1
|
Anas MA, Aprianto MA, Akit H, Muhlisin, Kurniawati A, Hanim C. Black soldier fly larvae oil (Hermetia illucens L.) calcium salt enhances intestinal morphology and barrier function in laying hens. Poult Sci 2024; 103:103777. [PMID: 38713986 PMCID: PMC11091524 DOI: 10.1016/j.psj.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
This study aimed to determine the influence of black soldier fly larvae oil calcium salt (BSFLO-SCa) supplementation on performance, jejunal histomorphology and gene expression of tight junctions and inflammatory cytokines in laying hens. A total of 60 ISA Brown laying hens (40 wk of age) were divided into 3 treatment groups, including a control group fed a basal diet (T0) and basal diets supplemented with 1% (T1) and 2% (T2) of BSFLO-SCa. Each treatment group consisted of 5 replicates with 4 laying hens each. Results showed that 1% and 2% BSFLO-SCa supplementation significantly reduced (P < 0.05) feed conversion ratio (FCR), while egg weight (EW) increased (P < 0.05). The inclusion with 2% increased (P < 0.05) both egg production (HDA) and mass (EM). The addition of 1% and 2% BSFLO-SCa significantly increased (P < 0.05) villus height (VH) and villus width (VW), while crypt depth (CD) significantly increased (P < 0.05) with 2% BSFLO-SCa. The tight junction and gene expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and occludin (OCLN) were significantly upregulated (P < 0.05) with 2% BSFLO-SCa. The pro-inflammatory cytokines and gene expression of interleukin-6 (IL-6) was significantly downregulated (P < 0.05) with the addition of BSFLO-SCa, while gene expression of interleukin-18 (IL-18), toll-like receptor 4 (TLR-4), and tumor necrosis factor-α (TNF-α) were downregulated with 2% BSFLO-SCa. On the other hand, the anti-inflammatory cytokines and gene expression of interleukin-13 (IL-13) and interleukin-10 (IL-10) were significantly upregulated (P < 0.05) at 2% BSFLO-SCa. In conclusion, dietary supplementation with 2% BSFLO-SCa improved productivity, intestinal morphology and integrity by upregulating tight junction-related protein of gene expression of laying hens. In addition, supplementation with BSFLO-SCa enhanced intestinal immune responses by upregulating anti-inflammatory and downregulating pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Muhsin Al Anas
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Muhammad Anang Aprianto
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Henny Akit
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Muhlisin
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Asih Kurniawati
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Chusnul Hanim
- Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
3
|
Zheng C, Chen Z, Yan X, Xiao G, Qiu T, Ou J, Cen M, Li W, Huang Y, Cao Y, Zhang H. Effects of a combination of lauric acid monoglyceride and cinnamaldehyde on growth performance, gut morphology, and gut microbiota of yellow-feathered broilers. Poult Sci 2023; 102:102825. [PMID: 37356297 PMCID: PMC10404782 DOI: 10.1016/j.psj.2023.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
A total of 480 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 6 replicates of 20 chicks per replicate. A basal diet was administered to the control group (CON), whereas CML350, CML500, and CML1000 groups were fed with basal diet supplemented with 350, 500, and 1,000 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex, respectively. However, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex improved weight gain (P < 0.01), enhanced intestinal morphology, increased serum total protein and albumin content, and total antioxidant capacity (P < 0.01), and significantly increased the Chao1 and Ace indices (P < 0.01), indicating an increase in the richness of the gut microbiota. At the phylum level, CML500 group reduced the abundance of Fusobacteriota at 21 d and Proteobacteria at 42 d (P < 0.01). At the genus level, CML500 group increased the abundance of Faecalibacterium and Alistipes at 42 d (P < 0.01) and decreased the abundance of Escherichia-Shigella (P < 0.01). At the species level, CML500 group reduced the abundance of Escherichia coli at 42 d (P < 0.01) and increased the abundance of Alistipes_sp_CHKCI003 at 42 d (P < 0.01). According to these results, adding 500 mg/kg of lauric acid monoglyceride and cinnamaldehyde complex in feed can improve the growth performance, intestinal morphology, and gut microbiota of yellow-feathered broilers.
Collapse
Affiliation(s)
- Chaojun Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Zifan Chen
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Xia Yan
- Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China
| | - Gengsheng Xiao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Jiancun Ou
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Mingzhu Cen
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Wenlong Li
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yurong Huang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Yu Cao
- CALID Biotechnology (Wuhan) Co. Ltd., Wuhan 30074, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
4
|
Network pharmacology-based analysis on geniposide, a component of gardenia jasminoides, beneficial effects to alleviate LPS-induced immune stress in piglets. Int Immunopharmacol 2023; 117:109894. [PMID: 36863144 DOI: 10.1016/j.intimp.2023.109894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Geniposide is the main medicinal component of Gardenia jasminoides, and its content is approximately 3-8% depending on its origin. Geniposide is a class of cyclic enol ether terpene glucoside compounds with strong antioxidant, free radical quenching and cancer-inhibiting activities. Many studies have reported that geniposide has hepatoprotective, cholestatic, neuroprotective, blood sugar and blood lipid regulation, soft tissue damage treatment, antithrombotic, antitumor and other effects. As a traditional Chinese medicine, gardenia, whether used as gardenia alone, as the monomer geniposide or as the effective part of cyclic either terpenoids, has been reported to have anti-inflammatory effects when used in the right amounts. Recent studies have found that geniposide has important roles in pharmacological activities such as anti-inflammation activity, inhibition of the NF-κB/IκB pathway, and cell adhesion molecule production. In this study, we predicted the anti-inflammatory and antioxidant effects of geniposide in piglets through network pharmacology based on the LPS-induced inflammatory response-regulated signaling pathway. The effects of geniposide on changes in inflammatory pathways and cytokine levels in the lymphocytes of inflammation-stressed piglets were investigated using in vivo and in vitro models of piglet lipopolysaccharide-induced oxidative stress. Network pharmacology identified 23 target genes, of which the main pathways of action were lipid and atherosclerosis, fluid shear stress and atherosclerosis, and Yersinia infection. The main relevant target genes were VEGFA, ROCK2, NOS3, and CCL2. Validation experiments showed that the interventional effects of geniposide reduced the relative expression of NF-κB pathway proteins and genes, restored the expression of COX-2 genes to normal levels, and increased the relative expression of tight junction proteins and genes in IPEC-J2 cells. This indicates that the addition of geniposide can alleviate inflammation and improve the level of cellular tight junctions.
Collapse
|
5
|
Yao W, Zhang Y, Zhang W, Wen Y, Yang R, Dong J, Zhang X, Hua Y, Ji P, Wei Y. Pathological mechanism of intestinal mucosal barrier injury of large intestine dampness-heat syndrome rats and the protective effect of Yujin powder. Res Vet Sci 2022; 152:485-496. [PMID: 36156378 DOI: 10.1016/j.rvsc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/12/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Large intestine dampness-heat syndrome (LIDHS) is frequently-occurring in the inflammatory intestinal disease of animals and human. Yujin powder (YJP) is a classical prescription for treating LIDHS. To explore the pathological mechanism of intestinal mucosal barrier injury of LIDHS and the protection of YJP, the LIDHS rat model was established through imitating the inducing conditions of LIDHS and treated with YJP. The integrity of ileal and colonic mucosa was detected through histopathological examination. The serum DAO, D-LA and ET levels were detected by ELISA. The mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were detected using RT-PCR and immunohistochemistry methods, respectively. The results showed that the ileal and colonic epithelium of LIDHS rats were destroyed; the serum DAO, D-LA and ET levels were significantly increased; the mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were all abnormally expressed. After treatment with YJP, the mucosal integrity was restored; the levels of serum DAO, D-LA and ET, mRNA and protein levels of Occludin and ZO-1 in ileum and colon and MUC2 in ileum were back-regulated; however, MUC2 level in colon was further increased. The results demonstrated that the intestinal mucosal barrier was damaged in LIDHS rats and Occludin, ZO-1 and MUC2 were abnormally expressed, and YJP could repair the intestinal mucosal barrier through up-regulating the expression of Occludin and ZO-1 in ileum and colon as well as MUC2 in colon and down-regulating MUC2 in ileum.
Collapse
Affiliation(s)
- Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yahui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanqiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Rong Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jiaqi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xiaosong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
6
|
Zou S, Sun C, Li F, Xie Y, Liang T, Yang Y, Shi B, Ma Q, Shi Z, Chai S, Shan A. Effect of Gardenia Pomace Supplementation on Growth Performance, Blood Metabolites, Immune and Antioxidant Indices, and Meat Quality in Xiangcun Pigs. Animals (Basel) 2022; 12:ani12172280. [PMID: 36078000 PMCID: PMC9454504 DOI: 10.3390/ani12172280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate the effect of gardenia pomace (GP) as an unconventional feed of antioxidants, 180 Xiangcun pigs were randomly divided into 3 groups during the finishing period, with 6 replicates per group and 10 pigs per replicate. During the 47-day feeding period, the pigs were fed either a control diet based on corn and soybean meal (control group), or the control diet added with 50 g/kg or 100 g/kg GP (groups GP5 and GP10, respectively). Feed and water were provided ad libitum. One pig per replicate was slaughtered and sampled. The effects on growth performance, meat quality, digestibility, metabolism, and immunity and antioxidant properties of the pigs were investigated. The results showed that GP had no significant effect on the growth performance of Xiangcun pigs. Compared with the control group, the digestibility of crude ash, phosphorus, and crude fibre of pigs in the GP groups improved (p < 0.01), and the content of inosinic acid in the longissimus dorsi muscle increased (p < 0.05). The addition of GP to the diet significantly increased superoxide dismutase (SOD) levels in the liver and spleen, and glutathione peroxidase (GSH-Px) activity in the longissimus dorsi muscle and spleen (p < 0.05). Additionally, it significantly reduced the contents of malondialdehyde (MDA) in the liver and spleen (p < 0.05). The GP5 group had a higher inosinic acid content in the longissimus dorsi and lower levels of the inflammatory factor interleukin-2 and interleukin-8 than those in the other groups (p < 0.05). The GP10 group had a higher IgA level (p < 0.05). Adding different proportions of GP to the diet improved the a* and b* of the longissimus dorsi muscles of Xiangcun pigs (p < 0.05). In summary, GP, as an unconventional feed, improved the apparent digestibility of the diet and body antioxidant capacity in Xiangcun pigs during the finishing period and did not negatively affect the growth performance or meat quality.
Collapse
Affiliation(s)
| | | | - Feng Li
- Correspondence: (F.L.); (A.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yang X, Fang Y, Hou J, Wang X, Li J, Li S, Zheng X, Liu Y, Zhang Z. The heart as a target for deltamethrin toxicity: Inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis. CHEMOSPHERE 2022; 300:134479. [PMID: 35367492 DOI: 10.1016/j.chemosphere.2022.134479] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
As a synthetic pyrethroid pesticide, deltamethrin (DLM) is widely employed in veterinary medicine and farming, and DLM-triggered oxidative stress largely causes serious harm to the organism. It is well-known that nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), a pivotal endogenous anti-oxidative pathway, acts on inhibiting oxidative stress-induced cell injury under the activated state. The purpose of this research was to observe the impact and molecular mechanism of DLM on inflammation and apoptosis in quail cardiomyocytes based on the Nrf2/HO-1 signaling route. In this research, quails were established as a cardiac injury model through gastric infusion of various doses of DLM (0, 15, 30, and 45 mg/kg b. w.) for 12 weeks. Our results showed that DLM could induced cardiomyocyte injury in a dose-dependent manner though weakening antioxidant defense via down-regulating Nrf2 and its downstream protein HO-1. Furthermore, DLM stimulation induced apoptosis in quail heart by decreasing the protein expressions of B-cell lymphoma-extra large and B-cell lymphoma gene 2 (Bcl-2), as well as increasing P53, caspase 3, and Bcl-2-associated X protein levels. Meanwhile, relative levels of nuclear factor-kappa B and interleukin-1β in quail hearts were up-regulated under DLM intervention progressively. Collectively, our study demonstrates that chronic exposure to DLM can induce quail cardiomyocyte inflammation and apoptosis by mediating Nrf2/HO-1 signaling pathway-related oxidative stress.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yi Fang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jianbo Hou
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xuejiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
8
|
Wang Z, Wang X, Guo Z, Liao H, Chai Y, Wang Z, Wang Z. Reduning Attenuates LPS-Induced Human Unmilical Vein Endothelial Cells (HUVECs) Apoptosis Through PI3K-AKT Signaling Pathway. Front Pharmacol 2022; 13:921337. [PMID: 35903333 PMCID: PMC9315302 DOI: 10.3389/fphar.2022.921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism of Reduning (RDN) in the treatment of sepsis was analyzed based on network pharmacology. The system pharmacology method was administered to search the active ingredients and targets of RDN, identify the sepsis-related genes, and determine the targets of RDN in the treatment of sepsis. Cytoscape was used to build a “drug component-target” network to screen key compounds. A protein-protein interaction (PPI) network was constructed using STRING, and core targets were revealed through topological analysis. 404 shared targets of RDN and sepsis were introduced into DAVID Bioinformatics Resources 6.8 for GO and KEGG enrichment analysis to predict their possible signaling pathways and explore their molecular mechanisms. GO enrichment analysis highlighted that they were largely related to protein phosphorylation, inflammatory reaction, and positive regulation of mitogen-activated protein kinase (MAPK) cascade. KEGG enrichment analysis outlined that they were enriched in PI3K-AKT signaling pathway, calcium signaling pathway, rhoptry-associated protein 1 (Rap1) signaling pathway, and advanced glycation end products and receptors for advanced glycation end products (AGE-RAGE) signaling pathway. Molecular biological validation results exposed that RDN could significantly improve the protein expression of p-AKT and p-PI3K, alleviate apoptosis-related proteins expression level and decrease apoptosis rate in LPS-induced HUVECs. In conclusion, it was illustrated that RDN could considerably constrain LPS-induced apoptosis by activating the PI3K-AKT signaling pathway, which advocated a basis for fundamental mechanism research and clinical application of RDN in the treatment of sepsis.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Liver Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Chai
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- *Correspondence: Zhong Wang,
| |
Collapse
|
9
|
Cui Y, Wang Q, Chang R, Aboragah A, Loor JJ, Xu C. Network Pharmacology-Based Analysis of Pogostemon cablin (Blanco) Benth Beneficial Effects to Alleviate Nonalcoholic Fatty Liver Disease in Mice. Front Pharmacol 2021; 12:789430. [PMID: 34899351 PMCID: PMC8652055 DOI: 10.3389/fphar.2021.789430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is associated with high morbidity and mortality. Pogostemon cablin (Blanco) Benth/Huo Xiang (HX) is a perennial herb with unique anti-oxidant and anti-inflammatory properties, and thus, can positively affect liver function. In this study, we used network pharmacology to predict the potential mechanism of HX on NAFLD. Pharmacological experiments were used to verify the effect of HX on the functions of NAFLD. Network pharmacology identified nine components that interacted with 82 NAFLD-related targets, revealing four target genes: TNF, IL6, TP53, and AKT1. HX prevents the development and progression of NAFLD through different pathways and targets with quercetin-regulated lipid metabolism, anti-inflammatory, and anti-oxidant pathways playing an essential role in the treatment of NAFLD. Compared with feeding HFD, HX significantly attenuated lipid accumulation in vivo with mice and also in vitro with mouse liver cells. A high dose of HX decreased hepatocyte lipid accumulation and the abundance of SREBF1 and FASN. Validation experiments revealed that HX inhibited the activation of NF-κB/IκB signaling and decreased the release and levels of pro-inflammatory factors (TNF-α and IL-6). These data suggest that HX can attenuate abnormal lipid metabolic responses and enhance antioxidant mechanisms. Thus, the pharmacological effects from plants used in traditional Chinese medicine are achievde through a multi-level response.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Renxu Chang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ahmad Aboragah
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
10
|
Pyun BJ, Lee JY, Kim YJ, Ji KY, Jung DH, Park KS, Jo K, Choi S, Jung MA, Kim YH, Kim T. Gardenia jasminoides Attenuates Allergic Rhinitis-Induced Inflammation by Inhibiting Periostin Production. Pharmaceuticals (Basel) 2021; 14:ph14100986. [PMID: 34681210 PMCID: PMC8541624 DOI: 10.3390/ph14100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Allergic rhinitis (AR) is a chronic inflammatory condition affecting the nasal mucosa of the upper airways. Herein, we investigated the effects of extracts from Gardenia jasminoides (GJ), a traditional herbal medicine with anti-inflammatory properties, on AR-associated inflammatory responses that cause epithelial damage. We investigated the inhibitory effects of water- and ethanol-extracted GJ (GJW and GJE, respectively) in an ovalbumin-induced AR mouse model and in splenocytes, differentiated Th2 cells, and primary human nasal epithelial cells (HNEpCs). Administering GJW and GJE to ovalbumin-induced AR mice improved clinical symptoms including behavior (sneezing and rubbing), serum cytokine levels, immune cell counts, and histopathological marker levels. Treatment with GJW and GJE reduced the secretion of Th2 cytokines in Th2 cells isolated and differentiated from the splenocytes of these mice. To investigate the underlying molecular mechanisms of AR, we treated IL-4/IL-13-stimulated HNEpCs with GJW and GJE; we found that these extracts significantly reduced the production of mitochondrial reactive oxygen species via the uncoupling protein-2 and periostin, a biomarker of the Th2 inflammatory response. Our results suggest that GJ extracts may potentially serve as therapeutic agents to improve the symptoms of AR by regulating the Th2 inflammatory response of the nasal epithelium.
Collapse
Affiliation(s)
- Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Susanna Choi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
- Correspondence: or (Y.H.K.); (T.K.); Tel.: +82-42-868-9326 (Y.H.K.); +82-42-868-9472 (T.K.)
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (B.-J.P.); (J.Y.L.); (Y.J.K.); (K.-Y.J.); (D.H.J.); (K.J.); (S.C.); (M.-A.J.)
- Correspondence: or (Y.H.K.); (T.K.); Tel.: +82-42-868-9326 (Y.H.K.); +82-42-868-9472 (T.K.)
| |
Collapse
|
11
|
Zhang W, Zhang F, Hu Q, Xiao X, Ou L, Chen Y, Luo S, Cheng Y, Jiang Y, Ma X, Zhao Y. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review. Chin Med 2021; 16:86. [PMID: 34454545 PMCID: PMC8400848 DOI: 10.1186/s13020-021-00486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022] Open
Abstract
With the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic-pituitary-adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linbo Ou
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yonghong Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Centre of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
12
|
Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
14
|
Heat-Clearing Chinese Medicines in Lipopolysaccharide-Induced Inflammation. Chin J Integr Med 2020; 26:552-559. [DOI: 10.1007/s11655-020-3256-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/20/2023]
|
15
|
Gardenia jasminoides Enhances CDDP-Induced Apoptosis of Glioblastoma Cells via AKT/mTOR Pathway While Protecting Death of Astrocytes. Nutrients 2020; 12:nu12010196. [PMID: 31936835 PMCID: PMC7019269 DOI: 10.3390/nu12010196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/29/2022] Open
Abstract
Gliomas are the most observed primary brain tumor, of which glioblastoma multiform (GBM) shows the highest incidence. Radiotherapy with temozolomide is the standard therapeutic method, but because of side effects, search for alternative therapies is required. Gardenia jasminoides (GJ) is flavonoid abundant with beneficial effects on inflammation, metabolic diseases, and cancers. In this study, we investigated the synergistic combination of GJ and cisplatin (CDDP) in U87MG and U373MG GBM cells. GJ and CDDP both showed cytotoxicity in U87MG cells, however GJ did not affect viability of normal astrocytes while CDDP displayed high toxicity. Cytotoxic effect of GJ and CDDP was related in apoptosis when confirmed by Western blot assays on cleaved caspase-3, caspase-9, and PARP. Moreover, GJ and CDDP showed synergistic combination in cell death of GBM cells, which was further confirmed by Western blot assays of apoptosis factors and also flow cytometry of Annexin V. Analysis on autophagy factors showed that GJ/CDDP combination induced autophagy, and through inhibition of autophagy, we could confirm autophagy is crucial to cytotoxicity of GJ/CDDP in GBM cell lines. The autophagy-mediated apoptosis of GJ/CDDP was dependent on the AKT/mTOR pathway. Overall, our results suggest GJ/CDDP combination as an effective yet safe therapeutic approach to GBMs.
Collapse
|
16
|
Salameh E, Morel FB, Zeilani M, Déchelotte P, Marion-Letellier R. Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention. Nutrients 2019; 11:nu11092233. [PMID: 31527523 PMCID: PMC6770013 DOI: 10.3390/nu11092233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
: Undernutrition is a major public health problem leading to 1 in 5 of all deaths in children under 5 years. Undernutrition leads to growth stunting and/or wasting and is often associated with environmental enteric dysfunction (EED). EED mechanisms leading to growth failure include intestinal hyperpermeability, villus blunting, malabsorption and gut inflammation. As non-invasive methods for investigating gut function in undernourished children are limited, pre-clinical models are relevant to elucidating the pathophysiological processes involved in undernutrition and EED, and to identifying novel therapeutic strategies. In many published models, undernutrition was induced using protein or micronutrient deficient diets, but these experimental models were not associated with EED. Enteropathy models mainly used gastrointestinal injury triggers. These models are presented in this review. We found only a few studies investigating the combination of undernutrition and enteropathy. This highlights the need for further developments to establish an experimental model reproducing the impact of undernutrition and enteropathy on growth, intestinal hyperpermeability and inflammation, that could be suitable for preclinical evaluation of innovative therapeutic intervention.
Collapse
Affiliation(s)
- Emmeline Salameh
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Nutriset SAS, 76770 Malaunay, France.
| | | | | | - Pierre Déchelotte
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Rachel Marion-Letellier
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
| |
Collapse
|