on public health care systems. It is believed that the MetS consists of four main factors (hypertension, dyslipidemia, hyperglycemia, and obesity) and may lead to cardiovascular events. Camellia sinesis, in the form of green tea (GT), is one of the most consuming beverages worldwide. Catechins are the dominant component of green tea leaves. Epigallocatechin gallate has the maximum potency. GT has been widely used as a supplement in various health conditions. As the oxidative stress pathway is one of the probable mechanisms of MetS etiologies and GT beneficial effects, GT may be a novel strategy to overcome the MetS. This review aims to reveal the probable pharmacological effects of GT on MetS. The last 10-year original articles on MetS parameters and GT have been gathered in this review. This manuscript has summarized the probable effects of green tea and its catechins on MetS and focused on each different aspect of MetS separately, which can be used as a basis for further investigations for introducing effective compounds as a way to interfere with MetS. It seems that GT can reduce MetS parameters commonly via anti-inflammatory and anti-oxidative mechanisms. Further clinical trials are needed to confirm the use of GT and its constituents for the treatment of MetS.
Collapse
Affiliation(s)
- Elahe Esmaeelpanah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
An Iron Shield to Protect Epigallocatehin-3-Gallate from Degradation: Multifunctional Self-Assembled Iron Oxide Nanocarrier Enhances Protein Kinase CK2 Intracellular Targeting and Inhibition. Pharmaceutics 2021; 13:pharmaceutics13081266. [PMID: 34452227 PMCID: PMC8402011 DOI: 10.3390/pharmaceutics13081266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
Protein kinase CK2 is largely involved in cell proliferation and apoptosis and is generally recognized as an Achilles’ heel of cancer, being overexpressed in several malignancies. The beneficial effects of (−)-epigallocatechin-3-gallate (EGCG) in the prevention and treatment of several diseases, including cancer, have been widely reported. However, poor stability and limited bioavailability hinder the development of EGCG as an effective therapeutic agent. The combination of innovative nanomaterials and bioactive compounds into nanoparticle-based systems demonstrates the synergistic advantages of nanocomplexes as compared to the individual components. In the present study, we developed a self-assembled core-shell nanohybrid (SAMN@EGCG) combining EGCG and intrinsic dual-signal iron oxide nanoparticles (Surface Active Maghemite Nanoparticles). Interestingly, nano-immobilization on SAMNs protects EGCG from degradation, preventing its auto-oxidation. Most importantly, the nanohybrid was able to successfully deliver EGCG into cancer cells, displaying impressive protein kinase CK2 inhibition comparable to that obtained with the most specific CK2 inhibitor, CX-4945 (5.5 vs. 3 µM), thus promoting the phytochemical exploitation as a valuable alternative for cancer therapy. Finally, to assess the advantages offered by nano-immobilization, we tested SAMN@EGCG against Pseudomonas aeruginosa, a Gram-negative bacterium involved in severe lung infections. An improved antimicrobial effect with a drastic drop of MIC from 500 to 32.7 μM was shown.
Collapse
|
20
|
Zhao J, Yang M, Wu J. CXCL16 may be a predisposing factor to atherosclerosis: An animal study. Mol Med Rep 2021; 24:716. [PMID: 34396447 DOI: 10.3892/mmr.2021.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory process initiated when lipoprotein is retained in the arterial wall. Leukocyte recruitment accelerates this process. CXC chemokine ligand 16 (CXCL16) acts as a chemokine to attract immune cells and also facilitates the phagocytosis process of modified low‑density lipoprotein. Whether CXCL16 promotes or inhibits the pathological process of AS remains to be elucidated. To clarify this, CXCL16 gene was introduced into C57BL/6J wild‑type mice to establish a stable CXCL16 overexpression mouse model. The initial changes of AS in mice were induced by high‑fat diet (HFD). To study how the interaction of HFD and CXCL16 affected fatty acid metabolism and deposition, body weight and plasma lipid profile were assessed. Soluble CXCL16, matrix metalloproteinase‑9, monocyte chemoattractant protein‑1 and intercellular adhesion molecule‑1 were detected by immunohistochemistry and ELISA to identify how CXCL16 affects AS lesion formation. The present study suggested that overexpression of CXCL16 combined with HFD lead to atherogenesis by upregulating the aforementioned inflammatory related genes at a protein level. The present study was the first, to the best of the authors' knowledge, to build a CXCL16 homozygous transgenic mice model to study how overexpressed CXCL16 is associated with AS for intervening in the occurrence and development of AS.
Collapse
Affiliation(s)
- Junbi Zhao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Menglin Yang
- Department of Burns, Plastic Surgery and Dermatology, No. 922 Hospital of Joint Support Unit of the People's Liberation Army Hengyang, Hunan 421002, P.R. China
| | - Jie Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
22
|
Liu MJ, Jin H, Chen YB, Yu JJ, Guo ZY, He SQ, Zeng YL. Screening of non-alcoholic steatohepatitis (NASH)-related datasets and identification of NASH-related genes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:567-581. [PMID: 34093943 PMCID: PMC8167495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a common liver disease in the western world. The mechanisms behind NASH formation are poorly understood, but there may be multiple targets considering the disease's multifactorial nature. To explore the genes related to the pathogenesis of NASH, we downloaded clinical data and gene expression of NASH patients from the Gene Expression Omnibus database (GEO). We identified 281 genes with a common expression in two NASH-related datasets (GSE89632 and GSE83452), suggesting that they may be related to NASH. Further study showed that Angptl4, Foxo1, and Ttc39B might be essential for NASH progression, and these have been poorly studied. Therefore, we explored their roles in NASH. Our data show that these genes participate in the development of NASH through lipid metabolism. This suggests that the three genes can be used as therapeutic targets in NASH.
Collapse
Affiliation(s)
- Ming-Jiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Hu Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Yu-Bing Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Jing-Jing Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Zhen-Ya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| | - Yong-Lian Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi, China
| |
Collapse
|
23
|
Liu W, Liu J, Xing S, Pan X, Wei S, Zhou M, Li Z, Wang L, Bielicki JK. The benzoate plant metabolite ethyl gallate prevents cellular- and vascular-lipid accumulation in experimental models of atherosclerosis. Biochem Biophys Res Commun 2021; 556:65-71. [PMID: 33839416 DOI: 10.1016/j.bbrc.2021.03.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
Ethyl gallate (EG) is a well-known constituent of medicinal plants, but its effects on atherosclerosis development are not clear. In the present study, the anti-atherosclerosis effects of EG and the underlying mechanisms were explored using macrophage cultures, zebrafish and apolipoprotein (apo) E deficient mice. Treatment of macrophages with EG (20 μM) enhanced cellular cholesterol efflux to HDL, and reduced net lipid accumulation in response to oxidized LDL. Secretion of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) from activated macrophages was also blunted by EG. Fluorescence imaging techniques revealed EG feeding of zebrafish reduced vascular lipid accumulation and inflammatory responses in vivo. Similar results were obtained in apoE-/- mice 6.5 months of age, where plaque lesions and monocyte infiltration into the artery wall were reduced by 70% and 42%, respectively, after just 6 weeks of injections with EG (20 mg/kg). HDL-cholesterol increased 2-fold, serum cholesterol efflux capacity increased by ∼30%, and the levels of MCP-1 and IL-6 were reduced with EG treatment of mice. These results suggest EG impedes early atherosclerosis development by reducing the lipid and macrophage-content of plaque. Underlying mechanisms appeared to involve HDL cholesterol efflux mechanisms and suppression of pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianmin Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuefang Pan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Sheng Wei
- Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan 250353, China.
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zifa Li
- Behavioral Phenotyping Core Facility, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - John Kevin Bielicki
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
24
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
25
|
Teramoto M, Muraki I, Yamagishi K, Tamakoshi A, Iso H. Green Tea and Coffee Consumption and All-Cause Mortality Among Persons With and Without Stroke or Myocardial Infarction. Stroke 2021; 52:957-965. [PMID: 33535784 PMCID: PMC7903984 DOI: 10.1161/strokeaha.120.032273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose: The effect of green tea and coffee consumption on mortality among cardiovascular diseases survivors is unknown. We examined the association between green tea and coffee consumption and mortality among persons with and without stroke or myocardial infarction (MI). Methods: In the Japan Collaborative Cohort Study, 46 213 participants (478 stroke survivors, 1214 MI survivors, and 44 521 persons without a history of stroke or MI), aged 40 to 79 years at baseline (1988–1990), completed a lifestyle, diet, and medical history questionnaire and were followed up regarding mortality until 2009. The Cox proportional hazard model was used to calculate the multivariable hazard ratios with 95% CIs of all-cause mortality after adjusting for potential confounding factors. Results: During the 18.5-year median follow-up period, 9253 cases were documented. Green tea consumption was inversely associated with all-cause mortality among stroke or MI survivors; the multivariable hazard ratios (95% CIs) for stroke survivors were 0.73 (0.42–1.27) for 1 to 6 cups/wk, 0.65 (0.36–1.15) for 1 to 2 cups/d, 0.56 (0.34–0.92) for 3 to 4 cups/d, 0.52 (0.31–0.86) for 5 to 6 cups/d, and 0.38 (0.20–0.71) for ≥7 cups/d, compared with nondrinkers. A similar inverse association was observed for MI survivors, but not evident for those without a history of stroke or MI. Coffee consumption was inversely associated with all-cause mortality in persons without a history of stroke or MI; the multivariable hazard ratios (95% CIs) were 0.86 (0.82–0.91) for 1 to 6 cups/wk, 0.86 (0.80–0.92) for 1 cup/d, and 0.82 (0.77–0.89) for ≥2 cups/d, compared with nondrinkers. The corresponding hazard ratios (95% CIs) for MI survivors were 0.69 (0.53–0.91), 0.78 (0.55–1.10), and 0.61 (0.41–0.90). No such association was observed for stroke survivors. Conclusions: Green tea consumption can be beneficial in improving the prognosis for stroke or MI survivors, whereas coffee consumption can also be so for persons without a history of stroke or MI as well as MI survivors.
Collapse
Affiliation(s)
- Masayuki Teramoto
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Japan (M.T., I.M., H.I.)
| | - Isao Muraki
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Japan (M.T., I.M., H.I.)
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Japan (K.Y., H.I.)
| | - Akiko Tamakoshi
- Department of Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (A.T.)
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Japan (M.T., I.M., H.I.).,Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Japan (K.Y., H.I.)
| |
Collapse
|
26
|
Yue C, Yang P, Qin D, Cai H, Wang Z, Li C, Wu H. Identification of volatile components and analysis of aroma characteristics of Jiangxi Congou black tea. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1844747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Cuinan Yue
- Tea Research Institute, Jiangxi Sericulture and Tea Research Institute, Nanchang, China
- Tea Research Institute, Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, China
| | - Puxiang Yang
- Tea Research Institute, Jiangxi Sericulture and Tea Research Institute, Nanchang, China
- Tea Research Institute, Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, China
| | - Dandan Qin
- Tea Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Hailan Cai
- Tea Research Institute, Jiangxi Sericulture and Tea Research Institute, Nanchang, China
- Tea Research Institute, Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, China
| | - Zhihui Wang
- Tea Research Institute, Jiangxi Sericulture and Tea Research Institute, Nanchang, China
- Tea Research Institute, Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, China
| | - Chen Li
- Tea Research Institute, Jiangxi Sericulture and Tea Research Institute, Nanchang, China
- Tea Research Institute, Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang, China
| | - Hualing Wu
- Tea Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| |
Collapse
|
27
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
28
|
Mika M, Wikiera A, Antończyk A, Grabacka M. The impact of catechins included in high fat diet on AMP-dependent protein kinase in apoE knock-out mice. Int J Food Sci Nutr 2020; 72:348-356. [PMID: 32900230 DOI: 10.1080/09637486.2020.1817345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Due to their health-promoting effects green tea catechins have gained a keen interest in recent years in the context of bodyweight reduction treatments and alleviation of inflammatory diseases. This study was designed to evaluate the impact of native and thermally modified catechins (TMC) on the body weight gain, fatty acid profile in subcutaneous adipose tissue and the activity of the enzymes involved in lipid metabolism regulation: AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in apoE-deficient mice maintained on a high-fat diet. We observed that TMC decreased bodyweight gain as compared to the control group. Furthermore, TMC increased AMPK activity and reduced ACC activity in the metabolically important tissues: intestine, liver and subcutaneous adipose tissue and affected adipose tissue fatty acid composition. Native catechins produced less pronounced effects. These results suggest that TMC down-regulate endogenous fatty acid synthesis, which should be taken into account in dietary applications of catechins.
Collapse
Affiliation(s)
- Magdalena Mika
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Agnieszka Wikiera
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Anna Antończyk
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Maja Grabacka
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| |
Collapse
|
29
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
30
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
31
|
Effect of green tea consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr J 2020; 19:48. [PMID: 32434539 PMCID: PMC7240975 DOI: 10.1186/s12937-020-00557-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background Strong epidemiologic evidence indicates that green tea intake is protective against hyperlipidemia; however, randomized controlled studies have presented varying results. In the present study, we aimed to conduct a literature review and meta-analysis to assess the effect of green tea on blood lipids. Methods PubMed, Embase, and the Cochrane Library were electronically explored from inception to September 2019 for all relevant studies. Random effect models were used to estimate blood lipid changes between green tea supplementation and control groups by evaluating the weighted mean differences (WMD) with 95% confidence intervals (CIs). The risk of bias for study was assessed using the Cochrane tool. Publication bias was evaluated using funnel plots and Egger’s tests. Results Thirty-one trials with a total of 3321 subjects were included in the meta-analysis. In general, green tea intake significantly lowered the total cholesterol (TC); WMD: − 4.66 mg/dL; 95% CI: − 6.36, − 2.96 mg/dL; P < 0.0001) and low-density lipoprotein (LDL) cholesterol (WMD:− 4.55 mg/dL; 95% CI: − 6.31, − 2.80 mg/dL; P < 0.0001) levels compared with those in the control. Green tea consumption did not affect high-density lipoprotein (HDL) cholesterol; however, it reduced the triglycerides compared with that in the control (WMD: − 3.77 mg/dL; 95% CI: − 8.90, 1.37 mg/dL; P = 0.15). In addition, significant publication bias from funnel plots or Egger’s tests was not evident. Conclusions Collectively, consumption of green tea lowers LDL cholesterol and TC, but not HDL cholesterol or triglycerides in both normal weight subjects and those who were overweight/obese; however, additional well-designed studies that include more diverse populations and longer duration are warranted.
Collapse
|
32
|
Protective role of epigallocatechin gallate, a dietary antioxidant against oxidative stress in various diseases. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
34
|
Wang W, Wang YR, Chen J, Chen YJ, Wang ZX, Geng M, Xu DC, Wang ZY, Li JH, Xu ZD, Pan LL, Sun J. Pterostilbene Attenuates Experimental Atherosclerosis through Restoring Catalase-Mediated Redox Balance in Vascular Smooth Muscle Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12752-12760. [PMID: 31642668 DOI: 10.1021/acs.jafc.9b05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis, the major risk of cardiovascular events, is a chronic vascular inflammatory disease. Pterostilbene is a naturally occurring dimethylated analogue of resveratrol and has recently been demonstrated to be beneficial against cardiovascular diseases. However, the underlying mechanisms of pterostilbene on atherosclerosis remain elusive. Experimental atherosclerosis was induced by a high-fat diet (HFD) in apolipoprotein E knockout (ApoE-/-) mice. Pterostilbene was administered intragastrically for 16 weeks. We found that pterostilbene significantly attenuated thoracic and abdominal atherosclerotic plaque formation in HFD-fed ApoE-/-mice, accompanied by modulated lipid profiles and reduced production of proinflammatory cytokines (including IL-6, IFN-γ, and TNF-α). In addition, pterostilbene restored vascular redox balance in thoracic and abdominal aorta, evidenced by enhanced catalase (CAT) expression and activities, and decreased malondialdehyde and H2O2 production. Notably, pterostilbene specifically induced CAT expression and activities in the vascular smooth muscle cells (VSMCs) of thoracic and abdominal aorta. In vitro, pterostilbene markedly promoted the expression and activity of CAT and decreased ox-low-density lipoprotein (LDL)-mediated VSMC proliferation and intracellular H2O2 production, which was abolished by CAT siRNA knockdown or inhibition. Pterostilbene-induced CAT expression was associated with inhibition of Akt, PRAS40, and GSK-3β signaling activation and upregulation of PTEN. Our data clearly demonstrated that pterostilbene exerted an antiatherosclerotic effect by inducing CAT and modulating the VSMC function.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Ru Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jing Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Jun Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhao-Xia Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ming Geng
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - De-Cong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zi-Ying Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jin-Hua Li
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhong-Dong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | | | | |
Collapse
|
35
|
Cao SY, Zhao CN, Gan RY, Xu XY, Wei XL, Corke H, Atanasov AG, Li HB. Effects and Mechanisms of Tea and Its Bioactive Compounds for the Prevention and Treatment of Cardiovascular Diseases: An Updated Review. Antioxidants (Basel) 2019; 8:E166. [PMID: 31174371 PMCID: PMC6617169 DOI: 10.3390/antiox8060166] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are critical global public health issues with high morbidity and mortality. Epidemiological studies have revealed that regular tea drinking is inversely associated with the risk of CVDs. Additionally, substantial in vitro and in vivo experimental studies have shown that tea and its bioactive compounds are effective in protecting against CVDs. The relevant mechanisms include reducing blood lipid, alleviating ischemia/reperfusion injury, inhibiting oxidative stress, enhancing endothelial function, attenuating inflammation, and protecting cardiomyocyte function. Moreover, some clinical trials also proved the protective role of tea against CVDs. In order to provide a better understanding of the relationship between tea and CVDs, this review summarizes the effects of tea and its bioactive compounds against CVDs and discusses potential mechanisms of action based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
36
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
37
|
Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 2018; 109:2155-2172. [PMID: 30551473 DOI: 10.1016/j.biopha.2018.11.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular complications are considered one of the leading causes of morbidity and mortality among diabetic patients. Diabetic cardiomyopathy (DCM) is a type of cardiovascular damage presents in diabetic patients independent of the coexistence of ischemic heart disease or hypertension. It is characterized by impaired diastolic relaxation time, myocardial dilatation and hypertrophy and reduced systolic and diastolic functions of the left ventricle. Molecular mechanisms underlying these pathological changes in the diabetic heart are most likely multifactorial and include, but not limited to, oxidative/nitrosative stress, increased advanced glycation end products, mitochondrial dysfunction, inflammation and cell death. The aim of this review is to address the major molecular mechanisms implicated in the pathogenesis of DCM. In addition, this review provides studies conducted to determine the pharmacological effects of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, focusing on its therapeutic potential against the processes involved in the pathogenesis and progression of DCM. EGCG has been shown to exert several potential therapeutic properties both in vitro and in vivo. Given its therapeutic potential, EGCG might be a promising drug candidate to decrease the morbidity and mortality associated with DCM and other diabetes complications.
Collapse
|