1
|
Zhang CX, Zhang LZ, Lin H, Man QW, Liu B. BRAF V600E mutation mediates invasive and growth features in ameloblastoma. Oral Dis 2024; 30:4426-4439. [PMID: 38424736 DOI: 10.1111/odi.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Ameloblastoma (AM), a locally aggressive tumor with extensive growth capacity, causes significant damage to the jaw and affects facial appearance. Although the high prevalence of BRAF V600E mutation in AM is known, its specific impacts on patients with AM remain unclear. Thus, the present study investigated the role of BRAF V600E mutation, thereby focusing on its impact on AM invasion and growth. MATERIALS AND METHODS Immunohistochemical analysis was used to compare BRAF V600E, MMP2, MMP9, and Ki-67 expressions in AM (n = 49), normal oral mucosa (NOM) (n = 10), and odontogenic keratocyst (OKC) (n = 15) tissues. AM was further classified according to the presence or absence of BRAF V600E. The relationship between BRAF V600E and invasion as well as growth was evaluated. In addition, correlation analysis was performed using immunohistochemistry and confirmed via double-labeling immunofluorescence. Finally, comparative analyses using mass spectrometry, immunohistochemistry, and immunofluorescence were performed to explore and identify underlying mechanisms. RESULTS AM exhibited a higher incidence of BRAF V600E mutation than NOM and OKC. BRAF V600E expression was positively correlated with the invasion-associated proteins MMP2 and MMP9 and the growth-related protein Ki-67. Proteomic data revealed that BRAF V600E primarily activates the MAPK signaling pathway in AM, particularly driving the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). CONCLUSIONS In summary, the findings suggested that the BRAF V600E mutation enhances the invasion and growth abilities of AM via the MAPK/ERK signaling pathway. Thus, targeting BRAF V600E or the MAPK/ERK pathway may be a potential AM therapy.
Collapse
Affiliation(s)
- Chen-Xi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Giraulo C, Orlando L, Morretta E, Voli A, Plaitano P, Cicala C, Potaptschuk E, Müller CE, Tosco A, Monti MC, Morello S. High levels of soluble CD73 unveil resistance to BRAF inhibitors in melanoma cells. Biomed Pharmacother 2024; 177:117033. [PMID: 38941889 DOI: 10.1016/j.biopha.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Melanoma cells express high levels of CD73 that produce extracellular immunosuppressive adenosine. Changes in the CD73 expression occur in response to tumor environmental factors, contributing to tumor phenotype plasticity and therapeutic resistance. Previously, we have observed that CD73 expression can be up-regulated on the surface of melanoma cells in response to nutritional stress. Here, we explore the mechanism by which melanoma cells release soluble CD73 under low nutrient availability and whether this might be affected by agents targeting the proto-oncogene B-Raf (BRAF). We found that starved melanoma cells can release high levels of CD73, able to convert AMP into adenosine, and this activity is abrogated by selective CD73 inhibitors, APCP or PSB-12489. The release of CD73 from melanoma cells is mediated by the matrix metalloproteinase MMP-9. Indeed, MMP-9 inhibitors significantly reduce the levels of CD73 released from the cells, while its surface levels increase. Of relevance, melanoma cells, harboring an activating BRAF mutation, upon treatment with dabrafenib or vemurafenib, show a strong reduction of CD73 cell expression and reduced levels of CD73 released into the extracellular space. Conversely, melanoma cells resistant to dabrafenib show high expression of membrane-bound CD73 and soluble CD73 released into the culture medium. In summary, our data indicate that CD73 is released from melanoma cells. The expression of CD73 is associated with response to BRAF inhibitors. Melanoma cells developing resistance to dabrafenib show increased expression of CD73, including soluble CD73 released from cells, suggesting that CD73 is involved in acquiring resistance to treatment.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Lavinia Orlando
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Eugen Potaptschuk
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
3
|
Lazar AM, Costea DO, Popp CG, Mastalier B. Skin Malignant Melanoma and Matrix Metalloproteinases: Promising Links to Efficient Therapies. Int J Mol Sci 2024; 25:7804. [PMID: 39063046 PMCID: PMC11277423 DOI: 10.3390/ijms25147804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Skin malignant melanoma (MM) is one of the most frequent and aggressive neoplasia worldwide. Its associated high mortality rates are mostly due to its metastases, while diagnosis and treatment of MM in its early stages is of favorable prognostic. Even skin superficial MMs at incipient local stages can already present with lymph node invasion and distant metastases. Therefore, knowledge of the controllable risk factors and pathogenic mechanisms of MM development, spreading, and metastatic pattern, as well as early diagnosis, are essential to decrease the high mortality rates associated with cutaneous malignant melanoma. Genetic factors are incriminated, although lifetime-acquired genetic mutations appear to be even more frequently involved in the development of MM. Skin melanocytes divide only twice per year and have time to accumulate genetic mutations as a consequence of environmental aggressive factors, such as UV exposure. In the search for more promising therapies, matrix metalloproteinases have become of significant interest, such as MMP-1, MMP-2, MMP-9, and MMP-13, which have been linked to more aggressive forms of cancer and earlier metastases. Therefore, the development of specific synthetic inhibitors of MMP secretion or activity could represent a more promising and effective approach to the personalized treatment of MM patients.
Collapse
Affiliation(s)
- Angela Madalina Lazar
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Daniel Ovidiu Costea
- Second Surgery Clinic, Constanta District Clinical Emergency Hospital, 900591 Constanța, Romania
- Department of Surgery, University of Medicine and Pharmacy “Ovidius”, 900470 Constanta, Romania
| | | | - Bogdan Mastalier
- Faculty of General Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- General Surgery Clinic, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Wendlinger S, Wohlfarth J, Siedel C, Kreft S, Kilian T, Junker S, Schmid L, Sinnberg T, Dischinger U, Heppt MV, Wistuba-Hamprecht K, Meier F, Erpenbeck L, Neubert E, Goebeler M, Gesierich A, Schrama D, Kosnopfel C, Schilling B. Susceptibility of Melanoma Cells to Targeted Therapy Correlates with Protection by Blood Neutrophils. Cancers (Basel) 2024; 16:1767. [PMID: 38730718 PMCID: PMC11083732 DOI: 10.3390/cancers16091767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.
Collapse
Affiliation(s)
- Simone Wendlinger
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Teresa Kilian
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Junker
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Luisa Schmid
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, 01307 Dresden, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, 37075 Göttingen, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
- Department of Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Gattuso G, Lavoro A, Caltabiano R, Madonna G, Capone M, Ascierto PA, Falzone L, Libra M, Candido S. Methylation‑sensitive restriction enzyme‑droplet digital PCR assay for the one‑step highly sensitive analysis of DNA methylation hotspots. Int J Mol Med 2024; 53:42. [PMID: 38488030 PMCID: PMC10998716 DOI: 10.3892/ijmm.2024.5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/23/2023] [Indexed: 03/19/2024] Open
Abstract
DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high‑throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation‑Sensitive Restriction Enzyme‑droplet digital PCR (MSRE‑ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high‑sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE‑ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE‑ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, I‑95123 Catania, Italy
| | - Gabriele Madonna
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Mariaelena Capone
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Paolo Antonio Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I‑80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
6
|
Yuvruk M, Girgin RB, Zemheri E. Evaluation of MMP-9, MMP-13, MMP-21, and TIMP-1 expressions in malign melanom, dysplastic nevi, and banal nevi. North Clin Istanb 2024; 11:158-166. [PMID: 38757103 PMCID: PMC11095330 DOI: 10.14744/nci.2023.69009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Although the role of MMPs in the pathogenesis of melanoma is known, few studies have investigated their role in the development of nevi and dysplastic nevi. This study aims to search the expression differences of MMP-9, MMP-13, MMP-21, and TIMP-1 between malignant melanoma (MM), intradermal nevi (IDN), and dysplastic nevi (DN). METHODS MMP-9, MMP-13, MMP-21, and TIMP-1 antibodies were studied immunohistochemically for 60 cases in our pathology clinic archive between 2013 and 2014. RESULTS The MM group had the highest expression percentage and intensity for MMP-9 (p<0.001). There was no statistical significance between MMP-13 expression intensities of lesion cells and stromal cells and stromal expression intensities (p>0.05). MMP-21 lesion staining intensities in DN and MM compared to IDN were statistically significant (p=0.001, p=0.011, respectively). For TIMP-1, there was a significant difference between the IDN and the MM group regarding the staining proportion of lesion cells (p<0.01). There was a statistically significant difference in all groups according to lesion cells' expression intensity. (IDN-DN p<0.001, IDN-MM p=0.044, DN-MM p<0.001). CONCLUSION The following markers can be helpful when lesions cannot be differentiated; increased staining proportions and intensity of MMP-9 in both lesion and stromal cells favor MM in cases where MM and IDN cannot be differentiated. The increased MMP-13 staining proportion of lesion cells can favor DN in cases where the pathologist cannot differentiate DN and MM. Intense expression of MMP-21 by lesion cells can be a potential marker for evaluating the lesion in favor of DN in cases where DN and IDN cannot be differentiated. The high expression intensity of TIMP-1 in lesion cells can favor DN in cases where there is ambiguity between DN and MM. High expression proportion and intensity of stromal cells of TIMP-1 can be useable in favor of MM in cases where MM and DN cannot be differentiated.
Collapse
Affiliation(s)
- Meryem Yuvruk
- Department of Pathology, Sancaktepe Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkiye
| | - Rabia Burcin Girgin
- Department of Pathology, Inonu University Faculty of Medicine, Turgut Ozal Medical Center, Malatya, Turkiye
| | - Ebru Zemheri
- Department of Pathology, University of Health Sciences, Umraniye Training and Research Hospital, Istanbul, Turkiye
| |
Collapse
|
7
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
8
|
Śmieszek A, Marcinkowska K, Małas Z, Sikora M, Kępska M, Nowakowska BA, Deperas M, Smyk M, Rodriguez-Galindo C, Raciborska A. Identification and characterization of stromal-like cells with CD207 +/low CD1a +/low phenotype derived from histiocytic lesions - a perspective in vitro model for drug testing. BMC Cancer 2024; 24:105. [PMID: 38342891 PMCID: PMC10860276 DOI: 10.1186/s12885-023-11807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Histiocytoses are rare disorders manifested by increased proliferation of pathogenic myeloid cells sharing histological features with macrophages or dendritic cells and accumulating in various organs, i.a., bone and skin. Pre-clinical in vitro models that could be used to determine molecular pathways of the disease are limited, hence research on histiocytoses is challenging. The current study compares cytophysiological features of progenitor, stromal-like cells derived from histiocytic lesions (sl-pHCs) of three pediatric patients with different histiocytoses types and outcomes. The characterized cells may find potential applications in drug testing. METHODS Molecular phenotype of the cells, i.e. expression of CD1a and CD207 (langerin), was determined using flow cytometry. Cytogenetic analysis included GTG-banded metaphases and microarray (aCGH) evaluation. Furthermore, the morphology and ultrastructure of cells were evaluated using a confocal and scanning electron microscope. The microphotographs from the confocal imaging were used to reconstruct the mitochondrial network and its morphology. Basic cytophysiological parameters, such as viability, mitochondrial activity, and proliferation, were analyzed using multiple cellular assays, including Annexin V/7-AAD staining, mitopotential analysis, BrdU test, clonogenicity analysis, and distribution of cells within the cell cycle. Biomarkers potentially associated with histiocytoses progression were determined using RT-qPCR at mRNA, miRNA and lncRNA levels. Intracellular accumulation of histiocytosis-specific proteins was detected with Western blot. Cytotoxicyty and IC50 of vemurafenib and trametinib were determined with MTS assay. RESULTS Obtained cellular models, i.e. RAB-1, HAN-1, and CHR-1, are heterogenic in terms of molecular phenotype and morphology. The cells express CD1a/CD207 markers characteristic for dendritic cells, but also show intracellular accumulation of markers characteristic for cells of mesenchymal origin, i.e. vimentin (VIM) and osteopontin (OPN). In subsequent cultures, cells remain viable and metabolically active, and the mitochondrial network is well developed, with some distinctive morphotypes noted in each cell line. Cell-specific transcriptome profile was noted, providing information on potential new biomarkers (non-coding RNAs) with diagnostic and prognostic features. The cells showed different sensitivity to vemurafenib and trametinib. CONCLUSION Obtained and characterized cellular models of stromal-like cells derived from histiocytic lesions can be used for studies on histiocytosis biology and drug testing.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wroclaw, Poland.
| | - Klaudia Marcinkowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland
| | - Zofia Małas
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | - Mateusz Sikora
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland
| | - Martyna Kępska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375, Wroclaw, Poland
| | - Beata A Nowakowska
- Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | - Marta Deperas
- Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | - Marta Smyk
- Medical Genetics Department, Cytogenetics Laboratory, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | | | - Anna Raciborska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.
| |
Collapse
|
9
|
Mastalier Manolescu BS, Lazar AM, Ţiplica GS, Zurac SA, Reboşapcă A, Andreescu B, Popp CG. MMP1, MMP9, MMP11 and MMP13 in melanoma and its metastasis - key points in understanding the mechanisms and celerity of tumor dissemination. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:45-52. [PMID: 38527983 PMCID: PMC11146457 DOI: 10.47162/rjme.65.1.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Matrix metalloproteinase (MMP)1, MMP9, MMP11, and MMP13 are overexpressed in malignant melanoma (MM), being associated with tumor invasive phase, metastases, and more aggressive neoplastic phenotypes. AIM The main objective of the current study was to correlate the expression of the MMPs with the evolution of MM toward distant metastasis. PATIENTS, MATERIALS AND METHODS We designed a retrospective cohort study, including 13 patients with metastatic MM. Data concerning age, sex, localization of the primary lesion and metastasis, and histological and immunohistochemical features (intensity of expression and percent of positive cells for MMPs) were statistically processed. RESULTS The time between the diagnosis of primitive melanoma and the diagnosis of metastasis ranged between 0 and 73 months, with a mean value of 18.3 months. The metastases rich in MMP1- and MMP9-positive cells occurred earlier than the metastases with low levels of positive cells. The mean period until metastasis was shorter for the MMP1-expressing tumors than the ones without MMP1 expression. MMP13 expression in the tumor and its metastasis was significantly linked with the time until the metastasis occurrence. CONCLUSIONS This study emphasizes the roles of MMP1, MMP9, and MMP13 in the process of metastasis in melanoma and the opportunity to use them as therapeutic targets and surveillance molecules.
Collapse
Affiliation(s)
- Bogdan Stelian Mastalier Manolescu
- Department of General Surgery, Colentina Clinical Hospital, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | | | | | | | | | |
Collapse
|
10
|
Janka EA, Ványai B, Szabó IL, Toka-Farkas T, Várvölgyi T, Kapitány A, Szegedi A, Emri G. Primary tumour category, site of metastasis, and baseline serum S100B and LDH are independent prognostic factors for survival in metastatic melanoma patients treated with anti-PD-1. Front Oncol 2023; 13:1237643. [PMID: 37664072 PMCID: PMC10472446 DOI: 10.3389/fonc.2023.1237643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Prognostic classification of metastatic melanoma patients treated with anti-PD-1 is of great interest to clinicians. Objective We aimed to determine the anti-PD-1 treatment related prognostic performance of demographics, clinical and histological prognostic markers and baseline serum S100B and LDH levels in advanced melanoma. Methods A total of 200 patients with unresectable metastatic melanoma were included in this retrospective study. 34.5% had stage M1c disease and 11.5% had stage M1d disease at the start of therapy. 30% had pT4b primary melanoma. 55.5% had elevated baseline serum S100B levels and 62.5% had elevated baseline serum LDH levels. We analysed the risk of death using univariate and multivariate Cox proportional-hazards models and the median overall (OS) and progression-free (PFS) survival using the Kaplan-Meier estimator. Results The median follow-up time from the start of anti-PD-1 treatment in patients who were alive at the end of the study (N=81) was 37 months (range: 6.1-95.9). The multivariate Cox regression analysis showed that M1c stage (vs. M1a, p=0.005) or M1d stage at the start of therapy (vs. M1a, p=0.001), pT4b category (vs. pT1a, p=0.036), elevated baseline serum S100B levels (vs. normal S100B, p=0.008) and elevated LDH levels (vs. normal LDH, p=0.049) were independently associated with poor survival. The combination of M1d stage, elevated baseline serum S100B and LDH levels and pT4b category was associated with a very high risk of death (HR 4.72 [1.81; 12.33]). In the subgroup of patients with pT4b primary melanoma, the median OS of patients with normal serum S100B levels was 37.25 months [95% CI 11.04; 63.46]), while the median OS of patients with elevated serum S100B levels was 8.00 months [95% CI 3.49; 12.51]) (p<0.001); the median OS of patients with normal serum LDH levels was 41.82 months [95% CI 11.33; 72.32]), while the median OS of patients with elevated serum LDH levels was 12.29 months [95% CI 4.35; 20.23]) (p=0.002). Conclusion Our real-world study indicates that the prognostic role of primary melanoma parameters is preserved in anti-PD-1 treated stage IV patients. Furthermore, there seems to be perspective in combining clinical, histological and serum prognostic markers in a prognostic model.
Collapse
Affiliation(s)
- Eszter Anna Janka
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Beatrix Ványai
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Imre Lőrinc Szabó
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Toka-Farkas
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Várvölgyi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Kapitány
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, MTA Centre of Excellence, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
11
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
12
|
Tian Y, Fei J, Luo J, Chen L, Ye J, Du W, Yu C. Development of a reverse-transcription droplet digital PCR method for quantitative detection of Cucumber green mottle mosaic virus. Heliyon 2022; 9:e12643. [PMID: 36865460 PMCID: PMC9970901 DOI: 10.1016/j.heliyon.2022.e12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a re-emerging threat to the production of greenhouse cucumber and other Cucurbitaceae crops worldwide. This seed-borne virus can easily spread from a contaminated seed to seedlings and adjacent plants by mechanical contact between the foliage of diseased and healthy plants, causing extensive yield losses. An accurate method for detecting and quantifying this virus is urgently needed to ensure the safety of the global seed trade. Here, we report the development of a reverse-transcription droplet digital polymerase chain reaction (RT-ddPCR)-based method for specific and high-sensitive detection of CGMMV. By testing three primer-probe sets and optimizing reaction conditions, we showed that the newly developed RT-ddPCR method is highly specific and sensitive, with a detection limit of 1 fg/μL (0.39 copy/μL). The sensitivity of the RT-ddPCR method was compared with that of real-time fluorescence quantitative RT-PCR (RT-qPCR) using a series of plasmid dilutions and total RNAs extracted from infected cucumber seeds, and the detection limit of RT-ddPCR was 10 times higher than RT-qPCR with plasmid dilutions and 100 times higher than RT-qPCR for detecting CGMMV from infected cucumber seeds. The RT-ddPCR method was further assessed for detecting CGMMV from a total of 323 samples of Cucurbitaceae seeds, seedlings, and fruits as compared with the RT-qPCR method. We found that the infection rate of CGMMV on symptomatic fruits was as high as 100%, whereas infection rates were lower for seeds and lowest for seedlings. Notably, the results of two methods in detecting CGMMV from different cucurbit tissues showed the high consistency with Kappa value from 0.84 to 1.0, demonstrating that the newly developed RT-ddPCR method is highly reliable and practically useful for large-scale CGMMV detection and quantification.
Collapse
Affiliation(s)
- Yimin Tian
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs District, Shanghai 200135, China
| | - Jing Fei
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs District, Shanghai 200135, China
| | - Jinyan Luo
- Shanghai Agricultural Technology Extension Center, Shanghai 201103, China
| | - Lei Chen
- Shanghai Agricultural Technology Extension Center, Shanghai 201103, China
| | - Jun Ye
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs District, Shanghai 200135, China
| | - Wei Du
- Agricultural Technology Extension Station of Ningxia, Yinchuan 750001, China
| | - Cui Yu
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs District, Shanghai 200135, China,Corresponding author.
| |
Collapse
|
13
|
Garutti M, Bergnach M, Polesel J, Palmero L, Pizzichetta MA, Puglisi F. BRAF and MEK Inhibitors and Their Toxicities: A Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010141. [PMID: 36612138 PMCID: PMC9818023 DOI: 10.3390/cancers15010141] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This meta-analysis summarizes the incidence of treatment-related adverse events (AE) of BRAFi and MEKi. METHODS A systematic search of Medline/PubMed was conducted to identify suitable articles published in English up to 31 December 2021. The primary outcomes were profiles for all-grade and grade 3 or higher treatment-related AEs, and the analysis of single side effects belonging to both categories. RESULTS The overall incidence of treatment-related all-grade Aes was 99% for Encorafenib (95% CI: 0.97-1.00) and 97% for Trametinib (95% CI: 0.92-0.99; I2 = 66%) and Binimetinib (95% CI: 0.94-0.99; I2 = 0%). In combined therapies, the rate was 98% for both Vemurafenib + Cobimetinib (95% CI: 0.96-0.99; I2 = 77%) and Encorafenib + Binimetinib (95% CI: 0.96-1.00). Grade 3 or higher adverse events were reported in 69% of cases for Binimetinib (95% CI: 0.50-0.84; I2 = 71%), 68% for Encorafenib (95% CI: 0.61-0.74), and 72% for Vemurafenib + Cobimetinib (95% CI: 0.65-0.79; I2 = 84%). The most common grade 1-2 AEs were pyrexia (43%) and fatigue (28%) for Dabrafenib + Trametinib and diarrhea for both Vemurafenib + Cobimetinib (52%) and Encorafenib + Binimetinib (34%). The most common AEs of grade 3 or higher were pyrexia, rash, and hypertension for Dabrafenib + Trametinib (6%), rash and hypertension for Encorafenib + Binimetinib (6%), and increased AST and ALT for Vemurafenib + Cobimetinib (10%). CONCLUSIONS Our study provides comprehensive data on treatment-related adverse events of BRAFi and MEKi combination therapies, showing related toxicity profiles to offer a helpful tool for clinicians in the choice of therapy.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Correspondence: ; Tel.: +39-04-3465-9092
| | | | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Lorenza Palmero
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Maria Antonietta Pizzichetta
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
14
|
Zhang J, Yang HZ, Liu S, Islam MO, Zhu Y, Wang Z, Chen R. PCDH9 suppresses melanoma proliferation and cell migration. Front Oncol 2022; 12:903554. [PMID: 36452505 PMCID: PMC9703089 DOI: 10.3389/fonc.2022.903554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/12/2022] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Melanoma has dramatically increased during last 30 years with low 5-year survival and prognosis rate. METHODS Melanoma cells (A375 and G361) were chosen as the in vitro model. The immunohistochemical (IHC) analysis and bioinformatics mining exhibited the suppression of PCDH9 on melanoma. The interference and overexpression of PCDH9 were infected by lentivirus. The effects of PCDH9 on melanoma cells were assessed in terms of alteration of PCDH9 such as cell viability, apoptosis, cell cycle, and wound-healing assay. Moreover, expressions of PCDH9 with other genes (MMP2, MMP9, CCND1, and RAC1) were also assessed by PCR. RESULTS The alteration of PCDH9 has a negative correlation with MMP2, MMP9, and RAC1 but had a positive correlation with CCND1 (Cyclin D1) and apoptosis. Increase of PCDH9 could suppress melanoma cells and inhibit migration but not exert significant effects on cell cycle. IHC showed lower PCDH9 expression in melanoma tissue with main expression in cytoplasm. CONCLUSION Overexpressed PCDH9 suppressed melanoma cells, and PCDH9 can be considered as an independent prognostic factor for melanoma; even re-expression of PCDH9 can serve as a potential therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Hui-Zhi Yang
- The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Shuang Liu
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Md Obaidul Islam
- Department of Surgery, University of Miami, Miami, FL, United States
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Nano-drug Technology Research Center at Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Nano-drug Technology Research Center at Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - RongYi Chen
- Dermatology Department, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Melanoma Mediated Disruption of Brain Endothelial Barrier Integrity Is Not Prevented by the Inhibition of Matrix Metalloproteinases and Proteases. BIOSENSORS 2022; 12:bios12080660. [PMID: 36005056 PMCID: PMC9405625 DOI: 10.3390/bios12080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022]
Abstract
We have previously shown that human melanoma cells rapidly decrease human brain endothelial barrier strength. Our findings showed a fast mechanism of melanoma mediated barrier disruption, which was localised to the paracellular junctions of the brain endothelial cells. Melanoma cells are known to release molecules which cleave the surrounding matrix and allow traversal within and out of their metastatic niche. Enzymatic families, such as matrix metalloproteinases (MMPs) and proteases are heavily implicated in this process and their complex nature in vivo makes them an intriguing family to assess in melanoma metastasis. Herein, we assessed the expression of MMPs and other proteases in melanoma conditioned media. Our results showed evidence of a high expression of MMP-2, but not MMP-1, -3 or -9. Other proteases including Cathepsins D and B were also detected. Recombinant MMP-2 was added to the apical face of brain endothelial cells (hCMVECs), to measure the change in barrier integrity using biosensor technology. Surprisingly, this showed no decrease in barrier strength. The addition of potent MMP inhibitors (batimastat, marimastat, ONO4817) and other protease inhibitors (such as aprotinin, Pefabloc SC and bestatin) to the brain endothelial cells, in the presence of various melanoma lines, showed no reduction in the melanoma mediated barrier disruption. The inhibitors batimastat, Pefabloc SC, antipain and bestatin alone decreased the barrier strength. These results suggest that although some MMPs and proteases are released by melanoma cells, there is no direct evidence that they are substantially involved in the initial melanoma-mediated disruption of the brain endothelium.
Collapse
|
16
|
Jie X, Du M, Zhang M, Jin X, Cai Q, Xu C, Zhang X. Mutation analysis of circulating tumor DNA and paired ascites and tumor tissues in ovarian cancer. Exp Ther Med 2022; 24:542. [PMID: 35978934 PMCID: PMC9366257 DOI: 10.3892/etm.2022.11479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is one conventional type of liquid biopsy that can be collected to dynamically monitor disease status. However, its potential clinical value and concordance with ascites samples or tumor biopsy needs to be evaluated further for patients with ovarian cancer. Therefore, the present study compared the mutation profiles among ctDNA, paired tumor tissue and ascites samples to explore their possible clinical value in ovarian cancer. Targeted next-generation sequencing was used to screen for mutations in 18 peripheral blood samples, six paired ascites samples and eight paired tumor tissues collected from patients with ovarian cancer. Functional analyses were performed using public databases. WebGestalt was used to perform Gene Ontology and pathway enrichment analyses. The cBioPortal for Cancer Genomics was used to assess therapeutic targets. Chilibot and Search Tool for the Retrieval of Interacting Genes/Proteins were used to obtain key genes and their functional interactions. Comparative analysis was performed among the three types of samples using Venn diagram. A total of 104 cancer-associated mutant genes in ctDNA samples, 95 genes in tumor tissues and 44 genes in ascites samples were found. A cluster covering 10 genes, namely NOTCH2, NOTCH3, lysine methyltransferase 2A, PTEN, androgen receptor, DNA-activated protein kinase catalytic subunit, hepatocyte nuclear factor 1 homeobox A, SRC, insulin receptor substrate 2 and SRY-box transcription factor 10, was obtained by Chilibot analysis. This gene panel may have the potential to monitor metastasis and identify therapeutic targets in ovarian cancer. Taken together, the present study focused on the mutant genes in ctDNA, ascites and tumor tissues, and suggested that the integrated information of different samples could be examined to comprehensively reflect the mutational landscape in ovarian cancer. However, procedures and protocols to interpret and utilize the integrated information obtained from various forms of liquid biopsies will require optimization prior to their use for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiang Jie
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Ming Du
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Meng Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiayu Jin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Qingqing Cai
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Xiaoyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
17
|
Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127018. [PMID: 35742265 PMCID: PMC9222590 DOI: 10.3390/ijerph19127018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.
Collapse
|
18
|
Candido S, Salemi R, Piccinin S, Falzone L, Libra M. The PIK3CA H1047R Mutation Confers Resistance to BRAF and MEK Inhibitors in A375 Melanoma Cells through the Cross-Activation of MAPK and PI3K-Akt Pathways. Pharmaceutics 2022; 14:pharmaceutics14030590. [PMID: 35335966 PMCID: PMC8950976 DOI: 10.3390/pharmaceutics14030590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/23/2023] Open
Abstract
The targeting of the Mitogen-Activated Protein Kinase (MAPK) signalling pathway in melanoma improves the prognosis of patients harbouring the V-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF) mutation. However, a fraction of these patients may experience tumour progression due to resistance to targeted therapy. Mutations affecting the Phosphoinositol-3-Kinase (PI3K)–Akt pathway may favour the onset of drug resistance, suggesting the existence of a crosstalk between the MAPK and PI3K–Akt pathways. We hypothesized that the inhibition of both pathways may be a therapeutic option in resistant melanoma. However, conflicting data have been generated in this context. In this study, three different A375 cell melanoma models either overexpressing or not expressing the wild-type or mutated form of the PhosphatidylInositol-4,5-bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene were used to clarify the therapeutic response of melanoma to BRAF, Mitogen-Activated Protein Kinase Kinase 1 (MEK), and PI3K inhibitors in the presence of the PIK3CA H1047R mutation. Our data strongly support the notion that the crosstalk between the MAPK and PI3K–Akt pathways is one of the main mechanisms associated with melanoma development and progression and that the combination of MAPK and PI3K inhibitors may sensitize melanoma cells to therapy.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
| | - Sara Piccinin
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.C.); (R.S.); (M.L.)
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
19
|
Role of Biomarkers in the Integrated Management of Melanoma. DISEASE MARKERS 2022; 2021:6238317. [PMID: 35003391 PMCID: PMC8739586 DOI: 10.1155/2021/6238317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
Melanoma, which is an aggressive skin cancer, is currently the fifth and seventh most common cancer in men and women, respectively. The American Cancer Society reported that approximately 106,110 new cases of melanoma were diagnosed in the United States in 2021, with 7,180 people dying from the disease. This information could facilitate the early detection of possible metastatic lesions and the development of novel therapeutic techniques for melanoma. Additionally, early detection of malignant melanoma remains an objective of melanoma research. Recently, melanoma treatment has substantially improved, given the availability of targeted treatments and immunotherapy. These developments have highlighted the significance of identifying biomarkers for prognosis and predicting therapy response. Biomarkers included tissue protein expression, circulating DNA detection, and genetic alterations in cancer cells. Improved diagnostic and prognostic biomarkers are becoming increasingly relevant in melanoma treatment, with the development of newer and more targeted treatments. Here, the author discusses the aspects of biomarkers in the real-time management of patients with melanoma.
Collapse
|
20
|
Jacky L, Yurk D, Alvarado J, Leatham B, Schwartz J, Annaloro J, MacDonald C, Rajagopal A. Virtual-Partition Digital PCR for High-Precision Chromosomal Counting Applications. Anal Chem 2021; 93:17020-17029. [PMID: 34905685 DOI: 10.1021/acs.analchem.1c03527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Digital PCR (dPCR) is the gold-standard analytical platform for rapid high-precision quantification of genomic fragments. However, current dPCR assays are generally limited to monitoring 1-2 analytes per sample, thereby limiting the platform's ability to address some clinical applications that require the simultaneous monitoring of 20-50 analytes per sample. Here, we present virtual-partition dPCR (VPdPCR), a novel analysis methodology enabling the detection of 10 or more target regions per color channel using conventional dPCR hardware and workflow. Furthermore, VPdPCR enables dPCR instruments to overcome upper quantitation limits caused by partitioning error. While traditional dPCR analysis establishes a single threshold to separate negative and positive partitions, VPdPCR establishes multiple thresholds to identify the number of unique targets present in each positive droplet based on fluorescence intensity. Each physical partition is then divided into a series of virtual partitions, and the resulting increase in partition count substantially decreases partitioning error. We present both a theoretical analysis of the advantages of VPdPCR and an experimental demonstration in the form of a 20-plex assay for noninvasive fetal aneuploidy testing. This demonstration assay─tested on 432 samples contrived from sheared cell-line DNA at multiple input concentrations and simulated fractions of euploid or trisomy-21 "fetal" DNA─is analyzed using both traditional dPCR thresholding and VPdPCR. VPdPCR analysis significantly lowers the variance of the chromosomal ratio across replicates and increases the accuracy of trisomy identification when compared to traditional dPCR, yielding > 98% single-well sensitivity and specificity. VPdPCR has substantial promise for increasing the utility of dPCR in applications requiring ultrahigh-precision quantitation.
Collapse
Affiliation(s)
- Lucien Jacky
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Dominic Yurk
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States.,Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John Alvarado
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Bryan Leatham
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Jerrod Schwartz
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - John Annaloro
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Chris MacDonald
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Aditya Rajagopal
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States.,Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
21
|
Janka EA, Várvölgyi T, Sipos Z, Soós A, Hegyi P, Kiss S, Dembrovszky F, Csupor D, Kéringer P, Pécsi D, Solymár M, Emri G. Predictive Performance of Serum S100B Versus LDH in Melanoma Patients: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:772165. [PMID: 34950582 PMCID: PMC8688362 DOI: 10.3389/fonc.2021.772165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Background Currently, no consensus on the use of blood tests for monitoring disease recurrence in patients with resected melanoma exists. The only meta-analysis conducted in 2008 found that elevated serum S100B levels were associated with significantly worse survival in melanoma patients. Serum LDH is an established prognostic factor in patients with advanced melanoma. Objective To compare the discriminative and prognostic ability of serum S100B with that of serum LDH in patients with melanoma. Methods This systematic review and meta-analysis were reported in accordance with the PRISMA Statement. The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42019137138). Results A quantitative analysis of data from 6 eligible studies included 1,033 patients with cutaneous melanoma. The discriminative ability of serum S100B at identifying disease relapse [pooled Area Under the ROC (AUROC) 78.64 (95% CI 70.28; 87.01)] was significantly greater than the discriminative ability of serum LDH [AUROC 64.41 (95% CI 56.05; 7278)] (p=0.013). Ten eligible studies with 1,987 patients were included in the risk of death analysis. The prognostic performance of serum S100B [pooled estimate of adjusted hazard ratio (HR) 1.78 (95% CI 1.38; 2.29)] was independent but not superior to that of serum LDH [HR 1.60 (95% CI 1.36; 2.29)]. Limitations A relatively small number of articles were eligible and there was considerable heterogeneity across the included studies. Conclusions Serum biomarkers may provide relevant information on melanoma patient status and should be further researched. Serum S100B is a valid marker for diagnosis of melanoma recurrence. Systematic Review Registration The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CRD42019137138).
Collapse
Affiliation(s)
- Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Sipos
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs Kiss
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.,Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Fanni Dembrovszky
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.,Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Patrik Kéringer
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dániel Pécsi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Chhabra G, Ahmad N. BRAF Inhibitors in Melanoma Management: When Friends Become Foes. J Invest Dermatol 2021; 142:1256-1259. [PMID: 34872726 PMCID: PMC9199497 DOI: 10.1016/j.jid.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022]
Abstract
The BRAF inhibitor (BRAFi) vemurafenib improves survival of patients with melanoma with BRAFV600E mutations. However, effects of sustained BRAFis on BRAFi-resistant melanomas with dual mutations in BRAF and NRAS are not well characterized. Jandova and Wondrak (2021) report that vemurafenib selectively enhances expression of genes involved in the epithelial-to-mesenchymal transition in BRAFV600E/NRASQ61K melanoma cells, paradoxically promoting tumor growth and metastasis in mice. This preclinical study provides compelling reasons to be cautious in the use of BRAFis in patients with NRAS-driven melanoma.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
23
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
24
|
Filetti V, Loreto C, Falzone L, Lombardo C, Cannizzaro E, Castorina S, Ledda C, Rapisarda V. Diagnostic and Prognostic Value of Three microRNAs in Environmental Asbestiform Fibers-Associated Malignant Mesothelioma. J Pers Med 2021; 11:jpm11111205. [PMID: 34834557 PMCID: PMC8618926 DOI: 10.3390/jpm11111205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Fluoro-edenite (FE) is an asbestiform fiber identified in Biancavilla (Sicily, Italy). Environmental exposure to FE has been associated with a higher incidence of malignant mesothelioma (MM). The present study aimed to validate the predicted diagnostic significance of hsa-miR-323a-3p, hsa-miR-101-3p, and hsa-miR-20b-5p on a subset of MM patients exposed to FE and matched with healthy controls. For this purpose, MM tissues vs. nonmalignant pleura tissues were analyzed through droplet digital PCR (ddPCR) to evaluate differences in the expression levels of the selected miRNAs and their MM diagnostic potential. In addition, further computational analysis has been performed to establish the correlation of these miRNAs with the available online asbestos exposure data and clinic-pathological parameters to verify the potential role of these miRNAs as prognostic tools. ddPCR results showed that the three analyzed miRNAs were significantly down-regulated in MM cases vs. controls. Receiver operating characteristic (ROC) analysis revealed high specificity and sensitivity rates for both hsa-miR-323a-3p and hsa-miR-20b-5p, which thus acquire a diagnostic value for MM. In silico results showed a potential prognostic role of hsa-miR-101-3p due to a significant association of its higher expression and increased overall survival (OS) of MM patients.
Collapse
Affiliation(s)
- Veronica Filetti
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123 Catania, Italy; (V.F.); (C.L.)
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123 Catania, Italy; (V.F.); (C.L.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Claudia Lombardo
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy; (C.L.); (S.C.)
| | - Emanuele Cannizzaro
- Occupational Medicine, Department of Sciences for Health Promotion and Mother and Child Care, University of Palermo, 90128 Palermo, Italy;
| | - Sergio Castorina
- Human Anatomy, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy; (C.L.); (S.C.)
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
- Correspondence:
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| |
Collapse
|
25
|
Naik PP. Current Trends of Immunotherapy in the Treatment of Cutaneous Melanoma: A Review. Dermatol Ther (Heidelb) 2021; 11:1481-1496. [PMID: 34339016 PMCID: PMC8484371 DOI: 10.1007/s13555-021-00583-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma remains a severe public health threat, with annual incidence increasing slowly but steadily over 4 decades. While early-stage melanomas can typically be treated with complete surgical excision with favorable results, the development of metastatic cancer, which is related to a lower survival rate, is linked to the primary tumor's rising stage and other high-risk features. Even though the first discoveries of an immunological anti-tumor response were published about a century ago, immunotherapy has only been a feasible therapeutic option for cutaneous melanoma in the last 30 years. Nonetheless, for the treatment of various cancers, including metastatic melanoma, the area of cancer immunotherapy has made significant progress in the last decade. As a result, melanoma continues to be the subject of several preclinical and clinical investigations to further understand cancer immunobiology and test different tumor immunotherapies. Immunotherapy's resistance to radiation and cytotoxic chemotherapy is one of its most distinguishing features. Furthermore, the discovery of biomarkers will aid in patient stratification and management during immunotherapy treatment. In this article, we discuss current knowledge and recent developments in immune-mediated therapy of melanoma.
Collapse
Affiliation(s)
- Piyu Parth Naik
- Department of Dermatology, Saudi German Hospitals and Clinics, Dubai, United Arab Emirates.
| |
Collapse
|
26
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
27
|
Massone C, Hofman-Wellenhof R, Chiodi S, Sola S. Dermoscopic Criteria, Histopathological Correlates and Genetic Findings of Thin Melanoma on Non-Volar Skin. Genes (Basel) 2021; 12:1288. [PMID: 34440462 PMCID: PMC8391530 DOI: 10.3390/genes12081288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
Dermoscopy is a non-invasive, in vivo technique that allows the visualization of subsurface skin structures in the epidermis, at the dermoepidermal junction, and in the upper dermis. Dermoscopy brought a new dimension in evaluating melanocytic skin neoplasms (MSN) also representing a link between clinical and pathologic examination of any MSN. However, histopathology remains the gold standard in diagnosing MSN. Dermoscopic-pathologic correlation enhances the level of quality of MSN diagnosis and increases the level of confidence of pathologists. Melanoma is one of the most genetically predisposed among all cancers in humans. The genetic landscape of melanoma has been described in the last years but is still a field in continuous evolution. Melanoma genetic markers play a role not only in melanoma susceptibility, initiation, and progression but also in prognosis and therapeutic decisions. Several studies described the dermoscopic specific criteria and predictors for melanoma and their histopathologic correlates, but only a few studies investigated the correlation among dermoscopy, pathology, and genetic of MSN. The aim of this work is to review the published data about dermoscopic features of melanoma, their histopathological correlates with regards also to genetic alterations. Particularly, this review will focus on low-CSD (cumulative sun damage) melanoma or superficial spreading melanoma, high-CSD melanoma, and nevus-associated melanoma.
Collapse
Affiliation(s)
| | | | | | - Simona Sola
- Surgical Pathology, Galliera Hospital, 16128 Genoa, Italy;
| |
Collapse
|
28
|
Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C, Falzone L. Genetic and Epigenetic Alterations Induced by Pesticide Exposure: Integrated Analysis of Gene Expression, microRNA Expression, and DNA Methylation Datasets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168697. [PMID: 34444445 PMCID: PMC8394939 DOI: 10.3390/ijerph18168697] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.
Collapse
Affiliation(s)
- Federica Giambò
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy;
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| |
Collapse
|
29
|
Musso N, Falzone L, Stracquadanio S, Bongiorno D, Salerno M, Esposito M, Sessa F, Libra M, Stefani S, Pomara C. Post-Mortem Detection of SARS-CoV-2 RNA in Long-Buried Lung Samples. Diagnostics (Basel) 2021; 11:diagnostics11071158. [PMID: 34202678 PMCID: PMC8304625 DOI: 10.3390/diagnostics11071158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The Coronavirus Disease 19 (COVID-19) pandemic has caused an unexpected death toll worldwide. Even though several guidelines for the management of infectious corpses have been proposed, the limited number of post-mortem analyses during the pandemic has led to inaccuracies in the counting of COVID-19 deaths and contributed to a lack of important information about the pathophysiology of the SARS-CoV-2 infection. Due to the impossibility of carrying out autopsies on all corpses, the scientific community has raised the question of whether confirmatory analyses could be performed on exhumed bodies after a long period of burial to assess the presence of SARS-CoV-2 RNA. Post-mortem lung samples were collected from 16 patients who died from COVID-19 infection and were buried for a long period of time. A custom RNA extraction protocol was developed to enhance extraction of viral RNA from degraded samples and highly sensitive molecular methods, including RT-qPCR and droplet digital PCR (ddPCR), were used to detect the presence of SARS-CoV-2 RNA. The custom extraction protocol developed allowed us to extract total RNA effectively from all lung samples collected. SARS-CoV-2 viral RNA was effectively detected in all samples by both RT-qPCR and ddPCR, regardless of the length of burial. ddPCR results confirmed the persistence of the virus in this anatomical niche and revealed high viral loads in some lung samples, suggesting active infection at the time of death. To the best of our knowledge, this is the first study to demonstrate the persistence of SARS-CoV-2 viral RNA in the lung even after a long post-mortem interval (up to 78 days). The extraction protocol herein described, and the highly sensitive molecular analyses performed, could represent the standard procedures for SARS-CoV-2 detection in degraded lung specimens. Finally, the innovative results obtained encourage post-mortem confirmatory analyses even after a long post-mortem interval.
Collapse
Affiliation(s)
- Nicolò Musso
- Laboratory of Molecular and Resistant Antibiotic Medical Microbiology (MMAR), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (N.M.); (S.S.); (D.B.)
| | - Luca Falzone
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (L.F.); (M.L.)
| | - Stefano Stracquadanio
- Laboratory of Molecular and Resistant Antibiotic Medical Microbiology (MMAR), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (N.M.); (S.S.); (D.B.)
| | - Dafne Bongiorno
- Laboratory of Molecular and Resistant Antibiotic Medical Microbiology (MMAR), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (N.M.); (S.S.); (D.B.)
| | - Monica Salerno
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (M.E.); (C.P.)
| | - Massimiliano Esposito
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (M.E.); (C.P.)
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Massimo Libra
- Laboratory of Experimental Oncology, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (L.F.); (M.L.)
| | - Stefania Stefani
- Laboratory of Molecular and Resistant Antibiotic Medical Microbiology (MMAR), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy; (N.M.); (S.S.); (D.B.)
- Correspondence:
| | - Cristoforo Pomara
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Institute of Legal Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (M.E.); (C.P.)
| |
Collapse
|
30
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021; 47:100. [PMID: 33846767 PMCID: PMC8043662 DOI: 10.3892/ijmm.2021.4933] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
- Research Center for the Prevention, Diagnosis and Treatment of Tumors, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
31
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021. [PMID: 33846767 DOI: 10.3892/ijmm.2021.4933/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
32
|
SARS-CoV-2 RNA Quantification Using Droplet Digital RT-PCR. J Mol Diagn 2021; 23:907-919. [PMID: 34062285 PMCID: PMC8164350 DOI: 10.1016/j.jmoldx.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Quantitative viral load assays have transformed our understanding of viral diseases. They hold similar potential to advance COVID-19 control and prevention, but SARS-CoV-2 viral load tests are not yet widely available. SARS-CoV-2 molecular diagnostic tests, which typically employ real-time RT-PCR, yield semiquantitative results only. Droplet digital RT-PCR (RT-ddPCR) offers an attractive platform for SARS-CoV-2 RNA quantification. Eight primer/probe sets originally developed for real-time RT-PCR–based SARS-CoV-2 diagnostic tests were evaluated for use in RT-ddPCR; three were identified as the most efficient, precise, and sensitive for RT-ddPCR–based SARS-CoV-2 RNA quantification. For example, the analytical efficiency for the E-Sarbeco primer/probe set was approximately 83%, whereas assay precision, measured as the coefficient of variation, was approximately 2% at 1000 input copies/reaction. Lower limits of quantification and detection for this primer/probe set were 18.6 and 4.4 input SARS-CoV-2 RNA copies/reaction, respectively. SARS-CoV-2 RNA viral loads in a convenience panel of 48 COVID-19–positive diagnostic specimens spanned a 6.2log10 range, confirming substantial viral load variation in vivo. RT-ddPCR–derived SARS-CoV-2 E gene copy numbers were further calibrated against cycle threshold values from a commercial real-time RT-PCR diagnostic platform. This log-linear relationship can be used to mathematically derive SARS-CoV-2 RNA copy numbers from cycle threshold values, allowing the wealth of available diagnostic test data to be harnessed to address foundational questions in SARS-CoV-2 biology.
Collapse
|
33
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
34
|
Abstract
Malignant melanoma is a neoplasm originating in the melanocytes in the skin. Although malignant melanoma is the third most common cutaneous cancer, it is recognized as the main cause of skin cancer-related mortality, and its incidence is rising. The natural history of malignant melanoma involves an inconsistent and insidious skin cancer with great metastatic potential. Increased ultra-violet (UV) skin exposure is undoubtedly the greatest risk factor for developing cutaneous melanoma; however, a plethora of risk factors are now recognized as causative. Moreover, modern oncology now considers melanoma proliferation a complex, multifactorial process with a combination of genetic, epigenetic, and environmental factors all known to be contributory to tumorgenesis. Herein, we wish to outline the epidemiological, molecular, and biological processes responsible for driving malignant melanoma proliferation.
Collapse
Affiliation(s)
| | - Nicola Miller
- Surgery, National University of Ireland Galway, Galway, IRL
| | - Niall M McInerney
- Plastic, Aesthetic, and Reconstructive Surgery, Galway University Hospitals, Galway, IRL
| |
Collapse
|
35
|
NRF2 DLG Domain Mutations Identified in Japanese Liver Cancer Patients Affect the Transcriptional Activity in HCC Cell Lines. Int J Mol Sci 2021; 22:ijms22105296. [PMID: 34069882 PMCID: PMC8157386 DOI: 10.3390/ijms22105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Geographically, East Asia had the highest liver cancer burden in 2017. Besides this, liver cancer-related deaths were high in Japan, accounting for 3.90% of total deaths. The development of liver cancer is influenced by several factors, and genetic alteration is one of the critical factors among them. Therefore, the detailed mechanism driving the oncogenic transformation of liver cells needs to be elucidated. Recently, many researchers have focused on investigating the liver cancer genome and identified somatic mutations (MTs) of several transcription factors. In this line, next-generation sequencing of the cancer genome identified that oxidative stress-related transcription factor NRF2 (NFE2L2) is mutated in different cancers, including hepatocellular carcinoma (HCC). Here, we demonstrated that NRF2 DLG motif mutations (NRF2 D29A and L30F), found in Japanese liver cancer patients, upregulate the transcriptional activity of NRF2 in HCC cell lines. Moreover, the transcriptional activity of NRF2 mutations is not suppressed by KEAP1, presumably because NRF2 MTs disturb proper NRF2-KEAP1 binding and block KEAP1-mediated degradation of NRF2. Additionally, we showed that both MTs upregulate the transcriptional activity of NRF2 on the MMP9 promoter in Hepa1-6 and Huh7 cells, suggesting that MT derived gain-of-function of NRF2 may be important for liver tumor progression. We also found that ectopic overexpression of oncogenic BRAF WT and V600E increases the transcriptional activity of NRF2 WT on both the 3xARE reporter and MMP9 promoter. Interestingly, NRF2 D29A and L30F MTs with oncogenic BRAF V600E MT synergistically upregulate the transcription activity of NRF2 on the 3xARE reporter and MMP9 promoter in Hepa1-6 and Huh7 cells. In summary, our findings suggest that MTs in NRF2 have pathogenic effects, and that NRF2 MTs together with oncogenic BRAF V600E MT synergistically cause more aberrant transcriptional activity. The high activity of NRF2 MTs in HCC with BRAF MT warrants further exploration of the potential diagnostic, prognostic, and therapeutic utility of this pathway in HCC.
Collapse
|
36
|
The Role of Senescent Cells in Acquired Drug Resistance and Secondary Cancer in BRAFi-Treated Melanoma. Cancers (Basel) 2021; 13:cancers13092241. [PMID: 34066966 PMCID: PMC8125319 DOI: 10.3390/cancers13092241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Advances in melanoma treatment include v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors that target the predominant oncogenic mutation found in malignant melanoma. Despite initial success of the BRAF inhibitor (BRAFi) therapies, resistance and secondary cancer often occur. Mechanisms of resistance and secondary cancer rely on upregulation of pro-survival pathways that circumvent senescence. The repeated identification of a cellular senescent phenotype throughout melanoma progression demonstrates the contribution of senescent cells in resistance and secondary cancer development. Incorporating senotherapeutics in melanoma treatment may offer a novel approach for potentially improving clinical outcome. Abstract BRAF is the most common gene mutated in malignant melanoma, and predominately it is a missense mutation of codon 600 in the kinase domain. This oncogenic BRAF missense mutation results in constitutive activation of the mitogen-activate protein kinase (MAPK) pro-survival pathway. Several BRAF inhibitors (BRAFi) have been developed to specifically inhibit BRAFV600 mutations that improve melanoma survival, but resistance and secondary cancer often occur. Causal mechanisms of BRAFi-induced secondary cancer and resistance have been identified through upregulation of MAPK and alternate pro-survival pathways. In addition, overriding of cellular senescence is observed throughout the progression of disease from benign nevi to malignant melanoma. In this review, we discuss melanoma BRAF mutations, the genetic mechanism of BRAFi resistance, and the evidence supporting the role of senescent cells in melanoma disease progression, drug resistance and secondary cancer. We further highlight the potential benefit of targeting senescent cells with senotherapeutics as adjuvant therapy in combating melanoma.
Collapse
|
37
|
Zheng Y, Sun H, Cong L, Liu C, Sun Q, Wu N, Cong X. Prognostic Value of ctDNA Mutation in Melanoma: A Meta-Analysis. JOURNAL OF ONCOLOGY 2021; 2021:6660571. [PMID: 34035810 PMCID: PMC8116156 DOI: 10.1155/2021/6660571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Melanoma is the most aggressive form of skin cancer. Circulating tumor DNA (ctDNA) is a diagnostic and prognostic marker of melanoma. However, whether ctDNA mutations can independently predict survival remains controversial. This meta-analysis assessed the prognostic value of the presence or change in ctDNA mutations in melanoma patients. METHODS We identified studies from the PubMed, EMBASE, Web of Science, and Cochrane databases. We estimated the combined hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) using either fixed-effect or random-effect models based on heterogeneity. RESULTS Sixteen studies including 1,781 patients were included. Both baseline and posttreatment detectable ctDNA were associated with poor OS (baseline detectable vs. undetectable, pooled HR = 1.97, 95% CI = 1.64-2.36, P < 0.00001; baseline undetectable vs. detectable, pooled HR = 0.19, 95% CI = 0.11-0.36, P < 0.00001; posttreatment detectable vs. undetectable, pooled HR = 2.36, 95% CI = 1.30-4.28, P=0.005). For PFS, baseline detectable ctDNA may be associated with adverse PFS (baseline detectable vs. undetectable, pooled HR = 1.41, 95% CI = 0.84-2.37, P=0.19; baseline undetectable vs. detectable, pooled HR = 0.43, 95% CI = 0.19-0.95, P=0.04) and baseline high ctDNA and increased ctDNA were significantly associated with adverse PFS (baseline high vs. low/undetectable, pooled HR = 3.29, 95% CI = 1.73-6.25, P=0.0003; increase vs. decrease, pooled HR = 4.48, 95% CI = 2.45-8.17, P < 0.00001). The baseline BRAFV600 ctDNA mutation-positive group was significantly associated with adverse OS compared with the baseline ctDNA-negative group (pooled HR = 1.90, 95% CI = 1.58-2.29, P < 0.00001). There were no significant differences in PFS between the baseline BRAFV600 ctDNA mutation-detectable group and the undetectable group (pooled HR = 1.02, 95% CI = 0.72-1.44, P=0.92). CONCLUSION The presence or elevation of ctDNA mutation or BRAFV600 ctDNA mutation was significantly associated with worse prognosis in melanoma patients.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Sun
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenlu Liu
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Sun
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
miRNA and mRNA expression profiling reveals potential biomarkers for metastatic cutaneous melanoma. Expert Rev Anticancer Ther 2021; 21:557-567. [PMID: 33504224 DOI: 10.1080/14737140.2021.1882860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: This study aims to uncover potential biomarkers associated with cutaneous melanoma (CM) metastasis.Methods: The mRNA and microRNA (miRNA) expression data from the metastatic CM and non-metastatic CM population were obtained from The Cancer Genome Atlas database. Functional analysis, protein-protein interaction (PPI), and survival analysis were performed for differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs). The interaction between DEmRNAs and DEmiRNAs was analyzed. The expression of several key DEmRNAs and DEmiRNAs was validated by Gene Expression Omnibus datasets.Results: Overall, 1172 DEmRNAs and 26 DEmiRNAs were identified from metastatic and non-metastatic CM. Cytokine-cytokine receptor interaction and chemokine signaling pathway were key pathways. CXCR1, CXCR2, CXCR4, CCR1, CCR2, and CCR5 were hub genes in the PPI network. Among these, miR-29 c-3p, miR-100-5p, miR-150-5p, and miR-150-3p were not only diagnostic biomarkers but also related to survival time. miR-203a-3p interacted with CCR5 and LIFR, while miR-224-5p was strongly associated with CXCR4. LIFR, CXCR1, CXCR2, CXCR4, CCR1, CCR2, and CCR5 were enriched in the cytokine-cytokine receptor interaction pathway. The levels of seven DEmRNAs (CXCR1, CXCR2, CXCR4, CCR1, CCR2, CCR5, and LIFR) and two DEmiRNAs (miR-203a-3p and miR-224-5p) were validated using the GSE65568 and GSE109244 datasets, respectively.Conclusion: Our findings may provide novel biomarkers for CM metastasis.[Formula: see text].
Collapse
|
39
|
Fallico M, Raciti G, Longo A, Reibaldi M, Bonfiglio V, Russo A, Caltabiano R, Gattuso G, Falzone L, Avitabile T. Current molecular and clinical insights into uveal melanoma (Review). Int J Oncol 2021; 58:10. [PMID: 33649778 PMCID: PMC7910016 DOI: 10.3892/ijo.2021.5190] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90-95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Matteo Fallico
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, I‑95125 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, I‑10122 Turin, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, I‑90127 Palermo, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department 'G.F. Ingrassia', Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
40
|
Tsatsakis A, Calina D, Falzone L, Petrakis D, Mitrut R, Siokas V, Pennisi M, Lanza G, Libra M, Doukas SG, Doukas PG, Kavali L, Bukhari A, Gadiparthi C, Vageli DP, Kofteridis DP, Spandidos DA, Paoliello MMB, Aschner M, Docea AO. SARS-CoV-2 pathophysiology and its clinical implications: An integrative overview of the pharmacotherapeutic management of COVID-19. Food Chem Toxicol 2020; 146:111769. [PMID: 32979398 PMCID: PMC7833750 DOI: 10.1016/j.fct.2020.111769] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Common manifestations of COVID-19 are respiratory and can extend from mild symptoms to severe acute respiratory distress. The severity of the illness can also extend from mild disease to life-threatening acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection can also affect the gastrointestinal tract, liver and pancreatic functions, leading to gastrointestinal symptoms. Moreover, SARS-CoV-2 can cause central and peripheral neurological manifestations, affect the cardiovascular system and promote renal dysfunction. Epidemiological data have indicated that cancer patients are at a higher risk of contracting the SARS-CoV-2 virus. Considering the multitude of clinical symptoms of COVID-19, the objective of the present review was to summarize their pathophysiology in previously healthy patients, as well as in those with comorbidities. The present review summarizes the current, though admittedly fluid knowledge on the pathophysiology and symptoms of COVID-19 infection. Although unclear issues still remain, the present study contributes to a more complete understanding of the disease, and may drive the direction of new research. The recognition of the severity of the clinical symptoms of COVID-19 is crucial for the specific therapeutic management of affected patients.
Collapse
Affiliation(s)
- Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece; I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131, Naples, Italy.
| | - Dimitrios Petrakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece.
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098, Bucharest, Romania.
| | - Vasileios Siokas
- Department of Neurology, University of Thessaly, University Hospital of Larissa, 41221, Larissa, Greece.
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, 94018, Troina, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy.
| | - Sotirios G Doukas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece; Department of Internal Medicine, Saint Peter's University Hospital, 254 Easton Ave, New Brunswick, NJ, 08901, USA.
| | - Panagiotis G Doukas
- University of Pavol Josef Safarik University, Faculty of Medicine, Kosice, Slovakia.
| | - Leena Kavali
- Department of Internal Medicine, Saint Peter's University Hospital, 254 Easton Ave, New Brunswick, NJ, 08901, USA.
| | - Amar Bukhari
- Department of Medicine, Division of Pulmonary and Critical Care 240 Easton Ave, Adult Ambulatory at Cares Building 4th Floor, New Brunswick, NJ, 08901, USA.
| | - Chiranjeevi Gadiparthi
- Division of Gastroenterology, Hepatology and Clinical Nutrition, Saint Peter's University Hospital, New Brunswick, NJ, USA.
| | - Dimitra P Vageli
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT, 06510, USA.
| | - Diamantis P Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 71003, Greece.
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Eisntein College of Medicine, 1300 Morris Park Avenue Bronx, NY, 10461, USA.
| | - Michael Aschner
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia; Department of Molecular Pharmacology, Albert Eisntein College of Medicine, 1300 Morris Park Avenue Bronx, NY, 10461, USA.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
41
|
Gandini S, Zanna I, De Angelis SP, Cocorocchio E, Queirolo P, Lee JH, Carlino MS, Mazzarella L, Achutti Duso B, Palli D, Raimondi S, Caini S. Circulating tumour DNA and melanoma survival: A systematic literature review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103187. [PMID: 33276181 DOI: 10.1016/j.critrevonc.2020.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
We reviewed and meta-analysed the available evidence (until December 2019) about circulating tumour DNA (ctDNA) levels and melanoma patients survival. We included twenty-six studies (>2000 patients overall), which included mostly stage III-IV cutaneous melanoma patients and differed widely in terms of systemic therapy received and somatic mutations that were searched. Patients with detectable ctDNA before treatment had worse progression-free survival (PFS) (summary hazard ratio (SHR) 2.47, 95 % confidence intervals (CI) 1.85-3.29) and overall survival (OS) (SHR 2.98, 95 % CI 2.26-3.92), with no difference by tumour stage. ctDNA detectability during follow-up was associated with poorer PFS (SHR 4.27, 95 %CI 2.75-6.63) and OS (SHR 3.91, 95 %CI 1.97-7.78); in the latter case, the association was stronger (p = 0.01) for stage IV vs. III melanomas. Between-estimates heterogeneity was low for all pooled estimates. ctDNA is a strong prognostic biomarker for advanced-stage melanoma patients, robust across tumour (e.g. genomic profile) and patients (e.g. systemic therapy) characteristics.
Collapse
Affiliation(s)
- Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Simone Pietro De Angelis
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Emilia Cocorocchio
- Division of Medical Oncology of Melanoma, Sarcoma and Rare Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Paola Queirolo
- Division of Medical Oncology of Melanoma, Sarcoma and Rare Tumors, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Jenny H Lee
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Matteo S Carlino
- Department of Clinical Oncology, Westmead and Blacktown Hospitals, Melanoma Institute of Australia and the University of Sydney, Sydney, Australia
| | - Luca Mazzarella
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Bruno Achutti Duso
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Domenico Palli
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
42
|
Crimi S, Falzone L, Gattuso G, Grillo CM, Candido S, Bianchi A, Libra M. Droplet Digital PCR Analysis of Liquid Biopsy Samples Unveils the Diagnostic Role of hsa-miR-133a-3p and hsa-miR-375-3p in Oral Cancer. BIOLOGY 2020; 9:biology9110379. [PMID: 33172167 PMCID: PMC7694750 DOI: 10.3390/biology9110379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Despite the availability of screening programs, oral cancer is often diagnosed due to the lack of effective biomarkers. Therefore, the identification of new effective diagnostic and late prognostic biomarkers is of fundamental importance for the management of this tumor type. In our previous computational study, we have identified a set of microRNAs (miRNAs) significantly dysregulated in oral cancer and with a potential diagnostic and prognostic significance for oral cancer patients. Starting from our preliminary bioinformatics results, the aim of the present study was to validate the diagnostic potential of four selected miRNAs, hsa-miR-133a-3p, hsa-miR-375-3p, hsa-miR-503-5p and hsa-miR-196a-5p, in liquid biopsy samples obtained from oral cancer patients and healthy donors. For this purpose, the expression levels of the selected miRNAs were determined in plasma samples by using specific miRNA probes and droplet digital PCR (ddPCR). The ddPCR results showed that the hsa-miR-133a-3p and hsa-miR-375-3p were significantly down-regulated in oral cancer and their evaluation in liquid biopsy samples can predict the risk of oral cancer development with high sensitivity and specificity. Finally, the computational analysis of miRNA expression and clinical-pathological features of patients allowed us to establish the functional role and prognostic significance of the two validated miRNAs. Abstract Despite the availability of screening programs, oral cancer deaths are increasing due to the lack of diagnostic biomarkers leading to late diagnosis and a poor prognosis. Therefore, there is an urgent need to discover novel effective biomarkers for this tumor. On these bases, the aim of this study was to validate the diagnostic potential of microRNAs (miRNAs) through the analysis of liquid biopsy samples obtained from ten oral cancer patients and ten healthy controls. The expression of four selected miRNAs was evaluated by using droplet digital PCR (ddPCR) in a pilot cohort of ten oral cancer patients and ten healthy donors. Bioinformatics analyses were performed to assess the functional role of these miRNAs. The expression levels of the predicted down-regulated hsa-miR-133a-3p and hsa-miR-375-3p were significantly reduced in oral cancer patients compared to normal individuals while no significant results were obtained for the up-regulated hsa-miR-503-5p and hsa-miR-196a-5p. ROC analysis confirmed the high sensitivity and specificity of hsa-miR-375-3p and hsa-miR-133a-3p. Therefore, both miRNAs are significantly down-regulated in cancer patients and can be used as biomarkers for the early diagnosis of oral cancer. The analysis of circulating miRNAs in a larger series of patients is mandatory to confirm the results obtained in this pilot study.
Collapse
Affiliation(s)
- Salvatore Crimi
- Department of General Surgery, Section of Maxillo Facial Surgery, Policlinico San Marco, University of Catania, 95123 Catania, Italy; (S.C.); (A.B.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1271
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (S.C.); (M.L.)
| | - Caterina Maria Grillo
- Otolaryngology Unit, Department of Medical Sciences, Surgical and Advanced Technologies, University of Catania, 95123 Catania, Italy;
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (S.C.); (M.L.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Alberto Bianchi
- Department of General Surgery, Section of Maxillo Facial Surgery, Policlinico San Marco, University of Catania, 95123 Catania, Italy; (S.C.); (A.B.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (S.C.); (M.L.)
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| |
Collapse
|
43
|
Nguyen MHT, Lin CH, Liu SM, Miyashita A, Ihn H, Lin H, Ng CH, Tsai JC, Chen MH, Tsai MS, Lin IY, Liu SC, Li LY, Fukushima S, Lu J, Ma N. miR-524-5p reduces the progression of the BRAF inhibitor-resistant melanoma. Neoplasia 2020; 22:789-799. [PMID: 33142243 PMCID: PMC7642759 DOI: 10.1016/j.neo.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
BRAF inhibitors were approved for the treatment of BRAF-mutant melanoma. However, most patients acquire the resistance to BRAF inhibitors after several months of treatment. miR-524-5p is considered as a tumor suppressor in many cancers, including melanoma. In this study, we investigated the biological functions of miR-524-5p in melanoma with acquired resistance to BRAF inhibitor and evaluated the endogenous miR-524-5p expression as a biomarker for melanoma. The results showed that the expression of miR-524-5p was 0.481-fold lower in melanoma tissues (n = 117) than in nevus tissues (n = 40). Overexpression of miR-524-5p significantly reduced proliferative, anchorage-independent growth, migratory and invasive abilities of BRAF inhibitor-resistant melanoma cells. Moreover, the introduction of miR-524-5p led to a reduced development of BRAF inhibitor-resistant melanoma in vivo. Remarkably, the MAPK/ERK signaling pathway was decreased after treatment with miR-524-5p. Furthermore, next-generation sequencing analysis implied that the complement system, leukocyte extravasation, liver X receptor/retinoid-X-receptor activation, and cAMP-mediated signaling may be related to miR-524-5p-induced pathways in the resistant cells. The miR-524-5p level was higher on average in complete response and long-term partial response patients than in progressive disease and short-term partial response patients treated with BRAF inhibitors. Our results proposed that miR-524-5p could be considered as a target for treatment BRAF inhibitor-resistant melanoma and a prognostic marker in the response of patients to BRAF inhibitors for melanoma.
Collapse
Affiliation(s)
- Mai-Huong Thi Nguyen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Szu-Mam Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hsuan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi Hou Ng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jen-Chieh Tsai
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Ming-Hong Chen
- Department of Pathology, Saint Paul's Hospital, Taoyuan, Taiwan
| | - Mu-Shiun Tsai
- Department of Pathology, Landseed Hospital, Taoyuan, Taiwan
| | - In-Yu Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; National Core Facility Program for Biotechnology, National RNAi Platform, Taipei, Taiwan.
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
44
|
Filetti V, Vitale E, Broggi G, Hagnäs MP, Candido S, Spina A, Lombardo C. Update of in vitro, in vivo and ex vivo fluoro-edenite effects on malignant mesothelioma: A systematic review (Review). Biomed Rep 2020; 13:60. [PMID: 33149905 PMCID: PMC7605121 DOI: 10.3892/br.2020.1367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Fluoro-edenite (FE), asbestiform fiber found in Biancavilla (Sicily, Italy), presents various characteristics similar to the asbestos group, in particular two fibrous phases tremolite and actinolite. Indeed, epidemiological studies have shown that FE fibers have similar effects to those of asbestos fibers. Such studies have reported a high incidence of malignant mesothelioma (MM), an aggressive neoplasm of the serosal membranes lining the pleural cavity, in individuals residing there due to FE exposure in Biancavilla related to environmental contamination. Evidence has led to the classification of FE as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). The aim of this systematic review is to compare the results achieved in in vitro, in vivo and ex vivo experimental studies involving FE in order to update the current knowledge on the pathogenesis and molecular mechanisms responsible for FE-mediated MM development as well as the availability of effective biomarkers for MM prevention and diagnosis. This review is focused on the pathophysiological mechanisms mediated by inflammation induced by FE fiber exposure and which are responsible for MM development. This review also discusses the discovery of new diagnostic and prognostic biomarkers for the management of this pathology. It is known that the risk of cancer development increases with chronic inflammation, arising from enhanced reactive oxygen species (ROS) and NO• production stimulated by the body to remove exogenous agents, causing DNA damage and enhanced signal transduction that may lead to activation of oncogenes. Studies concerning MM biomarker discovery indicate that several biomarkers have been proposed for MM, but mesothelin is the only Food and Drug Administration (FDA)-approved biomarker for MM, with limitations. In recent studies, in silico analysis to identify selected miRNAs highly deregulated in cancer samples when compared with normal control have been developed. This in silico approach could represent an effort in the field of biomarker discovery for MM.
Collapse
Affiliation(s)
- Veronica Filetti
- Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Ermanno Vitale
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, I-95123 Catania, Italy
| | - Giuseppe Broggi
- Pathologic Anatomy, Department 'G.F. Ingrassia', University of Catania, I-95123 Catania, Italy
| | - Maria P Hagnäs
- Rovaniemi Health Centre, 96200 Rovaniemi, Finland.,Center for Life Course Health Research, University of Oulu, 90150 Oulu, Finland
| | - Saverio Candido
- Oncologic, Clinic and General Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy.,Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, I-95123 Catania, Italy
| | - Anna Spina
- INPS Italian National Social Security Institution, I-95129 Catania, Italy
| | - Claudia Lombardo
- Pathologic Anatomy, Department 'G.F. Ingrassia', University of Catania, I-95123 Catania, Italy
| |
Collapse
|
45
|
Falzone L, Gattuso G, Lombardo C, Lupo G, Grillo CM, Spandidos DA, Libra M, Salmeri M. Droplet digital PCR for the detection and monitoring of Legionella pneumophila. Int J Mol Med 2020; 46:1777-1782. [PMID: 33000184 PMCID: PMC7521553 DOI: 10.3892/ijmm.2020.4724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila(L. pneumophila is a harmful pathogen often found in water systems. In hospitals, the absence of L. pneumophila in water systems is mandatory by law, therefore, frequent and effective monitoring of water is of fundamental importance. Molecular methods based on reverse transcription-quantitative polymerase chain reaction (RT-qPCR) have been proposed for the detection of L. pneumophila, however, the sensitivity and accuracy of these methods have not been validated yet. Therefore, it is important to evaluate other strategies able to overcome the limits of culture-based and RT-qPCR methods. On these bases, we compared the sensitivity and accuracy of droplet digital PC (ddPCR) and RT-qPCR in water samples with known concentrations of L. pneumophila and in an in vitro model of water heat treatments. ddPCR showed a higher sensitivity rate and accuracy compared to RT-qPCR in detecting low bacterial load. In addition, ddPCR is not affected by the presence of fragmented DNA and showed higher accuracy than RT-qPC in monitoring the efficacy of heat shock treatments. In conclusion, ddPCR represents an innovative strategy to effectively detect L. pneumophila in water samples. Thanks to its high robustness, ddPCR could be applied also for the detection of L. pneumophila in patients with suspected legionellosis.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, I‑95123 Catania, Italy
| | - Caterina Maria Grillo
- Department of Medical Sciences, Surgical and Advanced Technologies, GF Ingrassia, University of Catania, I‑95123 Catania, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
46
|
Falzone L, Grimaldi M, Celentano E, Augustin LSA, Libra M. Identification of Modulated MicroRNAs Associated with Breast Cancer, Diet, and Physical Activity. Cancers (Basel) 2020; 12:cancers12092555. [PMID: 32911851 PMCID: PMC7564431 DOI: 10.3390/cancers12092555] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Healthy diet and physical activity are able to induce beneficial molecular modifications that have been associated with a lower risk of breast cancer (BC) incidence and a better prognosis for BC patients. Although the beneficial effects of healthy lifestyle have been described, the beneficial epigenetic modifications induced by dietary and exercise intervention in BC patients have not been elucidated yet. On these bases, the aim of the present study was to computationally identify microRNAs (miRNAs) strictly associated with BC progression and with dietary and exercise interventions. Through several computational approaches, a set of miRNAs modulated by diet and exercise and useful as diagnostic and prognostic biomarkers for BC was identified. The results obtained represent the starting point for further validation analyses performed on BC patients undergoing lifestyle interventions to propose the miRNAs here identified as novel biomarkers for BC management. Abstract Background: Several studies have shown that healthy lifestyles prevent the risk of breast cancer (BC) and are associated with better prognosis. It was hypothesized that lifestyle strategies induce microRNA (miRNA) modulation that, in turn, may lead to important epigenetic modifications. The identification of miRNAs associated with BC, diet, and physical activity may give further insights into the role played by lifestyle interventions and their efficacy for BC patients. To predict which miRNAs may be modulated by diet and physical activity in BC patients, the analyses of different miRNA expression datasets were performed. Methods: The GEO DataSets database was used to select miRNA expression datasets related to BC patients, dietary interventions, and physical exercise. Further bioinformatic approaches were used to establish the value of selected miRNAs in BC development and prognosis. Results: The analysis of datasets allowed the selection of modulated miRNAs associated with BC development, diet, and physical exercise. Seven miRNAs were also associated with the overall survival of BC patients. Conclusions: The identified miRNAs may play a role in the development of BC and may have a prognostic value in patients treated with integrative interventions including diet and physical activity. Validation of such modulated miRNAs on BC patients undergoing lifestyle strategies will be mandatory.
Collapse
Affiliation(s)
- Luca Falzone
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| | - Maria Grimaldi
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Egidio Celentano
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Livia S. A. Augustin
- IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Epidemiology Unit, 80131 Naples, Italy; (M.G.); (E.C.); (L.S.A.A.)
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis, and Treatment of Cancer, University of Catania, 95123 Catania, Italy
- Correspondence: (L.F.); (M.L.); Tel.: +39-095-478-1278 (L.F.); +39-095-478-1271 (M.L.)
| |
Collapse
|
47
|
Nikolouzakis TK, Falzone L, Lasithiotakis K, Krüger-Krasagakis S, Kalogeraki A, Sifaki M, Spandidos DA, Chrysos E, Tsatsakis A, Tsiaoussis J. Current and Future Trends in Molecular Biomarkers for Diagnostic, Prognostic, and Predictive Purposes in Non-Melanoma Skin Cancer. J Clin Med 2020; 9:E2868. [PMID: 32899768 PMCID: PMC7564050 DOI: 10.3390/jcm9092868] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Skin cancer represents the most common type of cancer among Caucasians and presents in two main forms: melanoma and non-melanoma skin cancer (NMSC). NMSC is an umbrella term, under which basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and Merkel cell carcinoma (MCC) are found along with the pre-neoplastic lesions, Bowen disease (BD) and actinic keratosis (AK). Due to the mild nature of the majority of NMSC cases, research regarding their biology has attracted much less attention. Nonetheless, NMSC can bear unfavorable characteristics for the patient, such as invasiveness, local recurrence and distant metastases. In addition, late diagnosis is relatively common for a number of cases of NMSC due to the inability to recognize such cases. Recognizing the need for clinically and economically efficient modes of diagnosis, staging, and prognosis, the present review discusses the main etiological and pathological features of NMSC as well as the new and promising molecular biomarkers available including telomere length (TL), telomerase activity (TA), CpG island methylation (CIM), histone methylation and acetylation, microRNAs (miRNAs), and micronuclei frequency (MNf). The evaluation of all these aspects is important for the correct management of NMSC; therefore, the current review aims to assist future studies interested in exploring the diagnostic and prognostic potential of molecular biomarkers for these entities.
Collapse
Affiliation(s)
- Taxiarchis Konstantinos Nikolouzakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece;
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori ‘Fondazione G. Pascale’, I-80131 Naples, Italy;
| | - Konstantinos Lasithiotakis
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | | | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, 70013 Heraklion, Crete, Greece;
| | - Maria Sifaki
- Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece;
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Crete, Greece; (K.L.); (E.C.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Crete, Greece;
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Crete, Greece;
| |
Collapse
|
48
|
Leonardi GC, Candido S, Falzone L, Spandidos DA, Libra M. Cutaneous melanoma and the immunotherapy revolution (Review). Int J Oncol 2020; 57:609-618. [PMID: 32582963 PMCID: PMC7384846 DOI: 10.3892/ijo.2020.5088] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
In a relatively short period of time, treatment strategies for metastatic melanoma have radically changed leading to an unprecedented improvement in patient survival. In this period, immunotherapy options have evolved from cytokine‑based approaches to antibody‑mediated inhibition of immune checkpoints, cancer vaccines and pharmacological modulation of the melanoma microenvironment. Combination of immunotherapy strategies and the association of immune checkpoint inhibitors (ICIs) with BRAF V600 targeted therapy show encouraging results. The future of drug development in this field is promising. The comprehension of primary and acquired resistance mechanisms to ICIs and the dissection of melanoma immunobiology will be instrumental for the development of new treatment strategies and to improve clinical trial design. Moreover, biomarker discovery will help patient stratification and management during immunotherapy treatment. In this review, we summarize landmark clinical trials of immune checkpoint inhibitors in advanced melanoma and discuss the rational for immunotherapy combinations. Immunotherapy approaches at early stage of clinical development and recent advances in melanoma immunotherapy biomarker development are also discussed.
Collapse
Affiliation(s)
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania
| |
Collapse
|
49
|
Filetti V, Falzone L, Rapisarda V, Caltabiano R, Eleonora Graziano AC, Ledda C, Loreto C. Modulation of microRNA expression levels after naturally occurring asbestiform fibers exposure as a diagnostic biomarker of mesothelial neoplastic transformation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110640. [PMID: 32330788 DOI: 10.1016/j.ecoenv.2020.110640] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Fluoro-edenite (FE) is a silicate mineral identified in the lava products of Monte Calvario from stone quarries located in the southeast of Biancavilla, a small city of the Etnean volcanic complex (Sicily, Italy). Inhalation of FE fibers has been associated with a higher incidence of Malignant Mesothelioma (MM), a highly aggressive neoplasm of the serosal membranes lining the pleural cavity. Only 5% of MM patients are diagnosed at an early stage and the median survival is approximate 6-12 months. Many diagnostic biomarkers have been proposed for MM. Several studies demonstrated that microRNAs (miRNAs) may be used as good non-invasive diagnostics, as well as prognostic biomarkers for various human diseases, including cancer. On these bases, the aim of the present study was to identify a set of miRNAs involved in the development and progression of MM and potentially used as diagnostic biomarkers. For these purposes, in silico analyses were performed on healthy/exposed to asbestos fibers subjects vs. patients with MM. These analyses revealed a set of miRNAs strictly involved in MM by merging the lists of miRNAs found differentially expressed in the three miRNA expression datasets analyzed. The result of these computational evaluations allowed the execution of functional in vitro experiments performed on normal pleural mesothelial cell line (MeT-5A) and MM cell line (JU77) in order to test the carcinogenetic effects and epigenetic modulation induced by FE exposure. The in vitro results showed that the expression levels of hsa-miR-323a-3p vary significantly in both supernatant- and cell-derived miRNAs derived from treated and untreated cells. Secreted and cellular hsa-miR-101-3p in MeT-5A treated with FE fibers and JU77 cells showed different trends of expression. As regard hsa-miR-20b-5p, there was no differential expression between secreted and cellular hsa-miR-20b-5p. This miRNA has been shown a significant up-regulation in JU77 cells vs. control and treated MeT-5A. As a future plan, translational analyses will be performed on a subset of patients chronically exposed to FE fibers to further verify the clinical role of such miRNAs in high-risk individuals and their possible use as biomarkers of FE exposure or MM early onset.
Collapse
Affiliation(s)
- Veronica Filetti
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123, Catania, Italy.
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131, Naples, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Rosario Caltabiano
- Section of Anatomic Pathology, Department Gian Filippo Ingrassia, University of Catania, 95123, Catania, Italy
| | | | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95123, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, 95123, Catania, Italy
| |
Collapse
|
50
|
Falzone L, Musso N, Gattuso G, Bongiorno D, Palermo CI, Scalia G, Libra M, Stefani S. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int J Mol Med 2020; 46:957-964. [PMID: 32705153 PMCID: PMC7388836 DOI: 10.3892/ijmm.2020.4673] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard method for the diagnosis of COVID-19 infection. Due to pre-analytical and technical limitations, samples with low viral load are often misdiagnosed as false-negative samples. Therefore, it is important to evaluate other strategies able to overcome the limits of RT-qPCR. Blinded swab samples from two individuals diagnosed positive and negative for COVID-19 were analyzed by droplet digital PCR (ddPCR) and RT-qPCR in order to assess the sensitivity of both methods. Intercalation chemistries and a World Health Organization (WHO)/Center for Disease Control and Prevention (CDC)-approved probe for the SARS-CoV-2 N gene were used. SYBR-Green RT-qPCR is not able to diagnose as positive samples with low viral load, while, TaqMan Probe RT-qPCR gave positive signals at very late Ct values. On the contrary, ddPCR showed higher sensitivity rate compared to RT-qPCR and both EvaGreen and probe ddPCR were able to recognize the sample with low viral load as positive even at 10-fold diluted concentration. In conclusion, ddPCR shows higher sensitivity and specificity compared to RT-qPCR for the diagnosis of COVID-19 infection in false-negative samples with low viral load. Therefore, ddPCR is strongly recommended in clinical practice for the diagnosis of COVID-19 and the follow-up of positive patients until complete remission.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Concetta Ilenia Palermo
- U.O.C. Laboratory Analysis Unit, A.O.U. 'Policlinico‑Vittorio Emanuele', I‑95123 Catania, Italy
| | - Guido Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Section of General Pathology, University of Catania, I‑95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|