1
|
Lin T, Li Z, Yuan J, Ren T, Pang W, Xu S. Design, synthesis and evaluation of diphenyl ether-based kaiso inhibitors with enhanced potency. Bioorg Med Chem Lett 2025; 121:130158. [PMID: 40049243 DOI: 10.1016/j.bmcl.2025.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025]
Abstract
Kaiso, a potential target for the treatment of lung cancer. Our research focuses on Kaiso inhibitros. Through virtual screening and molecular dynamic simulations, we discovered a promising Kaiso inhibitor called compound 5 (ZINC20577650). By modifying the structure of compound 5, a series of novel Kaiso inhibitors that contain a diphenyl ether ring were synthesized. Among them, compound 20 exhibited the strongest inhibitory activity against A549 cells (IC50 = 0.34 μM). Notably, its inhibitory activity surpassed that of the positive control MIRA-1 (IC50 = 654.065 μM). Molecular docking and dynamic studies revealed that the binding of the compound's amino and ester moieties to the active site of kaiso protein, as well as the extension of the benzene ring towards the Asn561 position in the cavity, contributed significantly to its potency. These findings provide valuable insights for the development of new Kaiso inhibitors.
Collapse
Affiliation(s)
- Taofeng Lin
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhongqi Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang, China
| | - Juanchan Yuan
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tinfeng Ren
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang, China; Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
2
|
Jardan YAB, Sead FF, Sur D, Ballal S, Singh A, Krithiga T, Kubaev A, Ray S, Bekhit MM. DFT study of pure and Pt-decorated BN nanocone as a nanocarrier for nitrosourea anticancer drug. J Mol Graph Model 2025; 137:109018. [PMID: 40101435 DOI: 10.1016/j.jmgm.2025.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
In this current study, the effectiveness of both the Pt-coated BN nanocone (BNC) and pristine in detecting and drug delivery of nitrosourea anticancer (NU) drugs were analyzed using periodic DFT. Research examines how the drug molecules adsorb and affect structural and electronic features of substrate. Analysis of interaction between NU and pure BNC surface, as suggested by the adsorption energy, reveals a relatively weak interaction. The adsorption energies in gas and water phases for the most stable NU@Pt-BNC complex are -1.88 eV and -2.89 eV, respectively. Study also investigated drug's ability to dissolve, along with that of surface and complexes, in an aqueous solvent. Additionally, simulations were conducted to model release of the drug from the substrate in close proximity to target cells within an acidic environment. A Pt-BNC substrate could be suggested as a promising carrier and sensor for NU anticancer medications.
Collapse
Affiliation(s)
- Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Fadhel F Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Dharmesh Sur
- Marwadi University Research Center, Department of Chemical Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot-360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha-751003, India
| | - Mounir M Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
He F, Liu H, Zhao F. The oncogenic role of FOXM1 in hepatocellular carcinoma: molecular mechanisms, clinical significance, and therapeutic potentials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04144-5. [PMID: 40266300 DOI: 10.1007/s00210-025-04144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
Hepatocellular carcinoma (HCC) remains a major global health challenge due to its aggressive nature and limited treatment options. This review aims to clarify the oncogenic role of FOXM1 in HCC and its potential as a therapeutic target. We examine how FOXM1 drives cancer development by regulating key cellular processes such as cell cycle progression, proliferation, metastasis, and therapy resistance. The review details mechanisms that control FOXM1 activity, including transcriptional regulation by upstream factors, post-transcriptional modulation via non-coding RNAs, and epigenetic modifications. We also explore how FOXM1 interacts with critical signaling pathways, such as AKT, p53, ERK, Hedgehog, STAT3, and Wnt/β-catenin, to promote metabolic reprogramming, angiogenesis, and the maintenance of cancer stem cell properties. In the therapeutic section, we assess emerging strategies that target FOXM1, including small-molecule inhibitors, proteasome inhibitors, and immunotherapeutic approaches, to improve treatment outcomes for HCC patients. This comprehensive review highlights the pivotal role of FOXM1 in HCC pathogenesis and provides novel avenues for targeted intervention.
Collapse
Affiliation(s)
- Fangyu He
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - He Liu
- Department of Infection Control and Prevention, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fangcheng Zhao
- Department of Infectious Diseases, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
M A, S KB, Liyana EP, Jasmine JS. Transformative potential of plant-based nanoparticles in cancer diagnosis and treatment: bridging traditional medicine and modern therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04113-y. [PMID: 40237799 DOI: 10.1007/s00210-025-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer is a primary global health concern, with an estimated 35.3 million cancer cases expected worldwide, representing a 76.6% increase in 2022, and 20 million by 2050, resulting from genetic mutation and environmental factors that cause uncontrolled cell growth. Other factors including smoking, unhealthy diets, physical inactivity, exposure to carcinogens, UV radiation, and aging increase DNA damage. Current cancer treatments like chemotherapy, radiation therapy, immunotherapy, and surgery are effective, but those have significant effects like lack of specificity, development of drug resistance, and significant side effects to healthy tissues. An advancement to conventional therapies is plant-based nanoparticles as transformative approaches in cancer diagnosis and treatment. These nanoparticles synthesized using plant bioactive compounds like flavonoids, alkaloids, polyphenols, and some metals-oxides like gold, silver, copper, zinc, etc. offer eco-friendly, cost-effective, and biocompatible alternatives. They enhance targeted drug delivery, allowing anticancer agents specifically to tumor cells, minimizing damage to health. Improves imaging techniques like MRI and fluorescence imaging, and helps early detection, cancer biomarkers, allowing for prompt intervention. Recent findings show that nanocarriers made from plant-based materials, such as polyphenols (curcumin, resveratrol) and plant-extracted metal nanoparticles (gold, silver), can improve drug stability and selectively target tumor cells. Plant-derived nanoparticles play a crucial role in cancer immunotherapy and nanovaccines. Biodegradable plant-based nanocarriers can deliver cancer vaccines, stimulating long-term immunity against tumors. Graphene oxide and gold nanoparticles synthesized from plant extracts can absorb near-infrared (NIR) light, generating heat to destroy cancer cells with minimal damage to surrounding tissues. This study discusses the types of plant-based nanoparticles like plant virus nanoparticles (TMV, PVX, CPMV), plant metallic nanoparticles (Au, Ag., Cu, Zn, Mg, Ca, and Mn), and flavonoid nanoparticles found in cancer treatment, their significant roles, chemotherapy-based nanomedicines available in the medical field, and a detailed vision of nanomaterial applications in cancer diagnosis, treatment, and targeted drug delivery.
Collapse
Affiliation(s)
- Aswini M
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| | - Kavitha Bagya S
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - E P Liyana
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
5
|
Ganguly SC, Maity R, Manna P, Sardar A, Mukherjee S, Karati D. Amplifying therapeutic potential through optimization of bioavailability of poorly soluble flavonols via albumin-based nanoparticles. Drug Dev Ind Pharm 2025:1-12. [PMID: 40186858 DOI: 10.1080/03639045.2025.2490281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Flavonols have different pharmacological actions that render them highly promising therapeutic targets. However, their water solubility and bioavailability are low, which restricts their therapeutic potential. ABNPs, albumin-based nanoparticles, are potential nanocarriers that enhance flavonol solubility, stability, and targeted delivery. By utilizing ABNPs, in this work we provide a detailed overview of strategies employed to attain maximum bioavailability of poorly water-soluble flavonols. The review critically evaluates ABNP-mediated delivery's pharmacokinetic advantage, physicochemical properties, and formulation principles. We also highlight existing gaps in research, such as the need for stringent in vivo validity tests, standardized formulation procedures, and in-depth mechanistic understanding of flavonol-albumin interactions. SIGNIFICANCE Despite having potential therapeutic activities, the utilization of flavonoids in the form of medication is limited. Some recent studies have shown that flavonoids exhibit low solubility, low permeability and chemical instability, thereby limiting their bioavailability and therapeutic responses. METHODS To overcome these drawbacks, multiple novel drug delivery approaches have emerged in the pharmaceutical research. RESULTS These novel approaches seem to offer a viable foundation for improving the bioavailability of the flavonoids and positioning them as viable therapeutic options. Out of all the polymers implemented in enhancing the solubility and bioavailability of the flavonoids, albumin-based nanomaterials have been the most efficacious one. CONCLUSION Compared to all other polymeric nano-carriers, albumin nano-carriers offer a greater scale of drug entrapment and drug loading because of their capacity for surface modification, crosslinking, conjugation, coupling, and characteristics including biodegradability and biocompatibility.
Collapse
Affiliation(s)
| | - Ritam Maity
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Priya Manna
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Avisek Sardar
- Department of Pharmaceutical Technology, Brainware University, Kolkata, India
| | - Swarupananda Mukherjee
- NSHM College of Pharmacy and Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, West Bengal, Kolkata, India
| |
Collapse
|
6
|
Rehman MU, Zuo Y, Tu N, Guo J, Liu Z, Cao S, Long S. Diverse pharmacological activities of β-carbolines: Substitution patterns, SARs and mechanisms of action. Eur J Med Chem 2025; 287:117350. [PMID: 39933403 DOI: 10.1016/j.ejmech.2025.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
β-Carbolines, a class of indole-containing heterocyclic alkaloids, are widely distributed in nature and possess diverse bioactivities, making them promising drug candidates against a wide range of diseases. The remarkable medicinal potential of β-carbolines has spurred the pharmaceutical research community to study their derivatives extensively. This review updates the development of β-carboline derivatives in recent years (2015-2024), particularly with a focus on their anticancer, antiparasitic, antimicrobial, antiviral, and neuroprotective properties, based on the modification approaches such as substitution on indole N (ring B), pyridine or its reduced forms (ring C), and dimerization of β-carbolines. Moreover, the mechanisms of action and structure-activity relationships of these β-carboline derivatives are highlighted to offer valuable insights on the design and development of new β-carbolines with better pharmacological activities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Yujie Zuo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ni Tu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
7
|
Hosseinzadeh Ranjbar M, Einafshar E, Javid H, Jafari N, Sajjadi SS, Assaran Darban R, Hashemy SI. Enhancing the anticancer effects of rosmarinic acid in PC3 and LNCaP prostate cancer cells using titanium oxide and selenium-doped graphene oxide nanoparticles. Sci Rep 2025; 15:11568. [PMID: 40185944 PMCID: PMC11971286 DOI: 10.1038/s41598-025-96707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Prostate cancer remains a significant health concern due to its high mortality rate, emphasizing the need for innovative therapeutic approaches. This study aims to explore the potential anticancer effects of a drug nanocomplex containing rosmarinic acid in the treatment of prostate cancer, aiming to contribute to the development of safer and more effective treatment options for cancer patients. Nanocomposite Graphene Oxide was synthesized following the Hummers' method. The resulted product dissolved in deionized water with rosmarinic acid to prepare the final product. To investigate the effects of rosmarinic acid@Se-TiO2-GO, PC3, LNCaP, and normal (HFF-1) cell lines were treated with varying concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, and 500 µg/ml) of the nanocomplex. Cell viability was assessed using the Resazurin test, while levels of reactive oxygen species (ROS), gene expression (Bcl-2 and Bax), and total antioxidant capacity were measured in both cancerous and normal cells. The Se-TiO2-GO nanoparticles demonstrated high entrapment efficiency and loading capacity for rosmarinic acid. The IC50 values after 24 and 48 h of RA treatment were significantly greater than those recorded for treatments involving rosmarinic acid@Se-TiO2-GO. Treatment with rosmarinic acid@Se-TiO2-GO resulted in decreased cell viability and increased apoptosis in PC3 and LNCaP cells, while showing no inhibitory effects on the normal cell line (HFF-1) at concentrations toxic to cancer cells. Additionally, a dose-dependent increase in ROS levels, a decrease in total antioxidant capacity, elevated Bax gene expression, and reduced Bcl-2 expression were observed in the cancer cells following treatment with the nanocomplex. The cytotoxic effects of rosmarinic acid@Se-TiO2-GO nanoparticles on prostate cancer cells appear to be mediated through the generation of oxidative stress and induction of apoptosis. The unique formulation of these nanoparticles holds promise for future prostate cancer treatment strategies.
Collapse
Affiliation(s)
| | - Elham Einafshar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Jafari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Sara Sajjadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Zhang T, Xiaohan C. Unveiling the Role of JAK2/STAT3 signaling in chemoresistance of gynecological cancers: From mechanisms to therapeutic implications. Crit Rev Oncol Hematol 2025; 211:104712. [PMID: 40187711 DOI: 10.1016/j.critrevonc.2025.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Gynecological cancers, encompassing ovarian, cervical, endometrial, vulvar, and vaginal cancers, present a significant global health burden due to high incidence rates and associated mortality. Among these, ovarian, cervical, and endometrial cancers are particularly challenging, characterized by late-stage diagnoses, distinct pathological features, and significant resistance to chemotherapy. A major contributor to treatment failure is chemoresistance, driven by multifactorial mechanisms such as dysregulation of apoptosis, DNA repair, metabolic reprogramming, and the tumor microenvironment. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a pivotal role in promoting chemoresistance, enhancing tumor cell survival, stemness, and immune evasion through the transcriptional regulation of anti-apoptotic and multidrug resistance genes. Persistent activation of this pathway not only sustains tumor progression but also limits the efficacy of standard chemotherapeutics, such as paclitaxel, cisplatin, and platinum-based agents. This review comprehensively examines the molecular mechanisms underlying JAK2/STAT3-mediated chemoresistance in gynecological cancers, highlighting its interactions with critical regulatory networks, including non-coding RNAs, cytokine signaling, hypoxia, and extracellular vesicles. We further explore therapeutic interventions targeting the JAK2/STAT3 axis, encompassing small molecule inhibitors, monoclonal antibodies, nanoparticles, and oncolytic viruses. Natural products and synthetic compounds targeting this pathway demonstrate significant potential in overcoming resistance and improving chemotherapy response. The findings underscore the critical role of JAK2/STAT3 signaling in the persistence and progression of chemoresistant gynecological cancers and advocate for the integration of pathway-targeted therapies into current treatment paradigms. By disrupting this axis, emerging therapies offer a promising strategy to enhance drug sensitivity and improve patient outcomes, paving the way for more effective and personalized approaches in gynecological oncology.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chang Xiaohan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Nasiri R, Arefnezhad R, Baniasad K, Hosseini SA, Jeshari AS, Miri M, Lotfi A, Ghaemi MS, Amini-Salehi E, Fatemian H, Rezaei-Tazangi F, Kesharwani P, Tavakoli MR, Sahebkar A. Baicalin and baicalein against myocardial ischemia-reperfusion injury: A review of the current documents. Tissue Cell 2025; 93:102772. [PMID: 39923649 DOI: 10.1016/j.tice.2025.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant challenge in the treatment of ischemic heart disease (IHD), arising as a complication from reperfusion therapies designed to restore blood flow after an ischemic event. Despite the availability of various therapeutic strategies, finding an effective treatment for MIRI remains difficult. Baicalin and its aglycone form (baicalein), natural compounds derived from the Chinese skullcap plant (Scutellaria baicalensis), have shown promise due to their antioxidant, anti-inflammatory, and cardioprotective properties. This review aims to explore the potential of baicalin and baicalein as treatments for MIRI, with a focus on their molecular and cellular level effects. These natural agents can decrease oxidative stress by promoting antioxidant enzymes and decreasing harmful oxidative substances that damage cardiac cells. They also exert anti-inflammatory effects by blocking specific pathways that trigger the release of inflammatory mediators. Additionally, they also improve heart cell survival, infarct region, and overall cardiac function by inhibiting key signaling pathways involved in cell death. Research in both animal and cell models suggests that these flavonoids, especially baicalin, can restore cardiac health following MIRI, improving cardiac performance, and reducing cardiac damage. These findings underscore the potential of baicalin and baicalein as therapeutic options for MIRI. However, further research and clinical trials are necessary to elucidate their mechanisms fully and to develop baicalin into a viable treatment.
Collapse
Affiliation(s)
- Reza Nasiri
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Kimia Baniasad
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Seyed Ali Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mostafa Miri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Lotfi
- Department of Medical Sciences, School of Medicine, Azerbaijan Medical University, Baku, Azerbaijan
| | - Mozhan Sadat Ghaemi
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Amini-Salehi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Fatemian
- School of Medicine, Shiraz University of Medial Sciences, Shiraz, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Qiu Y, Deng Q, Zhang Y, Sun B, Li W, Dong W, Sun X. Applications of Microextraction Technology for the Analysis of Alcoholic Beverages Quality: Current Perspectives and Future Directions. Foods 2025; 14:1152. [PMID: 40238322 PMCID: PMC11988442 DOI: 10.3390/foods14071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alcoholic beverages are loved by the majority of consumers because of their diverse characteristics and rich nutritional value; thus, ensuring their quality is necessary for maintaining the rapid development of the alcoholic beverage industry. Due to trace levels of various quality factors and the complexity of the beverage body matrix, pretreatment is usually required before analysis. Among the many pretreatment methods available, microextraction has attracted increasing attention because it aligns with the development direction of green chemistry. This review surveys advancements in microextraction techniques pertaining to three quality aspects in the most frequently consumed alcoholic beverages: baijiu and huangjiu (spirits) and wine and beer (fermented alcoholic drinks). Furthermore, new directions in their development are discussed.
Collapse
Affiliation(s)
- Yue Qiu
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Deng
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yongqing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wenxian Li
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (Q.D.); (Y.Z.); (B.S.); (W.L.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
12
|
Rana JN, Mumtaz S. Prunin: An Emerging Anticancer Flavonoid. Int J Mol Sci 2025; 26:2678. [PMID: 40141319 PMCID: PMC11942023 DOI: 10.3390/ijms26062678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Despite the substantial advances in cancer therapies, developing safe and effective treatment methodologies is critical. Natural (plant-derived compounds), such as flavonoids, might be crucial in developing a safe treatment methodology without toxicity toward healthy tissues. Prunin is a flavonoid with the potential to be used in biomedical applications. Prunin has yet to undergo thorough scientific research, and its precise molecular mechanisms of action remain largely unexplored. This review summarizes the therapeutic potential of prunin for the first time, focusing on its underlying mechanisms as an anticancer compound. Prunin has gained significant attention due to its antioxidant, anti-inflammatory, and anticancer effects. This review aims to unlock how prunin functions at the molecular level to exert its anticancer effects, primarily modulating key cellular pathways. Furthermore, we have discussed the prunin's potential as an adjunctive therapy with conventional treatments, highlighting its ability to strengthen treatment responses while decreasing drug resistance. Moreover, the discussion probes into innovative delivery methods, particularly nanoformulations, that might address prunin's bioavailability, solubility, and stability limitations and optimize its therapeutic application. By providing a comprehensive analysis of prunin's properties, this review aims to stimulate further exploration of using prunin as an anticancer agent, thereby progressing the development of targeted, selective, safe, and effective therapeutic methods.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Sohail Mumtaz
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
13
|
Bao J, Li Z, Zhang D. β-elemene: A promising natural compound in lung cancer therapy. Eur J Pharmacol 2025; 997:177399. [PMID: 40064226 DOI: 10.1016/j.ejphar.2025.177399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025]
Abstract
Lung cancer, a leading cause of cancer-related mortality globally, presents complex challenges in treatment and disease management. This review explores β-elemene, a sesquiterpene from Curcuma wenyujin, emphasising its pharmacological effects and therapeutic mechanisms in lung cancer. Focusing on its roles in modulating cellular pathways, this study details β-elemene's influence on apoptosis, autophagy, ferroptosis, hypoxic responses, metabolic shifts, and cell cycle arrest, as well as its impact on the tumour microenvironment and regulatory pathways (including PI3K/AKT, STAT3, AMPK/MAPK) and non-coding RNAs. The potential of β-elemene as a complementary agent in chemotherapy, radiotherapy, and hyperthermia therapy is examined, underscoring its capability to bolster treatment efficacy and counter drug resistance. The review also addresses current obstacles in clinical use, notably bioavailability issues, and explores innovative delivery systems like liposomes and microemulsions designed to enhance therapeutic delivery. Although preclinical studies indicate significant anti-tumor effects, further research is needed to address clinical translation challenges. Collectively, this review highlights β-elemene's multi-targeted therapeutic potential in lung cancer, advocating for ongoing research to refine its clinical use and optimize patient outcomes.
Collapse
Affiliation(s)
- Jiahui Bao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
14
|
Devinat M, Thevenard-Devy J, Ghilane F, Devy J, Chazee L, Terryn C, Duca L, Devarenne-Charpentier E, El Btaouri H. Xanthohumol Sensitizes Melanoma Cells to Vemurafenib by Lowering Membrane Cholesterol and Increasing Membrane Fluidity. Int J Mol Sci 2025; 26:2290. [PMID: 40076912 PMCID: PMC11901044 DOI: 10.3390/ijms26052290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Chemoresistance remains one of the major obstacles to cancer treatment. The search for specific molecules that could improve cancer treatment has become one of the objectives of biomedical research. Identifying new natural molecules to enhance chemotherapy treatment or improve sensitization to conventional therapies has become a key objective. Here, we evaluated the effect of Xanthohumol (XN) extracted from hop on SKMEL-28 melanoma cells and their sensitization to vemurafenib (VEM) treatment. We measured the XN effect on cell viability and apoptosis. We also assessed the effect of XN on membrane fluidity and membrane cholesterol levels. Finally, we studied the impact of XN on cell sensitization to VEM. Here, we showed that XN reduced SKMEL-28 cell viability through an apoptotic mechanism. Our results demonstrated the potential role of XN in sensitizing cancer cells to VEM with a less toxic effect on non-tumor cells. A study of XN's molecular mechanism showed that XN was able to induce cholesterol depletion and increased fluidity in SKMEL-28 cancer cells. This leads to an increase in VEM incorporation. Here, we describe the importance of the strategy to modulate membrane fluidity by XN in order to significantly improve anticancer therapy.
Collapse
Affiliation(s)
- Marine Devinat
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Jessica Thevenard-Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Fatiha Ghilane
- Laboratoire de Biologie des Pathologies Humaines, Université Mohammed V de Rabat, 4 Avenue Ibn Battouta, Rabat B.P. 1014 RP, Morocco;
| | - Jerome Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Lise Chazee
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Christine Terryn
- Plateau Technique en Imagerie Cellulaire et Tissulaire (PICT) Pôle Santé, UFR Pharmacie, Université de Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51096 Reims, France;
| | - Laurent Duca
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Emmanuelle Devarenne-Charpentier
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Hassan El Btaouri
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| |
Collapse
|
15
|
Thakur GS, Gupta AK, Pal D, Vaishnav Y, Kumar N, Annadurai S, Jain SK. Designing novel cabozantinib analogues as p-glycoprotein inhibitors to target cancer cell resistance using molecular docking study, ADMET screening, bioisosteric approach, and molecular dynamics simulations. Front Chem 2025; 13:1543075. [PMID: 40084274 PMCID: PMC11903459 DOI: 10.3389/fchem.2025.1543075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction One of the foremost contributors to mortality worldwide is cancer. Chemotherapy remains the principal strategy for cancer treatment. A significant factor leading to the failure of cancer chemotherapy is the phenomenon of multidrug resistance (MDR) in cancer cells. The primary instigator of MDR is the over expression of P-glycoprotein (P-gp), a protein that imparts resistance and facilitates the ATP-dependent efflux of various anticancer agents. Numerous efforts have been made to inhibit P-gp function with the aim of restoring the effectiveness of chemotherapy due to its broad specificity. The main objective has been to create compounds that either serve as direct P-gp inhibitors or interact with cancer therapies to modulate transport. Despite substantial in vitro achievements, there are currently no approved drugs available that can effectively "block" P-gp mediated resistance. Cabozantinib (CBZ), a multi-kinase inhibitor, is utilized in the treatment of various carcinomas. CBZ has been shown to inhibit P-gp efflux activity, thereby reversing P-gp mediated MDR. Consequently, P-gp has emerged as a critical target for research in anti-cancer therapies. Methods The purpose of this study was to computationally identify new andsafer analogues of CBZ using bioisosteric approach, focusing on improved pharmacokinetic properties andreduced toxicity. The physicochemical, medicinal, and ADMET profiles of generated analogues were computed using the ADMETLab 3.0 server. We also predicted the drug likeness (DL) and drug score (DS) of analogues. The molecular docking studies of screened analogues against the protein (PDB ID: 3G5U) were conducted using AutoDock Vina flowing by BIOVIA Discovery Studio for visualizing interactions.Molecular dynamics (MD) simulation of docked ligands was done using Schrödinger suite. Results and Discussion The docking scores for the ligands CBZ01, CBZ06, CBZ11, CBZ13, CBZ25, CBZ34, and CBZ38 ranged from -8.0 to -6.4 kcal/mol against the protein (PDB ID: 3G5U). A molecular dynamics (MD) simulation of CBZ01, CBZ13, and CBZ38 was conducted using the Schrödinger suite, revealing that these complexesmaintained stability throughout the 100 ns simulation. Conclusion An integrated computational approach combining bioisosteric approach, molecular docking, drug likeness calculations, and MD simulations highlights the promise of ligands CBZ01 and CBZ13 as candidates for the development of potential anticancer agents for the treatment of various cancers.
Collapse
Affiliation(s)
- Gajendra Singh Thakur
- Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Gupta
- Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Dipti Pal
- Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Yogesh Vaishnav
- Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Udaipur, Rajasthan, India
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sanmati Kumar Jain
- Drug Discovery and Research Laboratory, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
16
|
Jafar NNA, Abd Hamid J, M A Altalbawy F, Sharma P, Kumar A, Shomurotova S, Jihad Albadr R, Atiyah Altameemi KK, Mahdi Saleh H, Alajeeli F, Mohammed Ahmed A, Ahmad I, Dawood II. Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics. J Microencapsul 2025:1-27. [PMID: 39992246 DOI: 10.1080/02652048.2025.2469259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.
Collapse
Affiliation(s)
- Nadhir N A Jafar
- AL-Zahraa University for Women, College of Health and Medical Technology, Kerbala, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pawan Sharma
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | | | | | - Hawraa Mahdi Saleh
- Department of Dentistry, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Fakhri Alajeeli
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, Iraq
| | - Ahmed Mohammed Ahmed
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Imad Ibrahim Dawood
- Department of Medical Laboratories Technology, Mazaya University College, Nasiriyah, Iraq
| |
Collapse
|
17
|
Długosz A, Błaszak B, Czarnecki D, Szulc J. Mechanism of Action and Therapeutic Potential of Xanthohumol in Prevention of Selected Neurodegenerative Diseases. Molecules 2025; 30:694. [PMID: 39942798 PMCID: PMC11821245 DOI: 10.3390/molecules30030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Xanthohumol (XN), a bioactive plant flavonoid, is an antioxidant, and as such, it exhibits numerous beneficial properties, including anti-inflammatory, antimicrobial, and antioxidative effects. The main dietary source of XN is beer, where it is introduced through hops. Although the concentration of XN in beer is low, the large quantities of hop-related post-production waste present an opportunity to extract XN residues for technological or pharmaceutical purposes. The presented study focuses on the role of XN in the prevention of neurodegenerative diseases, analyzing its effect at a molecular level and including its signal transduction and metabolism. The paper brings up XN's mechanism of action, potential effects, and experimental and clinical studies on Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Additionally, challenges and future research directions on XN, including its bioavailability, safety, and tolerance, have been discussed.
Collapse
Affiliation(s)
- Anna Długosz
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Błażej Błaszak
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Faculty of Health Sciences, Department of Preventive Nursing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-821 Bydgoszcz, Poland;
| | - Joanna Szulc
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
18
|
Salem MM, Gerges MN, Abd El Salam HA, Noser AA. New thiadiazolopyrimidine-ornamented pyrazolones as prospective anticancer candidates via suppressing VEGFR-2/PI3K/Akt signaling pathway: Synthesis, characterization, in-silico, and in-vitro studies. Int J Biol Macromol 2025; 289:138735. [PMID: 39689791 DOI: 10.1016/j.ijbiomac.2024.138735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
New thiadiazolopyrimidine-ornamented pyrazolones (4a-8b) have been synthesized by a cyclocondensation reaction of 3a, b with different active methylene compounds. The structure of our products was confirmed via different physical and spectroscopic data. We assessed all newly thiadiazolopyrimidine-ornamented pyrazolones' potential to inhibit angiogenesis, metastasis, and cancer growth by utilizing in-silico investigations focused on the VEGFR-2 signaling pathway and elucidate their pharmacokinetic features using ADMET. Based on our results, compound 8b was chosen for in vitro evaluation since it had the highest binding energy of -10.252 kcal/mol using molecular docking. Compound 8b significantly damaged the T47D (IC50 = 33.01 ± 2.2 μM) cells, without any toxic effect on normal cells in comparison to chemotheraputic FDA approved drug cisplatin (Cis) (IC50 = 3.163 ± 1.7 μM). Additionally, compound 8b significantly suppressed the VEGFR-2 receptor protein that triggers the inhibition of PI3K/Akt genes which causes mitochondrial membrane malfunction resulting in Bax overexpression and Bcl-2 downregulation levels. Besides, compound 8b showed a notable decrease in the levels of nitric oxide (NO) production levels and arrested the cell cycle in the G0/G1 stage. These outcomes demonstrated that compound 8b adhered to Lipinski's rules and may serve as a potential candidate for future breast cancer treatments via obstructing the VEGFR-2/PI3K/Akt signaling pathway, which in turn prevents metastasis, angiogenesis, and proliferation.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Hayam A Abd El Salam
- Green Chemistry Department, National Research Centre, Dokki, Giza 12622, Cairo, Egypt
| | - Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
19
|
Gang R, Okello D, Ban Y, Kang Y. A systematic review of Aspilia africana (Pers.) C.D. adams traditional medicinal uses, phytoconstituents, bioactivities, and toxicities. Pharmacol Res 2025; 212:107590. [PMID: 39778640 DOI: 10.1016/j.phrs.2025.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Aspilia africana (Pers.) C. D. Adams, popularly referred to as wild sunflower, has been used for generations across several African communities to treat various diseases, including malaria, wounds, osteoporosis, diabetes mellitus, gastric ulcers, measles, tuberculosis, stomach ache, rheumatic pains, and gonorrhea. This study aimed to systematically and critically compile data on the traditional medicinal uses, phytochemistry, bioactivities, botanical descriptions, and toxicities of A. africana. Relevant research findings were retrieved and organized from various databases, including PubMed and ScienceDirect, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. To date, 149 phytochemicals have been identified from various A. africana parts and they primarily belong to the classes of terpenoids, lipids, hydrocarbons, phenolics, and esters. The extracts and bioactive phytochemicals of A. africana have revealed several pharmacological properties, including antimalarial, anticancer, wound healing, anti-inflammatory, antidiabetic, and antimicrobial activities. However, the major components responsible for these bioactivities and their mechanisms of action in some diseases have not yet been clearly identified. Additionally, toxicity and clinical trial data for A. africana are limited with most toxicological assessments being acute in nature. Therefore, further research on the mechanisms of action of the pure bioactive phytochemicals and toxicity of A. africana are necessary to better understand its efficacy and safety. Taken together, this study provides comprehensive information on the traditional medicinal uses, phytochemistry, bioactivities, and toxicity of A. africana, and a reference for future studies, relevant to the development of therapeutic products.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea; National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Kabale University, PO Box 317, Kabale, Uganda
| | - Yeongjun Ban
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea
| | - Youngmin Kang
- Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea.
| |
Collapse
|
20
|
Zang J, Yin F, Liu Z, Li F, Zhang Y. Bacteria-tumor symbiosis destructible novel nanocatalysis drug delivery systems for effective tumor therapy. Nanomedicine (Lond) 2025; 20:305-318. [PMID: 39889806 PMCID: PMC11792809 DOI: 10.1080/17435889.2024.2443388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 02/03/2025] Open
Abstract
Colorectal cancer (CRC) is a significant threat to human health. The dynamic equilibrium between probiotics and pathogenic bacteria within the gut microbiota is crucial in mitigating the risk of CRC. An overgrowth of harmful microorganisms in the gastrointestinal tract can result in an excessive accumulation of bacterial toxins and carcinogenic metabolites, thereby disrupting the delicate balance of the microbiota. This disruption may lead to alterations in microbial composition, impairment of mucosal barrier function, potential promotion of abnormal cell proliferation, and ultimately contribute to the progression of CRC. Recently, research has indicated that intestinal presence of Fusobacterium nucleatum (Fn) significantly influences the onset, progression, and metastasis of CRC. Consequently, disrupting the interaction between CRC cells and Fn presents a promising strategy against CRC. Nanomaterials have been extensively utilized in cancer therapy and bacterial infection control, demonstrating substantial potential in treating bacteria-associated tumors. This review begins by elucidating the mechanisms of gut microbiota and the occurrence and progression of CRC, with a particular emphasis on clarifying the intricate relationship between Fn and CRC. Subsequently, we highlight strategies that utilize nanomaterials to disrupt the association between Fn and CRC. Overall, this review offers valuable insight and guidance for leveraging nanomaterials in CRC therapy.
Collapse
Affiliation(s)
- Jing Zang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fang Yin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Ziyuan Liu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fengqian Li
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Department of Pharmacy, Shanghai Eighth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
21
|
Zhang D, Zhang B. cGAS/STING signaling pathway in gynecological malignancies: From molecular mechanisms to therapeutic values. Front Immunol 2025; 16:1525736. [PMID: 39949780 PMCID: PMC11821648 DOI: 10.3389/fimmu.2025.1525736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
Gynecological cancers, including cervical, ovarian, and endometrial malignancies, remain a significant global health burden, exacerbated by disparities in access to preventive measures such as HPV vaccination and routine screening. The cGAS/STING signaling pathway, a pivotal mechanism in innate immunity, detects cytosolic DNA from pathogens or cellular damage, triggering immune responses via type I interferons and inflammatory cytokines. This pathway's dual role in gynecological cancers, either promoting antitumor immunity or facilitating tumor immune evasion, makes it a compelling target for innovative therapies. The article outlines cGAS/STING's influence on tumor microenvironments, immune surveillance, and inflammation, with emphasis on molecular mechanisms driving cancer progression. It explores interactions between DNA damage response pathways and immune modulation, highlighting the impact of cGAS/STING activation or suppression in ovarian, cervical, and endometrial cancers. The therapeutic potential of STING agonists, PARP inhibitors, and targeted immunotherapies is reviewed, demonstrating how these approaches can boost immune responses, counteract chemotherapy resistance, and improve patient outcomes. The study also discusses strategies for leveraging cGAS/STING signaling to enhance the efficacy of immunotherapies and address tumor-mediated immune suppression, providing insights into future directions for personalized cancer treatments.
Collapse
Affiliation(s)
| | - Bingxue Zhang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Chen L, Han D, Gu C, Huang W. Biological Effects of Calceolarioside A as a Natural Compound: Anti-Ovarian Cancer, Anti-Tyrosinase, and Anti-HMG-CoA Reductase Potentials with Molecular Docking and Dynamics Simulation Studies. Mol Biotechnol 2025:10.1007/s12033-025-01369-w. [PMID: 39820851 DOI: 10.1007/s12033-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
One kind of hydroxycinnamic acid is calceolarioside A. Plantago coronopus, Cassinopsis madagascariensis, and other organisms for whom data are available are known to have this naturally occurring compound. IC50 values of Calceolarioside A for ovarian cell lines (NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, UWB1.289) were 24.42, 13.50, 9.31, 14.90, 20.07, and 16.18 µM, respectively. IC50 values were 19.83 and 73.48 µM for tyrosinase and HMG-CoA reductase enzymes. The chemical activities of Calceolarioside A against HMG-CoA reductase and tyrosinase were assessed by conducting the molecular docking study, MM/GBSA calculation, and molecular dynamics (MD) simulation. The anticancer activities of this compound were evaluated against some ovarian cancer cells, such as NIH-OVCAR-3, ES-2, UACC-1598, Hs832.Tc, TOV-21G, and UWB1.289 cell lines. The chemical activities of Calceolarioside A against some of the expressed surface receptor proteins (folate receptor, CD44, EGFR, Formyl Peptide Receptor-Like 1, M2 muscarinic receptor, and estrogen receptors) were investigated using computational methods. The results exhibited the interplay among atoms. The compound formed robust associations with both the enzymes and receptors. Calceolarioside A can hinder the functioning of these enzymes and the proliferation of malignant cells.
Collapse
Affiliation(s)
- Liqin Chen
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Dan Han
- Department of Physical Examination Center, Ezhou Central Hospital, Ezhou, 436000, Hubei, China
| | - ChunYan Gu
- Department of Gynecology and Obstetrics Nantong, Haimen People's Hospital, Nantong, 226100, Jiangsu, China
| | - Wei Huang
- Department of Gynecologic and Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China.
| |
Collapse
|
23
|
Liu CY, Li Z, Cheng FE, Nan Y, Li WQ. Radix Codonopsis: a review of anticancer pharmacological activities. Front Pharmacol 2025; 15:1498707. [PMID: 39840099 PMCID: PMC11747557 DOI: 10.3389/fphar.2024.1498707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Radix Codonopsis (Dangshen), derived from the dried root of plants in the Campanulaceae family, is a widely used Chinese herbal medicine. It is renowned for its pharmacological effects, including tonifying the middle qi, invigorating the spleen, benefiting the lungs, enhancing immunity, and nourishing the blood. Codonopsis extract is frequently incorporated into health products such as tablets and capsules, making it accessible for daily health maintenance. Additionally, it is commonly used in dietary applications like soups, teas, and porridges to nourish qi, enrich blood, and promote overall vitality. In recent years, increasing attention has been given to the anti-cancer potential of Radix Codonopsis. Studies have identified key active components such as luteolin, stigmasterol, polyacetylenes, lobetyolin, and glycitein, which exhibit anti-tumor properties through mechanisms like inhibiting cancer cell growth and proliferation, suppressing epithelial-mesenchymal transition (EMT), and inducing apoptosis. This review highlights the research progress on Radix Codonopsis, including its active constituents, anti-cancer mechanisms, and its role in the convergence of medicine and food in modern life. By doing so, it aims to provide valuable insights and references for future scientific studies and clinical applications of Radix Codonopsis.
Collapse
Affiliation(s)
- Cai-Yue Liu
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Zheng Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Fan-E. Cheng
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
| | - Yi Nan
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Wei-Qiang Li
- Ningxia Medical University, Ningxia of Traditional Chinese Medicine, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Muslim WT, Mohammad LJ, Naji MM, Karimi I, Al-Sabti MD, Jabir M, Najm MAA, Schiöth HB. Synthesis, characterization, and computational evaluation of some synthesized xanthone derivatives: focus on kinase target network and biomedical properties. Front Pharmacol 2025; 15:1511627. [PMID: 39830340 PMCID: PMC11738930 DOI: 10.3389/fphar.2024.1511627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and in silico target fishing of novel xanthone derivatives. Methods The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds. Xanthydrol reacted sequentially with ethyl chloroacetate, hydrazine, carbon disulfide, and α-haloketones to prepare the dithiolane. The xanthydrol reacted with propargyl bromide and it submitted to click reaction with azide to prepare triazole ring. Results Finally, four novel xanthones derivatives including (E)-2-(2-(9H-xanthen-9-yl)hydrazono)-1,3-dithiolan-4-one (L3), 2-(2-(9H-xanthen-9-yl)hydrazinyl)thiazol-5(4H)-one (L5), 2-(9H-xanthen-9-ylamino)thiazol-5(4H)-one (L7), and 4-((9H-xanthen-9-yloxy)methyl)-1-(4-nitrophenyl)-1H-1,2,3-triazole (L9) were synthesized and characterized using thin layer chromatography, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance (1H and 13C). ADMET, Pfizer filter, adverse drug reaction, toxicity, antitarget interaction profiles, target fishing, kinase target screening, molecular docking validation, and protein and gene network analysis were computed for derivatives. Ligands obeyed Pfizer filter for drug-likeness, while all ligands were categorized as toxic chemicals. Major targets of all ligands were predicted to be kinases including Haspin, WEE2, and PIM3. Mitogen-activated protein kinase 1 was the hub gene of target kinase network of all derivatives. All the ligands were predicted to show hepatotoxic potentials, while L7 presented cardiac toxicity. Conclusion Acute leukemic T-cells were one of the top predicted tumor cell lines for these ligands. The possible antileukemic effects of synthesized xanthone derivatives are potentially very interesting and warrant further studies.
Collapse
Affiliation(s)
- Wisam Taher Muslim
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kufa University, Najaf City, Iraq
| | - Layth Jasim Mohammad
- Department of Microbiology, College of Medicine, Babylon University, Hilla City, Iraq
| | - Munaf M. Naji
- Clinical-Laboratory Sciences, College of Pharmacy, Kufa University, Najaf City, Iraq
| | - Isaac Karimi
- Reseach Group of Bioengineering and Biotechnology, Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Majid Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Mazin A. A. Najm
- Department of Pharmacy, Mazaya University Collage, Nasiriyah, Iraq
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Kakar M, Ullah S, Khan A, Nazir S. Evaluation of efficacy of GCSF in reducing neutropenia among carcinoma patients undergoing anti-cancer chemotherapy. A prospective cohort study. PLoS One 2025; 20:e0315435. [PMID: 39746072 PMCID: PMC11695004 DOI: 10.1371/journal.pone.0315435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
The use of granulocyte colony-stimulating factor (GCSF) to control febrile neutropenia (FN) caused by anti-cancer chemotherapy is well documented but it still needs to evaluated with respect to the specific type of cancer and chemotherapeutic agents. The present study evaluates the efficacy of adjunctive GCSF for treating FN after taking anticancer therapy by measuring clinical, hematological and microbiological outcomes. It is a single center study conducted at Hayatabad Medical Complex (HMC), Peshawar, Pakistan. Adult patients of both genders, suffering from different types of sarcomas and taking anticancer chemotherapy were included in the study. The study was conducted between January 2023 and January 2024. Baseline data including demographic data, medication history and hematological evaluation of all the patients was recorded at the time of enrolment. Primary outcomes of the study were the extent of absolute neutrophil count (ANC) recovery, duration and severity of neutropenia (grade IV), period to fever resolution. After the therapy (with and without adjunctive GCSF) clinical outcomes, hematological evaluation and microbiological data was compared and evaluated. All the data was statistically analyzed by SPSS (IBMS, version 20). A total number of 120 patients were investigated out of which data of 109 patients was included. Out of 109 patients, 64 (58.72%) received adjunctive GCSF therapy, and 45 (41.28%) did not receive adjunctive GCSF. Comparison of the data showed that the patients receiving adjunctive GCSF had a significant improvement ANC recovery time, better recovery of fever and patients were free of infections. This study concluded that adjunctive GCSF therapy benefits the patients undergoing anticancer treatment for different types of carcinoma.
Collapse
Affiliation(s)
- Maria Kakar
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Shabnam Nazir
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| |
Collapse
|
26
|
Khalid T, Malik A, Rasool N, Kanwal A, Nawaz H, Almas I. Cracking the code: the clinical and molecular impact of aminopyridines; a review (2019-2024). RSC Adv 2025; 15:688-711. [PMID: 39781020 PMCID: PMC11708541 DOI: 10.1039/d4ra07438f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives. A vast array of biological and pharmacological effects can result from the interaction of aminopyridine rings with different enzymes and receptors, due to their unique structural properties. Aminopyridine research is continually growing, and there are now greater expectations for how it may aid in the treatment of numerous disorders. This review article will serve as an innovative platform for researchers investigating aminopyridine compounds, intending thoroughly to examine both traditional and novel synthesis strategies in addition to investigating the various biological characteristics displayed by these adaptable heterocycles. We attempt to provide valuable insights that will contribute to further progress in the synthesis and utilization of aminopyridines in various fields.
Collapse
Affiliation(s)
- Tahira Khalid
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Ayesha Malik
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Hamna Nawaz
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Iffat Almas
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan
| |
Collapse
|
27
|
Rawat S, Moglad E, Afzal M, Goyal A, Roopashree R, Bansal P, Mishra S, Prasad GVS, Pramanik A, Alzarea SI, Ali H, Imran M, Abida. Reprogramming tumor-associated macrophages: The role of MEK-STAT3 inhibition in lung cancer. Pathol Res Pract 2025; 265:155748. [PMID: 39616977 DOI: 10.1016/j.prp.2024.155748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Tumor-associated macrophages (TAMs) crucially contribute to lung cancer's advancement and escape from the immune system. TAMs, particularly the M2 phenotype, promote an immunosuppressive microenvironment, facilitating tumor growth and metastasis. The MEK-STAT3 signalling pathway is a critical mediator in this process, driving TAM reprogramming and contributing to lung cancer's resistance to treatment. Inhibiting the MEK and STAT3 pathways disrupts key cancer-promoting mechanisms, including immune evasion, angiogenesis, and metastasis. Preclinical studies have demonstrated the effectiveness of MEK inhibitors, such as trametinib and selumetinib, in synergistic therapies for NSCLC, particularly in modulating the tumor microenvironment. We analyse the present understanding of approaches that can transform TAMs via the inhibition of MEK-STAT3 with either solo or combined treatments in lung cancer therapy.
Collapse
Affiliation(s)
- Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - R Roopashree
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
28
|
Torghabe SY, Alavi P, Rostami S, Davies NM, Kesharwani P, Karav S, Sahebkar A. Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer. Pathol Res Pract 2025; 265:155741. [PMID: 39612810 DOI: 10.1016/j.prp.2024.155741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps. Dietary phytochemicals have been identified as having the potential to inhibit carcinogenesis recently. As part of this group of phytochemicals, curcumin can play a crucial role in suppressing carcinogenesis by changing many reactions affected by the ubiquitin-proteasome pathway. Due to its ability to change some biological processes such as NF-κB, inhibit some cyclins, and induce apoptosis, it can be used as a drug in cancer treatment.
Collapse
Affiliation(s)
- Shima Yahoo Torghabe
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Parisa Alavi
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Rostami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Science and Culture University, Tehran, Iran
| | - Neal M Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Hussain SA, Ramasamy M, Shaik MR, Shaik B, Deepak P, Thiyagarajulu N, Matharasi Antonyraj AP, Guru A. Inhibition of Oral Biofilms and Enhancement of Anticancer Activity on Oral Squamous Carcinoma Cells Using Caffeine-Coated Titanium Oxide Nanoparticles. Chem Biodivers 2024:e202402476. [PMID: 39715068 DOI: 10.1002/cbdv.202402476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Abstract
The fungus Candida albicans is a prominent cariogenic fungal agent that works in association with Streptococcus mutans to accelerate the formation of oral cancer and tooth decay. This study evaluates caffeine-encapsulated titanium oxide nanoparticles (CF-TiO2 NPs) for their potential to prevent biofilm formation on teeth and enhance oral anticancer treatment by influencing apoptotic gene regulation. The synthesized CF-TiO2 NPs were characterized using ultraviolet, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy analyses, and their antioxidant activity was confirmed through free radical quenching studies. Antimicrobial efficacy was assessed using a zone of inhibition test, revealing strong activity against dental pathogens with a minimal inhibitory concentration of 80 µg/mL. Molecular docking using AutoDock explored interactions between CF and biofilm target sites, supporting their inhibitory potential. In vitro cytotoxicity studies on KB cancer cells showed a dose-dependent increase in cytotoxic effects, with CF-TiO2 NPs promoting apoptotic gene upregulation at concentrations of 20-160 µg/mL. CF-TiO2 NPs demonstrated excellent antioxidant, antibacterial, and anticancer properties, showcasing their promise for oral therapeutic applications. This research highlights a novel approach to managing oral infections and associated complications while improving systemic oral health. Notably, this study is the first to report the biofilm-inhibitory and anticancer potential of CF-TiO2 NPs.
Collapse
Affiliation(s)
- Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohankumar Ramasamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, India
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Paramasivam Deepak
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | | | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
30
|
Piekara J, Piasecka-Kwiatkowska D. Antioxidant Potential of Xanthohumol in Disease Prevention: Evidence from Human and Animal Studies. Antioxidants (Basel) 2024; 13:1559. [PMID: 39765887 PMCID: PMC11674025 DOI: 10.3390/antiox13121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e., cancer and neurodegenerative diseases. The review aims to examine the antioxidant role of XN in disease prevention, with an emphasis on the benefits and risks associated with its supplementation. The regulation by XN of the Nrf2/NF-kB/mTOR/AKT (Nuclear factor erythroid 2-related factor 2/Nuclear factor kappa-light-chain-enhancer of activated B cells/Mammalian target of rapamycin/Protein Kinase B) pathways induce a strong antioxidant and anti-inflammatory effect, among others the acceleration of autophagy through increased synthesis of Bcl-2 (B-cell lymphoma 2) proteins, inhibition of the synthesis of VEGF (Vascular-endothelial growth factor) responsible for angiogenesis and phosphorylation of HKII (Hexokinase II). It is the key function of XN to ameliorate inflammation and to promote the healing process in organs. However, existing data also indicate that XN may have adverse effects in certain diseases, such as advanced prostate cancer, where it activates the AMPK (activated protein kinase) pathway responsible for restoring cellular energy balance. This potential risk may explain why XN has not been classified as a therapeutic drug so far and proves that further research is needed to determine the effectiveness of XN against selected disease entities at a given stage of the disease.
Collapse
Affiliation(s)
| | - Dorota Piasecka-Kwiatkowska
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland;
| |
Collapse
|
31
|
Yang Q, Yuan W, Zhao T, Jiao Y, Tang M, Cong Z, Wu S. Magnetic-Powered Spora Lygodii Microrobots Loaded with Doxorubicin for Active and Targeted Therapy of Bladder Cancer. Drug Des Devel Ther 2024; 18:5841-5851. [PMID: 39679132 PMCID: PMC11638078 DOI: 10.2147/dddt.s490652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024] Open
Abstract
Background and Purpose Bladder cancer has high recurrence rates despite standard treatments, necessitating innovative therapeutic approaches. This study introduces magnetically powered microrobots utilizing Traditional Chinese Medicine (TCM) Spora Lygodii (SL) encapsulated with Doxorubicin (DOX) and Fe3O4 nanoparticles (Fe/DOX@SL) for targeted therapy. Methods Fe3O4 nanoparticles were synthesized via co-precipitation and combined with SL spores and DOX through dip-coating to form Fe/DOX@SL microrobots. Their propulsion was controlled by a rotating magnetic field (RMF) for precise delivery. The microrobots' mobility and adherence were assessed in various biological media. Therapeutic efficacy was evaluated using an orthotopic bladder cancer model in mice treated intravesically with Fe/DOX@SL under RMF guidance, compared to controls. Results Fe/DOX@SL microrobots demonstrated efficient movement and stable navigation in biological environments. In vivo experiments showed superior retention in the bladder, prolonged adherence to the mucosa, and significantly enhanced tumor suppression in the RMF-guided group. Bioluminescence imaging confirmed reduced tumor growth, and histological analysis revealed substantial tumor regression compared to other treatments. Discussion and Conclusion This study highlights the potential of integrating TCM with advanced microrobotics. The biocompatible Fe/DOX@SL microrobots leverage SL's therapeutic properties and fuel-free magnetic control to overcome challenges in bladder cancer treatment, such as poor drug retention and off-target toxicity. This novel platform represents a promising advancement in targeted cancer therapy. The innovative fusion of TCM and microrobotics introduces a potent, targeted therapeutic strategy for bladder cancer, paving the way for broader biomedical applications.
Collapse
MESH Headings
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
- Animals
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- Doxorubicin/administration & dosage
- Mice
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/administration & dosage
- Humans
- Drug Screening Assays, Antitumor
- Drug Delivery Systems
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Cell Proliferation/drug effects
- Female
- Medicine, Chinese Traditional
- Magnetic Fields
- Mice, Inbred BALB C
- Magnetite Nanoparticles/chemistry
- Particle Size
- Cell Line, Tumor
- Mice, Nude
Collapse
Affiliation(s)
- Qingxin Yang
- Department of Pharmacy, Mianyang Orthopaedic Hospital, Mianyang, 621000, People’s Republic of China
- Mianyang Key Laboratory of Development and Utilization of Chinese Medicine Resources, Mianyang, 621000, People’s Republic of China
- The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu People’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Wen Yuan
- Mianyang Key Laboratory of Development and Utilization of Chinese Medicine Resources, Mianyang, 621000, People’s Republic of China
| | - Tinghui Zhao
- Department of Burns and Plastic Surgery, Mianyang Central Hospital, Mianyang, 621000, People’s Republic of China
| | - Yanixao Jiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95817, USA
| | - Menghuan Tang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95817, USA
| | - Zhaoqing Cong
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95817, USA
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People’s Republic of China
| | - Song Wu
- South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People’s Republic of China
| |
Collapse
|
32
|
Murugan R, Nayak SPRR, Haridevamuthu B, Priya D, Rajagopal R, Pasupuleti M, Guru A, Kumaradoss KM, Arockiaraj J. Multifaceted evaluation of pyrazole derivative (T4)-chitosan (CS) nanoparticles: Morphology, drug release, and anti-tumor efficacy in a rat model. Int J Biol Macromol 2024; 283:137702. [PMID: 39549794 DOI: 10.1016/j.ijbiomac.2024.137702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The development of targeted nanotherapeutics has emerged as a pivotal advancement in cancer treatment, aiming to enhance the efficacy and specificity of drug delivery while minimizing systemic toxicity. Due to their biocompatibility and modifiable surface properties, Chitosan-based nanoparticles have shown considerable promise in encapsulating and delivering therapeutic agents directly to tumor sites. This study investigates the potential of 1,5-diary pyrazole derivative (T4)-loaded chitosan (CS) nanoparticles as a novel anticancer agent, evaluating their physical characteristics, in vivo biodistribution, and therapeutic efficacy against cancerous cells. SEM morphological analysis confirmed chitosan-based nanoparticles' smooth, spherical structure, with aggregation patterns typical of high surface energy nanoparticle synthesis. UV-visible spectroscopy and XRD analysis validated the successful incorporation of T4, showing characteristic absorption peaks and indicating a reduction in crystallinity desirable for enhanced drug release. In vivo imaging demonstrated the rapid systemic distribution of T4-CS nanoparticles, essential for delivering therapeutic agents effectively. The cytotoxic potential of T4-CS nanoparticles was significantly higher against cancer cells compared to controls, confirmed by MTT and scratch assays, indicating enhanced anti-cancer activity and potential inhibition of cancer metastasis. Furthermore, histological and gene expression analyses supported the anti-tumor and pro-apoptotic capabilities of T4-CS nanoparticles, showing reduced proliferation markers and inflammatory pathways. Behavioral assessments in rats highlighted the neuroprotective effects of T4-CS nanoparticles against 7,12-dimethyl benzanthracene (DMBA) induced neurotoxicity, suggesting their utility as both anticancer and neuroprotective agents. This multifaceted evaluation underscores the versatility and therapeutic potential of T4-CS nanoparticles, warranting further investigation into their mechanistic effects and clinical applications.
Collapse
Affiliation(s)
- Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - D Priya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CDRI), Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
33
|
de Cordova Kindermann S, Caon G, Boeck CR, de Oliveira Bauer C, Dos Santos da Silva N, Possamai OL, Longaretti LM, Magenis ML, Damiani AP, de Oliveira Monteiro I, de Andrade VM. Moderate India Pale Ale beer consumption promotes antigenotoxic and non-mutagenic effects in ex vivo and in vivo mice models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8991-9000. [PMID: 38975867 DOI: 10.1002/jsfa.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Schellen de Cordova Kindermann
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Glauco Caon
- Laboratório de Metabolismo e Endocrinologia Comparada, Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Carina Rodrigues Boeck
- Mestrado em Ciências da Saúde e da Vida, Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brazil
| | - Carla de Oliveira Bauer
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Nicollas Dos Santos da Silva
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Otavio Lucio Possamai
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Luiza Martins Longaretti
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, Brazil
| |
Collapse
|
34
|
Zhang YL, Sun SJ, Zeng L. Biological effects and mechanisms of dietary chalcones: latest research progress, future research strategies, and challenges. Food Funct 2024; 15:10582-10599. [PMID: 39392421 DOI: 10.1039/d4fo03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Dietary plants are an indispensable part of the human diet, and the various natural active compounds they contain, especially polyphenols, polysaccharides, and amino acids, have always been a hot topic of research among nutritionists. As precursors to polyphenolic substances in dietary plants, chalcones are not only widely distributed but also possess a variety of biological activities due to their unique structure. However, there has not yet been a comprehensive article summarizing the biological activities and mechanisms of dietary chalcones. This review began by discussing the dietary sources and bioavailability of chalcones, providing a comprehensive description of their biological activities and mechanisms of action in antioxidation, anti-inflammation, anti-tumor, and resistance to pathogenic microbes. Additionally, based on the latest research findings, some future research strategies and challenges for dietary chalcones have been proposed, including computer-aided design and molecular docking, targeted biosynthesis and derivative design, interactions between the gut microbiota and chalcones, as well as clinical research. It is expected that this review will contribute to supplementing the scientific understanding of dietary chalcones and promoting their practical application and the development of new food products.
Collapse
Affiliation(s)
- Yun Liang Zhang
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Shuang Jiao Sun
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Li Zeng
- Department of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China.
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
35
|
Łój D, Janeczko T, Bartmańska A, Huszcza E, Tronina T. Biotransformation of Xanthohumol by Entomopathogenic Filamentous Fungi. Int J Mol Sci 2024; 25:10433. [PMID: 39408760 PMCID: PMC11477118 DOI: 10.3390/ijms251910433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Xanthohumol (1) is a major prenylated flavonoid in hops (Humulus lupulus L.) which exhibits a broad spectrum of health-promoting and therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, and anticancer effects. However, due to its lipophilic nature, it is poorly soluble in water and barely absorbed from the gastrointestinal tract, which greatly limits its therapeutic potential. One method of increasing the solubility of active compounds is their conjugation to polar molecules, such as sugars. Sugar moiety introduced into the flavonoid molecule significantly increases polarity, which results in better water solubility and often leads to greater bioavailability. Entomopathogenic fungi are well known for their ability to catalyze O-glycosylation reactions. Therefore, we investigated the ability of selected entomopathogenic filamentous fungi to biotransform xanthohumol (1). As a result of the experiments, one aglycone (2) and five glycosides (3-7) were obtained. The obtained (2″E)-4″-hydroxyxanthohumol 4'-O-β-D-(4‴-O-methyl)-glucopyranoside (5) has never been described in the literature so far. Interestingly, in addition to the expected glycosylation reactions, the tested fungi also catalyzed chalcone-flavanone cyclization reactions, which demonstrates chalcone isomerase-like activity, an enzyme typically found in plants. All these findings undoubtedly indicate that entomopathogenic filamentous fungi are still an underexploited pool of novel enzymes.
Collapse
Affiliation(s)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (D.Ł.); (A.B.); (E.H.)
| | | | | | - Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland; (D.Ł.); (A.B.); (E.H.)
| |
Collapse
|
36
|
Pérez-Valero Á, Magadán-Corpas P, Ye S, Serna-Diestro J, Sordon S, Huszcza E, Popłoński J, Villar CJ, Lombó F. Antitumor Effect and Gut Microbiota Modulation by Quercetin, Luteolin, and Xanthohumol in a Rat Model for Colorectal Cancer Prevention. Nutrients 2024; 16:1161. [PMID: 38674851 PMCID: PMC11054239 DOI: 10.3390/nu16081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer stands as the third most prevalent form of cancer worldwide, with a notable increase in incidence in Western countries, mainly attributable to unhealthy dietary habits and other factors, such as smoking or reduced physical activity. Greater consumption of vegetables and fruits has been associated with a lower incidence of colorectal cancer, which is attributed to their high content of fiber and bioactive compounds, such as flavonoids. In this study, we have tested the flavonoids quercetin, luteolin, and xanthohumol as potential antitumor agents in an animal model of colorectal cancer induced by azoxymethane and dodecyl sodium sulphate. Forty rats were divided into four cohorts: Cohort 1 (control cohort), Cohort 2 (quercetin cohort), Cohort 3 (luteolin cohort), and Cohort 4 (xanthohumol cohort). These flavonoids were administered intraperitoneally to evaluate their antitumor potential as pharmaceutical agents. At the end of the experiment, after euthanasia, different physical parameters and the intestinal microbiota populations were analyzed. Luteolin was effective in significantly reducing the number of tumors compared to the control cohort. Furthermore, the main significant differences at the microbiota level were observed between the control cohort and the cohort treated with luteolin, which experienced a significant reduction in the abundance of genera associated with disease or inflammatory conditions, such as Clostridia UCG-014 or Turicibacter. On the other hand, genera associated with a healthy state, such as Muribaculum, showed a significant increase in the luteolin cohort. These results underline the anti-colorectal cancer potential of luteolin, manifested through a modulation of the intestinal microbiota and a reduction in the number of tumors.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (S.S.); (E.H.); (J.P.)
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain (J.S.-D.); (C.J.V.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
37
|
Dinteren SV, Araya-Cloutier C, Robaczewska E, den Otter M, Witkamp R, Vincken JP, Meijerink J. Switching the polarity of mouse enteroids affects the epithelial interplay with prenylated phenolics from licorice ( Glycyrrhiza) roots. Food Funct 2024; 15:1852-1866. [PMID: 38086658 DOI: 10.1039/d3fo02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The utility of 3D-small intestinal organoid (enteroid) models for evaluating effects of e.g. food (related) compounds is limited due to the apical epithelium facing the interior. To overcome this limitation, we developed a novel 3D-apical-out enteroid model for mice, which allows apical exposure. Using this model, we evaluated the effects on the enteroids' intestinal epithelium (including cytotoxicity, cell viability, and biotransformation) after exposure to glabridin, a prenylated secondary metabolite with antimicrobial properties from licorice roots (Glycyrrhiza glabra). Apical-out enteroids were five times less sensitive to glabridin exposure compared to conventional apical-in enteroids, with obtained cytotoxicities of 1.5 mM and 0.31 mM, respectively. Apical-out enteroids showed a luminal/apical layer of fucose rich mucus, which may contribute to the protection against potential cytotoxicity of glabridin. Furthermore, in apical-in enteroids IC50 values for cytotoxicity were determined for licochalcone A, glycycoumarin, and glabridin, the species-specific prenylated phenolics from the commonly used G. inflata, G. uralensis, and G. glabra, respectively. Both enteroid models differed in their functional phase II biotransformation capacity, where glabridin was transformed to glucuronide- and sulfate-conjugates. Lastly, our results indicate that the prenylated phenolics do not show cytotoxicity in mouse enteroids at previously reported minimum inhibitory concentrations (MICs) against a diverse set of Gram positive bacteria. Altogether, we show that apical-out enteroids provide a better mimic of the gastrointestinal tract compared to conventional enteroids and are consequently a superior model to study effects of food (related) compounds. This work revealed that prenylated phenolics with promising antibacterial activity show no harmful effects in the GI-tract at their MICs and therefore may offer a new perspective to control unwanted microbial growth.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Edyta Robaczewska
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Mellody den Otter
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
38
|
Palanisamy R, Indrajith Kahingalage N, Archibald D, Casari I, Falasca M. Synergistic Anticancer Activity of Plumbagin and Xanthohumol Combination on Pancreatic Cancer Models. Int J Mol Sci 2024; 25:2340. [PMID: 38397018 PMCID: PMC10888694 DOI: 10.3390/ijms25042340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Among diverse cancers, pancreatic cancer is one of the most aggressive types due to inadequate diagnostic options and treatments available. Therefore, there is a necessity to use combination chemotherapy options to overcome the chemoresistance of pancreatic cancer cells. Plumbagin and xanthohumol, natural compounds isolated from the Plumbaginaceae family and Humulus lupulus, respectively, have been used to treat various cancers. In this study, we investigated the anticancer effects of a combination of plumbagin and xanthohumol on pancreatic cancer models, as well as the underlying mechanism. We have screened in vitro numerous plant-derived extracts and compounds and tested in vivo the most effective combination, plumbagin and xanthohumol, using a transgenic model of pancreatic cancer KPC (KrasLSL.G12D/+; p53R172H/+; PdxCretg/+). A significant synergistic anticancer activity of plumbagin and xanthohumol combinations on different pancreatic cancer cell lines was found. The combination treatment of plumbagin and xanthohumol influences the levels of B-cell lymphoma (BCL2), which are known to be associated with apoptosis in both cell lysates and tissues. More importantly, the survival of a transgenic mouse model of pancreatic cancer KPC treated with a combination of plumbagin and xanthohumol was significantly increased, and the effect on BCL2 levels has been confirmed. These results provide a foundation for a potential new treatment for pancreatic cancer based on plumbagin and xanthohumol combinations.
Collapse
Affiliation(s)
- Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia; (R.P.); (N.I.K.); (I.C.)
| | - Nimnaka Indrajith Kahingalage
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia; (R.P.); (N.I.K.); (I.C.)
| | | | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia; (R.P.); (N.I.K.); (I.C.)
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia; (R.P.); (N.I.K.); (I.C.)
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
39
|
Kasica N, Kaleczyc J. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L.) exerts multidirectional pro-healing properties towards damaged zebrafish hair cells by regulating the innate immune response. Toxicol Appl Pharmacol 2024; 483:116809. [PMID: 38211931 DOI: 10.1016/j.taap.2024.116809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Xanthohumol (XN) is a prominent prenylated flavonoid present in the hop plant (Humulus lupulus L.). Despite undoubted pro-healing properties of hop plant, there is still a need for clinical investigations confirming these effects as well as the underlying molecular mechanisms. The present study was designed to (1) establish the role of XN in non-invasive inflammation induced by chemical damage to zebrafish hair cells, (2) clarify if it influences cell injury severity, neutrophil migration, macrophage activation, cell regeneration, and (3) find out whether it modulates the gene expression profile of chosen immune and stress response markers. All experiments were performed on 3 dpf zebrafish larvae. After fertilization the embryos were transferred to appropriate XN solutions (0.1 μM, 0.3 μM and 0.5 μM). The 40 min 10 μM CuSO4 exposure evoked severe damage to posterior lateral line hair cells triggering a robust acute inflammatory response. Four readouts were selected as the indicators of XN role in the process of inflammation: 1) hair cell death, 2) neutrophil migration towards damaged hair cells, 3) macrophage activation and recruitment to damaged hair cells, 4) hair cell regeneration. The assessments involved in vivo confocal microscopy imaging and qPCR based molecular analysis. It was demonstrated that XN (1) influences death pathway of damaged hair cells by redirecting their severe necrotic phenotype into apoptotic one, (2) impacts the immune response via regulating neutrophil migration, macrophage recruitment and activation (3) modulates gene expression of immune system markers and (4) accelerates hair cell regeneration.
Collapse
Affiliation(s)
- Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
40
|
Mendez-Callejas G, Piñeros-Avila M, Yosa-Reyes J, Pestana-Nobles R, Torrenegra R, Camargo-Ubate MF, Bello-Castro AE, Celis CA. A Novel Tri-Hydroxy-Methylated Chalcone Isolated from Chromolaena tacotana with Anti-Cancer Potential Targeting Pro-Survival Proteins. Int J Mol Sci 2023; 24:15185. [PMID: 37894866 PMCID: PMC10607159 DOI: 10.3390/ijms242015185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana) contains bioactive flavonoids that may have antioxidant and/or anti-cancer properties. This study investigated the potential anti-cancer properties of a newly identified chalcone isolated from the inflorescences of the plant Chromolaena tacotana (Klatt) R. M. King and H. Rob (Ch. tacotana). The chalcone structure was determined using HPLC/MS (QTOF), UV, and NMR spectroscopy. The compound cytotoxicity and selectivity were evaluated on prostate, cervical, and breast cancer cell lines using the MTT assay. Apoptosis and autophagy induction were assessed through flow cytometry by detecting annexin V/7-AAD, active Casp3/7, and LC3B proteins. These results were supported by Western blot analysis. Mitochondrial effects on membrane potential, as well as levels of pro- and anti-apoptotic proteins were analyzed using flow cytometry, fluorescent microscopy, and Western blot analysis specifically on a triple-negative breast cancer (TNBC) cell line. Furthermore, molecular docking (MD) and molecular dynamics (MD) simulations were performed to evaluate the interaction between the compounds and pro-survival proteins. The compound identified as 2',3,4-trihydroxy-4',6'-dimethoxy chalcone inhibited the cancer cell line proliferation and induced apoptosis and autophagy. MDA-MB-231, a TNBC cell line, exhibited the highest sensitivity to the compound with good selectivity. This activity was associated with the regulation of mitochondrial membrane potential, activation of the pro-apoptotic proteins, and reduction of anti-apoptotic proteins, thereby triggering the intrinsic apoptotic pathway. The chalcone consistently interacted with anti-apoptotic proteins, particularly the Bcl-2 protein, throughout the simulation period. However, there was a noticeable conformational shift observed with the negative autophagy regulator mTOR protein. Future studies should focus on the molecular mechanisms underlying the anti-cancer potential of the new chalcone and other flavonoids from Ch. tacotana, particularly against predominant cancer cell types.
Collapse
Affiliation(s)
- Gina Mendez-Callejas
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Marco Piñeros-Avila
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada (GIBGA), Laboratorio de Biología Celular y Molecular, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia;
| | - Juvenal Yosa-Reyes
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Roberto Pestana-Nobles
- Grupo de Investigación en Ciencias Exactas, Física y Naturales Aplicadas, Facultad de Ciencias Básicas y Biomédicas, Laboratorio de Simulación Molecular y Bioinformática, Universidad Simón Bolívar, Carrera 59 # 59-65, Barranquilla 080002, Colombia; (J.Y.-R.)
| | - Ruben Torrenegra
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - María F. Camargo-Ubate
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Andrea E. Bello-Castro
- Grupo de Investigación en Productos Naturales de la U.D.C.A. (PRONAUDCA), Laboratorio de Productos Naturales, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 # 55-37, Bogotá 111166, Colombia
| | - Crispin A. Celis
- Grupo de Investigación en Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 # 40-62, Bogotá 1115511, Colombia
| |
Collapse
|
41
|
Webber LC, Anderson LN, Paraiso IL, Metz TO, Bradley R, Stevens JF, Wright AT. Affinity- and activity-based probes synthesized from structurally diverse hops-derived xanthohumol flavonoids reveal highly varied protein profiling in Escherichia coli. RSC Adv 2023; 13:29324-29331. [PMID: 37829707 PMCID: PMC10565736 DOI: 10.1039/d3ra05296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Xanthohumol, the principle prenylflavonoid found in hops (Humulus lupulus) and a reported anti-inflammatory agent, has great potential for pharmaceutical interventions related to inflammatory disorders in the gut. A suite of probes was prepared from xanthohumol and its structural isomer isoxanthohumol to enable profiling of both protein affinity binding and catalytic enzyme reactivity. The regiochemistry of the reactive group on the probes was altered to reveal how probe structure dictates protein labeling, and which probes best emulate the natural flavonoids. Affinity- and activity-based probes were applied to Escherichia coli, and protein labeling was measured by chemoproteomics. Structurally dependent activity-based probe protein labeling demonstrates how subtle alterations in flavonoid structure and probe reactive groups can result in considerably different protein interactions. This work lays the groundwork to expand upon unexplored cellular activities related to xanthohumol interactions, metabolism, and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Lucas C Webber
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Lindsey N Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Ines L Paraiso
- Department of Chemistry, Linus Pauling Institute, Oregon State University Corvallis Oregon 97331 USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine Portland Oregon 97201 USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego La Jolla CA 92093 USA
| | - Jan F Stevens
- Department of Chemistry, Linus Pauling Institute, Oregon State University Corvallis Oregon 97331 USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory Richland Washington 99352 USA
- Department of Biology, Baylor University Waco Texas 76708 USA
- Department of Chemistry & Biochemistry, Baylor University Waco Texas 76708 USA
| |
Collapse
|
42
|
Taiti C, Di Matteo G, Spano M, Vinciguerra V, Masi E, Mannina L, Garzoli S. Metabolomic Approach Based on Analytical Techniques for the Detection of Secondary Metabolites from Humulus lupulus L. Dried Leaves. Int J Mol Sci 2023; 24:13732. [PMID: 37762036 PMCID: PMC10531422 DOI: 10.3390/ijms241813732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the leaves of the hop plant (Humulus lupulus L.) are an unexploited and still little-investigated agricultural by-product. In our study, with the aim of exploring the metabolome of dried hop leaves (Chinook cultivar), a metabolomic approach was applied using multiple analytical tools such as SPME/GC-MS, GC-MS, PTR-ToF-MS, and NMR to identify the secondary metabolites. The obtained results showed the presence of a high number of components belonging to different chemical classes. In fact, thanks to the multi-methodological approach, volatile organic compounds (VOCs) with low molecular weight, terpenic compounds, fatty acids, sugars, amino acids, organic acids, and alcohols have been detected and identified. Among the revealed terpenes in the untreated matrix, the sesquiterpenes α-humulene, β-caryophyllene, and α-copaene were the most abundant. Among the saturated and unsaturated fatty acids, palmitic and linolenic acids, respectively, were those with the highest relative percentages. Particularly relevant was the sugar content, where sucrose was the main exponent while glutamate and asparagine were the principal detected amino acids. Conversely, alcohols and organic acids were the least abundant compound classes, and xanthohumol was also identified in the methanolic extract.
Collapse
Affiliation(s)
- Cosimo Taiti
- Department of Agriculture, Food, Environmental and Forest, Università di Firenze, 50019 Firenze, Italy; (C.T.); (E.M.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Mattia Spano
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy;
| | - Elisa Masi
- Department of Agriculture, Food, Environmental and Forest, Università di Firenze, 50019 Firenze, Italy; (C.T.); (E.M.)
| | - Luisa Mannina
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| | - Stefania Garzoli
- Department of Chemistry and Technology of Drug, Sapienza University, 00185 Rome, Italy; (G.D.M.); (M.S.); (L.M.)
| |
Collapse
|
43
|
Stasiłowicz-Krzemień A, Cielecka-Piontek J. Hop Flower Supercritical Carbon Dioxide Extracts Coupled with Carriers with Solubilizing Properties-Antioxidant Activity and Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1722. [PMID: 37760025 PMCID: PMC10525257 DOI: 10.3390/antiox12091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) extraction with various pressure and temperature parameters. The antioxidant, chelating activity, and inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase by extracts were studied. The extracts containing ethanol were used as references. The most beneficial neuroprotective effects were shown by the extract obtained under 5000 PSI and 50 °C. The neuroprotective effect of active compounds is limited by poor solubility; therefore, carriers with solubilizing properties were used for scCO2 extracts, combined with post-scCO2 ethanol extract. Hydroxypropyl-β-cyclodextrin (HP-β-CD) in combination with magnesium aluminometasilicate (Neusilin US2) in the ratio 1:0.5 improved dissolution profiles to the greatest extent, while the apparent permeability coefficients of these compounds determined using the parallel artificial membrane permeability assay in the gastrointestinal (PAMPA GIT) model were increased the most by only HP-β-CD.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
44
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Grudzień M, Pawlak A, Tronina T, Kutkowska J, Kruszyńska A, Popłoński J, Huszcza E, Rapak A. The Effect of Xanthohumol Derivatives on Apoptosis Induction in Canine Lymphoma and Leukemia Cell Lines. Int J Mol Sci 2023; 24:11724. [PMID: 37511484 PMCID: PMC10380916 DOI: 10.3390/ijms241411724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Xanthohumol is a cancer chemopreventive agent that can interfere with the initiation, promotion, and progression phase of carcinogenesis via a variety of inhibitory mechanisms. Xanthohumol was reported as an effective agent against leukemia/lymphoma cells. In the present study, we investigated the effect of xanthohumol and its natural and semisynthetic derivatives against various canine leukemia/lymphoma cell lines. Xanthohumol, three hops minor prenylflavonoids (xanthohumol C, xanthohumol D, α,β-dihydroxanthohumol) and four derivatives obtained by biotransformation (xanthohumol 4'-O-β-D-(4‴-O-methyl)-glucopyranoside) as well as by chemical modification (1″,2″-dihydroxanthohumol K, 2,3-dehydroisoxanthohumol, (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone) were tested for their antiproliferative and pro-apoptotic activities against the following canine leukemia/lymphoma cell lines: CLBL-1 (B-cell lymphoma), CLB70 (B-cell leukemia), and GL-1 (B-cell leukemia). The compounds were tested at a final concentration range of 0.1-30 µM for 48 h. All eight of the tested flavonoids exerted concentration-dependent cytotoxicity in the selected canine lymphoma/leukemia cell lines. Three compounds markedly decreased the viability of all cell lines with IC50 in the range of 0.5 to 8 μM. Double-staining of the treated cells with AnnexinV and propidium iodide revealed that the dying cells were mostly in the late apoptosis stage. ROS production and changes in mitochondrial potential were detected. Western blot analysis showed a decreased expression of Bcl-2. Canine lymphoma and leukemia cell lines are sensitive to xanthohumol derivatives, and the compounds acted through an apoptotic cell-death mechanism. These compounds, either used alone or in combination with other therapies, may be useful for the treatment of canine leukemia/lymphoma.
Collapse
Affiliation(s)
- Małgorzata Grudzień
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
| | - Tomasz Tronina
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Justyna Kutkowska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Angelika Kruszyńska
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Jarosław Popłoński
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Ewa Huszcza
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Andrzej Rapak
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
46
|
Tronina T, Bartmańska A, Popłoński J, Rychlicka M, Sordon S, Filip-Psurska B, Milczarek M, Wietrzyk J, Huszcza E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int J Mol Sci 2023; 24:ijms24087408. [PMID: 37108571 PMCID: PMC10138577 DOI: 10.3390/ijms24087408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The antiproliferative activity of xanthohumol (1), a major prenylated chalcone naturally occurring in hops, and its aurone type derivative (Z)-6,4'-dihydroxy-4-methoxy-7-prenylaurone (2) were investigated. Both flavonoids, as well as cisplatin as a reference anticancer drug, were tested in vivo against ten human cancer cell lines (breast cancer (MCF-7, SK-BR-3, T47D), colon cancer (HT-29, LoVo, LoVo/Dx), prostate cancer (PC-3, Du145), lung cancer (A549) and leukemia (MV-4-11) and two normal cell lines (human lung microvascular endothelial (HLMEC)) and murine embryonic fibroblasts (BALB/3T3). Chalcone 1 and aurone 2 demonstrated potent to moderate anticancer activity against nine tested cancer cell lines (including drug-resistant ones). The antiproliferative activity of all the tested compounds against cancer and the normal cell lines was compared to determine their selectivity of action. Prenylated flavonoids, especially the semisynthetic derivative of xanthohumol (1), aurone 2, were found as selective antiproliferative agents in most of the used cancer cell lines, whereas the reference drug, cisplatin, acted non-selectively. Our findings suggest that the tested flavonoids can be considered strong potential candidates for further studies in the search for effective anticancer drugs.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Agnieszka Bartmańska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Beata Filip-Psurska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
47
|
Suhartati T, Andriyani N, Yandri Y, Hadi S. Xanthoangelol, geranilated chalcone compound, isolation from pudau leaves ( Artocarpus kemando Miq.) as antibacterial and anticancer. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Abstract
From the leaves of Artocarpus kemando Miq, locally known as pudau plant, a flavonoid has been isolated and identified. The compound was then tested as antibacterial agent against Bacillus subtillis and Escherichia coli. The first step of isolation was extraction by maceration using methanol as solvent, and then followed by fractionation using partition treatment and vacuum liquid chromatography. Finally, the compound was purified using column chromatography method. The purity of the compound was evaluated using thin layer chromatography and melting point measurement, and the compound was subsequently characterized using UV–Vis, IR, and NMR spectroscopy. A total of 66.2 mg of the compound was obtained, in the form of yellow needle crystals with a melting point of 142.8–144 °C, which is a compound of geranylated chalcone, xanthoangelol. Xanthoangelol was the first chalcone compound isolated from A. kemando. Antibacterial tests were carried out at varied doses of 0.5; 0.4; and 0.3 mg/disk, and revealed that the compound exhibits high inhibitory power against B. subtillis, but has no activity against E. coli. The anticancer activity of xanthoangelol on MCF-7 cells indicated that the compound has an IC50 value of 7.79 μg/mL, suggesting that the compound possesses an active cytotoxic activity.
Collapse
|
48
|
Zhao S, Cui J, Cao L, Han K, Ma X, Chen H, Yin S, Zhao C, Ma C, Hu H. Xanthohumol inhibits non-small cell lung cancer via directly targeting T-lymphokine-activated killer cell-originated protein kinase. Phytother Res 2023. [PMID: 36882184 DOI: 10.1002/ptr.7799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
Xanthohumol is a principal prenylated chalcone isolated from hops. Previous studies have shown that xanthohumol was effective against various types of cancer, but the mechanisms, especially the direct targets for xanthohumol to exert an anticancer effect, remain elusive. Overexpression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes tumorigenesis, invasion and metastasis, implying the likely potential for targeting TOPK in cancer prevention and treatment. In the present study, we found that xanthohumol significantly inhibited the cell proliferation, migration and invasion of non-small cell lung cancer (NSCLC) in vitro and suppressed tumor growth in vivo, which is well correlated with inactivating TOPK, evidenced by reduced phosphorylation of TOPK and its downstream signaling histone H3 and Akt, and decreased its kinase activity. Moreover, molecular docking and biomolecular interaction analysis showed that xanthohumol was able to directly bind to the TOPK protein, suggesting that TOPK inactivation by xanthohumol is attributed to its ability to directly interact with TOPK. The findings of the present study identified TOPK as a direct target for xanthohumol to exert its anticancer activity, revealing novel insight into the mechanisms underlying the anticancer activity of xanthohumol.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinling Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Quality by design-oriented formulation optimization and characterization of guar gum-pectin based oral colon targeted liquisolid formulation of xanthohumol. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
50
|
Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|