1
|
Gui Z, Liu X, Xu Z, Feng D, Hang Z, Zheng M, Chen H, Fei S, Sun L, Tao J, Han Z, Ju X, Gu M, Tan R, Wang Z. Src inhibition modulates AMBRA1-mediated mitophagy to counteract endothelial-to-mesenchymal transition in renal allograft fibrosis. Cell Prolif 2024; 57:e13699. [PMID: 38943534 PMCID: PMC11533082 DOI: 10.1111/cpr.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
Chronic allograft dysfunction (CAD) poses a significant challenge in kidney transplantation, with renal vascular endothelial-to-mesenchymal transition (EndMT) playing a vital role. While renal vascular EndMT has been verified as an important contributing factor to renal allograft interstitial fibrosis/tubular atrophy in CAD patients, its underlying mechanisms remain obscure. Currently, Src activation is closely linked to organ fibrosis development. Single-cell transcriptomic analysis in clinical patients revealed that Src is a potential pivotal mediator in CAD progression. Our findings revealed a significant upregulation of Src which closely associated with EndMT in CAD patients, allogeneic kidney transplanted rats and endothelial cells lines. In vivo, Src inhibition remarkably alleviate EndMT and renal allograft interstitial fibrosis in allogeneic kidney transplanted rats. It also had a similar antifibrotic effect in two endothelial cell lines. Mechanistically, the knockout of Src resulted in an augmented AMBRA1-mediated mitophagy in endothelial cells. We demonstrate that Src knockdown upregulates AMBRA1 level and activates mitophagy by stabilizing Parkin's ubiquitination levels and mitochondrial translocation. Subsequent experiments demonstrated that the knockdown of the Parkin gene inhibited mitophagy in endothelial cells, leading to increased production of Interleukin-6, thereby inducing EndMT. Consequently, our study underscores Src as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis, exerting its impact through the regulation of AMBRA1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Zeping Gui
- Department of UrologyThe Second Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Xuzhong Liu
- Department of UrologyHuai'an First People's Hospital, Nanjing Medical UniversityHuai'anChina
- Department of UrologyAffiliated Clinical College of Xuzhou Medical UniversityHuai'anChina
| | - Zhen Xu
- Department of UrologyThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhouChina
| | - Dengyuan Feng
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Zhou Hang
- Department of UrologyThe Second Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Ming Zheng
- Department of UrologyThe Second Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Hao Chen
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Shuang Fei
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Li Sun
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Jun Tao
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Zhijian Han
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Xiaobin Ju
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Min Gu
- Department of UrologyThe Second Affiliated Hospital with Nanjing Medical UniversityNanjingChina
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Ruoyun Tan
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Zijie Wang
- Department of UrologyThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Sadanandan J, Sathyanesan M, Newton SS. Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus. Fluids Barriers CNS 2024; 21:77. [PMID: 39334352 PMCID: PMC11438291 DOI: 10.1186/s12987-024-00574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1). METHODS Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin. RESULTS Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice. CONCLUSIONS Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
3
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
4
|
Sadanandan J, Sathyanesan M, Newton SS. Regulation of trophic factors in the choroid plexus of aged mice. RESEARCH SQUARE 2024:rs.3.rs-4123786. [PMID: 38562722 PMCID: PMC10984084 DOI: 10.21203/rs.3.rs-4123786/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The choroid plexus (CP) is an understudied tissue in the central nervous system (CNS), primarily implicated in cerebrospinal fluid (CSF) production. Additionally, CP produces numerous neurotrophic factors (NTF), which circulate to different regions of the brain. Regulation of NTF in the CP during natural aging has yet to be discovered. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and water channel protein Aquaporin (AQP1). Methods We used male and female mice for our study. We analyzed neurotrophic factor gene expression patterns using quantitative and digital droplet PCR at three different time points: mature adult, middle-aged, and aged. Additionally, we used immunohistochemical analysis (IHC) to evaluate in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, plectin. Results Aging significantly altered the NTF's gene expression in the CP Brain-derived neurotrophic factor (BDNF), Midkine, VGF, Insulin-like growth factor (IGF1), IGF2, klotho, Erythropoietin, and its receptor were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression is unchanged in the aged CP while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2, and CLAUDIN5 were reduced in aged mice. Conclusions Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
Collapse
|
5
|
Liu HM, Chang ZY, Yang CW, Chang HH, Lee TY. Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. Int J Mol Sci 2023; 24:16932. [PMID: 38069256 PMCID: PMC10706872 DOI: 10.3390/ijms242316932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The farnesoid X receptor (FXR)/βKlotho/fibroblast growth factors (FGFs) pathway is crucial for maintaining the intestinal barrier and preventing colorectal cancer (CRC). We used an FXR agonist, GW4064, and FXR-knockout (FXR-KO) mice to investigate the role of FXR/Klothos/FGFs pathways in lipopolysaccharide (LPS)-induced intestinal barrier dysfunction and colon carcinogenesis. The results showed that upregulation of FXR in enterocytes effectively ameliorated intestinal tight-junction markers (claudin1 and zonula occludens-1), inflammation, and bile acid levels, thereby protecting mice from intestinal barrier dysfunction and colon carcinogenesis. GW4064 treatment increased FXR, αKlotho, βKlotho, FGF19, FGF21, and FGF23 in wild-type mice exposed to LPS, while FXR-KO mice had decreased levels. FXR-KO mice exhibited elevated colon cancer markers (β-catenin, LGR5, CD44, CD34, and cyclin D1) under LPS, underscoring the pivotal role of FXR in inhibiting the development of colon tumorigenesis. The varying gut microbiota responses in FXR-KO mice versus wild-type mice post LPS exposure emphasize the pivotal role of FXR in preserving intestinal microbial health, involving Bacteroides thetaiotaomicron, Bacteroides acidifaciens, and Helicobacter hepaticus. Our study validates the effectiveness of GW4064 in alleviating LPS-induced disruptions to the intestinal barrier and colon carcinogenesis, emphasizing the importance of the FXR/αKlotho/βKlotho/FGFs pathway and the interplay between bile acids and gut microbiota.
Collapse
Affiliation(s)
- Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Internal and Pediatric Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou 333423, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| |
Collapse
|
6
|
Su Q, Chen X, Ling X, Li D, Ren X, Zhao Y, Yang Y, Liu Y, He A, Zhu X, Yang X, Lu W, Wu H, Qi Y. SUMOylation of Smad2 mediates TGF-β-regulated endothelial-mesenchymal transition. J Biol Chem 2023; 299:105244. [PMID: 37690680 PMCID: PMC10570702 DOI: 10.1016/j.jbc.2023.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is a complex biological process in which endothelial cells are transformed into mesenchymal cells, and dysregulated EndoMT causes a variety of pathological processes. Transforming growth factor beta (TGF-β) signaling effectively induces the EndoMT process in endothelial cells, and Smad2 is the critical protein of the TGF-β signaling pathway. However, whether small ubiquitin-like modifier modification (SUMOylation) is involved in EndoMT remains unclear. Here, we show that Smad2 is predominantly modified by SUMO1 at two major SUMOylation sites with PIAS2α as the primary E3 ligase, whereas SENP1 (sentrin/SUMO-specific protease 1) mediates the deSUMOylation of Smad2. In addition, we identified that SUMOylation significantly enhances the transcriptional activity and protein stability of Smad2, regulating the expression of downstream target genes. SUMOylation increases the phosphorylation of Smad2 and the formation of the Smad2-Smad4 complex, thus promoting the nuclear translocation of Smad2. Ultimately, the wildtype, but not SUMOylation site mutant Smad2 facilitated the EndoMT process. More importantly, TGF-β enhances the nuclear translocation of Smad2 by enhancing its SUMOylation and promoting the EndoMT process. These results demonstrate that SUMOylation of Smad2 plays a critical role in the TGF-β-mediated EndoMT process, providing a new theoretical basis for the treatment and potential drug targets of EndoMT-related clinical diseases.
Collapse
Affiliation(s)
- Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Li H, Li P, Li S, Zhang X, Dong X, Yang M, Shen W. Mechanism of transforming growth factor- β1 induce renal fibrosis based on transcriptome sequencing analysis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:594-604. [PMID: 37916309 PMCID: PMC10630056 DOI: 10.3724/zdxbyxb-2022-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/24/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To explore the mechanism of transforming growth factor-β1 (TGF-β1) induce renal fibrosis. METHODS Renal fibroblast NRK-49F cells treated with and without TGF-β1 were subjected to RNA-seq analysis. DESeq2 was used for analysis. Differentially expressed genes were screened with the criteria of false discovery rate<0.05 and l o g 2 F C >1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for differentially expressed genes. Genes encoding transcription factors were further screened for differential expression genes. Then, the expression of these genes during renal fibrosis was verified using unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis model and a public gene expression dataset (GSE104954). RESULTS After TGF-β1 treatment for 6, 12 and 24 h, 552, 1209 and 1028 differentially expressed genes were identified, respectively. GO analysis indicated that these genes were significantly enriched in development, cell death, and cell migration. KEGG pathway analysis showed that in the early stage of TGF-β1 induction (TGF-β1 treatment for 6 h), the changes in Hippo, TGF-β and Wnt signaling pathways were observed, while in the late stage of TGF-β1 induction (TGF-β1 treatment for 24 h), the changes of extracellular matrix-receptor interaction, focal adhesion and adherens junction were mainly enriched. Among the 291 up-regulated differentially expressed genes treated with TGF-β1 for 6 h, 13 genes (Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Ahr, Foxo1, Myc, Tcf7, Foxc2, Glis1) encoded transcription factors. Validation in a cell model showed that TGF-β1 induced expression of 9 transcription factors (encoded by Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Myc, Tcf7), while the expression levels of the other 4 genes did not significantly change after TGF-β1 treatment. Validation results in UUO-induced mouse renal fibrosis model showed that Snai1, Irf8, Bhlhe40, Junb, Arid5a, Myc and Tcf7 were up-regulated after UUO, Vdr was down-regulated and there was no significant change in Lef1. Validation based on the GSE104954 dataset showed that IRF8 was significantly overexpressed in the renal tubulointerstitium of patients with diabetic nephropathy or IgA nephropathy, MYC was highly expressed in diabetic nephropathy, and the expressions of the other 7 genes were not significantly different compared with the control group. CONCLUSIONS TGF-β1 induces differentially expressed genes in renal fibroblasts, among which Irf8 and Myc were identified as potential targets of chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Huanan Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| | - Peifen Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Shanyi Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Xueying Zhang
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Xinru Dong
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Ming Yang
- Department of Nephrology, Affiliated Hospital of Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
8
|
Che QC, Jia Q, Zhang XY, Sun SN, Zhang XJ, Shu Q. A prospective study of the association between serum klotho and mortality among adults with rheumatoid arthritis in the USA. Arthritis Res Ther 2023; 25:149. [PMID: 37587536 PMCID: PMC10428634 DOI: 10.1186/s13075-023-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND While it is known that klotho has negative regulatory effects in a variety of diseases such as metabolic disorders and kidney disease, the specific role of klotho in rheumatoid arthritis (RA) and its effect on mortality are unclear. This study investigated the association between serum klotho levels and mortality in patients with RA. METHODS This study included 841 adults with RA from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016 to extract the concentrations of serum klotho. The association between klotho and RA was determined using Cox regression, Kaplan-Meier (KM) curves, and restricted cubic spline (RCS) models. RESULTS A total of 841 patients with RA were included in this study, who were divided into four groups based on the quartiles of serum klotho levels (Q1, Q2, Q3, and Q4). Cox regression analysis with adjustment for covariates revealed that high levels of klotho lowered the risk of both all-cause and cardiovascular mortality compared to the Q1 group. The KM curve analysis suggested that this effect was more pronounced for all-cause mortality. The RCS-fitted Cox regression model indicated a U-shaped correlation between serum klotho levels and RA mortality. The risk of all-cause mortality increased with decreasing serum klotho levels below a threshold of 838.81 pg/mL. Subgroup analysis revealed that the protective effect of klotho was more pronounced in patients with the following characteristics: male, white ethnicity, age ≥ 60 years, body mass index < 25 kg/m2, estimated glomerular filtration rate ≥ 60 mL/ (min × 1.73 m2), and 25-hydroxyvitamin D level ≥ 50 nmol/L. CONCLUSION Serum klotho levels had a U-shaped correlation with all-cause mortality in patients with RA, indicating that maintain a certain level of serum klotho could prevent premature death.
Collapse
Affiliation(s)
- Qin-Cheng Che
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Qian Jia
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiao-Yu Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Shu-Ning Sun
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiao-Jie Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No.107, West Culture Road, Lixia District, Jinan, 250012, China.
- Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|
9
|
Yan N, Wang S, Gao H, Chen J, Cao J, Wei P, Li X, Yu Y, Wang Y, Niu Y, Wang Y, Liu S, Jin G. Neuroprotective effect of aloe emodin against Huntington's disease-like symptoms in R6/1 transgenic mice. Food Funct 2023. [PMID: 37191091 DOI: 10.1039/d3fo00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aloe emodin is a natural anthraquinone derived from aloe or rhubarb, showing anti-renal fibrosis, anti-atherosclerosis and anti-cancer effects. Aloe emodin also shows neuroprotective effects in ischemic stroke rats. Naturally, anthraquinone derivatives generally have the effect of inhibiting the transforming growth factor-β1 (TGF-β1) pathway. There is an increase in the calcium/calmodulin-dependent protein kinase II (CaMKII) and TGF-β1 levels in both Huntington's disease (HD) patients' brains and HD transgenic mice. Thus, we hypothesized that aloe emodin may inhibit the phosphorylation of CaMKII (p-CaMKII) and TGF-β1/sma- and mad-related protein (Smad) signaling in the brain, further preventing motor and cognitive dysfunction. Aloe emodin was orally administered to 10- to 20-week-old HD R6/1 transgenic mice. Aloe emodin improved the motor coordination of R6/1 transgenic mice in the rotarod test and attenuated visual recognition impairment in the novel object recognition test. Aloe emodin downregulated levels of the mutant huntingtin protein, p-CaMKII and TGF-β1, but not the TGF-β2 or TGF-β3 levels, in the brains of R6/1 mice. Aloe emodin could also inhibit neuronal apoptosis in the hippocampus of R6/1 mice. Altogether, these results indicated that aloe emodin prevents several HD-like symptoms through the inhibition of CaMKII/Smad and TGF-β1/Smad signaling in mice.
Collapse
Affiliation(s)
- Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuai Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Haotian Gao
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiaqi Chen
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiahui Cao
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
| | - Pengsheng Wei
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Xue Li
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ying Yu
- Liaoning Medical Device Test Institute, Shenyang, 110171, P.R. China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yalin Niu
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yijie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuyuan Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| |
Collapse
|
10
|
Li SS, Sheng MJ, Sun ZY, Liang Y, Yu LX, Liu QF. Upstream and downstream regulators of Klotho expression in chronic kidney disease. Metabolism 2023; 142:155530. [PMID: 36868370 DOI: 10.1016/j.metabol.2023.155530] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Klotho is a critical protein that protects the kidney. Klotho is severely downregulated in chronic kidney disease (CKD), and its deficiency is implicated in the pathogenesis and progression of CKD. Conversely, an increase in Klotho levels results in improved kidney function and delays CKD progression, supporting the notion that modulating Klotho levels could represent a possible therapeutic strategy for CKD treatment. Nevertheless, the regulatory mechanisms responsible for the loss of Klotho remain elusive. Previous studies have demonstrated that oxidative stress, inflammation, and epigenetic modifications can modulate Klotho levels. These mechanisms result in a decrease in Klotho mRNA transcript levels and reduced translation, thus can be grouped together as upstream regulatory mechanisms. However, therapeutic strategies that aim to rescue Klotho levels by targeting these upstream mechanisms do not always result in increased Klotho, indicating the involvement of other regulatory mechanisms. Emerging evidence has shown that endoplasmic reticulum (ER) stress, the unfolded protein response, and ER-associated degradation also affect the modification, translocation, and degradation of Klotho, and thus are proposed to be downstream regulatory mechanisms. Here, we discuss the current understanding of upstream and downstream regulatory mechanisms of Klotho and examine potential therapeutic strategies to upregulate Klotho expression for CKD treatment.
Collapse
Affiliation(s)
- Sha-Sha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Ming-Jie Sheng
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Zhuo-Yi Sun
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Yan Liang
- Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Li-Xia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China.
| | - Qi-Feng Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China; Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China.
| |
Collapse
|
11
|
Imig JD, Khan MAH, Stavniichuk A, Jankiewicz WK, Goorani S, Yeboah MM, El-Meanawy A. Salt-sensitive hypertension after reversal of unilateral ureteral obstruction. Biochem Pharmacol 2023; 210:115438. [PMID: 36716827 PMCID: PMC10107073 DOI: 10.1016/j.bcp.2023.115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Md Abdul Hye Khan
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Stavniichuk
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wojciech K Jankiewicz
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael M Yeboah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA;
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Q.P.); (D.S.); (K.C.); (K.L.); (B.Z.); (H.W.); (B.W.); (S.W.); (V.N.); (Y.D.); (Y.W.L.)
| |
Collapse
|
13
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|
14
|
Liu Q, Li S, Yu L, Yin X, Liu X, Ye J, Lu G. CCL5 Suppresses Klotho Expression via p-STAT3/DNA Methyltransferase1-Mediated Promoter Hypermethylation. Front Physiol 2022; 13:856088. [PMID: 35299661 PMCID: PMC8922032 DOI: 10.3389/fphys.2022.856088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background Enhanced inflammation and reduced Klotho are common features in chronic kidney disease (CKD). Inflammation induces DNA hypermethylation. This study assessed the performance of inflammatory marker C-C motif chemokine 5 (CCL5) in epigenetic regulation of Klotho expression. Methods Fifty CKD patients and 25 matched controls were enrolled, and serum CCL5 level, sKlotho level, and DNA methylation were evaluated in these subjects. A renal interstitial fibrosis (RIF) model with CKD was induced in mice via unilateral ureteral obstruction (UUO) in vivo and human proximal tubular epithelial (HK-2) cells treated with CCL5 in vitro. 5-aza-2′-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor was given to UUO mice. Hematoxylin and eosin (HE) and Masson trichrome staining were adopted to evaluate renal pathological changes. Methylation-specific PCR was performed to assess DNA methylation of Klotho promoter in the peripheral blood leucocytes (PBLs) from CKD patients and obstructive kidney from UUO mice. CCL5, Klotho, and DNA methyltransferases (DNMTs) were determined by ELISAs, immunofluorescence, or western blotting. HK-2 cells were exposed to CCL5 with or without 5-Aza and stattic, a p-signal transducer and activator of transcription 3 (STAT3) inhibitor, and expressions of p-STAT3, DNMT1, and Klotho were determined by western blotting. Results CCL5 upregulation concomitant with Klotho downregulation in serum and global DNA methylation in PBLs were observed in CKD samples. UUO contributed to severe renal interstitial fibrosis and enhanced expressions of fibrotic markers. Moreover, UUO increased the CCL5 level, induced Klotho promoter methylation, suppressed Klotho level, activated p-STAT3 signaling, and upregulated DNMT1 level. A similar observation was made in HK-2 cells treated with CCL5. More importantly, 5-Aza inhibited UUO-induced Klotho hypermethylation, reversed Klotho, downregulated p-STAT3 expressions, and ameliorated RIF in vivo. The consistent findings in vitro were also obtained in HK-2 cells exposed to 5-Aza and stattic. Conclusion The CCL5/p-STAT3/DNMT1 axis is implicated in epigenetic regulation of Klotho expression in CKD. This study provides novel therapeutic possibilities for reversal of Klotho suppression by CKD.
Collapse
Affiliation(s)
- QiFeng Liu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - ShaSha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - LiXia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - XiaoYa Yin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Xi Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - JianMing Ye
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - GuoYuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Li S, Kong J, Yu L, Liu Q. Abnormally decreased renal Klotho is linked to endoplasmic reticulum-associated degradation in mice. Int J Med Sci 2022; 19:321-330. [PMID: 35165517 PMCID: PMC8795804 DOI: 10.7150/ijms.68137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Endoplasmic reticulum-associated degradation (ERAD), which involves degradation of improperly folded proteins retained in the ER, is implicated in various diseases including chronic kidney disease. This study is aimed to determine the role of ERAD in Klotho deficiency of mice and human kidney tubular epithelial cells (HK-2) with renal interstitial fibrosis (RIF). Methods: Following establishment of a mouse RIF model by unilateral ureteral obstruction (UUO), a specific ERAD inhibitor, Eeyarestatin I (EerI), was administered to experimental animals by intraperitoneal injection. Serum and kidney samples were collected for analysis 10 days after operation. Soluble Klotho levels were measured by enzyme-linked immunosorbent assay, while the degree of kidney injury was assessed by renal histopathology. Renal Klotho expression was determined by quantitative real-time PCR, immunohistochemical and western blotting analyses. ERAD and unfolded protein response (UPR) were evaluated by detecting associated components such as Derlin-1, glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and protein disulfide isomerase (PDI). HK-2 cells were exposed to transforming growth factor (TGF)-β1 with or without EerI, and expressions of related proteins including Klotho, Derlin-1, GRP78, ATF4 and PDI were determined by western blotting analyses. Results: UUO induced severe kidney injuries and RIF. Klotho expression in both serum and kidney tissue was obviously downregulated, while Derlin-1 was notably upregulated, indicating that ERAD was activated to potentially degrade improperly folded Klotho protein in this model. Intriguingly, treatment with EerI led to significantly increased Klotho expression, especially soluble (functional) Klotho. Furthermore, specific inhibition of ERAD increased expression of GRP78, ATF4 and PDI compared with the UUO group. The consistent results in vitro were also obtained in TGF-β1-treated HK-2 cells exposed to EerI. These observations suggest that UPR was remarkably enhanced in the presence of ERAD inhibition and compensated for excess improperly folded proteins, subsequently contributing to the additional production of mature Klotho protein. Conclusion: ERAD is involved in Klotho deficiency in RIF and its specific inhibition significantly promoted Klotho expression, possibly through enhanced UPR. This may represent a novel regulatory mechanism and new therapeutic target for reversing Klotho deficiency.
Collapse
Affiliation(s)
- ShaSha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - JiaWei Kong
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - LiXia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - QiFeng Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| |
Collapse
|
16
|
Zhang G, Yu F, Dong R, Yu J, Luo M, Zha Y. Verbascoside alleviates renal fibrosis in unilateral ureteral obstruction rats by inhibiting macrophage infiltration. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:752-759. [PMID: 34630952 PMCID: PMC8487594 DOI: 10.22038/ijbms.2021.52759.11903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/19/2021] [Indexed: 12/29/2022]
Abstract
Objective(s): To explore the effect of verbascoside on renal fibrosis in unilateral ureteral obstruction (UUO) rats. Materials and Methods: Twenty Sprague-Dawley rats were randomly distributed into sham-operated, UUO, and UUO+Verbascoside groups. After two weeks of rat model construction, urine and blood samples were collected for biochemical analysis while kidney tissues were harvested for hematoxylin and eosin (H&E), Masson’s Trichrome, and immunohistochemistry staining. Pearson coefficient was used to analyze the correlation between the two proteins. Results: Verbascoside improved UUO-induced renal dysfunction as detected by decreased serum creatinine, urea nitrogen, and urinary protein excretion rate. In UUO rats, H&E staining result revealed increased total nucleated cell number, and Masson’s Trichrome staining results showed tubular interstitial fibrosis with the deposition of collagen fibrils. Besides, expressions of fibrosis-related proteins including collagen type I (COL-I), α-smooth muscle actin (a-SMA), and tissue inhibitor of metalloproteinase 2 (TIMP2) expressed higher in the UUO group. Moreover, macrophage infiltration-related factors such as CD68+, F4/80+ cells, and suppressor of cytokine signaling-3 (SOCS3) were significantly higher in the UUO group than in sham-operated rats. However, after administration with verbascoside, the accumulation of collagen fibrils and total nucleated cell numbers were mitigated. Likewise, macrophage infiltration was extenuated and fibrosis-related proteins were down-regulated in the UUO+Verbascoside rats. Correlation analysis indicated that macrophage infiltration-related markers were related to fibrosis-related factors. Conclusion: Verbascoside could alleviate renal fibrosis in UUO rats probably through ameliorating macrophage infiltration.
Collapse
Affiliation(s)
- Guihua Zhang
- Guizhou University School of Medicine, Guizhou University, Gui Yang, Gui Zhou, China
| | - Fuxun Yu
- The NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Gui Yang, Gui Zhou, China
| | - Rong Dong
- Guizhou University School of Medicine, Guizhou University, Gui Yang, Gui Zhou, China.,Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, Gui Zhou, China
| | - Jiali Yu
- Guizhou University School of Medicine, Guizhou University, Gui Yang, Gui Zhou, China.,Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, Gui Zhou, China
| | - Meng Luo
- Guizhou University School of Medicine, Guizhou University, Gui Yang, Gui Zhou, China.,Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Gui Yang, Gui Zhou, China
| | - Yan Zha
- Guizhou University School of Medicine, Guizhou University, Gui Yang, Gui Zhou, China.,Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, Gui Zhou, China
| |
Collapse
|
17
|
Antiaging Potential of Peptides from Underused Marine Bioresources. Mar Drugs 2021; 19:md19090513. [PMID: 34564175 PMCID: PMC8466736 DOI: 10.3390/md19090513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Aging is a biological process that occurs under normal conditions and in several chronic degenerative diseases. Bioactive natural peptides have been shown to improve the effects of aging in cell and animal models and in clinical trials. However, few reports delve into the enormous diversity of peptides from marine organisms. This review provides recent information on the antiaging potential of bioactive peptides from underused marine resources, including examples that scavenge free radicals in vitro, inhibit cell apoptosis, prolong the lifespan of fruit flies and Caenorhabditis elegans, suppress aging in mice, and exert protective roles in aging humans. The underlying molecular mechanisms involved, such as upregulation of oxidase activity, inhibition of cell apoptosis and MMP-1 expression, restoring mitochondrial function, and regulating intestinal homeostasis, are also summarized. This work will help highlight the antiaging potential of peptides from underused marine organisms which could be used as antiaging foods and cosmetic ingredients in the near future.
Collapse
|
18
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
19
|
Biyik I, Ozatik FY, Albayrak M, Ozatik O, Teksen Y, Ari NS, Soysal C. The effects of recombinant klotho in cisplatin-induced ovarian failure in mice. J Obstet Gynaecol Res 2021; 47:1817-1824. [PMID: 33611838 DOI: 10.1111/jog.14700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
AIM To investigate whether recombinant klotho given concomitantly with cisplatin is effective in preventing cisplatin-induced ovarian damage. METHODS Thirty-two adult female mice were divided into four groups. Saline was given to the first group, cisplatin to the second group, recombinant mouse klotho to the third group, and recombinant mouse klotho + cisplatin to the fourth group. The removed ovarian tissues were examined and groups were compared histologically and immunohistochemical examination for antimullerian hormone (AMH), superoxide dismutase (SOD) and catalase expression were done. Glutathione peroxidase (GPx) and glutathione reductase (GR) activities were measured by ELISA. RESULTS Ovarian tissue weight, primary and secondary follicle counts were higher in cisplatin + recombinant klotho group compared to cisplatin group in our study (respectively p < 0.0001, p < 0.0001, and p = 0.010). Injury scores (stromal congestion, edema and infiltration, follicular degeneration scores and edema in corpus luteum scores) were similar between cisplatin and cisplatin + recombinant klotho groups (all p > 0.05). AMH staining intensities were similar between cisplatin and cisplatin + recombinant klotho groups (p = 0.925). There was no difference between the groups in terms of SOD, GPx, and GR (p > 0.05). CONCLUSIONS The recombinant klotho administered before cisplatin could partially protect the ovarian tissue from cisplatin-induced ovarian damage considering that there was no difference in histologic injury score parameters, AMH staining intensity and oxidative stress markers between cisplatin and cisplatin plus klotho groups except that klotho preserved follicules to some extent. The antioxidant mechanism of action of klotho may not be the primary protection mechanism in cisplatin induced ovarian injury.
Collapse
Affiliation(s)
- Ismail Biyik
- School of Medicine, Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fikriye Yasemin Ozatik
- School of Medicine, Department of Medical Pharmacology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Mustafa Albayrak
- Department of Obstetrics and Gynecology, Florence Nightingale Hospital, Istanbul, Turkey
| | - Orhan Ozatik
- School of Medicine Department of Histology and Embryology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Yasemin Teksen
- School of Medicine, Department of Medical Pharmacology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Neziha Senem Ari
- Department of Histology and Embryology, Kutahya Evliya Celebi Education and Research Hospital, Kutahya, Turkey
| | - Cenk Soysal
- School of Medicine, Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
20
|
Saar-Kovrov V, Donners MMPC, van der Vorst EPC. Shedding of Klotho: Functional Implications in Chronic Kidney Disease and Associated Vascular Disease. Front Cardiovasc Med 2021; 7:617842. [PMID: 33585584 PMCID: PMC7876272 DOI: 10.3389/fcvm.2020.617842] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
α-Klotho (Klotho) exists in two different forms, a membrane-bound and soluble form, which are highly expressed in the kidney. Both forms play an important role in various physiological and pathophysiological processes. Recently, it has been identified that soluble Klotho arises exclusively from shedding or proteolytic cleavage. In this review, we will highlight the mechanisms underlying the shedding of Klotho and the functional effects of soluble Klotho, especially in CKD and the associated cardiovascular complications. Klotho can be cleaved by a process called shedding, releasing the ectodomain of the transmembrane protein. A disintegrin and metalloproteases ADAM10 and ADAM17 have been demonstrated to be mainly responsible for this shedding, resulting in either full-length fragments or sub-fragments called KL1 and KL2. Reduced levels of soluble Klotho have been associated with kidney disease, especially chronic kidney disease (CKD). In line with a protective effect of soluble Klotho in vascular function and calcification, CKD and the reduced levels of soluble Klotho herein are associated with cardiovascular complications. Interestingly, although it has been demonstrated that soluble Klotho has a multitude of effects its direct impact on vascular cells and the exact underlying mechanisms remain largely unknown and should therefore be a major focus of further research. Moreover, functional implications of the cleavage process resulting in KL1 and KL2 fragments remain to be elucidated.
Collapse
Affiliation(s)
- Valeria Saar-Kovrov
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Emiel P C van der Vorst
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Interdisciplinary Centre for Clinical Research, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
21
|
Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology: Diagnostic and Therapeutic Implications. Clin J Am Soc Nephrol 2020; 16:162-176. [PMID: 32699047 PMCID: PMC7792642 DOI: 10.2215/cjn.02840320] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
αKlotho (called Klotho here) is a membrane protein that serves as the coreceptor for the circulating hormone fibroblast growth factor 23 (FGF23). Klotho is also cleaved and released as a circulating substance originating primarily from the kidney and exerts a myriad of housekeeping functions in just about every organ. The vital role of Klotho is shown by the multiorgan failure with genetic deletion in rodents, with certain features reminiscent of human disease. The most common causes of systemic Klotho deficiency are AKI and CKD. Preclinical data on Klotho biology have advanced considerably and demonstrated its potential diagnostic and therapeutic value; however, multiple knowledge gaps exist in the regulation of Klotho expression, release, and metabolism; its target organs; and mechanisms of action. In the translational and clinical fronts, progress has been more modest. Nonetheless, Klotho has potential clinical applications in the diagnosis of AKI and CKD, in prognosis of progression and extrarenal complications, and finally, as replacement therapy for systemic Klotho deficiency. The overall effect of Klotho in clinical nephrology requires further technical advances and additional large prospective human studies.
Collapse
Affiliation(s)
- Javier A. Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W. Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
22
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Neyra JA, Hu MC, Moe OW. Fibroblast Growth Factor 23 and αKlotho in Acute Kidney Injury: Current Status in Diagnostic and Therapeutic Applications. Nephron Clin Pract 2020; 144:665-672. [PMID: 32841947 DOI: 10.1159/000509856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 and αKlotho are circulating mineral regulatory substances that also have a very diverse range of actions. Acute kidney injury (AKI) is a state of high FGF23 and low αKlotho. Clinical association data for FGF23 are strong, but the basic pathobiology of FGF23 in AKI is rather sparse. Conversely, preclinical data supporting a pathogenic role of αKlotho in AKI are strong, but the human data are still being generated. This pair of substances can potentially serve as diagnostic and prognostic biomarkers. FGF23 blockade and αKlotho restoration can have prophylactic and therapeutic utility in AKI. The literature to date is briefly reviewed in this article.
Collapse
Affiliation(s)
- Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA, .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, .,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,
| |
Collapse
|
24
|
Xie T, Ye W, Liu J, Zhou L, Song Y. The Emerging Key Role of Klotho in the Hypothalamus-Pituitary-Ovarian Axis. Reprod Sci 2020; 28:322-331. [PMID: 32783104 DOI: 10.1007/s43032-020-00277-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The hypothalamus-pituitary-ovary axis is the most important system for regulating female reproductive endocrine function. Its dysfunction would lead to the abnormal secretion of gonadotropin-releasing hormone, follicle-stimulating hormone, or luteinizing hormone, and eventually result in the occurrence of reproductive disease, such as congenital hypogonadotropic hypogonadism, polycystic ovary syndrome, and premature ovarian failure. Recently, an anti-aging gene, Klotho, has gained broad attention in female reproductive diseases. Reports have shown that Klotho is closely correlated to the hypothalamus-pituitary-ovary axis and plays a key role in the development and progression of reproductive diseases. With this issue, we generally review the physiological and pathological role of Klotho in the hypothalamus-pituitary-ovary axis. We also review the underlying mechanisms of Klotho in promoting and preventing female reproductive diseases, which involve the dysfunction of the fibroblast growth factor-Klotho endocrine system, the abnormal signaling regulation of Wnt-β-catenin and insulin-like growth factor-1, the accumulation of oxidative stress, and the inhibition of autophagy, eventually affecting the genesis, development, ovulation, or atresia of follicles. The present review would provide new insights and potential therapeutic target strategies for clinical strategies.
Collapse
Affiliation(s)
- Tingting Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Wenting Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Jing Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Yali Song
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave., Guangzhou, 510515, China.
| |
Collapse
|
25
|
Anti-renal fibrosis and anti-inflammation effect of urolithin B, ellagitannin-gut microbial-derived metabolites in unilateral ureteral obstruction rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|