1
|
Hoseinpoor S, Ul-Haq Z, Tsatsakis A, Ramu R, Rezaee R. Assessment of binding affinity of major bioactive compounds from Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate to COX-2 receptor: an in silico study. J Biomol Struct Dyn 2024:1-14. [PMID: 39659229 DOI: 10.1080/07391102.2024.2439043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/24/2024] [Indexed: 12/12/2024]
Abstract
In traditional medicine, potential anti-inflammatory and pain-relieving activity of Momordica charantia, Azadirachta indica, Nelumbo nucifera, Caesalpinia crista, Martynia annua and Erythrina variegate has been emphasized. In this study, we explored binding affinity of 36 bioactive compounds from these plants to cyclooxygenase-2 (COX-2) receptor using docking method. Six compounds namely, beta carotene, lycopene, lutein, momordicoside, rutin and azadirachtin showed excellent binding affinities (-10.29, -10.22, -10.03, -7.9, -8.81 and -7.88 kcal/mol, respectively) and stable interactions with COX-2 (greater than those of aspirin and diclofenac) and they were chosen for the molecular dynamics (MD) assessments done throughout a 100-ns time period. Based on the computed RMSD, RMSF, Rg, SASA and PCA, all ligands were found to form stable and adequate interactions with COX-2 protein; these findings were comparable to those of aspirin and diclofenac, indicating the potential inhibitory properties of these ligands on COX-2 protein. In addition, the toxicity of compounds was evaluated using Pred-hERG, Pred-Skin and ProTox-II. Since COX-2 inhibitors have been reported to activate the Nrf2 pathway, it is hypothesized that they may confer other health-promoting effects through triggering Nrf2 signaling.
Collapse
Affiliation(s)
- Saeideh Hoseinpoor
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zaheer Ul-Haq
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Elnahas SM, Mansour HAEH, El-Sawi MR, Abou-El-Naga AM. Therapeutic effect of Momordica charantia on cardiomyopathy in a diabetic maternal rat model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:977-990. [PMID: 38973290 DOI: 10.1002/jez.2854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Myocardial structural and functional abnormalities are hallmarks of diabetic cardiomyopathy (DCM), a chronic consequence of diabetes mellitus (DM). Maternal DM affects and increases the risk of heart defects in diabetic mothers compared with nondiabetic mothers. Momordica charantia exhibits antidiabetic effects due to various bioactive compounds that are phytochemicals, a broad group that includes phenolic compounds, alkaloids, proteins, steroids, inorganic compounds, and lipids. Pregnant maternal rats were split into four groups: control (C), M. charantia-treated (MC), type 2 diabetes mellitus (T2DM) (DM), and diabetic (MC + DM) groups. Diabetes mothers had increased serum glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol levels. Cardiac biomarkers such as cardiac troponin T (cTnT), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase were increased. Hormone levels of follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen decreased significantly. Inflammatory markers such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and vascular adhesion molecule-1 (VCAM-1) were elevated in diabetic mothers. Oxidative stress markers indicated increased malondialdehyde and nitric oxide levels, while antioxidants such as glutathione, superoxide dismutase, and catalase were decreased in maternal heart tissue. The levels of apoptotic markers such as tumor suppressor 53 (P53) and cysteine aspartic protease-3 (caspase-3) were significantly greater in diabetic maternal heart tissue. Histopathological analysis revealed heart tissue abnormalities in diabetic maternal rats. M. charantia extract improved maternal diabetes-induced changes in inflammation, antioxidant levels, and heart tissue structure.
Collapse
Affiliation(s)
- Shaimaa M Elnahas
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Mamdouh R El-Sawi
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
4
|
Cai X, Lin Z, Zheng Q, Liao M, Li H, Feng H, Chen H, Zhang Y, Chen X, Liang D. Major Bitter-Tasting Compounds from the Dichloromethane Fraction of Bitter Gourd (Fruit of Momordica charantia L.) Extract and Their Precursors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22237-22249. [PMID: 39327224 DOI: 10.1021/acs.jafc.4c06506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The unripe fruit of the plant Momordica charantia L., commonly known as bitter gourd or bitter melon, is a popular vegetable and medical herb in many parts of the world and is characterized by its strong bitter taste. In our endeavor to decode its bitter taste, the dichloromethane fraction of 75% methanol extract of bitter gourd was found to be intensely bitter. Combining sensory analysis-guided fractionation and newly developed comparative high-pressure liquid chromatography (HPLC) analysis-guided purification led to the isolation of five known compounds including momordicoside L (1), (23E)-3β-O-malonyl-7β,25-dihydroxycucurbita-5,23-dien-19-al (2), 3-O-β-d-allopyranosyl-7β,25-dihydroxycucurbita-5,23(E)-dien-19-al (3), momordicine IV (5), and charantoside B (6) and three new compounds 3-O-β-d-3-ketoglucopyranosly-7β,25-dihydroxycucurbita-5,23(E)-dien-19-al (4), 6'-O-malonylmomordicoside L (7), and 6'-O-malonylmomordicine IV (8) from bitter gourd. Sensory analysis revealed compounds 3-8 had strong bitter taste with their bitter taste recognition thresholds in the range between 3.6 (4) and 13.6 ppm (6) in 3% ethanol. UPLC-MS/MS quantification showed that their concentration in bitter gourd ranged from 16.5 ± 1.3 mg/kg (4) to 214.8 ± 14.0 mg/kg (6) on a dry weight basis. Calculation of the dose-over-threshold (DoT) factor showed that momordicine IV (5) and charantoside B (6) should be considered as bitter principles of bitter gourd. In addition, the study also demonstrated the ubiquity of the isomerization reaction in the side chain of cucurbitane-type triterpenoids. Many isolated compounds were the isomerized products of their natural precursors, and these precursors should be the primary bitterness contributors of fresh fruits. In addition, comparative HPLC analysis-guided purification could be a practical approach for the fast isolation of acid-labile precursors.
Collapse
Affiliation(s)
- Xueyi Cai
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ziqiang Lin
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qihong Zheng
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengzhen Liao
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hongfu Li
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Hanxiao Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Huan Chen
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 501640, China
| | - Dong Liang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Kao PF, Cheng CH, Cheng TH, Liu JC, Sung LC. Therapeutic Potential of Momordicine I from Momordica charantia: Cardiovascular Benefits and Mechanisms. Int J Mol Sci 2024; 25:10518. [PMID: 39408847 PMCID: PMC11477196 DOI: 10.3390/ijms251910518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Momordica charantia (bitter melon), a traditional medicinal plant, has been demonstrated to have potential in managing diabetes, gastrointestinal problems, and infections. Among its bioactive compounds, momordicine I, a cucurbitane-type triterpenoid, has attracted attention due to its substantial biological activities. Preclinical studies have indicated that momordicine I possesses antihypertensive, anti-inflammatory, antihypertrophic, antifibrotic, and antioxidative properties, indicating its potential as a therapeutic agent for cardiovascular diseases. Its mechanisms of action include modulating insulin signaling, inhibiting inflammatory pathways, and inducing apoptosis in cancer cells. The proposed mechanistic pathways through which momordicine I exerts its cardiovascular benefits are via the modulation of nitric oxide, angiotensin-converting enzymes, phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt), oxidative stress, apoptosis and inflammatory pathways. Furthermore, the anti-inflammatory effects of momordicine I are pivotal. Momordicine I might reduce inflammation through the following mechanisms: inhibiting pro-inflammatory cytokines, reducing adhesion molecules expression, suppressing NF-κB activation, modulating the Nrf2 pathway and suppressing c-Met/STAT3 pathway. However, its therapeutic use requires the careful consideration of potential side effects, contraindications, and drug interactions. Future research should focus on elucidating the precise mechanisms of momordicine I, validating its efficacy and safety through clinical trials, and exploring its pharmacokinetics. If proven effective, momordicine I could considerably affect clinical cardiology by acting as a novel adjunct or alternative therapy for cardiovascular diseases. To date, no review article has been published on the role of bitter-melon bioactive metabolites in cardiovascular prevention and therapy. The present work constitutes a comprehensive, up-to-date review of the literature, which highlights the promising therapeutic potential of momordicine I on the cardiovascular system and discusses future research recommendations.
Collapse
Affiliation(s)
- Pai-Feng Kao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
| | - Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan;
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan;
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| |
Collapse
|
6
|
Ahmad R, Aldholmi M, Alqathama A, Al Nahab HZ, Almutawah AI. A comprehensive LCMS/MS characterization for the green extracted cucurbitane-triterpenoid glycosides from bitter melon (Momordica charantia) fruit. Food Chem 2024; 445:138479. [PMID: 38387310 DOI: 10.1016/j.foodchem.2024.138479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
A first-time green extraction and LCMSMS analysis for karavilosides (KVs) VIII, X, and XI in different parts (skin, pith, and seed) of the fresh and dried fruit of bitter melon (BM) is reported herein. Ultrasonication for green extraction whereas, LCMS/MS for KVs quantification were used. More extract yield (675.80 ± 163.57 mg/g) was observed for the dried fruit parts compared to the fresh BM-fruit parts (513.20 ± 75.42 mg/g). The fresh skin (343.40 ± 54.07 mg/4g) and dried seeds (311.80 and 77.95 ± 38.98) exhibited more yield whereas, the solvent yield (mg/4mg) observed was; H2O (651.70) > EtOH (227.20) > EtAC (163.30) > ACT (146.80). The LCMS/MS yield for the KVs revealed a descending order; KVXI (2376.44 ppb) > KVX (639.17 ppb) > KVVIII (599.83 ppb). More correlation was seen for the solvent Vs extract yield whereas, the KVs revealed more correlation for the BM-fruit part (P = 0.05). The study comprehensively characterized the parts of fresh and dried BM-fruits in terms of extract yield and KVs amount.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia.
| | - Mohammed Aldholmi
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hasan Zaki Al Nahab
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Alhassan Ibrahim Almutawah
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| |
Collapse
|
7
|
Dolatmand-Shahri N, Modarres-Sanavy SAM, Mirjalili MH, Mokhtassi-Bidgoli A. Study the yield and quality of bitter gourd fruit (Momordica charantia) in inoculation with two species of mycorrhizal fungi and phosphorus fertilizer under different irrigation regimes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108479. [PMID: 38461752 DOI: 10.1016/j.plaphy.2024.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Drought is known to be the most important constraint to the growth and yield of agricultural products in the world, and plant symbiosis with arbuscular mycorrhizal fungi (AMF) can be a way to reduce drought stress negative impacts. A two-year experiment to investigate the factorial combination of mycorrhizal fungi (Glomus mosseae, Glomus intraradices, Control) and phosphorus fertilizer (application and non-application of phosphorus) on fruit yield and phenolic acids changes bitter gourd under different irrigation regimes as a split factorial based on a randomized complete block design. Three irrigation regimes, including irrigation after 20%, 50%, and 80% available soil water content depletion (ASWD), were considered in the main plots. The results showed that under water deficit stress, fruit yield and physiological (photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), RWC, total chlorophyll, and root colonization) parameters decreased compared to 20% ASWD, and biochemical (proline, soluble sugar, MDA, CAT, SOD, phenol) parameters and fruit phenolic acids (caffeic acid, coumaric acid, ferulic acid) increased. However, the inoculation of AMF and phosphorus fertilizer in three irrigation regimes decreased MDA content, but physiological and biochemical parameters and fruit phenolic acids were increased. In this study, the factorial combination of AMF and sufficient phosphorus improved the resistance of bitter gourd to water deficit, and this not only improved fruit yield but also increased fruit phenolic acids under 80% ASWD, which can be an innovation in the management of water resources and the production industry of medicinal plants with high antioxidant properties in water deficit areas.
Collapse
Affiliation(s)
| | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 198396941, Tehran, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Choudhury AA, Arumugam M, Ponnusamy N, Sivaraman D, Sertsemariam W, Thiruvengadam M, Pandiaraj S, Rahaman M, Devi Rajeswari V. Anti-diabetic drug discovery using the bioactive compounds of Momordica charantia by molecular docking and molecular dynamics analysis. J Biomol Struct Dyn 2024:1-15. [PMID: 38334124 DOI: 10.1080/07391102.2024.2313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abbas Alam Choudhury
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Nirmaladevi Ponnusamy
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, India
| | | | - Woldie Sertsemariam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul, Republic of Korea
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, Vellore, India
| |
Collapse
|
9
|
Laczkó-Zöld E, Csupor-Löffler B, Kolcsár EB, Ferenci T, Nan M, Tóth B, Csupor D. The metabolic effect of Momordica charantia cannot be determined based on the available clinical evidence: a systematic review and meta-analysis of randomized clinical trials. Front Nutr 2024; 10:1200801. [PMID: 38274207 PMCID: PMC10808600 DOI: 10.3389/fnut.2023.1200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Several studies have shown that Momordica charantia L. (Cucurbitaceae, bitter melon) has beneficial effects on metabolic syndrome (MetS) parameters and exerts antidiabetic, anti-hyperlipidemic, and anti-obesity activities. Since the findings of these studies are contradictory, the goal of this systematic review and meta-analysis was to assess the efficacy of bitter melon in the treatment of metabolic syndrome, with special emphasis on the anti-diabetic effect. Embase, Cochrane, PubMed, and Web of Science databases were searched for randomized controlled human trials (RCTs). The meta-analysis was reported according to the PRISMA statement. The primary outcomes of the review are body weight, BMI, fasting blood glucose, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure, serum triglyceride, HDL, LDL, and total cholesterol levels. Nine studies were included in the meta-analysis with 414 patients in total and 4-16 weeks of follow-up. In case of the meta-analysis of change scores, no significant effect could be observed for bitter melon treatment over placebo on fasting blood glucose level (MD = -0.03; 95% CI: -0.38 to 0.31; I2 = 34%), HbA1c level (MD = -0.12; 95% CI: -0.35 to 0.11; I2 = 56%), HDL (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%), LDL (MD = -0.10; 95% CI: -0.28 to 0.08; I2 = 37%), total cholesterol (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%,), body weight (MD = -1.00; 95% CI: -2.59-0.59; I2 = 97%), BMI (MD = -0.42; 95% CI: -0.99-0.14; I2 = 95%), systolic blood pressure (MD = 1.01; 95% CI: -1.07-3.09; I2 = 0%) and diastolic blood pressure levels (MD = 0.24; 95% CI: -1.04-1.53; I2 = 0%). Momordica treatment was not associated with a notable change in ALT, AST, and creatinine levels compared to the placebo, which supports the safety of this plant. However, the power was overall low and the meta-analyzed studies were also too short to reliably detect long-term metabolic effects. This highlights the need for additional research into this plant in carefully planned clinical trials of longer duration.
Collapse
Affiliation(s)
- Eszter Laczkó-Zöld
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Boglárka Csupor-Löffler
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Edina-Blanka Kolcsár
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Tamás Ferenci
- Physiological Controls Research Center, Óbuda University, Budapest, Hungary
- Department of Statistics, Corvinus University of Budapest, Budapest, Hungary
| | - Monica Nan
- Pharmacy Department, Encompass Health Rehabilitation Hospital of Round Rock, Round Rock, TX, United States
| | - Barbara Tóth
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Goswami K, Badruddeen, Arif M, Akhtar J, Khan MI, Ahmad M. Flavonoids, Isoflavonoids and others Bioactives for Insulin Sensitizations. Curr Diabetes Rev 2024; 20:e270423216247. [PMID: 37102490 DOI: 10.2174/1573399819666230427095200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/28/2023]
Abstract
Diabetes is a chronic condition that has an impact on a huge part of the world. Both animals and humans have been demonstrated to benefit from natural goods, and organisms (animals, or microbes). In 2021, approximately 537 million adults (20-79 years) are living with diabetes, making it the one of the biggest cause of death worldwide. Various phytoconstituent preserved β- cells activity helps to prevent the formation of diabetes problems. As a result, β-cells mass and function are key pharmaceutical targets. The purpose of this review is to provide an overview of flavonoids' effects on pancreatic β-cells. Flavonoids have been demonstrated to improve insulin release in cell lines of isolated pancreatic islets and diabetic animal models. Flavonoids are thought to protect β-cells by inhibiting nuclear factor-κB (NF-κB) signaling, activating the phosphatidylinositol 3-kinase (PI3K) pathway, inhibiting nitric oxide production, and lowering reactive oxygen species levels. Flavonoids boost β-cells secretory capacity by improving mitochondrial bioenergetic function and increasing insulin secretion pathways. Some of the bioactive phytoconstituents such as S-methyl cysteine sulfoxides stimulate insulin synthesis in the body and increase pancreatic output. The berberine increased insulin secretion in the HIT-T15 and Insulinoma 6 (MIN6) mouse cell line. Epigallocatechin-3-Gallate protects against toxicity accrued by cytokines, reactive oxygen species (ROS), and hyperglycemia. Quercetin has been proven to boost insulin production by Insulinoma 1 (INS-1) cells and also protect cell apoptosis. Overall flavonoids have beneficial effects on β-cells by prevented their malfunctioning or degradation and improving synthesis or release of insulin from β-cells.
Collapse
Affiliation(s)
- Kushagra Goswami
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Muhammad Arif
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P. 226026, India
| |
Collapse
|
11
|
Sheikh HI, Zakaria NH, Abdul Majid FA, Zamzuri F, Fadhlina A, Hairani MAS. Promising roles of Zingiber officinale roscoe, Curcuma longa L., and Momordica charantia L. as immunity modulators against COVID-19: A bibliometric analysis. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 14:100680. [PMID: 37346755 PMCID: PMC10259168 DOI: 10.1016/j.jafr.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
Zingiber officinale, Curcuma longa, and Momordica charantia are medicinal plants that are commonly used in the form of herbal tea, which is formulated to strengthen the immune system, especially against COVID-19 infection. Excellent antioxidant, anti-inflammatory, and immunostimulatory properties have been reported for their bioactive compounds, which have been shown to aid in stimulating immune systems as well as lowering the risk of severe COVID-19 such as lung injury. Yet, no bibliometric study on the subject is available. Hence, the purpose of this study is to quantitatively examine the existing articles related to the therapeutic potential of these three herbs, as well as their mechanisms of action in combating the SARS-CoV-2 virus. A total of 121 papers were retrieved from Scopus database up to 14th March 2023. The bibliometric analysis was conducted using VOSviewer software. Based on the literature search, Z. officinale was the most researched plant. India appeared as the most prolific country, with the highest number of articles contributed by two authors from India (Rathi, R. and Gayatri Devi, R.). In terms of keywords, the plants were associated with immune modulation, management of symptoms, antioxidant, anti-inflammatory and antiviral activities. Several important bioactive compounds were responsible for these effects such as gingerol, paradol, shogaol, curcumin, calebin A, momordicoside, karaviloside and cucurbitadienol. These compounds were hypothesized to prevent and cure COVID-19 by regulating inflammatory response, downregulating oxidative stress and modulating immunostimulatory activity. This review paper therefore supports the potential of Z. officinale, C. longa, and M. charantia to be formulated as a herbal blend for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Food Security Research Cluster, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nor Hafizah Zakaria
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Fatihah Zamzuri
- Faculty of Pharmacy, Universiti Teknologi MARA, 42300, Puncak Alam, Selangor, Malaysia
| | - Anis Fadhlina
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | | |
Collapse
|
12
|
Suswidiantoro V, Azmi NU, Lukmanto D, Saputri FC, Mun'im A, Jusuf AA. The neuroprotective potential of turmeric rhizome and bitter melon on aspartame-induced spatial memory impairment in rats. Heliyon 2023; 9:e21693. [PMID: 38027700 PMCID: PMC10665738 DOI: 10.1016/j.heliyon.2023.e21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aspartame is widely used artificial sweetener. However, chronic exposure to aspartame led to spatial memory impairment and elevated oxidative stress in the brain. Extract of turmeric rhizome (Curcuma longa) (TUR) and extract of bitter melon (Momordica charantia) (BM) is known to have antioxidant activity. The present study was aimed to examine the neuroprotective potential of TUR and BM extracts, either as single or as combination, against the effects of aspartame in the brain. Here, Sprague-Dawley rats fed with aspartame (40 mg/kg BW) for 28 days were compared with rats fed with extract and aspartame. To assess neuroprotective potential, rats were given extract 7 days before and during aspartame treatment. Spatial memory was assessed with Morris water maze test followed with H&E staining of hippocampal region. Brain lipid peroxidation and enzymatic activity of malondialdehyde (MDA), glutathione peroxidase (GPx), and Acetylcholinesterase (AChE) were measured to probe status of oxidative stress in the brain. Aspartame-treated rats demonstrated spatial memory impairment and reduced number of hippocampal cells and elevated levels of MDA, downregulated activity of GPx and elevated activity of AChE. In contrast, animals received both aspartame and extract demonstrated better spatial memory function, higher number of hippocampal areas, increased GPX activity, reduced MDA levels, and decreased AChE activity were observed in the brain of extract-treated rats. Taken together, our results suggest that extract of TUR rhizome and BM fruit exhibit antioxidant activity which may contribute to the neuroprotective effects against aspartame-induced memory impairment in rats.
Collapse
Affiliation(s)
- Vicko Suswidiantoro
- Laboratory of Pharmacology, Pharmacy Department, Universitas Aisyah Pringsewu, 35372, Lampung, Indonesia
| | - Nuriza Ulul Azmi
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Donny Lukmanto
- Laboratory of Advanced Vision Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java, 16424, Indonesia
| | - Abdul Mun'im
- Laboratory of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
| | - Ahmad Aulia Jusuf
- Laboratory of Histology, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta, 10440, Indonesia
| |
Collapse
|
13
|
Ahmadi Ghezeldasht S, Bidkhori HR, Miri R, Baghban A, Mosavat A, Rezaee SA. Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo. J Neurovirol 2023:10.1007/s13365-023-01160-0. [PMID: 37531001 DOI: 10.1007/s13365-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
There is an urgent need to find an effective therapy for life-threatening HTLV-1-associated diseases. Bitter melon (Momordica charantia) is considered a traditional herb with antiviral and anticancer properties and was tested in this study on HTLV-1 infectivity. GC-MS analyzed the alcoholic extract. In vitro assay was carried out using transfection of HUVEC cells by HTLV-1-MT2 cell line. The cells were exposed to alcoholic and aqueous extracts at 5,10, and 20 µg/mL concentrations. In vivo, mice were divided into four groups. Three groups were treated with HTLV-1-MT-2 cells as test groups and positive control, and PBS as the negative control group in the presence and absence of M. charantia extracts. Peripheral blood mononuclear cells (PBMCs), mesenteric lymph nodes (MLNs), and splenocytes were collected for HTLV-1-proviral load (PVL) assessment, TaqMan-qPCR. The GC-MS analysis revealed 36 components in M. charantia. The studies showed significant reductions in HTLV-1-PVL in the presence of extract in the HUVEC-treated groups (P = 0.001). Furthermore, the inhibitory effects of extracts on HTLV-1 infected mice showed significant differences in HTLV-1-PVL among M. charantia treated groups with untreated (P = 0.001). The T-cells in MLNs were significantly more susceptible to HTLV-1 than others (P = 0.001). There were significant differences among HTLV-1-infected cells in MLNs and splenocytes (P = 0.001 and 0.046, respectively). Also, aqueous and alcoholic extract-treated groups significantly affected HTLV-1-infected PBMCs (P = 0.002 and 0.009, respectively). M. charantia may have effective antiviral properties. The substantial compound of M. charantia could have inhibitory effects on the proliferation and transmission of HTLV-1 oncovirus.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
| | - Arezoo Baghban
- Department of Chemistry, Faculty of Science, Azad University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, 9177948564, Mashhad, Iran.
| |
Collapse
|
14
|
Oso B, Agboola O, Olaoye I. Glycation Inhibition of Bovine Serum Albumin by Extracts of Momordica charantia L. using Spectroscopic and Computational Methods. Avicenna J Med Biotechnol 2023; 15:180-187. [PMID: 37538235 PMCID: PMC10395457 DOI: 10.18502/ajmb.v15i3.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 08/05/2023] Open
Abstract
Background Momordica charantia (M. charantia) has been used in traditional medicine for the management of complications associated with diabetes mellitus. Several phytochemicals with different pharmacological properties have been previously identified from the botanical; however, the mechanisms of actions of this plant vis-à-vis inhibition of non-enzymatic protein glycation are not known. This study aimed at understanding the putative mechanisms underlying the antiglycation properties of M. charantia extracts experimental and theoretical approaches. Methods The antiglycation properties of the plant were evaluated by studying the inhibitory actions of methanol and aqueous extracts on glucose-induced glycation of Bovine Serum Albumin (BSA) and protein aggregation. The mode of binding of identified phenolics of the botanical with BSA, amyloid beta-peptide (1-42) and 3D amyloid beta (1-42) fibrils were also investigated. Results The in vitro experimental properties of the extracts showed that the extracts could prevent inductions of protein glycation and protein folding. The molecular docking analyses revealed that phenolics had better binding affinities with chlorogenic acid showing the highest binding score (-7.13±0.04 kcal/mol) towards BSA than glucose and their respective interactions with BSA could prevent glucose-induced protein aggregation. Conclusion Consequently, the results of this study provide insight into the probable mechanisms of actions of the extracts of M. charantia against the inhibition of advanced glycation end products formation.
Collapse
Affiliation(s)
- Babatunde Oso
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| | - Olubukola Agboola
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| | - Ige Olaoye
- Department of Biochemistry, McPherson University, Seriki Sotayo, Ogun State, Nigeria
| |
Collapse
|
15
|
Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int J Mol Sci 2023; 24:ijms24109085. [PMID: 37240430 DOI: 10.3390/ijms24109085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.
Collapse
Affiliation(s)
- Clement G Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Jameka Grigsby
- Department of Biological Sciences, School of Arts and Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA
| | - Ariane Mbemi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Daryllynn Nelson
- Department of Health Administration, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Bryan Mildort
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2400 6th St, NW, Washington, DC 20059, USA
| | - Lekan Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Paul B Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA
| |
Collapse
|
16
|
Vutharadhi S, Nadimpalli SK. Isolation of Momordica charantia seed lectin and glycosidases from the protein bodies: Lectin-glycosidase (β-hexosaminidase) protein body membrane interaction reveals possible physiological function of the lectin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107663. [PMID: 36989986 DOI: 10.1016/j.plaphy.2023.107663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Momordica charantia seeds are known to contain a galactose specific lectin that has been well characterized. Seed extracts also contain glycosidases such as the β-hexosaminidase, α-mannosidase and α-galactosidase. In the present study, lectin was affinity purified from the seed extracts and protein bodies isolated by sucrose density gradient centrifugation. From the protein bodies, lectin was identified and β-hexosaminidase was isolated by lectin affinity chromatography and subsequently separated from other glycosidases by gel filtration. In the native PAGE, the purified β-hexosaminidase migrated as a single band with a molecular weight of ∼235 kDa and by zymogram analysis using 4-methylumbelliferyl N-acetyl-β-D-glucosaminide substrate it was confirmed as β-hexosaminidase. Under reducing conditions in SDS-PAGE, the purified enzyme dissociated into three bands (Mr 33, 20 and 15 kDa). The prominent bands (20 and 15 kDa) showed immunological cross-reactivity with the human Hexosaminidase B antibody in a western blot experiment. In gel digestion of the purified enzyme, followed by proteomic analysis using tandom MS/MS revealed sequence identity as compared to the genomic sequence of the Momordica charantia with a score of 57 (24% sequence coverage). Additionally, by CD analysis the purified β-hexosaminidase showed 39.1% of α-helix. Furthermore, secondary structure variations were observed in presence of substrate, lectin and at different pH values. Protein body membrane prepared from the isolated protein bodies showed a pH dependent interaction with the purified lectin and mixture of glycosidases.
Collapse
Affiliation(s)
- Shivaranjani Vutharadhi
- Glycobiology and Protein Biochemistry Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Telangana, India
| | - Siva Kumar Nadimpalli
- Glycobiology and Protein Biochemistry Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, 500046, Telangana, India.
| |
Collapse
|
17
|
Al Kury LT. Modulatory Effect of Medicinal Plants and Their Active Constituents on ATP-Sensitive Potassium Channels (KATP) in Diabetes. Pharmaceuticals (Basel) 2023; 16:ph16040523. [PMID: 37111281 PMCID: PMC10142548 DOI: 10.3390/ph16040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperglycemia, which is a chronic metabolic condition caused by either a defect in insulin secretion or insulin resistance, is a hallmark of diabetes mellitus (DM). Sustained hyperglycemia leads to the onset and development of many health complications. Despite the number of available antidiabetic medications on the market, there is still a need for novel treatment agents with increased efficacy and fewer adverse effects. Many medicinal plants offer a rich supply of bioactive compounds that have remarkable pharmacological effects with less toxicity and side effects. According to published evidence, natural antidiabetic substances influence pancreatic β-cell development and proliferation, inhibit pancreatic β-cell death, and directly increase insulin output. Pancreatic ATP-sensitive potassium channels play an essential role in coupling glucose metabolism to the secretion of insulin. Although much of the literature is available on the antidiabetic effects of medicinal plants, very limited studies discuss their direct action on pancreatic KATP. The aim of this review is to focus on the modulatory effects of antidiabetic medicinal plants and their active constituents on pancreatic KATP. The KATP channel should be regarded as a key therapeutic milestone in the treatment of diabetes. Therefore, continuous research into the interaction of medicinal plants with the KATP channel is crucial.
Collapse
Affiliation(s)
- Lina T Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
18
|
Khan M, Diop A, Gbodossou E, Xiao P, Coleman M, De Barros K, Duong H, Bond VC, Floyd V, Kondwani K, Rice VM, Harris-Hooker S, Villinger F, Powell MD. Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina. Virol J 2023; 20:50. [PMID: 36949470 PMCID: PMC10035133 DOI: 10.1186/s12985-023-02010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity. METHODS We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina. RESULTS Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels. CONCLUSIONS CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.
Collapse
Affiliation(s)
- Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Amad Diop
- Malango Traditional Healers Association, Fatick, Senegal
| | | | - Peng Xiao
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Morgan Coleman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kenya De Barros
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Hao Duong
- Department of Pharmacology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Virginia Floyd
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kofi Kondwani
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Valerie Montgomery Rice
- Office of the President, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Sandra Harris-Hooker
- Department of Pathology Senior Vice President for External Affairs and Innovation, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Francois Villinger
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Michael D Powell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
19
|
Ramabulana AT, Petras D, Madala NE, Tugizimana F. Mass spectrometry DDA parameters and global coverage of the metabolome: Spectral molecular networks of momordica cardiospermoides plants. Metabolomics 2023; 19:18. [PMID: 36920561 DOI: 10.1007/s11306-023-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Molecular networking (MN) has emerged as a key strategy to organize and annotate untargeted tandem mass spectrometry (MS/MS) data generated using either data independent- or dependent acquisition (DIA or DDA). The latter presents a time-efficient approach where full scan (MS1) and MS2 spectra are obtained with shorter cycle times. However, there are limitations related to DDA parameters, some of which are (i) intensity threshold and (ii) collision energy. The former determines ion prioritization for fragmentation, and the latter defines the fragmentation of selected ions. These DDA parameters inevitably determine the coverage and quality of spectral data, which would affect the outputs of MN methods. OBJECTIVES This study assessed the extent to which the quality of the tandem spectral data relates to MN topology and subsequent implications in the annotation of metabolites and chemical classification relative to the different DDA parameters employed. METHODS Herein, characterising the metabolome of Momordica cardiospermoides plants, we employ classical MN performance indicators to investigate the effects of collision energies and intensity thresholds on the topology of generated MN and propagated annotations. RESULTS We demonstrated that the lowest predefined intensity thresholds and collision energies result in comprehensive molecular networks. Comparatively, higher intensity thresholds and collision energies resulted in fewer MS2 spectra acquisition, subsequently fewer nodes, and a limited exploration of the metabolome through MN. CONCLUSION Contributing to ongoing efforts and conversations on improving DDA strategies, this study proposes a framework in which multiple DDA parameters are utilized to increase the coverage of ions acquired and improve the global coverage of MN, propagated annotations, and the chemical classification performed.
Collapse
Affiliation(s)
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tubingen, Auf der Morgenstelle 28, Tubingen, 72076, Germany
| | - Ntakadzeni E Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
- International Research and Development Division, Omnia Group, Ltd, Johannesburg, South Africa.
| |
Collapse
|
20
|
Understanding the Combined Effects of High Glucose Induced Hyper-Osmotic Stress and Oxygen Tension in the Progression of Tumourigenesis: From Mechanism to Anti-Cancer Therapeutics. Cells 2023; 12:cells12060825. [PMID: 36980166 PMCID: PMC10047272 DOI: 10.3390/cells12060825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
High glucose (HG), a hallmark of the tumour microenvironment, is also a biomechanical stressor, as it exerts hyper-osmotic stress (HG-HO), but not much is known regarding how tumour cells mechanoadapt to HG-HO. Therefore, this study aimed to delineate the novel molecular mechanisms by which tumour cells mechanoadapt to HG/HG-HO and whether phytochemical-based interference in these mechanisms can generate tumour-cell-selective vulnerability to cell death. Mannitol and L-glucose were used as hyper-osmotic equivalents of high glucose. The results revealed that the tumour cells can efficiently mechanoadapt to HG-HO only in the normoxic microenvironment. Under normoxic HG/HG-HO stress, tumour cells polySUMOylate a higher pool of mitotic driver pH3(Ser10), which translocates to the nucleus and promotes faster cell divisions. On the contrary, acute hypoxia dampens HG/HG-HO-associated excessive proliferation by upregulating sentrin protease SENP7. SENP7 promotes abnormal SUMOylation of pH3(Ser10), thereby restricting its nuclear entry and promoting the M-phase arrest and cell loss. However, the hypoxia-arrested cells that managed to survive showed relapse upon reversal to normoxia as well as upregulation of pro-survival-associated SENP1, and players in tumour growth signalling, autophagy, glycolytic pathways etc. Depletion of SENP1 in both normoxia and hypoxia caused significant loss of tumour cells vs undepleted controls. SENP1 was ascertained to restrict the abnormal SUMOylation of pH3(Ser10) in both normoxia and hypoxia, although not so efficiently in hypoxia, due to the opposing activity of SENP7. Co-treatment with Momordin Ic (MC), a natural SENP1 inhibitor, and Gallic Acid (GA), an inhibitor of identified major pro-tumourigenic signalling (both enriched in Momordica charantia), eliminated surviving tumour cells in normal glucose, HG and HG-HO normoxic and hypoxic microenvironments, suggesting that appropriate and enhanced polySUMOylation of pH3(Ser10) in response to HG/HG-HO stress was attenuated by this treatment along with further dampening of other key tumourigenic signalling, due to which tumour cells could no longer proliferate and grow.
Collapse
|
21
|
Trautenmuller AL, de Almeida Soares J, Behm KC, Guimarães LMM, Xavier-Silva KR, Monteiro de Melo A, Caixeta GAB, Abadia Marciano de Paula J, Luiz Cardoso Bailão EF, Amaral VCS. Cytotoxicity and maternal toxicity attributed to exposure to Momordica charantia L. (Cucurbitaceae) dry leaf extract. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:36-50. [PMID: 36529899 DOI: 10.1080/15287394.2022.2157354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Momordica charantia L. (Cucurbitaceae), popularly known as "bitter melon" or "bitter gourd," is a climbing plant well-adapted to tropical countries. This plant is used traditionally to treat several conditions including diabetes mellitus, inflammation, liver dysfunctions, and cancer. Given the widespread ethnopharmacological use, this study aimed to examine the cytogenetic, maternal, and developmental toxicity attributed to exposure to dry extract of M. charantia leaves using Allium cepa and Wistar rats as test models. First, phytochemical characterization of the dry extract by high performance liquid chromatography (HPLC) analyses was performed. Then, Allium cepa roots were exposed to three different concentrations of the dry extract (0.25, 0.5, or 1 mg/ml) to determine the mitotic index, frequency of chromosomal aberrations, and nuclear abnormalities. In addition, pregnant Wistar rats were administered either 500; 1,000 or 2,000 mg/kg dry extract during the gestational period (GD) days 6-15, and subsequently possible toxic effect on the dams and fetuses were recorded. HPLC analyses confirmed rutin as the main secondary metabolite present in the dry extract. In the Allium cepa test, the dry extract was cytotoxic. In Wistar rats, dry extract administration reduced water and feed intake and mean body mass gain, indicating maternal toxicity during the organogenesis period. However, the dry extract did not markedly affect reproductive outcome parameters evaluated. Regarding developmental toxicity assessment, the dry extract treatment did not significantly alter number of skeletal malformations in the offspring. Data demonstrated that the dry extract of M. charantia leaves presents cytotoxicity and low maternal toxicity, indicating indiscriminate use needs to be avoided.
Collapse
Affiliation(s)
- Ana Luisa Trautenmuller
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Jonathan de Almeida Soares
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | - Kamila Campos Behm
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | | - Anielly Monteiro de Melo
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | - Joelma Abadia Marciano de Paula
- Laboratório de Pesquisa, Desenvolvimento & Inovação de Produtos da Biodiversidade, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Brazil
| | | | | |
Collapse
|
22
|
Yuan MK, Kao JW, Wu WT, Chen CR, Chang CI, Wu YJ. Investigation of cell cytotoxic activity and molecular mechanism of 5β,19-epoxycucurbita-6,23( E)-diene-3β,19( R),25-triol isolated from Momordica charantia on hepatoma cells. PHARMACEUTICAL BIOLOGY 2022; 60:1214-1223. [PMID: 35760558 PMCID: PMC9246111 DOI: 10.1080/13880209.2022.2077766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/01/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Momordica charantia L. (Cucurbitaceae), known as bitter melon, is an edible fruit cultivated in the tropics. In this study, an active compound, 5β,19-epoxycucurbita-6,23(E)-diene-3β,19(R),25-triol (ECDT), isolated from M. charantia was investigated in regard to its cytotoxic effect on human hepatocellular carcinoma (HCC) cells. OBJECTIVE To examine the mechanisms of ECDT-induced apoptosis in HCC cells. MATERIALS AND METHODS The inhibitive activity of ECDT on HA22T HCC cells was examined by MTT assay, colony formation assay, wound healing assay, TUNEL/DAPI staining, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining and JC-1 dye. HA22T cells were treated with ECDT (5, 10, 15, 20 and 25 μM) for 24 h, and the molecular mechanism of cells apoptosis was examined by Western blot. Cells treated with vehicle DMSO were used as the negative control. RESULTS ECDT inhibited the cell proliferation of HA22T cells in a dose-dependent manner. Flow cytometry showed that ECDT treatment at 10-20 μM increased early apoptosis by 10-14% and late apoptosis by 2-5%. Western blot revealed that ECDT treatment activated the mitochondrial-dependent apoptotic pathway, and ECDT-induced apoptosis was mediated by the caspase signalling pathway and activation of JNK and p38MAPK. Pre-treatment of cells with MAPK inhibitors (SB203580 or SP600125) reversed the ECDT-induced cell death, which further supported the involvement of the p38MAPK and JNK pathways. DISCUSSION AND CONCLUSIONS Our results indicated that ECDT can induce apoptosis through the p38MAPK and JNK pathways in HA22T cells. The findings suggested that ECDT has a valuable anticancer property with the potential to be developed as a new chemotherapeutic agent for the treatment of HCC.
Collapse
Affiliation(s)
- Mei-Kang Yuan
- Department of Radiology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Ju-Wen Kao
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
| | - Wen-Tung Wu
- Department of Biological Science and Technology, Meiho University, Neipu, Taiwan
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
| | - Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung, Taiwan
| | - Chi-I Chang
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Yu-Jen Wu
- Department of Food Science and Nutrition, Meiho University, Neipu, Taiwan
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
| |
Collapse
|
23
|
Kashtoh H, Baek KH. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202722. [PMID: 36297746 PMCID: PMC9612090 DOI: 10.3390/plants11202722] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
Diabetes is a common metabolic disorder marked by unusually high plasma glucose levels, which can lead to serious consequences such as retinopathy, diabetic neuropathy and cardiovascular disease. One of the most efficient ways to reduce postprandial hyperglycemia (PPHG) in diabetes mellitus, especially insulin-independent diabetes mellitus, is to lower the amount of glucose that is absorbed by inhibiting carbohydrate hydrolyzing enzymes in the digestive system, such as α-glucosidase and α-amylase. α-Glucosidase is a crucial enzyme that catalyzes the final stage of carbohydrate digestion. As a result, α-glucosidase inhibitors can slow D-glucose release from complex carbohydrates and delay glucose absorption, resulting in lower postprandial plasma glucose levels and control of PPHG. Many attempts have been made in recent years to uncover efficient α-glucosidase inhibitors from natural sources to build a physiologic functional diet or lead compound for diabetes treatment. Many phytoconstituent α-glucosidase inhibitors have been identified from plants, including alkaloids, flavonoids, anthocyanins, terpenoids, phenolic compounds, glycosides and others. The current review focuses on the most recent updates on different traditional/medicinal plant extracts and isolated compounds' biological activity that can help in the development of potent therapeutic medications with greater efficacy and safety for the treatment of type 2 diabetes or to avoid PPHG. For this purpose, we provide a summary of the latest scientific literature findings on plant extracts as well as plant-derived bioactive compounds as potential α-glucosidase inhibitors with hypoglycemic effects. Moreover, the review elucidates structural insights of the key drug target, α-glucosidase enzymes, and its interaction with different inhibitors.
Collapse
|
24
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
25
|
Ravichandiran K, Parani M. Transcriptome analysis of five different tissues of bitter gourd (Momordica charantia L.) fruit identifies full-length genes involved in seed oil biosynthesis. Sci Rep 2022; 12:15374. [PMID: 36100691 PMCID: PMC9470707 DOI: 10.1038/s41598-022-19686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E−05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.
Collapse
|
26
|
Exploring the phytoconstituents targeting TNF-α as potential lead compounds to treat inflammatory diseases: an in-silico approach. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Basit A, Shutian T, Khan A, Khan SM, Shahzad R, Khan A, Khan S, Khan M. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomed Pharmacother 2022; 153:113322. [DOI: 10.1016/j.biopha.2022.113322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
|
28
|
A Review of the Effect of Preparations from Vegetables of the Asteraceae Family and Cucurbitaceae Family on the Cardiovascular System and Its Diseases. Nutrients 2022; 14:nu14173601. [PMID: 36079856 PMCID: PMC9460361 DOI: 10.3390/nu14173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular (CV) system dysfunction can result in the development of cardiovascular diseases (CVDs), a key cause of death around the world. For many people, the most common treatment choices are still based on various plants used in traditional and folk medicine. Interestingly, many of these plants demonstrate various biological activities and pro-health properties; as such, there has been growing scientific interest in their use as medicines, including treatments for CVDs. Due to their varied biological properties, including anti-inflammatory and anticancer potential, the members of the Asteraceae and Cucurbitaceae have long been used in traditional medicine. These properties are believed to derive from the chemical composition of the plants, which includes various flavonoids, phenolic acids, and terpenes. Although many of their pro-health properties have been well described, their effect on the cardiovascular system and CVDs remains unclear. The present work reviews the current literature about the effects of preparations of vegetables of the Asteraceae and Cucurbitaceae families on the cardiovascular system and CVDs. Various species from the two families demonstrate antioxidant and antiplatelet activities in vitro and in vivo, which play key roles in the prophylaxis and treatment of CVDs. Additionally, some species have been evaluated for their anticoagulant activity. This review also describes the biological properties of these vegetables and discusses their anti-hyperlipidemic action, and their potential for obesity prevention and body weight control.
Collapse
|
29
|
Muribeca ADJB, Gomes PWP, Paes SS, da Costa APA, Gomes PWP, Viana JDS, Reis JDE, Pamplona SDGSR, Silva C, Bauermeister A, Santos LDS, da Silva MN. Antibacterial Activity from Momordica charantia L. Leaves and Flavones Enriched Phase. Pharmaceutics 2022; 14:1796. [PMID: 36145544 PMCID: PMC9505480 DOI: 10.3390/pharmaceutics14091796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Momordica charantia L. (Cucurbitaceae) is a plant known in Brazil as "melão de São Caetano", which has been related to many therapeutic applications in folk medicine. Herein, we describe antibacterial activities and related metabolites for an extract and fractions obtained from the leaves of that species. An ethanolic extract and its three fractions were used to perform in vitro antibacterial assays. In addition, liquid chromatography coupled to mass spectrometry and the molecular networking approach were used for the metabolite annotation process. Overall, 25 compounds were annotated in the ethanolic extract from M. charantia leaves, including flavones, terpenes, organic acids, and inositol pyrophosphate derivatives. The ethanolic extract exhibited low activity against Proteus mirabilis (MIC 312.5 µg·mL-1) and Klebsiella pneumoniae (MIC 625 µg·mL-1). The ethyl acetate phase showed interesting antibacterial activity (MIC 156.2 µg·mL-1) against Klebsiella pneumoniae, and it was well justified by the high content of glycosylated flavones. Therefore, based on the ethyl acetate phase antibacterial result, we suggest that M. charantia leaves could be considered as an alternative antibacterial source against K. pneumoniae and can serve as a pillar for future studies as well as pharmacological application against the bacteria.
Collapse
Affiliation(s)
- Abraão de Jesus B. Muribeca
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| | - Paulo Wender P. Gomes
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Steven Souza Paes
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| | - Ana Paula Alves da Costa
- Department of Natural Science, Campus XIX, State University of Pará, Rodovia PA 154, Km 28, Cajú, Salvaterra 66860-000, PA, Brazil
| | - Paulo Weslem Portal Gomes
- Institute of Biology, University of Campinas, Monteiro Lobato, 255, Barão Geraldo, Campinas 13083-862, SP, Brazil
| | - Jéssica de Souza Viana
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| | - José Diogo E. Reis
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| | | | - Consuelo Silva
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
- Pharmaceutical Science Post-Graduation Program, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Anelize Bauermeister
- Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Lourivaldo da Silva Santos
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| | - Milton Nascimento da Silva
- Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Corrêa, 01, Guamá, Belém 66075-110, PA, Brazil
| |
Collapse
|
30
|
Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022; 27:molecules27134278. [PMID: 35807526 PMCID: PMC9268530 DOI: 10.3390/molecules27134278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-1323-879720
| | - Samia Akther
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - J. M. A. Hannan
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Nusrat Jahan Nujat
- Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh; (S.A.); (J.M.A.H.); (N.J.N.)
| | | |
Collapse
|
31
|
Hussain F, Hafeez J, Khalifa AS, Naeem M, Ali T, Eed EM. In vitro and in vivo study of inhibitory potentials of α-glucosidase and acetylcholinesterase and biochemical profiling of M. charantia in alloxan-induced diabetic rat models. Am J Transl Res 2022; 14:3824-3839. [PMID: 35836841 PMCID: PMC9274573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Diabetes mellitus is a multifactorial chronic disease that affects the human population and it is the third most common cause of death worldwide. Momordica charantia is used as popular folk medicine and its action against diabetes mellitus remains unclear. We investigated the inhibitory potentials of α-glucosidase, acetylcholinesterase, and biochemical profiling of M. charantia in alloxan-induced diabetic rat models. METHODS An In vivo study was carried out by using twenty male albino Wistar rats randomly divided into five groups each comprising four rats. Diabetes mellitus was induced by single intraperitoneal administration of 80 mg/kg body weight of alloxan and treatment with plant extract was conducted for a period of thirty days to check their impact on body weight and differentblood values. Biochemical profiling and characterization were performed by in vitro assays and HPLC, and FTIR. Histopathologic effects of M. charantia were examined through automated image analysis. Results were analyzed through Tukey's test, a complete randomized design and two factorial designs under CRD. RESULTS Methanolic extract demonstrated potent alpha-glucosidase (72.30 ± 1.17%) and acetylcholinesterase (50.12 ± 0.82%) inhibitory activities. HPLC analysis confirmed the existence of vital flavonoids, antioxidants, and saponins. FTIR revealed the presence of hydroxyl groups, esters, alkanes, alkenes, alkynes, ketones, alcohols, amines and carboxylic acids as major functional groups. Results of in vivo study demonstrated that co-administration of alloxan and methanolic extract of M. charantia significantly improved the levels of fasting blood glucose, glycated hemoglobin and insulin in diabetic rats. CONCLUSION M. charantia can be recommended as a therapeutic adjunct for diabetic patients as it can provide favorable remedial action in the context of the diabetes continuum of metabolic syndrome.
Collapse
Affiliation(s)
- Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Javaria Hafeez
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Amany S Khalifa
- Department of Clinical Pathology and Pharmaceutics, College of Pharmacy, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Naeem
- College of Life Science, Hebei Normal UniversityShijiazhuang 050024, Hebei, China
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of AgricultureFaisalabad 38000, Pakistan
| | - Emad M Eed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
32
|
Huerta-Reyes M, Tavera-Hernández R, Alvarado-Sansininea JJ, Jiménez-Estrada M. Selected Species of the Cucurbitaceae Family Used in Mexico for the Treatment of Diabetes Mellitus. Molecules 2022; 27:3440. [PMID: 35684376 PMCID: PMC9182361 DOI: 10.3390/molecules27113440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
In Mexico, Diabetes mellitus (DM) is a serious health problem, and although the current pharmacological treatments for DM such as insulin and oral hypoglycemics are available, the Mexican population continues to use medicinal plants in the treatment of DM. The antidiabetic properties of the plant species that belong to the Cucurbitaceae family has already been recognized worldwide. Since Mexico is one of the most important centers of diversity of Cucurbitaceae, the present work contributes to the review of the most used species of Cucurbitaceae in the treatment of DM in Mexico. The reviewed species (Cucurbita ficifolia, C. maxima, C. moschata, C. pepo, Ibervillea sonorae, Sechium edule, Citrullus lanatus, Cucumis melo, and C. sativus) revealed that the antidiabetic effects exerted are effective in a number of mechanisms involved in the complex pathogenesis of DM: hypoglycemic, antioxidant, anti-inflammatory, anti-obesity, protective effects on diverse organs and cells, as well as in the control of dyslipidemias; furthermore, the select species of the Cucurbitaceae family could also be essential components of diets for the control of DM in patients with the disease. Thus, the Cucurbitaceae species selected in the present work represent a source of antidiabetic agents that perhaps establish the bases for novel clinical treatments.
Collapse
Affiliation(s)
- Maira Huerta-Reyes
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Rosario Tavera-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| | - J. Javier Alvarado-Sansininea
- Herbario FEZA, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de Mayo S/N, Col. Ejército de Oriente, Ciudad de México 09230, Mexico;
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (R.T.-H.); (M.J.-E.)
| |
Collapse
|
33
|
Gayathry KS, John JA. A comprehensive review on bitter gourd (Momordica charantia L.) as a gold mine of functional bioactive components for therapeutic foods. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBitter gourd is a tropical wine grown mainly in India, China and South East Asia. The plant is cultivated mainly for its fruit part which is edible. Bitter gourd is unaccepted widely due to its bitter taste. Nevertheless, the fruit is a source of several key nutrients. The plant, as a whole contains, more than 60 phyto-medicines that are active against more than 30 diseases, including cancer and diabetes. Currently, the incorporation of the bioactive compounds isolated from bitter gourd into functional foods and beverages finds a new horizon. Nanoencapsulation and novel green extraction methods can be employed to improve the yield and quality of extracted compounds and their stability while incorporation into food products. The present review is an attempt to throw light to nutritional aspects, various bioactive compounds present and important nutraceutical properties of the bitter gourd plant in detail.
Graphical Abstract
Collapse
|
34
|
The Activity of Plant-Derived Ren’s Oligopeptides-1 against the Pseudorabies Virus. Animals (Basel) 2022; 12:ani12111341. [PMID: 35681806 PMCID: PMC9179334 DOI: 10.3390/ani12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized Ren’s oligopeptides-1 was found to have an antiviral effect in clinical trials, and the purpose of this study was to further demonstrate the antiviral activity of Ren’s oligopeptides-1 against the PRV 152-GFP strain. We used the real-time cell analysis system (RTCA) to detect the cytotoxicity of different concentrations of Ren’s oligopeptides-1. We then applied high content screening (HCS) to detect the antiviral activity of Ren’s oligopeptides-1 against PRV. Meanwhile, the fluorescence signal of the virus was collected in real time and the expression levels of the related genes in the PK15 cells infected with PRV were detected using real-time PCR. At the mRNA level, we discovered that, at a concentration of 6 mg/mL, Ren’s oligopeptides-1 reduced the expression of pseudorabies virus (PRV) genes such as IE180, UL18, UL54, and UL21 at a concentration of 6 mg/mL. We then determined that Ren’s oligopeptides-1 has an EC50 value of 6 mg/mL, and at this level, no cytotoxicity was observed.
Collapse
|
35
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/ db mice via its novel reno-protective and anti-inflammatory activities. Food Funct 2022; 13:1822-1833. [PMID: 35083999 DOI: 10.1039/d1fo02788c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN), a principal diabetic microvascular complication, is a chronic inflammatory immune disorder. A gastro-resistant peptide mcIRBP-9 from Momordica charantia has shown modulation of blood glucose homeostasis in diabetic mice. Here we conducted a long-term experiment to evaluate the therapeutic effects and mechanisms of mcIRBP-9 on DN. Type 2 diabetic mice (db/db mice) were orally given mcIRBP-9 once daily for 12 consecutive weeks. The amelioration of DN was evaluated by renal function indexes, vascular leakage, and pathological lesions. Possible effective mechanisms of mcIRBP-9 on DN were analyzed by gene expression profiles. A pharmacokinetic study in rats was carried out to evaluate the oral bioavailability of mcIRBP-9. Our data showed that mcIRBP-9 was able to enter systemic circulation in rats after oral administration. In comparison with mock, long-term administration of mcIRBP-9 significantly decreased blood glucose (572.25 ± 1.55 mg dL-1vs. 213.50 ± 163.39 mg dL-1) and HbA1c levels (13.58 ± 0.30% vs. 8.23 ± 2.98%) and improved the survival rate (85.7% vs. 100%) in diabetic mice. mcIRBP-9 ameliorated DN by reducing renal vascular leakage and histopathological changes. mcIRBP-9 altered the pathways involved in inflammatory and immune responses, and the nuclear factor-κB played a central role in the regulation of mcIRBP-9-affected pathways. Moreover, mcIRBP-9 improved the inflammatory characteristic of DN in diabetic and non-diabetic mice. In conclusion, mcIRBP-9 displayed a novel anti-inflammatory activity and exhibited a reno-protective ability in addition to controlling the blood glucose and HbA1c levels. These findings suggested the role of mcIRBP-9 from M. charantia as a nutraceutical agent for diabetes and subsequent DN.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500209, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 404333, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
36
|
Lee HJ, Cho IS, Jeong RD. First report of zucchini yellow mosaic virus infecting bitter melon (Momordica charantia) in South Korea. PLANT DISEASE 2022; 106:3003. [PMID: 35072507 DOI: 10.1094/pdis-11-21-2500-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bitter melon (Momordica charantia L., family Cucurbitaceae) is used in traditional medicine for diabetes, cancer, and inflammation-associated diseases due to bioactive compounds in Asia and tropical Africa (Bortolotti et al. 2019). In July 2021, approximately 10% of bitter melon plants in the field showed symptoms such as mosaic, yellowing, and leaf deformation on the leaves, in Samchcuk, South Korea. Cucumber and zucchini plants growing in the same field exhibited symptoms like those of bitter melon plants (Ali et al. 2012). To investigate the causative virus, leaf dip preparations from three symptomatic bitter melon leaf samples with symptoms were analyzed by transmission electron microscopy (TEM). Potyvirus-like particles (approximately 680-730 nm in length and 11-13 nm in diameter) were observed in all samples. To further identify the causal viral pathogens, leaf extracts from five symptomatic bitter melon plants were tested by DAS-ELISA using specific antibodies (Agdia, Elkhart, IN, USA) against cucumber mosaic virus, zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus, and papaya ring spot virus. Positive controls from commercial kits and negative controls from healthy bitter melon plants were included in ELISA assay. The serological assay revealed that all five symptomatic samples positively reacted with the antiserum against ZYMV, but not for other viruses. Total RNA extracted from the five ELISA-positive samples and two healthy bitter melon plants (as negative controls), using Clear-S Total RNA extraction kit (InVirusTech Co., Gwangju, Korea), was tested by RT-PCR with ZYMV-specific primers as previously described (Cho et al. 2011). All amplicons of the expected size (~822 bp) were individually cloned into the pGEM-T Easy Vector (Promega, Madison, WI), and sequenced in both orientations. Thereafter, all the sequenced clones shared 100% nucleotide identity. The sequence of ZYMV-MC1 isolated from bitter melon was deposited in the GenBank (accession no. LC652434). Pairwise comparison of the nucleotide sequence with that of ZYMV isolates in the GenBank revealed 99% sequence identity with ZYMV-chk (MG020559) from Korea, 98% with ZYMV-14-HY-SCS (KU743321) from China, 97% with ZYMV-Y21 (MW345249) from Turkey, 96% with ZYMV-AUIKTPK (KR261951) from Pakstan. Leaf saps from the ZYMV-positive bitter melon samples, prepared in 10 mM phosphate buffer (pH 7.0), were mechanically inoculated in five young, healthy bitter melon plants to fulfil Koch's postulates. ZYMV-MC1 isolate caused mosaic and leaf deformation on bitter melon plants 10 days post-inoculation. The presence of ZYMV in the symptomatic leaves was confirmed by RT-PCR using the mentioned above primers mentioned above followed by nucleotide sequencing of the amplicons. Several cotton aphids (Aphis gossypii) were observed in the bitter melon field, which indicated that they might transmit the virus from ZYMV-infected cucumber or zucchini plants. ZYMV is one of the economically important viruses of cucurbits worldwide and has been recently reported from various crops as natural hosts, including Chayote (Yoon et al. 2018) and balloon flowers (Kim et al. 2021). To the best of our knowledge, this is the first report of ZYMV naturally infecting bitter melon in South Korea. Further large -scale surveys are required to determine its incidence, yield losses, and management in bitter melon in Korea.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Chonnam National University, Department of Applied Biology, Gwangju, Korea (the Republic of);
| | - In Sook Cho
- Rural Development Administration, National Institute of Horticultural & Herbal Sciences, Wanju, Korea (the Republic of)
- Wanju, Korea (the Republic of);
| | - Rae-Dong Jeong
- Chonnam National University, Department of Applied Biology, 77 Yongbong-ro, Buk-gu, Gwangju, Korea (the Republic of), 61185;
| |
Collapse
|
37
|
Chou MC, Lee YJ, Wang YT, Cheng SY, Cheng HL. Cytotoxic and Anti-Inflammatory Triterpenoids in the Vines and Leaves of Momordica charantia. Int J Mol Sci 2022; 23:ijms23031071. [PMID: 35163001 PMCID: PMC8834831 DOI: 10.3390/ijms23031071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vines and leaves of Momordica charantia L. are used as herbal medicines to treat inflammation-related disorders. However, their safety profile remains uncharacterized, and the constituents in their extracts that exert anti-inflammatory and adverse effects remain unclear. This study isolated the characteristic cucurbitane-type triterpenoid species in the vines and leaves of M. charantia L. and analyzed their cytotoxicity, anti-inflammatory effects, and underlying mechanisms. Four structurally related triterpenoids—momordicines I, II, IV, and (23E) 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD)—were isolated from the triterpenoid-rich fractions of extracts from the vines and leaves of M. charantia. Momordicine I was cytotoxic on normal cells, momordicine II exerted milder cytotoxicity, and momordicine IV and TCD had no obvious adverse effects on cell growth. TCD had anti-inflammatory activity both in vivo and in vitro. In lipopolysaccharide-stimulated RAW 264.7 cells, TCD inhibited the inhibitor kappa B kinase/nuclear factor-κB pathway and enhanced the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate-cysteine ligase modifier subunit through the extracellular signal-regulated kinase1/2 and p38. Thus, the vines and leaves of M. charantia should be used with caution. An extraction protocol that can enrich TCD but remove momordicine I would likely enhance the safety of the extract.
Collapse
Affiliation(s)
- Mei-Chia Chou
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Neipu, Pingtung County 912012, Taiwan
- Department of Recreation and Sports Management, Tajen University, Yanpu, Pingtung County 907101, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Yuan-Jia Lee
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
| | - Yao-Ting Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan;
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan;
- Correspondence: (S.-Y.C.); (H.-L.C.); Tel.: +886-7-5916693 (S.-Y.C.); +886-8-7703202 (ext. 5186) (H.-L.C.)
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung County 912301, Taiwan;
- Correspondence: (S.-Y.C.); (H.-L.C.); Tel.: +886-7-5916693 (S.-Y.C.); +886-8-7703202 (ext. 5186) (H.-L.C.)
| |
Collapse
|
38
|
Evary YM, Masyita A, Kurnianto AA, Asri RM, Rifai Y. Molecular docking of phytochemical compounds of Momordica charantia as potential inhibitor against SARS-CoV-2. Infect Disord Drug Targets 2022; 22:e130122200221. [PMID: 35049440 DOI: 10.2174/1871526522666220113143358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been recently declared as a global public health emergency, where the infection is caused by SARS-CoV-2. Nowadays, there is no specific treatment to cure this infection. SARS-CoV-2 main protease (Mpro) and SARS spike glycoprotein-human ACE2 complex have been recognized as suitable targets for treatment including COVID-19 vaccines. OBJECTIVE In our current study, we identified the potential of Momordica charantia as a prospective alternative and a choice in dietary food during pandemic. MATERIALS AND METHODS A total of 16 bioactive compounds of Momordica charantia were screened for activity against 6LU7 and 6CS2 with AutoDock Vina. RESULTS We found that momordicoside B showed lowest binding energy compared with other compounds. In addition, kuguaglycoside A and cucurbitadienol provide better profiles for drug-like properties based on Lipinski's rule of five. CONCLUSION Our result indicates that these molecules may be further explored as promising candidates against SARS-CoV-2 or just simply suggested that Momordica charantia as one of the best food alternatives to be consumed during pandemic.
Collapse
Affiliation(s)
| | - Ayu Masyita
- Hasanuddin University, Pharmacy Science and Technology Department
| | | | | | - Yusnita Rifai
- Hasanuddin University, Pharmacy Science and Technology Department
| |
Collapse
|
39
|
Wang S, Liu Q, Zeng T, Zhan J, Zhao H, Ho CT, Xiao Y, Li S. Immunomodulatory effects and associated mechanisms of Momordica charantia and its phytochemicals. Food Funct 2022; 13:11986-11998. [DOI: 10.1039/d2fo02096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Momordica charantia L. (M. charantia), which is a member of the Cucurbitaceae family and widely distributed in tropical and subtropical regions, has been consumed as a vegetable and also used as herbal medicine for thousands of years worldwide.
Collapse
Affiliation(s)
- Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 250355, Shandong Province, P.R. China
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 250355, Shandong Province, P.R. China
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yunli Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Maiello S, Iglesias R, Polito L, Citores L, Bortolotti M, Ferreras JM, Bolognesi A. Sequence, Structure, and Binding Site Analysis of Kirkiin in Comparison with Ricin and Other Type 2 RIPs. Toxins (Basel) 2021; 13:toxins13120862. [PMID: 34941700 PMCID: PMC8705660 DOI: 10.3390/toxins13120862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.
Collapse
Affiliation(s)
- Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
- Correspondence: (R.I.); (L.P.)
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
- Correspondence: (R.I.); (L.P.)
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (L.C.); (J.M.F.)
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; (S.M.); (M.B.); (A.B.)
| |
Collapse
|
41
|
Metabolomics and Molecular Networking to Characterize the Chemical Space of Four Momordica Plant Species. Metabolites 2021; 11:metabo11110763. [PMID: 34822421 PMCID: PMC8619687 DOI: 10.3390/metabo11110763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Momordica plant species (Cucurbitaceae), have been used for centuries in traditional medicine and for nutritional purposes. Plants from this family are thus claimed to be phytochemically rich, representing an inexhaustible source of natural products. However, the chemical space of these Momordica species has not yet been fully decoded, and due to the inherent complexity of plant metabolomes, the characterization of the Momordica phytochemistry remains challenging. Thus, in this study we propose the use of molecular networking to unravel the molecular families within the metabolomes of four Momordica species (M. cardiospermoides, M. balsamina, M. charantia and M. foetida) and highlight the relevance of molecular networking in exploring the chemotaxonomy of these plants. In silico annotation tools (Network Annotation Propagation and DEREPLICATOR) and an unsupervised substructure identification tool (MS2LDA) were also explored to complement the classical molecular networking output and integration using MolNetEnhancer within GNPS. This allowed for the visualisation of chemical classes and the variety of substructures within the molecular families. The use of computational tools in this study highlighted various classes of metabolites, such as a wide range of flavonoids, terpenoids and lipids. Herein, these species are revealed to be phytochemically rich plants consisting of many biologically active metabolites differentially distributed within the different species, with the metabolome of M. cardiospermoides dereplicated in this paper for the first time.
Collapse
|
42
|
Perez JL, Shivanagoudra SR, Perera WH, Kim DM, Wu CS, Sun Y, Jayaprakasha G, Patil BS. Bitter melon extracts and cucurbitane-type triterpenoid glycosides antagonize lipopolysaccharide-induced inflammation via suppression of NLRP3 inflammasome. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Singh SK, Singh S, Singh R. Targeting novel coronavirus SARS-CoV-2 spike protein with phytoconstituents of Momordica charantia. J Ovarian Res 2021; 14:126. [PMID: 34579761 PMCID: PMC8474883 DOI: 10.1186/s13048-021-00872-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Infections by the SARS-CoV-2 virus causing COVID-19 are presently a global emergency. The current vaccination effort may reduce the infection rate, but strain variants are emerging under selection pressure. Thus, there is an urgent need to find drugs that treat COVID-19 and save human lives. Hence, in this study, we identified phytoconstituents of an edible vegetable, Bitter melon (Momordica charantia), that affect the SARS-CoV-2 spike protein. METHODS Components of Momordica charantia were tested to identify the compounds that bind to the SARS-CoV-2 spike protein. An MTiOpenScreen web-server was used to perform docking studies. The Lipinski rule was utilized to evaluate potential interactions between the drug and other target molecules. PyMol and Schrodinger software were used to identify the hydrophilic and hydrophobic interactions. Surface plasmon resonance (SPR) was employed to assess the interaction between an extract component (erythrodiol) and the spike protein. RESULTS Our in-silico evaluations showed that phytoconstituents of Momordica charantia have a low binding energy range, -5.82 to -5.97 kcal/mol. A docking study revealed two sets of phytoconstituents that bind at the S1 and S2 domains of SARS-CoV-2. SPR showed that erythrodiol has a strong binding affinity (KD = 1.15 μM) with the S2 spike protein of SARS-CoV-2. Overall, docking, ADME properties, and SPR displayed strong interactions between phytoconstituents and the active site of the SARS-CoV-2 spike protein. CONCLUSION This study reveals that phytoconstituents from bitter melon are potential agents to treat SARS-CoV-2 viral infections due to their binding to spike proteins S1 and S2.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
- Cancer Health Equity Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310 USA
| |
Collapse
|
44
|
Moorthy K, Chang KC, Wu WJ, Hsu JY, Yu PJ, Chiang CK. Systematic Evaluation of Antioxidant Efficiency and Antibacterial Mechanism of Bitter Gourd Extract Stabilized Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2278. [PMID: 34578594 PMCID: PMC8467971 DOI: 10.3390/nano11092278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022]
Abstract
In this study, we accentuate the facile and green synthesis of ecologically viable silver nanoparticles (AgNPs) using aqueous (A-BGE) and ethanolic (E-BGE) dried bitter gourd (Momordica charantia) fruit extract as reducing and capping agents. Although AgNPs synthesized using BGEs have been reported earlier in fundamental antimicrobial studies, the possible antioxidant activity, antibacterial efficacy against superbugs, and a potential antimicrobial mechanism are still lacking. The characterization of as-prepared AgNPs was studied through UV-vis, TEM, Zeta-potential, FT-IR, XRD, and XPS analysis. The antioxidant ability of BG-AgNPs was extensively evaluated through DPPH and FRAP assays, which showed that A-BG-AgNPs possessed higher scavenging ability and superior reducing power due to the high phenolic content present in the BG extract. Furthermore, A-BG-AgNPs were highly stable in various physiological media and displayed excellent antibacterial activity against drug-resistant bacterial strains (i.e., MIC value of 4 µg/mL). The generation of reactive oxygen species evidenced that the possible antimicrobial mechanism was induced by BG-AgNPs, resulting in bacterial cell damage. Within the minimal hemolysis, the BG-mediated AgNPs possessed synergistic antioxidant and antibacterial agents and open another avenue for the inhibition of the growth of pathogens.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan; (K.M.); (J.-Y.H.)
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (W.-J.W.); (P.-J.Y.)
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (W.-J.W.); (P.-J.Y.)
| | - Jun-Yi Hsu
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan; (K.M.); (J.-Y.H.)
| | - Po-Jen Yu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan; (K.-C.C.); (W.-J.W.); (P.-J.Y.)
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan; (K.M.); (J.-Y.H.)
| |
Collapse
|
45
|
Bae W, Kim S, Choi J, Lee TW, Bae E, Jang HN, Jung S, Lee S, Chang SH, Park DJ. Acute interstitial nephritis associated with ingesting a Momordica charantia extract: A case report. Medicine (Baltimore) 2021; 100:e26606. [PMID: 34232214 PMCID: PMC8270600 DOI: 10.1097/md.0000000000026606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Momordica charantia is often used to treat type 2 diabetes mellitus in Korea. Drug-induced acute interstitial nephritis (AIN) accounts for 60% to 70% of AIN cases. However, only 1 case of AIN associated with ingesting M charantia has been reported in the English literature. We report an extremely rare case of AIN that occurred after a patient ingested a pure M charantia extract over 7 months. PATIENT CONCERNS A 60-year-old Korean woman was admitted to our hospital for a renal biopsy. Her renal function had decreased gradually over the last 9 months without symptoms or signs. DIAGNOSIS Her blood urea nitrogen and serum creatinine levels were 29.7 mg/dL (range: 8.0-20.0 mg/dL) and 1.45 mg/dL (range: 0.51-0.95 mg/dL) on admission. Renal histology indicated AIN; there was immune cell infiltration into the interstitium, tubulitis, and epithelial casts, although the glomeruli were largely intact. INTERVENTIONS M charantia was discontinued and prednisolone was prescribed. OUTCOMES The value of serum creatinine has almost been restored to the baseline level after 3 months. CONCLUSION s: This is the first case report of AIN associated with the ingestion of a pure M charantia extract. Recognition of the possible adverse effects of these agents by physicians is very important for early diagnosis and appropriate management.
Collapse
Affiliation(s)
- Wooram Bae
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Seongmin Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Jungyoon Choi
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Tae Won Lee
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Department of Internal Medicine, Gyeongsang National University College of Medicine, South Korea
- Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| | - Ha Nee Jang
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | - Sehyun Jung
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | - Seunghye Lee
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | - Se-Ho Chang
- Department of Internal Medicine, Gyeongsang National University College of Medicine, South Korea
- Institute of Health Science, Gyeongsang National University, Jinju, South Korea
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | - Dong Jun Park
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Department of Internal Medicine, Gyeongsang National University College of Medicine, South Korea
- Institute of Health Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
46
|
Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches. In Silico Pharmacol 2021; 9:39. [PMID: 34249600 DOI: 10.1007/s40203-021-00100-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
The search for Keap1 inhibitors as potential Nrf2 activator is a way of increasing the antioxidant status of the human cellular environ. In this research, we used in silico methods to investigate Keap1-kelch inhibitory potential of Momordica charantia's bioactive compounds in order to predict their Nrf2 activating potential. ADMET profiling, physicochemical properties, molecular docking, molecular dynamics, and Molecular Mechanics-Poisson Boltzmann Surface Area (g_MMPBSA) free energy calculation studies were executed to drive home our aim. Out of all the bioactive compounds of Momordica charantia, catechin (CAT) and chlorogenic acid (CGA) were selected based on their ADMET profile, physicochemical properties, and molecular docking analysis. Molecular docking studies of CAT and CGA to Keap1 kelch domain showed that they have - 9.2 kJ/mol and - 9.1 kJ/mol binding energies respectively with CAT having four hydrogen bond interactions with Keap1 while CGA had three. Analysis after the 30 ns molecular dynamics simulation revealed that CAT and CGA were both stable, although with minimal conformational alterations at the kelch pocket of Keap1. Finally, MMPBSA calculation of the Gibbs free energy of each amino acid interaction with CAT and CGA revealed that CAT had a higher total binding energy than CGA. Therefore, the Keap1 inhibitory capacities and the molecular dynamic characters of CAT and CGA at the Kelch domain of Keap1 suggest a putative Nrf2 signaling activating prowess. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00100-2.
Collapse
|
47
|
Wild Bitter Melon Extract Regulates LPS-Induced Hepatic Stellate Cell Activation, Inflammation, Endoplasmic Reticulum Stress, and Ferroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6671129. [PMID: 34239589 PMCID: PMC8241502 DOI: 10.1155/2021/6671129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key component of liver fibrosis. Two antifibrosis pathways have been identified, the reversion to quiescent-type HSCs and the clearance of HSCs through apoptosis. Lipopolysaccharide- (LPS-) induced HSCs activation and proliferation have been associated with the development of liver fibrosis. We determined the pharmacological effects of wild bitter melon (WM) on HSC activation following LPS treatment and investigated whether WM treatment affected cell death pathways under LPS-treated conditions, including ferroptosis. WM treatment caused cell death, both with and without LPS treatment. WM treatment caused reactive oxygen species (ROS) accumulation without LPS treatment and reversed the decrease in lipid ROS production in HSCs after LPS treatment. We examined the effects of WM treatment on fibrosis, endoplasmic reticulum (ER) stress, inflammation, and ferroptosis in LPS-activated HSCs. The western blotting analysis revealed that the WM treatment of LPS-activated HSCs induced the downregulation of the connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), integrin-β1, phospho-JNK (p-JNK), glutathione peroxidase 4 (GPX4), and cystine/glutamate transporter (SLC7A11) and the upregulation of CCAAT enhancer-binding protein homologous protein (CHOP). These results support WM as an antifibrotic agent that may represent a potential therapeutic solution for the management of liver fibrosis.
Collapse
|
48
|
Assessment of the Diversity of Medico-Magic Knowledge on Four Herbaceous Species in Benin. ScientificWorldJournal 2021; 2021:6650704. [PMID: 34194288 PMCID: PMC8184342 DOI: 10.1155/2021/6650704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Ethnobotanical knowledge on four herbaceous species, Acmella uliginosa (Sw.) Cass., Momordica charantia L., Phyllanthus amarus Schumach. & Thonn., and Scoparia dulcis L., in Benin was investigated. Methods Herbal medicine traders in six different markets were interviewed using a semi-structured questionnaire. The linear regression test was performed to check for the influence of respondent's age on ethnobotanical uses they hold. Relative frequency citation, fidelity level, use value, and Rahman similarity index were calculated to assess the diversity of medico-magic knowledge. The Informant Consensus Factor is not applicable in this study since we are dealing neither with the diversity of medicinal plants used by a community of people nor with a great number of plant species used for medicinal purposes, nor the diversity of plant species used in the treatment of a specific or group of ailments. Results The respondent's age did not influence the ethnobotanical uses they hold on the species. All thirty-six informants surveyed traded Phyllanthus amarus Schumach. & Thonn., Momordica charantia L., and Scoparia dulcis L., and the majority traded Acmella uliginosa (Sw.) Cass. The respondent's age does not influence the diversity of ethnobotanical uses they hold on the study species. Purchase in traders' own markets was the predominant source of Phyllanthus amarus Schumach. & Thonn., Momordica charantia L., and Scoparia dulcis L. while Acmella uliginosa (Sw.) Cass. was mostly purchased in other more distant markets. A noticeable proportion of traders also collect Phyllanthus amarus Schumach. & Thonn. and Momordica charantia L. from wild populations. Phyllanthus amarus Schumach. & Thonn. was the species most demanded by customers followed by Momordica charantia L. Traders confirmed the scarcity of all species in recent years and climate change and destruction of natural habitats for logging were the most cited causes. The entire plant of Phyllanthus amarus Schumach. & Thonn. was used mainly to treat malaria, diabetes, and constipation, and decoction with oral administration was the most frequent preparation for malaria treatment. To treat diabetes, informants mixed Phyllanthus amarus Schumach. & Thonn. with Momordica charantia L. used as a decoction with oral administration. Momordica charantia L. was also used to treat measles and chicken pox. Acmella uliginosa (Sw.) Cass. and Scoparia dulcis L. were mostly used for their spiritual use for luck, predominantly by chewing fresh leaves or flowers, and by bathing with the ground plant mixed with soap, respectively. Overall, Momordica charantia L. had the greatest use value followed by Phyllanthus amarus Schumach. & Thonn. The majority of traders do not plant the species. Conclusions The harvesting and trade of the species threaten their natural populations and urgent tools, including in situ and ex situ conservation, are needed to ensure their long-term sustainable exploitation.
Collapse
|
49
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
50
|
Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST. Natural Compound 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al from Momordica charantia Acts as PPARγ Ligand. Molecules 2021; 26:2682. [PMID: 34063700 PMCID: PMC8124227 DOI: 10.3390/molecules26092682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
Collapse
Affiliation(s)
- Nur Adelina Ahmad Noruddin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Mohamad Faiz Hamzah
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Zulfadli Rosman
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Nurul Hanim Salin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, Bayan Lepas 11900, Malaysia
| | | |
Collapse
|