1
|
Wang R, Sui X, Dong X, Hu L, Li Z, Yu H, Li C, Ji G, Wang S. Integration of metabolomics and transcriptomics reveals the therapeutic mechanism underlying Chelidonium majus L. in the treatment of allergic asthma. Chin Med 2024; 19:65. [PMID: 38671520 PMCID: PMC11055330 DOI: 10.1186/s13020-024-00932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Chelidonium majus is a well-known traditional Chinese medicine, and has been reported of the effect in relieving cough and asthma. However, the mechanism of action is still unknown. METHODS Asthmatic SD rats were first sensitized and established through ovalbumin (OVA) motivation. Subsequently, Hematoxylin and eosin (H&E) staining, Masson's trichrome (Masson) staining, Periodic acid-Schiff (PAS) staining and inflammatory cytokines assay of interleukin (IL)-4, IL-6, IL-17 were implemented to evaluate the protective effects of Chelidonium majus on asthma. Then, the effects of Chelidonium majus and their molecular mechanisms of action on asthma were detected based on the integration of transcriptomics and metabolomics analyses. RESULTS After administration with Chelidonium majus, the histological injuries of inflammation, collagen deposition and mucus secretion in lungs were attenuated and the serum inflammatory cytokines perturbations were also converted. Furthermore, integrated analysis revealed that after Chelidonium majus treatment, 7 different expression genes (DEGs) (Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9) and 9 metabolic biomarkers (ADP, Xanthosine, Hypoxanthine, Inosine, prostaglandin E2 (PGE2), prostaglandin F2a (PGF2a), phosphatidylserine, Creatine and LysoPC (10:0)) were discovered to be connected with the enrichment metabolic pathways, including Purine metabolism, Arachidonic acid metabolism, Arginine and proline metabolism and Glycerophospholipid metabolism. The obtained metabolic biomarkers and DEGs were mainly related to energy metabolism and inflammation, and may be potential therapeutic targets. CONCLUSION Chelidonium majus relieved OVA-induced asthma in rats by regulating the Alox15, P4ha1, Pla2g16, Pde3a, Nme1, Entpd8 and Adcy9 genes expression to restore the disorders in energy metabolism and inflammation.
Collapse
Affiliation(s)
- Renguang Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xintong Sui
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Xin Dong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Zhong Ke Bio-Engineering Co., Ltd, Changchun, 130012, China
| | - Liming Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhimeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hang Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Cuicui Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guoxin Ji
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Ren Y, Zhang H, Yu Z, Yang X, Jiang D. Mechanisms of Er Chen Tang on Treating Asthma Explored by Network Pharmacology and Experimental Verification. Comb Chem High Throughput Screen 2024; 27:227-237. [PMID: 37138477 DOI: 10.2174/1386207326666230503112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE The aim of this study is to explore the active ingredients of ECT and their targets for asthma and investigate the potential mechanism of ECT on asthma. METHODS Firstly, the active ingredients and target of ECT were screened for BATMAN and TCMSP, and functional analysis was done via DAVID. Then, the animal model was induced by ovalbumin (OVA) and aluminum hydroxide. Eosinophil (EOS) counts, EOS active substance Eosinophilic cationic protein (ECP) and eotaxin levels were detected following the instruction. Pathological changes in lung tissue were examined by H&E staining and transmission electron microscopy. Interleukin (IL-4, IL-10, IL-13, TNF-α), TIgE and IgE levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Finally, the protein expression of the TGF-β / STAT3 pathway to lung tissue was detected by Western Blot. RESULTS A total of 450 compounds and 526 target genes were retrieved in Er Chen Tang. Functional analysis indicated that its treatment of asthma was associated with inflammatory factors and fibrosis. In the animal experiment, the results showed that ECT significantly regulated inflammatory cytokine (IL-4, IL-10, IL-13, TNF-α) levels in (P<0.05, P<0.01, reduced EOS number (P<0.05) and also ECP and Eotaxin levels in the blood (P<0.05) in BALF and/or plasma. Bronchial tissue injury was obviously improved on ECT treatment. Associated proteins in TGF-β / STAT3 pathway were significantly regulated by ECT (P<0.05). CONCLUSION This study originally provided evidence that the Er Chen Tang was effective in the treatment of asthma symptoms, and its underlying mechanism might be the regulation of inflammatory factor secretion and the TGF-β/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuzhe Ren
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Haijing Zhang
- Yicon (Beijing) Medical Technology Inc, Beijing, China
| | - Zhou Yu
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiangzheng Yang
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deyou Jiang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Yang W, Yang X, Jiang L, Song H, Huang G, Duan K, Jiang X, Li M, Liu P, Chen J. Combined biological effects and lung proteomics analysis in mice reveal different toxic impacts of electronic cigarette aerosol and combustible cigarette smoke on the respiratory system. Arch Toxicol 2022; 96:3331-3347. [PMID: 36173423 PMCID: PMC9521563 DOI: 10.1007/s00204-022-03378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Combustible cigarettes produce many toxic substances that have been linked to diseases, such as lung cancer and chronic obstructive pulmonary disease. For those smokers unable or unwilling to quit, electronic cigarettes (e-cigarettes) could be used as an alternative to cigarettes. However, the effects and mechanisms of e-cigarette aerosol (ECA) on respiratory function have not been fully elucidated, and in vivo studies of its safety are limited compared to cigarette smoke (CS). In this article, we chose nicotine levels as dosing references and C57BL/6 mice for a 10-week subchronic inhalation toxicity study. A comprehensive set of toxicological endpoints was used to study the effect of exposure. Both CS (6 mg/kg) and ECA (6 or 12 mg/kg) inhalation had decreased the animal's lung function and increased levels of inflammation markers, along with pathological changes in the airways and lungs, with ECA displaying a relatively small effect at the same dose. Proteomic analysis of lung tissue showed greater overall protein changes by CS than that of ECA, with more severe inflammatory network perturbations. Compared with ECA, KEGG analysis of CS revealed upregulation of more inflammatory and virus-related pathways. Protein-protein interactions (PPI) showed that both ECA and CS significantly changed ribosome and complement system-related proteins in mouse lung tissue. The results support that e-cigarette aerosol is less harmful to the respiratory system than cigarette smoke at the same dose using this animal model, thus providing additional evidence for the relative safety of e-cigarettes.
Collapse
Affiliation(s)
- Wanchun Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xuemin Yang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Lujing Jiang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Guangye Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Kun Duan
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Xingtao Jiang
- RELX Lab, Shenzhen RELX Tech. Co., Ltd., Shenzhen, Guangdong, 518000, People's Republic of China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, People's Republic of China.
- National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Gao T, Chen S, Han Y, Zhang D, Tan Y, He Y, Liu M. Ameliorating Inflammation in Insulin-resistant Rat Adipose Tissue with Abdominal Massage Regulates SIRT1/NF-κB Signaling. Cell Biochem Biophys 2022; 80:579-589. [PMID: 35907080 PMCID: PMC9388453 DOI: 10.1007/s12013-022-01085-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
It was the aim of this study to determine whether abdominal massage reverses high-fat diet-induced insulin resistance compared with RSV treatment. A total of sixty male Sprague-Dawley rats were randomly placed in one of four groups:the non-fat diet (NFD), the high-fat diet (HFD), the HFD with abdominal massage (HFD+ AM), and the HFD plus resveratrol (HFD+ RSV). For eight weeks, rats were fed high-fat diets to create insulin resistance, followed by six weeks of either AM or RSV. Molecular mechanisms of adipogenesis and cytokine production in rats with high-fat diets were investigated. The model rat adipose tissue showed significant improvements in obesity, glucose intolerance, and the accumulation of lipid in the body [the total cholesterol level (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)], metabolic effects of glucose [The fasting blood glucose (FBG), Fasting insulin levels (FINS)], inflammatory status [interleukin-6 (IL-6) and tumor necrosis factor (TNF)-α, C-reactive protein (CRP)], and macrophage polarization after AM or RSV treatment. Further, AM increased SIRT1/NF-κB signaling in rat adipose tissue. Accordingly, in rat adipose tissue, our results indicate that AM regulates the secretion of proinflammatory cytokines, blood sugar levels, and related signaling pathways, contributing to improvement of IR, which may serves as a new therapeutic approach for the treatment for IR.
Collapse
Affiliation(s)
- Tianjiao Gao
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Shaotao Chen
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yiran Han
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Dongmei Zhang
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yi Tan
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Yutao He
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China
| | - Mingjun Liu
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, 130117, PR China.
| |
Collapse
|
5
|
Zhou BW, Liu HM, Jia XH. The Role and Mechanisms of Traditional Chinese Medicine for Airway Inflammation and Remodeling in Asthma: Overview and Progress. Front Pharmacol 2022; 13:917256. [PMID: 35910345 PMCID: PMC9335520 DOI: 10.3389/fphar.2022.917256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma as an individual disease has blighted human health for thousands of years and is still a vital global health challenge at present. Though getting much progress in the utilization of antibiotics, mucolytics, and especially the combination of inhaled corticosteroids (ICS) and long-acting β-agonists (LABA), we are confused about the management of asthmatic airway inflammation and remodeling, which directly threatens the quality of life for chronic patients. The blind addition of ICS will not benefit the remission of cough, wheeze, or sputum, but to increase the risk of side effects. Thus, it is necessary to explore an effective therapy to modulate asthmatic inflammation and airway remodeling. Traditional Chinese Medicine (TCM) has justified its anti-asthma effect in clinical practice but its underlying mechanism and specific role in asthma are still unknown. Some animal studies demonstrated that the classic formula, direct exacts, and natural compounds isolated from TCM could significantly alleviate airway structural alterations and exhibit the anti-inflammatory effects. By investigating these findings and data, we will discuss the possible pathomechanism underlined airway inflammation and remodeling in asthma and the unique role of TCM in the treatment of asthma through regulating different signaling pathways.
Collapse
Affiliation(s)
- Bo-wen Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-man Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-hua Jia
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xin-hua Jia,
| |
Collapse
|
6
|
Li BH, Li ZY, Liu MM, Tian JZ, Cui QH. Progress in Traditional Chinese Medicine Against Respiratory Viruses: A Review. Front Pharmacol 2021; 12:743623. [PMID: 34531754 PMCID: PMC8438140 DOI: 10.3389/fphar.2021.743623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
Respiratory viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-1, SARS-CoV-2, influenza A viruses, and respiratory syncytial virus, pose a serious threat to society. Based on the guiding principles of “holism” and “syndrome differentiation and treatment”, traditional Chinese medicine (TCM) has unique advantages in the treatment of respiratory virus diseases owing to the synergistic effect of multiple components and targets, which prevents drug resistance from arising. According to TCM theory, there are two main strategies in antiviral treatments, namely “dispelling evil” and “fu zheng”. Dispelling evil corresponds to the direct inhibition of virus growth and fu zheng corresponds to immune regulation, inflammation control, and tissue protection in the host. In this review, current progress in using TCMs against respiratory viruses is summarized according to modern biological theories. The prospects for developing TCMs against respiratory viruses is discussed to provide a reference for the research and development of innovative TCMs with multiple components, multiple targets, and low toxicity.
Collapse
Affiliation(s)
- Bao-Hong Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao-Miao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Zhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Hua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
7
|
Xing Q, You Y, Zhao X, Ji J, Yan H, Dong Y, Ren L, Ding Y, Hou S. iTRAQ-Based Proteomics Reveals Gu-Ben-Fang-Xiao Decoction Alleviates Airway Remodeling via Reducing Extracellular Matrix Deposition in a Murine Model of Chronic Remission Asthma. Front Pharmacol 2021; 12:588588. [PMID: 34194321 PMCID: PMC8237094 DOI: 10.3389/fphar.2021.588588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Airway remodeling is a primary pathological feature of asthma. The current therapy for asthma mainly targets reducing inflammation but not particularly airway remodeling. Therefore, it is worthwhile to develop alternative and more effective therapies to attenuate remodeling. Gu-Ben-Fang-Xiao Decoction (GBFXD) has been used to effectively and safely treat asthma for decades. In this study, GBFXD regulated airway inflammation, collagen deposition, and the molecules relevant to airway remodeling such as Vimentin, α-SMA, hydroxyproline, and E-cadherin in chronic remission asthma (CRA) murine model. Proteomic analysis indicated that the overlapping differentially expressed proteins (DEPs) (Model/Control and GBFXD/Model) were mainly collagens and laminins, which were extracellular matrix (ECM) proteins. In addition, the KEGG analysis showed that GBFXD could regulate pathways related to airway remodeling including ECM-receptor interactions, focal adhesion, and the PI3K/AKT signaling pathway, which were the top three significantly enriched pathways containing the most DEPs for both Model/Control and GBFXD/Model. Further validation research showed that GBFXD regulated reticulon-4 (RTN4) and suppressed the activation of the PI3K/AKT pathway to alleviate ECM proteins deposition. In conclusion, our findings indicate that GBFXD possibly regulate the PI3K/AKT pathway via RTN4 to improve airway remodeling, which provides a new insight into the molecular mechanism of GBFXD for the treatment of CRA.
Collapse
Affiliation(s)
- Qiongqiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yannan You
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Jianjian Ji
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Yuanyuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Shuting Hou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| |
Collapse
|
8
|
Liang ZQ, Tu PC, Ji JJ, Xing QQ, Zhao X. Gu-Ben-Fang-Xiao attenuates allergic airway inflammation by inhibiting BAFF-mediated B cell activation. Biomed Pharmacother 2020; 132:110801. [PMID: 33049582 DOI: 10.1016/j.biopha.2020.110801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Allergic airway inflammation is one of the major pathological events involved in the development of asthma. The B cell-activating factor (BAFF)-mediated abnormal activation of B cells plays a key role in developing allergic airway inflammation. Here, we investigated the effects of Gu-Ben-Fang-Xiao decoction (GBFXD), a TCM decoction used in the prevention and treatment of allergic asthma, on allergic airway inflammation and BAFF-mediated B cell activation. A mouse model of OVA-Severe respiratory syncytial virus (RSV) induced asthma in the remission stage was administrated with GBFXD by gavage for four weeks, after which, the pulmonary function was evaluated. Pathological changes of the lung were observed by hematoxylin and eosin (HE) staining, and serum levels of IgE, BAFF, and inflammatory factors were detected by ELISA. The expression of BAFF, APRIL, and their related receptors in the lung and spleen was detected by Western blotting and RT-qPCR. Flow cytometry detected B cell subsets in the spleen, PBC, and monocyte subsets in bronchoalveolar lavage fluid (BALF). The results showed that GBFXD improved the lung function, alleviated the inflammatory changes of the lung tissue in OVA-RSV sensitized mice, and reduced levels of IL-6, TNF-α, IL1-β, INOS, IL13 as well as IL-15, IgE, BAFF in the serum of OVA-RAV mice. Additionally, GBFXD significantly reduced the proportion of CD19+CD27+ B cell subpopulation and IgE + B cell subpopulation in the PBC and spleen cells of mice. Furthermore, the expression of BAFF, APRIL, BAFFR, TACI, and AID decreased in the lung and spleen of GBFXD-treated mice, as well as the proportion of CD11b + BAFF + cell subsets in BALF. In conclusion, GBFXD has an inhibitory effect on the secretion of BAFF by pulmonary macrophages and the expression of BAFF-related receptors, thereby reducing B cell activation and the release of IgE. This proposed mechanism contributes to the improvement of allergic airway inflammation and respiratory function in an asthmatic mouse model.
Collapse
Affiliation(s)
- Zhong-Qing Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Peng-Cheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Jian-Jian Ji
- Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China; Pediatric Institution of Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, 210023, China.
| |
Collapse
|
9
|
Dong Y, Yan H, Zhao X, Lin R, Lin L, Ding Y, Liu L, Ren L, Xing Q, Ji J. Gu-Ben-Fang-Xiao Decoction Ameliorated Murine Asthma in Remission Stage by Modulating Microbiota-Acetate-Tregs Axis. Front Pharmacol 2020; 11:549. [PMID: 32431609 PMCID: PMC7212778 DOI: 10.3389/fphar.2020.00549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Dysbiosis of gut microbiota is a critical factor in the pathogenesis of asthma. Manipulating gut microbiota is a promising therapeutic intervention in asthma, and is being extensively studied. Gu-Ben-Fang-Xiao Decoction (GBFXD), derived from traditional Chinese medicine, is an effective and safe therapeutic formula for asthma in remission stage (ARS). Herein, we showed that GBFXD treatment remarkably alleviated ARS by improving respiratory function and lung histopathology. Asthmatic mice displayed a dysbiosis of gut microbiota, represented by significantly increased abundance of Bacteroidetes and decreased abundance of Firmicutes in gut, while GBFXD treatment reversed the gut dysbiosis in asthmatic mice at phylum, family, and genus levels. Moreover, our data showed that GBFXD treatment increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in asthmatic mice, such as Firmicutes, Lachnospiraceae, and Bifidobacteriaceae, which consequently led to elevated levels of SCFAs. Furthermore, GBFXD treatment significantly enhanced the regulatory T cell differentiation via SCFAs, particularly acetate, in asthmatic mice. More critically, the protective effect of GBFXD was shown to be transmissible among asthmatic mice through co-housing microbiota transplantation. Antibiotic cocktail and acetate replenishment experiments also further substantiated the importance of SCFA-producing gut microbiota in GBFXD action. We, thus, demonstrated for the first time that gut microbiota dysbiosis existed in ARS. GBFXD could ameliorate ARS through the microbiota-acetate-Tregs axis.
Collapse
Affiliation(s)
- Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Ding
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liwei Liu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiongqiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
High-Dose Dexamethasone Manipulates the Tumor Microenvironment and Internal Metabolic Pathways in Anti-Tumor Progression. Int J Mol Sci 2020; 21:ijms21051846. [PMID: 32156004 PMCID: PMC7084511 DOI: 10.3390/ijms21051846] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
High-dose dexamethasone (DEX) is used to treat chemotherapy-induced nausea and vomiting or to control immunotherapy-related autoimmune diseases in clinical practice. However, the underlying mechanisms of high-dose DEX in tumor progression remain unaddressed. Therefore, we explored the effects of high-dose DEX on tumor progression and the potential mechanisms of its anti-tumor function using immunohistochemistry, histological examination, real-time quantitative PCR (qPCR), and Western blotting. Tumor volume, blood vessel invasion, and levels of the cell proliferation markers Ki67 and c-Myc and the anti-apoptotic marker Bcl2 decreased in response to high-dose DEX. However, the cell apoptosis marker cleaved caspase 3 increased significantly in mice treated with 50 mg/kg DEX compared with controls. Some genes associated with immune responses were significantly downregulated following treatment with 50 mg/kg DEX e.g., Cxcl9, Cxcl10, Cd3e, Gzmb, Ifng, Foxp3, S100a9, Arg1, and Mrc1. In contrast, the M1-like tumor-associated macrophages (TAMs) activation marker Nos2 was shown to be increased. Moreover, the expression of peroxisome proliferator-activated receptors α and γ (Pparα and Pparg, respectively) was shown to be significantly upregulated in livers or tumors treated with DEX. However, high-dose DEX treatment decreased the expression of glucose and lipid metabolic pathway-related genes such as glycolysis-associated genes (Glut1, Hk2, Pgk1, Idh3a), triglyceride (TG) synthesis genes (Gpam, Agpat2, Dgat1), exogenous free fatty acid (FFA) uptake-related genes (Fabp1, Slc27a4, and CD36), and fatty acid oxidation (FAO) genes (Acadm, Acaa1, Cpt1a, Pnpla2). In addition, increased serum glucose and decreased serum TG and non-esterified fatty acid (NEFA) were observed in DEX treated-xenografted tumor mice. These findings indicate that high-dose DEX-inhibited tumor progression is a complicated process, not only activated by M1-like TAMs, but also decreased by the uptake and consumption of glucose and lipids that block the raw material and energy supply of cancer cells. Activated M1-like TAMs and inefficient glucose and lipid metabolism delayed tumor cell growth and promoted apoptosis. These findings have important implications for the application of DEX combined with drugs that target key metabolism pathways for tumor therapy in clinical practice.
Collapse
|