1
|
Razuvaeva YG, Olennikov DN, Toropova AA, Salchak SM. Bioactive arabinogalactan from Ferulopsis hystrix roots: characterization of gastroprotective and antioxidant potentials against drug-induced gastropathy. Nat Prod Res 2024:1-6. [PMID: 38766905 DOI: 10.1080/14786419.2024.2352872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Bristled ferula (Ferulopsis hystrix (Bunge) Pimenov) is a perennial plant belonging to the Apiaceae family, and its aqueous extract is utilised in Eastern medicine to treat digestive system diseases. In this study, water-soluble polysaccharides from F. hystrix were isolated for the first time, and the basic polymer FH-3 was separated and characterised. FH-3 was found to contain arabinose and galactose in a 1:5 ratio, with a molecular weight of 52.3 kDa. Methylation analysis confirmed the structure of FH-3 to be arabino-3,6-galactan. Administration of FH-3 at 10 and 30 mg/kg doses in rats with drug-induced gastropathy effectively limited the development of large and strip-like erosions in the gastric mucosa. FH-3 prevented the development of oxidative stress, normalising malondialdehyde (MDA) and catalase (CAT) and reducing glutathione (GSH) serum levels. Arabinogalactan FH-3 is a new gastroprotective and antioxidant plant component in F. hystrix roots, offering promising prospects for treating stomach diseases.
Collapse
Affiliation(s)
- Yanina G Razuvaeva
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, Ulan-Ude, Russia
| | - Daniil N Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Ulan-Ude, Russia
| | - Anyuta A Toropova
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, Ulan-Ude, Russia
| | - Saizana M Salchak
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, Ulan-Ude, Russia
| |
Collapse
|
2
|
Chen Y, Zhao Y, Lu H, Zhang W, Gai Y, Niu G, Meng X, Lv H, Qian X, Ding X, Chen J. Protective effect of short-chain fructo-oligosaccharides from chicory on alcohol-induced injury in GES-1 cells via Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Front Nutr 2024; 11:1374579. [PMID: 38807640 PMCID: PMC11132183 DOI: 10.3389/fnut.2024.1374579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Numerous studies have demonstrated that polysaccharides derived from chicory possess the ability to regulate host signaling and modify mucosal damage. Yet, the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on gastric mucosa remain unclear. Hence, the protective effect of three scFOS (1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism involved was investigated in this study. Treatment with 7% ethanol decreased the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. However, pretreatment with scFOS exhibited significant improvements in cell viability, and mitigated oxidative stress and inflammation. scFOS markedly elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while suppressing the expression of Keap1. scFOS pretreatment could also maintain mitochondrial membrane potential balance and reduce apoptosis. In addition, scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. In conclusion, scFOS served a preventive function in mitigating oxidative stress and inflammation in ethanol-exposed GES-1 cells through modulation of the Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the results indicated that scFOS could significantly mitigate ethanol-induced gastric cell damage, suggesting its potential for safeguarding gastrointestinal health.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yanan Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Hao Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Han Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaoguo Qian
- Fengning PingAn High-Tech Industrial Co., Ltd, Chengde, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Keny ES, Kale PP. Plants with potential anti-ulcerogenic activity and possible mechanism of actions based on their phyto-constitutional profile. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:665-674. [PMID: 35152595 DOI: 10.1515/jcim-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Gastric ulcer, the most common disorder of the digestive tract is formed due to an imbalance between acid and mucus content of the stomach. However, the currently used western therapeutic regimens have many drawbacks like adverse effects, recurrence of gastric ulcers, are expensive, and also, may have interactions with other drugs. Hence, there is a need for effective alternative therapy. Medicinal herbs have been used since ancient times to treat several diseases and are also evidenced to be effective against gastric ulcers. It is also evident that medicinal herbs have been proved to be equally effective or superior as compared to the existing synthetic medicines. In this review, five herbs have been taken into consideration and assumed to be effective against gastric ulcers. Abrus mollis, Korean Thistle (Cirsium japonicum var. maackii), Astralagus complanatus Bunge, Bauhinia monandra, and Embelia ribes Burm f. are the herbs whose data is been collected and reviewed for their potential gastro-protective action. Although, their side effects and toxicity profile need to be further evaluated. Hence, the purpose of this review is to gather evidence of these five medicinal herbs and their probable mechanism of action against gastric ulcers based on their phyto-constitutional profile.
Collapse
Affiliation(s)
- Ekta S Keny
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
4
|
López-Lorenzo Y, Sánchez-Mendoza ME, Arrieta-Baez D, Perez-Ruiz AG, Arrieta J. Gastroprotective activity of ( E)-ethyl-12-cyclohexyl-4,5-dihydroxydodec-2-enoate, a compound isolated from Heliotropium indicum: role of nitric oxide, prostaglandins, and sulfhydryls in its mechanism of action. PHARMACEUTICAL BIOLOGY 2022; 60:1207-1213. [PMID: 35764528 PMCID: PMC9248942 DOI: 10.1080/13880209.2022.2087690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT The gastroprotective effect of Heliotropium indicum L. (Boraginaceae), a plant traditionally used in Mexico to treat gastric ulcers, has been previously reported. However, no active compound was identified. OBJECTIVE The current contribution aimed to isolate, through a bioassay-guided study, at least one compound from H. indicum with considerable gastroprotective activity, examine its effect on ethanol-induced gastric lesions in mice, and explore possible mechanisms of action. MATERIALS AND METHODS Three extracts (hexane, dichloromethane, and methanol) were obtained from H. indicum leaves. Their 30 and 100 mg/kg doses were assessed on ethanol-induced gastric lesions in male CD1 mice. Since the dichloromethane extract was the most active, successive chromatographies were carried out leading to the identification of the most active compound. This compound (at 3-100 mg/kg) was compared to carbenoxolone (at 10-100 mg/kg) in biological evaluations in mice. Pre-treatments with indomethacin (10 mg/kg, s.c.), L-NAME (70 mg/kg, i.p.), and NEM (10 mg/kg, s.c.) were performed independently to determine the participation of prostaglandins, nitric oxide, and/or sulfhydryl groups, respectively, in the mechanism of action of the compound. RESULTS (E)-Ethyl-12-cyclohexyl-4,5-dihydroxydodec-2-enoate, a compound isolated from H. indicum, afforded dose-dependent gastroprotective activity. The maximum effect was observed at 100 mg/kg (90.13 ± 3.08%), with an ED50 of 5.92 ± 2.48 mg/kg. Gastroprotection was not modified by pre-treatment with indomethacin, L-NAME, or NEM. CONCLUSIONS (E)-Ethyl-12-cyclohexyl-4,5-dihydroxydodec-2-enoate, isolated from H. indicum, was found to produce a substantial gastroprotective effect. Prostaglandins, nitric oxide, and non-protein sulfhydryl groups are not involved in its mechanism of action.
Collapse
Affiliation(s)
- Yaraset López-Lorenzo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Mexico City, Mexico
| | - María Elena Sánchez-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Mexico City, Mexico
| | - Daniel Arrieta-Baez
- Centro de Nanociencias y Micro y Nanotecnologías-Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Adriana Guadalupe Perez-Ruiz
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Mexico City, Mexico
| | - Jesús Arrieta
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Mexico City, Mexico
| |
Collapse
|
5
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
6
|
A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yuan E, Lian Y, Li Q, Lai Z, Sun L, Lai X, Chen R, Wen S, Zhu J, Zhang W, Sun S. Roles of Adinandra nitida (Theaceae) and camellianin A in HCl/ethanol-induced acute gastric ulcer in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Nabavizadeh R, Sohouli MH, Santos HO, Roustaei M, Fatahi S, Ghodoosi N, Saeidi R. Higher dietary total antioxidant capacity is inversely associated with Helicobacter pylori infection among adults: A case-control study. Indian J Gastroenterol 2022; 41:258-265. [PMID: 35930142 DOI: 10.1007/s12664-022-01246-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Antioxidants appear to hinder the actions of Helicobacter pylori (H. pylori). The aim of this research was to evaluate the association between dietary total antioxidant capacity (DTAC) and H. pylori infection. METHODS A case-control study was carried out among 200 patients with H. pylori infection and 402 healthy subjects (18-55 years). Dietary data were collected using a validated 168-item quantitative food frequency questionnaire. DTAC was calculated based on the oxygen radical absorbance capacity of each food (except for coffee) reported by the US Department of Agriculture. RESULTS Compared with participants in the lowest tertile of DTAC, those in the highest tertile had a significantly lower odds ratio (OR) in the crude model (OR, 0.29; 95% CI, 0.14-0.61; p for trend = 0.001), model 1 (adjustment for age and sex) (OR, 0.37; 95% CI, 0.24-0.58; p for trend < 0.001), and model 2 (adjustment for model 1 plus body mass index, waist circumference, physical activity, smoking, dietary intake of energy and fat) (OR, 0.20; 95% CI, 0.10-0.40; p for trend ≤ 0.001). CONCLUSIONS A high DTAC is associated with a reduced risk of H. pylori infection in adults. Further studies are mandatory to elucidate the mechanisms and a dose-effect relationship.
Collapse
Affiliation(s)
- Raheleh Nabavizadeh
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Masoumeh Roustaei
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | | | - Reza Saeidi
- Department of Clinical Nutrition and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Neonatal Research Center, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Malva parviflora Leaves and Fruits Mucilage as Natural Sources of Anti-Inflammatory, Antitussive and Gastro-Protective Agents: A Comparative Study Using Rat Models and Gas Chromatography. Pharmaceuticals (Basel) 2022; 15:ph15040427. [PMID: 35455424 PMCID: PMC9030788 DOI: 10.3390/ph15040427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
Malva parviflora L., Little mallow, has been traditionally used as an alternative food source. It acts as a medicinal herb containing a potential source of mucilage thus herein; we aimed to assess the toxicity, anti-inflammatory, antitussive and gastro-protective actions of M. parviflora mucilage extracted from its leaves (MLM) and fruit (MFM). Toxicity studies were investigated by in vitro hemolytic assay whereas acute anti-inflammatory and antitussive activities were assessed by carrageenan-induced paw edema and sulphur dioxide induced cough model in rats, respectively. Gastro-protective effects were studied using ethanol induced acute and chronic gastric ulcer rat models. Their metabolic profiles were determined using gas chromatography. The results revealed that MLM and MFM were non-toxic towards human erythrocytes and their lethal doses were found to be greater than 5 g/kg. Pretreatment with MLM (500 mg/kg) and MFM (500 mg/kg) significantly reduced the carrageenan-induced paw thickness (p < 0.001). Maximum edema inhibition (%) was observed at 4 h in diclofenac sodium (39.31%) followed by MLM (27.35%) and MFM (15.68%). Animals pretreated with MLM (500 mg/kg) significantly lower the cough frequency in SO2 gas induced cough models in contrast to control. Moreover, MLM at doses of 250 and 500 mg/kg reduced the ethanol induced gastric mucosal injuries in acute gastric ulcer models presenting ulcer inhibition of 23.04 and 38.74%, respectively. The chronic gastric ulcer model MFM (500 mg/kg) demonstrated a remarkable gastro-protective effect showing 63.52% ulcer inhibition and results were closely related to standard drug sucralfate. In both models, MLM and MFM decreased gastric juice volume and total acidity in addition to an increased gastric juice pH and gastric mucous content justifying an anti-secretary role of this mucilage that was further confirmed by histopathological examination. Meanwhile, GC analyses of the mucilage revealed their richness with natural as well as acidic monosaccharides. It is concluded that MLM and MFM can be used therapeutically for the management of inflammation, cough and gastric ulcer.
Collapse
|
10
|
Hu Y, Cui Q, Ma D, Jin W, Li Y, Zhang J, Xu Y. Key Targets and Molecular Mechanisms of Active Volatile Components of Rabdosia rubescens in Gastric Cancer Cells. Curr Comput Aided Drug Des 2022; 18:493-505. [PMID: 36200190 PMCID: PMC9986972 DOI: 10.2174/1573409918666221003091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the effect and mechanism of volatile components of Rabdosia rubescens on gastric cancer. METHODS Gas chromatography-mass spectrometry was used to detect and identify the volatile components of R. rubescens. The network pharmacology method was used to analyze the targets of volatile components of R. rubescens in gastric cancer and to reveal their molecular mechanisms. The effects of volatile components of R. rubescens on gastric cancer cells were verified by biological experiments. RESULTS Thirteen volatile components of R. rubescens were selected as pharmacologically active components. The 13 active components had 83 targets in gastric cancer, and a Traditional Chinese Medicine-component-targets gastric cancer network was successfully constructed. Five core targets were obtained: TNF, IL1B, MMP9, PTGS2 and CECL8. The volatile components inhibited the proliferation of gastric cancer cells in a concentration-dependent manner and promoted the apoptosis of gastric cancer cells. The volatile components reduced the levels of TNF, IL1B, MPP9, and PTGS2 in a concentration-dependent manner. CONCLUSION Our study demonstrates the effects of volatile components in R. rubescens on gastric cancer and provides preliminary findings on their mechanisms of action.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Qingli Cui
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Dongyang Ma
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingyue Li
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Youqi Xu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
11
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Al-Sayed E, Gad HA, El-Kersh DM. Characterization of Four Piper Essential Oils (GC/MS and ATR-IR) Coupled to Chemometrics and Their anti- Helicobacter pylori Activity. ACS OMEGA 2021; 6:25652-25663. [PMID: 34632221 PMCID: PMC8495854 DOI: 10.1021/acsomega.1c03777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 06/12/2023]
Abstract
Background: Essential oils represent a major class of natural products which are known for their antimicrobial activity. This study aimed to determine the composition of four Piper essential oils by gas chromatography mass spectrometry, attenuated total reflection infrared, and chemometric analysis. Results: Monoterpene was the most predominant class in Piper nigrum and white pepper (87.6 and 80%, respectively) with the dominance of α-pinene, β-pinene, 3-carene, limonene, and β-caryophyllene. Sesquiterpenes represented 50, 19.6, and 12.3% of the essential oils of Piper longum, white pepper, and P. nigrum, respectively. Unlike other species, Piper cubeba oil was found to be rich in aromatics (59%), with eugenol (10.7%) and methyl eugenol (47.4%) representing the major components along with β-myrcene (21.2%) and 1,8-cineole (6.4%). Only P. longum essential oil comprised about 18.2% of alkanes and 13.6% of alkenes. Application of chemometric analysis utilizing GC/MS and ATR-IR data displayed the same segregation pattern where both principal component analysis and hierarchal cluster analysis revealed that white pepper was most closely related to P. nigrum while being completely discriminated from other Piper species. The Piper oils showed promising inhibitory effects on Helicobacter pylori. P. longum oil recorded the most efficient anti-Helicobacter activity [minimum inhibitory concentration (MIC) value of 1.95 μg/ml, which is the same as the MIC of clarithromycin], followed by the oil of white pepper (MIC = 3.90 μg/ml), while P. cubeba and P. nigrum produced the lowest activity (MIC value of 7.81 μg/ml). Conclusion: Piper essential oils can be used as nutritional supplements or therapeutic drugs to protect against H. pylori infection.
Collapse
Affiliation(s)
- Eman Al-Sayed
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, 11566 Cairo, Egypt
| | - Haidy A. Gad
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, 11566 Cairo, Egypt
| | - Dina M. El-Kersh
- Department
of Pharmacognosy, Faculty of Pharmacy, The
British University in Egypt (BUE), 11837 Cairo, Egypt
| |
Collapse
|
13
|
Xu J, Pan Y, Liu Y, Na S, Zhou H, Li L, Chen F, Song H. A review of anti-tumour effects of ginsenoside in gastrointestinal cancer. J Pharm Pharmacol 2021; 73:1292-1301. [PMID: 33836068 DOI: 10.1093/jpp/rgab048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Gastrointestinal cancer, one of the major causes of cancer-related deaths in the world, refers to malignant conditions of the gastrointestinal (GI) tract and other organs. Although conventional therapy has been successful to some extent in cancer treatment, drug resistance and cancer recurrence still limit the therapeutic efficacy. There is increasing evidence indicating that ginsenoside, as a kind of high nutritional value and widely used traditional Chinese medicine, could contribute to the promotion of treatment in GI cancer, which deserves further investigation. KEY FINDINGS Based on previous studies, the possible mechanisms mainly include regulation of autophagy, apoptosis, proliferation, migration and angiogenesis. However, no studies recently have conducted a more in-depth review of the anti-cancer effects of ginsenoside in GI cancer. SUMMARY Therefore, this review will summarise and analyse the latest developments in the anti-tumour effects of ginsenosides in GI cancer, thus may promote further research of the anti-tumour efficacy of ginsenoside.
Collapse
Affiliation(s)
- Jing Xu
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yunxia Pan
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Sha Na
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Fengyuan Chen
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| | - Hang Song
- School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Biochemistry and Molecular Biology, School of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrative Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Medicinal Formula of Anhui Province, Hefei, China
| |
Collapse
|
14
|
Gad H, Al-Sayed E, Ayoub I. Phytochemical discrimination of Pinus species based on GC-MS and ATR-IR analyses and their impact on Helicobacter pylori. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:820-835. [PMID: 33462938 DOI: 10.1002/pca.3028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The leaves and cones of Pinus plants as well as their essential oils have been used in traditional medicine for the treatment of several ailments. OBJECTIVES Phytochemical discrimination of Pinus species and investigation of their anti-Helicobacter pylori activity in vitro and in silico. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) and attenuated total reflectance infrared (ATR-IR) metabolic profiling of the essential oils of Pinus species. Principal component analysis (PCA) and hierarchal cluster analysis (HCA) were applied for discrimination and segregation of Pinus species. RESULTS GC-MS revealed the presence of 76 constituents, where monoterpenes represented the major class with the dominance of α-pinene (72%) followed by β-pinene (16%) for P. canariensis. β-Pinene was the dominant component in P. pinea (24%) followed by terpinolene (11%). α-Pinene (17%) and caryophyllene (12%) were the major components in P. halepensis, while, 3-carene (33%) and α-pinene (17%) represented the major constituents of P. roxburghii oil. By applying PCA and HCA on GC-MS and ATR-IR data analysis, ATR-IR displayed much better discrimination for Pinus species. The pine oils showed promising inhibitory effects on Helicobacter pylori. Furthermore, in silico molecular modelling was carried out where the calculated free binding energies of phytochemicals identified ranged from -33.71 to -19.67 kcal/mol for urease and -41.18 to -16.57 kcal/mol for shikimate kinase. This suggests favourable binding of pine essential oil components to both enzymes, thus explaining their potential inhibitory activity on H. pylori. CONCLUSION GC-MS and ATR-IR based metabolic analyses could discriminate between Pinus species. Pine essential oils can be used as promising therapeutic drugs to protect against H. pylori infection.
Collapse
Affiliation(s)
- Haidy Gad
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, King Salman International University, South Sinai, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| |
Collapse
|
15
|
Santin M, Ranieri A, Castagna A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1485. [PMID: 34371687 PMCID: PMC8309429 DOI: 10.3390/plants10071485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022]
Abstract
Plants continuously rely on light as an energy source and as the driver of many processes in their lifetimes. The ability to perceive different light radiations involves several photoreceptors, which in turn activate complex signalling cascades that ultimately lead to a rearrangement in plant metabolism as an adaptation strategy towards specific light conditions. This review, after a brief summary of the structure and mode of action of the different photoreceptors, introduces the main classes of secondary metabolites and specifically focuses on the influence played by the different wavelengths on the content of these compounds in agricultural plants, because of their recognised roles as nutraceuticals.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
16
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
17
|
Yuan E, Liu L, Huang M, Chang B, Qi C, Gou N, Ren J. Effects of complex extracts of traditional Chinese herbs on gastric mucosal injury in rats and potential underlying mechanism. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Erdong Yuan
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Liangyun Liu
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Min Huang
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Bo Chang
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Chunli Qi
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Na Gou
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| | - Jiaoyan Ren
- School of Food Science and Technology South China University of Technology Wushan Road 381 Guangzhou Guangdong 510000 China
| |
Collapse
|
18
|
Wang WY, Wu WY, Li AL, Liu QS, Sun Y, Gu W. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid. Bioorg Chem 2021; 109:104705. [PMID: 33618252 DOI: 10.1016/j.bioorg.2021.104705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
A series of novel indolequinone derivatives of ursolic acid bearing ester, hydrazide, or amide moieties were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, HeLa, and HepG2) and a normal gastric mucosal cell line (Ges-1). A number of compounds showed significant activity against tested cancer cell lines. Among them, compound 6t exhibited the most potent activity against three cancer cell lines with IC50 values of 1.66 ± 0.21, 3.16 ± 0.24, and 10.35 ± 1.63 µM, respectively, and considerably lower cytotoxicity to Ges-1 cells. Especially, compound 6t could arrest cell cycle at S phase, suppress the migration of MCF-7 cells, elevate intracellular reactive oxygen species (ROS) level, and decrease mitochondrial membrane potential. Western blot analysis showed that compound 6t upregulated Bax, cleaved caspase-3/9, cleaved PARP levels and downregulated Bcl-2 level of MCF-7 cells. All these results indicated that compound 6t could significantly induce the apoptosis of MCF-7 cells. Meanwhile, compound 6t markedly decreased p-AKT and p-mTOR expression, which revealed that compound 6t probably exerted its cytotoxicity through targeting PI3K/AKT/mTOR signaling pathway. Therefore, compound 6t could be a promising lead for the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen-Yi Wu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
19
|
Ren S, Wei Y, Wang R, Wei S, Wen J, Yang T, Chen X, Wu S, Jing M, Li H, Wang M, Zhao Y. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Front Pharmacol 2020; 11:600295. [PMID: 33324227 PMCID: PMC7726440 DOI: 10.3389/fphar.2020.600295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Rutaecarpine (RUT), a major quinazolino carboline alkaloid compound from the dry unripe fruit Tetradium ruticarpum (A. Juss.) T. G. Hartley, has various pharmacological effects. The aim of this present study was to investigate the potential gastroprotective effect of rutaecarpine on ethanol-induced acute gastric mucosal injury in mice and associated molecular mechanisms, such as activating Nrf2 and Bcl-2 via PI3K/AKT signaling pathway and inhibiting NF-κB. Methods: Gastric ulcer index and histopathology was carried out to determine the efficacy of RUT in gastric ulceration, and the content of SOD, GSH in serum and CAT, MDA, MPO, TNF-α, IL-6, IL-1β in tissue were measured by kits. Besides, in order to illustrate the potential inflammatory, oxidative, and apoptotic perturbations, the mRNA levels of NF-κB p65, PI3K, AKT, Nrf2, Nqo1, HO-1, Bcl-2 and Bax were analyzed. In addition, the protein expression of NF-κB p65 and Nrf2 in cytoplasm and nucleus, AKT, p-AKT, Bcl-2 Bax and Caspase 3 were analyzed for further verification. Finally, immunofluorescence analysis was performed to further verify nuclear translocation of NF-κB p65. Results: Current data strongly demonstrated that RUT alleviated the gross gastric damage, ulcer index and the histopathology damage caused by ethanol. RUT inhibited the expression and nuclear translocation of NF-κB p65 and the expression of its downstream signals, such as TNF-α, IL-6, IL-1β and MPO. Immunofluorescence analysis also verifies the result. In the context of oxidative stress, RUT improved the antioxidant milieu by remarkably upregulating the expression Nqo1 and HO-1 with activating Nrf2, and could remarkably upregulate antioxidant SOD, GSH, CAT and downregulate levels of MDA. Additionally, RUT activate the expression of Bcl-2 and inhibited the expression of downstream signals Bax and Caspase 3 to promote gastric cellular survival. These were confirmed by RUT activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K and promotion of AKT phosphorylation. Conclusion: Taken together, these results strongly demonstrated that RUT exerted a gastroprotective effect against gastric mucosal injury induced by ethanol. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis system.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Sohouli MH, Haghshenas N, Pouladi F, Sayyari A, Olang B, Găman MA, Kord-Varkaneh H, Fatahi S. Association between glycemic index and Helicobacter pylori infection risk among adults: A case-control study. Nutrition 2020; 83:111069. [PMID: 33348108 DOI: 10.1016/j.nut.2020.111069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The aim of this case-control study was to investigate the relationships between carbohydrate consumption, glycemic load (GL), glycemic index (GI), and the risk of Helicobacter pylori infection among adults admitted to an Iranian hospital. METHODS In this case-control study, we recruited 150 participants with H. pylori infection and 302 healthy participants ages 18 to 55. Dietary GI and GL were assessed using a validated 168-item quantitative food frequency questionnaire. Dietary GL was calculated as a function of GI, carbohydrate content, and the frequency of intake of certain foods. RESULTS After adjustment for potential confounders, and comparing the highest tertile with the lowest tertile, a significant direct association was observed between the consumption of carbohydrates (odds ratio [OR] = 2.87; 95% confidence interval [CI], 1.18-6.96; P for trend = 0.017), GI (OR = 3.70; 95% CI, 2.01-6.81; P for trend < 0.001), GL (OR = 3.06; 95% CI, 1.43-6.54; P for trend = 0.001), the consumption of bread and refined-grain products (OR = 4.24; 95% CI, 2.22-8.11; P for trend < 0.001), and the odds of H. pylori infection (OR = 2.22; 95% CI, 1.30-3.79; P for trend = 0.003). CONCLUSIONS Our data suggest that a high dietary GL, high GI, and high consumption of dietary carbohydrates significantly elevate the risk of H. pylori infection. Also, the amount of bread and refined-grain products consumed had a significant positive relationship with H. pylori infection.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Niloufar Haghshenas
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pouladi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Beheshte Olang
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Hamed Kord-Varkaneh
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran; Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Zhang W, Lian Y, Li Q, Sun L, Chen R, Lai X, Lai Z, Yuan E, Sun S. Preventative and Therapeutic Potential of Flavonoids in Peptic Ulcers. Molecules 2020; 25:molecules25204626. [PMID: 33050668 PMCID: PMC7594042 DOI: 10.3390/molecules25204626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023] Open
Abstract
Peptic ulcer disease is a common gastrointestinal tract disorder that affects up to 20% of the population of the world. Treatment of peptic ulcer remains challenging due to the limited effectiveness and severe side effects of the currently available drugs. Hence, natural compounds, owing to their medicinal, ecological, and other safe properties, are becoming popular potential candidates in preventing and treating peptic ulcers. Flavonoids, the most abundant polyphenols in plants, exhibit gastroprotective effects against peptic ulcer both in vivo and in vitro. In this review, we summarized the anti-ulcer functions and mechanisms, and also the bioavailability, efficacy, and safety, of flavonoid monomers in the gastrointestinal tract. Flavonoids exerted cytoprotective and rehabilitative effects by not only strengthening defense factors, such as mucus and prostaglandins, but also protecting against potentially harmful factors via their antioxidative, anti-inflammatory, and antibacterial activities. Although controlled clinical studies are limited at present, flavonoids have shown a promising preventable and therapeutic potential in peptic ulcers.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Yingyi Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Qiuhua Li
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Lingli Sun
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Ruohong Chen
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Xingfei Lai
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Zhaoxiang Lai
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
| | - Erdong Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-3848 (E.Y.); +86-20-8516-1045 (S.S.)
| | - Shili Sun
- Guangdong Academy of Agricultural Sciences or Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Tea Research Institute, Guangzhou 510640, China; (W.Z.); (Q.L.); (L.S.); (R.C.); (X.L.); (Z.L.)
- Correspondence: (E.Y.); (S.S.); Tel.: +86-20-8711-3848 (E.Y.); +86-20-8516-1045 (S.S.)
| |
Collapse
|
22
|
Coelho IP, Santos LBBD, Kato Junior WH, Corsino J, Cordeiro KW, Boeing T, Coelho JM, Garcez FR, Garcez WS, de Andrade SF, Figueiredo PDO. Chemical profile and gastroprotective effect of Jatropha elliptica (Pohl) Oken roots. Fitoterapia 2020; 146:104707. [PMID: 32827695 DOI: 10.1016/j.fitote.2020.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
Abstract
Jatropha elliptica (Pohl) Oken (Euphorbiaceae) roots are used in folk medicine to treat gastric ulcers. The purpose of this work was to evaluate the gastroprotective activity of ethanol extract (JER) and hexane fraction (ERH) of J. elliptica roots in mice, as well as to analyze the acute toxicity of the extract and identify the potential active compounds. No signs of toxicity were observed in JER. In both acidified ethanol and indometacin-induced gastric ulcer models, all doses tested of JER and ERH significantly reduced gastric lesions. Dereplication of JER was performed by HPLC-DAD-ESI-MS/MS and resulted in the annotation of compounds fraxetin, propacin, jatrophone and jatropholones A and B. GC-MS analysis of ERH revealed the diterpenes jatrophone, jatropholone A and jatropholone B as the major components. The chemical study of this fraction has led to the isolation of these compounds, in addition to the sequiterpene cyperenoic acid and the diterpene 2β-hydroxyjatrophone, both reported for the first time in J. elliptica. The isolated compounds were tested against L929 cells and only cyperenoic acid and the mixture of jatropholones A and B did not show toxicity, being then selected as good candidates for bioassays using acidified ethanol-induced gastric ulcer model. Cyperenoic acid significantly decreased gastric lesions and preserved gastric mucus layer. The mixture of jatropholones A and B caused a smaller reduction of gastric lesions, without preservation of the gastric mucus layer. The study showed that J. elliptica roots present gastroprotective activity in mice, without causing acute toxic effects. The activity is related, at least in part, to the occurrence of terpenes, mainly the sesquiterpene cyperenoic acid.
Collapse
Affiliation(s)
- Izabela Pereira Coelho
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Wilson Hino Kato Junior
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Joaquim Corsino
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Kátia Wolf Cordeiro
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Thaise Boeing
- Universidade do Vale do Itajaí, Núcleo de Investigações Químico-Farmacêuticas, Itajaí, Santa Catarina, Brazil
| | - Julice Medeiros Coelho
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fernanda Rodrigues Garcez
- Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Walmir Silva Garcez
- Universidade Federal de Mato Grosso do Sul, Faculdade de Medicina, Campo Grande, Mato Grosso do Sul, Brazil; Universidade Federal de Mato Grosso do Sul, Instituto de Química, Campo Grande, Mato Grosso do Sul, Brazil
| | - Sérgio Faloni de Andrade
- Universidade do Vale do Itajaí, Núcleo de Investigações Químico-Farmacêuticas, Itajaí, Santa Catarina, Brazil; Universidade Lusófona CBIOS, Research Center for Biosciences and Health Technologies, Av. Campo Grande, 376, 1749-024 Lisboa, Portugal
| | | |
Collapse
|
23
|
Rodriguez S, Pertino MW, Arcos C, Reichert L, Echeverria J, Simirgiotis M, Borquez J, Cornejo A, Areche C, Sepulveda B. Isolation, Gastroprotective Effects and Untargeted Metabolomics Analysis of Lycium Minutifolium J. Remy (Solanaceae). Foods 2020; 9:foods9050565. [PMID: 32375270 PMCID: PMC7278853 DOI: 10.3390/foods9050565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Lycium minutifolium J. Remy (Solanaceae) is commonly used as an infusion in traditional medicine to treat stomach pain, meteorism, intestinal disorders, stomach ailments, and other severe problems including prostate cancer and stomach cancer. From the EtOAc extract of L. minutifolium bark five known metabolites were isolated using chromatographic techniques. The gastroprotective effects of the EtOAc fraction and edible infusion extract of the bark were assayed on the hydrochloric acid (HCl)/EtOH induced gastric ulcer model in mice to support the traditional use of the plant. The EtOAc extract and the edible infusion showed gastroprotective effect at dose of 100 mg/kg reducing lesions by 31% and 64%, respectively. The gastroprotective action mechanisms of the edible infusion at a single oral dose of 100 mg/kg were evaluated suggesting that prostaglandins, sulfhydryl groups, and nitric oxide are involved in the mode of gastroprotective action. The UHPLC analysis coupled to high-resolution mass spectrometry of the edible infusion showed the presence of twenty-three compounds. Our results can support the gastroprotective properties of the edible infusion extract, and at least can validate in part, the ethnopharmacological uses of the plant.
Collapse
Affiliation(s)
- Stephanie Rodriguez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, 8320000 Santiago, Chile; (S.R.); (C.A.)
| | - Mariano Walter Pertino
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000 Talca, Chile;
| | - Chantal Arcos
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
| | - Luana Reichert
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022 Santiago, Chile;
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, 5090000 Valdivia, Chile;
| | - Jorge Borquez
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av Coloso S-N, 1240000 Antofagasta, Chile;
| | - Alberto Cornejo
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad Andres Bello, Sazié 2315, 8370092 Santiago, Chile;
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, 8320000 Santiago, Chile; (S.R.); (C.A.)
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, 2531098 Valparaiso, Chile; (C.A.); (L.R.)
- Correspondence: ; Tel.: +56-063-2244369
| |
Collapse
|
24
|
Areche C, Hernandez M, Cano T, Ticona J, Cortes C, Simirgiotis M, Caceres F, Borquez J, Echeverría J, Sepulveda B. Corryocactus brevistylus (K. Schum. ex Vaupel) Britton & Rose (Cactaceae): Antioxidant, Gastroprotective Effects, and Metabolomic Profiling by Ultrahigh-Pressure Liquid Chromatography and Electrospray High Resolution Orbitrap Tandem Mass Spectrometry. Front Pharmacol 2020; 11:417. [PMID: 32322203 PMCID: PMC7156589 DOI: 10.3389/fphar.2020.00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Corryocactus brevistylus (K. Schum. ex Vaupel) Britton & Rose (Cactaceae) is a shrubby or often arborescent cactus popularly known as "sancayo" and produce an edible fruit known as "Sanky" which is consumed in Arequipa-Perú. The purpose of this study was to report the gastroprotective activity and relate this activity to the antioxidant capacity and presence of phenolic compounds for the first time. A metabolomic profiling based on Ultrahigh-pressure liquid chromatography and electrospray high resolution mass spectrometry, and the antioxidant activities (DPPH, ABTS, and FRAP), ascorbic acid content, total phenolics and flavonoids contents, and the mode of gastroprotective action of the Sanky fruit including the involvement of prostaglandins, nitric oxide, and sulfhydryl compounds is reported. Thirty-eight compounds were detected in the ethanolic extract including 12 organic acids, nine hydroxycinnamic acids, three isoamericanol derivatives, six flavonoids, five fatty acids, and two sterols. The results of the biological tests showed that the ethanolic extract had antioxidant capacity and gastroprotective activity on the model of HCl/EtOH-induced gastric lesions in mice (at 10, 25, 50, and 100 mg/kg). The effect elicited by the extract at 50 mg/kg was reversed by indometacin and N-ethylmaleimide but not by NG-nitro-L-arginine methyl ester suggesting that sulfhydryl groups and prostaglandins are involved in the mode of gastroprotective action. In conclusion, our study proves that C. brevistylus pears have some gastroprotective and antioxidant capacities and consumption is recommended for the presence of several bioactive compounds.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marco Hernandez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Teresa Cano
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa, Perú
| | - Juana Ticona
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa, Perú
| | - Carmen Cortes
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Fátima Caceres
- Laboratorio de Botánica, Departamento de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín, Arequipa, Perú
| | - Jorge Borquez
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
25
|
Li AL, Hao Y, Wang WY, Liu QS, Sun Y, Gu W. Design, Synthesis, and Anticancer Evaluation of Novel Indole Derivatives of Ursolic Acid as Potential Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21:E2876. [PMID: 32326071 PMCID: PMC7215373 DOI: 10.3390/ijms21082876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, a series of new indole derivatives of ursolic acid bearing different N-(aminoalkyl)carboxamide side chains were designed, synthesized, and evaluated for their in vitro cytotoxic activities against two human hepatocarcinoma cell lines (SMMC-7721 and HepG2) and normal hepatocyte cell line (LO2) via MTT assay. Among them, compound 5f exhibited the most potent activity against SMMC-7721 and HepG2 cells with IC50 values of 0.56 ± 0.08 μM and 0.91 ± 0.13 μM, respectively, and substantially lower cytotoxicity to LO2 cells. A follow-up enzyme inhibition assay and molecular docking study indicated that compound 5f can significantly inhibit the activity of Topoisomerase IIα. Further mechanistic studies performed in SMMC-7721 cells revealed that compound 5f can elevate the intracellular ROS levels, decrease mitochondrial membrane potential, and finally lead to the apoptosis of SMMC-7721 cells. Collectively, compound 5f is a promising Topoisomerase II (Topo II) inhibitor, which exhibited the potential as a lead compound for the discovery of novel anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (A-L.L.); (Y.H.); (W.-Y.W.); (Q.-S.L.); (Y.S.)
| |
Collapse
|
26
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
27
|
Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur J Pharmacol 2020; 871:172945. [PMID: 31981590 DOI: 10.1016/j.ejphar.2020.172945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
This review provides a comprehensive analysis of the anticancer potential of the natural product citral (CIT) found in many plants and essential oils, and extensively used in the food and cosmetic industry. CIT is composed of two stereoisomers, the trans-isomer geranial being a more potent anticancer compound than the cis-isomer neral. CIT inhibits cancer cell proliferation and induces cancer cell apoptosis. Its pluri-factorial mechanism of anticancer activity is essentially based on three pillars: (i) a drug-induced accumulation of reactive oxygen species in cancer cells leading to an oxidative burst and DNA damages, (ii) a colchicine-like inhibition of tubulin polymerization and promotion of microtubule depolymerization, associated with an inhibition of the microtubule affinity-regulating kinase MARK4, and (iii) a potent inhibition of the aldehyde dehydrogenase isoform ALDH1A3 which is associated with cancer stem cell proliferation and chemoresistance. This unique combination of targets and pathways confers a significant anticancer potential. However, the intrinsic potency of CIT is limited, mainly because the drug is not very stable and has a low bioavailability and it does not present a high selectivity for cancer cells versus non-tumor cells. Stable formulations of CIT, using cyclodextrins, biodegradable polymers, or various nano-structured particles have been designed to enhance the bioavailability, to increase the effective doses window and to promote the anticancer activity. The lack of tumor cell selectivity is more problematic and limits the use of the drug in cancer therapy. Nevertheless, CIT offers interesting perspectives to design more potent analogues and drug combinations with a reinforced antitumor potential.
Collapse
|
28
|
Kim SH, Jin H, Meng RY, Kim DY, Liu YC, Chai OH, Park BH, Kim SM. Activating Hippo Pathway via Rassf1 by Ursolic Acid Suppresses the Tumorigenesis of Gastric Cancer. Int J Mol Sci 2019; 20:E4709. [PMID: 31547587 PMCID: PMC6801984 DOI: 10.3390/ijms20194709] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is often dysregulated in many carcinomas, which results in various stages of tumor progression. Ursolic acid (UA), a natural compound that exists in many herbal plants, is known to obstruct cancer progression and exerts anti-carcinogenic effect on a number of human cancers. In this study, we aimed to examine the biological mechanisms of action of UA through the Hippo pathway in gastric cancer cells. MTT assay showed a decreased viability of gastric cancer cells after treatment with UA. Following treatment with UA, colony numbers and the sizes of gastric cancer cells were significantly diminished and apoptosis was observed in SNU484 and SNU638 cells. The invasion and migration rates of gastric cancer cells were suppressed by UA in a dose-dependent manner. To further determine the gene expression patterns that are related to the effects of UA, a microarray analysis was performed. Gene ontology analysis revealed that several genes, such as the Hippo pathway upstream target gene, ras association domain family (RASSF1), and its downstream target genes (MST1, MST2, and LATS1) were significantly upregulated by UA, while the expression of YAP1 gene, together with oncogenes (FOXM1, KRAS, and BATF), were significantly decreased. Similar to the gene expression profiling results, the protein levels of RASSF1, MST1, MST2, LATS1, and p-YAP were increased, whereas those of CTGF were decreased by UA in gastric cancer cells. The p-YAP expression induced in gastric cancer cells by UA was reversed with RASSF1 silencing. In addition, the protein levels in the Hippo pathway were increased in the UA-treated xenograft tumor tissues as compared with that in the control tumor tissues; thus, UA significantly inhibited the tumorigenesis of gastric cancer in vivo in xenograft animals. Collectively, UA diminishes the proliferation and metastasis of gastric cancer via the regulation of Hippo pathway through Rassf1, which suggests that UA can be used as a potential chemopreventive and therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Seong-Hun Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Hua Jin
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ruo Yu Meng
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Da-Yeah Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Yu Chuan Liu
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Ok Hee Chai
- Department of Anatomy and Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Byung Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju 54907, Korea.
| | - Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, Jeonju 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Korea.
| |
Collapse
|
29
|
Zhang C, Gao F, Gan S, He Y, Chen Z, Liu X, Fu C, Qu Y, Zhang J. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem Toxicol 2019; 131:110539. [PMID: 31158404 DOI: 10.1016/j.fct.2019.05.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
30
|
Makrane H, Aziz M, Mekhfi H, Ziyyat A, Legssyer A, Melhaoui A, Berrabah M, Bnouham M, Alem C, Elombo FK, Gressier B, Desjeux JF, Eto B. Origanum majorana L. extract exhibit positive cooperative effects on the main mechanisms involved in acute infectious diarrhea. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111503. [PMID: 30217790 DOI: 10.1016/j.jep.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. (Lamiaceae) is commonly used in Moroccan folk medicine to treat infantile colic, abdominal discomfort and diarrhea. Liquid stools and abdominal discomfort observed in acute infectious diarrhea are the consequences of imbalance between intestinal water secretion and absorption in the lumen, and relaxation of smooth muscle surrounding the intestinal mucosa. AIM OF THE STUDY The objective of our study was to see if aqueous extract of Origanum majorana L. (AEOM) may exhibit an effect on those deleterious mechanisms. MATERIALS AND METHODS The effect of AEOM on electrogenic Cl- secretion and Na+ absorption, the two main mechanisms underlying water movement in the intestine, was assessed on intestinal pieces of mice intestine mounted, in vitro, in Ussing chambers. AEOM effect on muscle relaxation was measured on rat intestinal smooth muscle mounted in an isotonic transducer. RESULTS 1) AEOM placed on the serosal (i.e. blood) side of the piece of jejunum entirely inhibited in a concentration-dependent manner the Forskolin-induced electrogenic chloride secretion, with an IC50 = 654 ± 8 µg/mL. 2) AEOM placed on the mucosal (i.e. luminal) side stimulated in a concentration-dependent manner an electrogenic Na+ absorption, with an IC50 = 476.9 ± 1 µg/mL. 3) AEOM (1 mg/mL) inhibition of Forskolin-induced electrogenic secretion was almost entirely prevented by prior exposure to Ca++ channels or neurotransmitters inhibitors. 4) AEOM (1 mg/mL) proabsorptive effect was greater in the ileum and progressively declined in the jejunum, distal colon and proximal colon (minimal). 5) AEOM inhibited in a concentration-dependent manner smooth muscle Carbachol or KCl induced contraction, with an IC50 = 1.64 ± 0.2 mg/mL or 1.92 ± 0.8 mg/mL, respectively. CONCLUSION the present results indicate that aqueous extract of Origanum majorana L. exhibit positive cooperative effects on the main mechanisms that are involved in acute infectious diarrhea.
Collapse
Affiliation(s)
- Hanane Makrane
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohammed Aziz
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Ahmed Melhaoui
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Berrabah
- Laboratory of Chemistry, Mineral and Analytical Solid, Department of Chemistry, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Chakib Alem
- Laboratory of Biochemistry, Department of Biology, Faculty of Sciences & Techniques, Errachidia, Morocco
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France; Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | | | - Bruno Eto
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France.
| |
Collapse
|
31
|
Areche C, Fernandez-Burgos R, Cano T, Simirgiotis M, García-Beltrán O, Borquez J, Sepulveda B. Mulinum crassifolium Phil; Two New Mulinanes, Gastroprotective Activity and Metabolomic Analysis by UHPLC-Orbitrap Mass Spectrometry. Molecules 2019; 24:molecules24091673. [PMID: 31035428 PMCID: PMC6539732 DOI: 10.3390/molecules24091673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Mulinum crassifolium Phil. (Apiaceae) is an endemic shrub from Chile commonly used as infusion in traditional medicine to treat diabetes, bronchial and intestinal disorders and stomach ailments, including ulcers. From the EtOAc extract of this plant, the new mulinane-type diterpenoids 3 and 5 were isolated along with three known diterpenoids. The gastroprotective effect of the infusion of the plant was assayed to support the traditional use and a fast HPLC analysis using high resolution techniques was performed to identify the bioactive constituents. The EtOAc extract and the edible infusion showed gastroprotective effect at 100 mg/kg in the HCl/EtOH induced gastric ulcer model in mice, reducing lesions by 33% and 74%, respectively. Finally, a metabolomic profiling based on UHPLC-ESI-MS/HRMS of the edible infusion was performed and thirty-five compounds were tentatively identified including quercetin, caffeic acid, apigenine glucoside, p-coumaric acid, chlorogenic acids, and caffeoylquinic acids, which have been associated previously with gastroprotective and antiulcer properties. This scientific evidence can support the contribution of polyphenols in the gastroprotective activity of the edible infusion of this plant, and can validate at least in part, its ethnopharmacological use.
Collapse
Affiliation(s)
- Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Ronald Fernandez-Burgos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa 68513, Perú.
| | - Teresa Cano
- Departamento de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín, Arequipa 68513, Perú.
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730002, Colombia.
| | - Jorge Borquez
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av Coloso S-N, Antofagasta 1240000, Chile.
| | - Beatriz Sepulveda
- Departamento de Ciencias Químicas, Universidad Andrés Bello, Campus Viña del Mar, Quillota 980, Viña del Mar, Chile.
| |
Collapse
|
32
|
Sánchez-Mendoza ME, López-Lorenzo Y, Cruz-Antonio L, Matus-Meza AS, Sánchez-Mendoza Y, Arrieta J. Gastroprotection of Calein D against Ethanol-Induced Gastric Lesions in Mice: Role of Prostaglandins, Nitric Oxide and Sulfhydryls. Molecules 2019; 24:molecules24030622. [PMID: 30754621 PMCID: PMC6384819 DOI: 10.3390/molecules24030622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 01/25/2023] Open
Abstract
Peptic ulcers are currently treated with various drugs, all having serious side effects. The aim of this study was to evaluate the gastroprotective activity of calein D (from Calea urticifolia), a sesquiterpene lactone with a germacrane skeleton. Gastric lesions were induced in mice by administering ethanol (0.2 mL) after oral treatment with calein D at 3, 10 and 30 mg/kg, resulting in 13.15 ± 3.44%, 77.65 ± 7.38% and 95.76 ± 2.18% gastroprotection, respectively, to be compared with that of the control group. The effect found for 30 mg/kg of calein D was not reversed by pretreatment with NG-nitro-l-arginine methyl ester (l-NAME, 70 mg/kg, ip), indomethacin (10 mg/kg, sc) or N-ethylmaleimide (NEM, 10 mg/kg, sc). Hence, the mechanism of action of calein D does not involve NO, prostaglandins or sulfhydryl compounds. Calein D was more potent than carbenoxolone, the reference drug. The findings for the latter are in agreement with previous reports.
Collapse
Affiliation(s)
- María Elena Sánchez-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico.
| | - Yaraset López-Lorenzo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico.
| | - Leticia Cruz-Antonio
- Facultad de Estudios Superiores Zaragoza, UNAM. Av. Guelatao No. 66, Colonia Ejército de Oriente Iztapalapa, Ciudad de México 09230, Mexico.
| | - Audifás-Salvador Matus-Meza
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Yolanda Sánchez-Mendoza
- Unidad de Medicina Familiar No. 49, Instituto Mexicano del Seguro Social, Ciudad de México 06600, Mexico.
| | - Jesús Arrieta
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Santo Tomás, Delegación Miguel Hidalgo, Ciudad de México 11340, Mexico.
| |
Collapse
|
33
|
Wang CZ, Hou L, Wan JY, Yao H, Yuan J, Zeng J, Park CW, Kim SH, Seo DB, Shin KS, Zhang CF, Chen L, Zhang QH, Liu Z, Sava-Segal C, Yuan CS. Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil. J Ginseng Res 2019; 44:282-290. [PMID: 32148410 PMCID: PMC7031751 DOI: 10.1016/j.jgr.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ginseng is a commonly used herbal medicine in treating various medical conditions. Chronic gut inflammation is a recognized factor for the development of colorectal cancer (CRC). In this project, Asian ginseng berry polysaccharide preparations were used to assess their effects on CRC and related immune regulation mechanisms. Methods Ginseng berry polysaccharide extract (GBPE) and purified ginseng berry polysaccharide portion (GBPP) were used to evaluate their activities on human HCT-116 and HT-29 CRC cell proliferation. Interleukin-8 secretion analysis was performed on HT-29 cells. Naive CD4 cell isolation and T-helper cell differentiation were performed and determined using flow cytometry for Th1 and Treg in addition to cell cycle and apoptotic investigation. Results GBPE and GBPP significantly inhibited interleukin-8 secretion and cancer cell proliferation, inhibited CD4+IFN-γ+ cell (Th1) differentiation, and decreased CD4+FoxP3+ cell (Treg) differentiation. Compared to the GBPE, GBPP showed more potent antiinflammatory activities on the malignant cells. This is consistent with the observation that GBPP can also inhibit Th1-cell differentiation better, suggesting that it has an important role in antiinflammation, whereas Treg cells hinder the body's immune response against malignancies. Supported by cell cycle and apoptosis data, GBPE and GBPP, at various degrees, remarkably enhanced the anticancer activities of 5-fluorouracil. Conclusion Data from this project suggested that Asian ginseng berry potentially has clinical utility in managing enteric inflammation and suppressing CRC through immunomodulation mechanisms.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Lifei Hou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Jin-Yi Wan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA.,Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Haiqiang Yao
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Jinbin Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chan Woong Park
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea.,Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Su Hwan Kim
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Dae Bang Seo
- Vital Beautie Research Institute, R&D Center, AmorePacific Corporation, Yongin, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Republic of Korea
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Lina Chen
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Qi-Hui Zhang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Zhi Liu
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Clara Sava-Segal
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, USA.,Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, USA
| |
Collapse
|
34
|
Ardiles A, Barrientos R, Simirgiotis MJ, Bórquez J, Sepúlveda B, Areche C. Gastroprotective Activity of Parastrephia quadrangularis (Meyen), Cabrera from the Atacama Desert. Molecules 2018; 23:molecules23092361. [PMID: 30223578 PMCID: PMC6225235 DOI: 10.3390/molecules23092361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Forty-three metabolites including several methoxylated flavonoids, tremetones, and ent-clerodane diterpenes were accurately identified for the first time in the ethanolic extract of P. quadrangularis by means of hyphenated UHPLC-quadrupole Orbitrap mass spectrometry, and seven isolated compounds were tested regarding gastroprotective activity using the HCl/EtOH-induced lesion model in mice. A new tremetone (compound 6) is reported based on spectroscopic evidence. The isolated clerodanes and tremetones showed gastroprotective activity in a mouse model, evidenced by compound 7 (p-coumaroyloxytremetone), which showed the highest gastroprotective activity (76%), which was higher than the control drug lansoprazole (72%). Our findings revealed that several constituents of this plant have gastroprotective activity, and particularly, p-coumaroyloxytremetone could be considered as a lead molecule to explore new gastroprotective agents. This plant is a rich source of biologically active tremetones and terpenoids which can support the ethnobotanical use of the plant.
Collapse
Affiliation(s)
- Alejandro Ardiles
- Departamento de Química y Farmacia, Facultad de Ciencias, Universidad Católica del Norte, Angamos 0610, Antofagasta 1240000, Chile.
| | - Ruth Barrientos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile.
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5090000, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta 1240000, Chile.
| | - Beatriz Sepúlveda
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar 2520000, Chile.
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 8320198, Chile.
| |
Collapse
|