1
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
2
|
Kashkooe A, Jalali A, Zarshenas MM, Hamedi A. Exploring the Phytochemistry, Signaling Pathways, and Mechanisms of Action of Tanacetum parthenium (L.) Sch.Bip.: A Comprehensive Literature Review. Biomedicines 2024; 12:2297. [PMID: 39457613 PMCID: PMC11505096 DOI: 10.3390/biomedicines12102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The traditional use of Tanacetum parthenium (L.) Sch.Bip., commonly known as feverfew, extends across various medical conditions, notably those associated with pain and inflammation. In alignment with the growing trend towards developing medications that target specific signaling pathways for enhanced efficacy and reduced side effects, extensive research has been conducted to investigate and validate the pharmacological effects of feverfew. Among its bioactive compounds, parthenolide stands out as the most potent, categorized as a germacranolide-type sesquiterpene lactone, and has been extensively studied in multiple investigations. Significantly, the anti-inflammatory properties of feverfew have been primarily attributed to its capacity to inhibit nuclear factor-kappa B (NF-κB), resulting in a reduction in pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α). Furthermore, the anticancer properties of feverfew have been associated with the modulation of Mitogen-Activated Protein Kinase (MAPK) and NF-κB signaling pathways. This study further delves into the neuroprotective potential of feverfew, specifically in the management of conditions such as migraine headaches, epilepsy, and neuropathic pain through various mechanisms. The core objective of this study is to elucidate the phytochemical composition of feverfew, with a particular emphasis on understanding the molecular mechanisms and examining the signaling pathways that contribute to its pharmacological and therapeutic effects. Additionally, the safety, toxicity, and potential adverse effects of feverfew are comprehensively evaluated, with an overarching goal of providing valuable insights into the plant's potential for targeted and effective treatments.
Collapse
Affiliation(s)
- Ali Kashkooe
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
| | - Mohammad M. Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (A.K.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| |
Collapse
|
3
|
Yücer R, Fayez S, Feineis D, Klauck SM, Shan L, Bringmann G, Efferth T, Dawood M. Cytotoxicity of dioncophylline A and related naphthylisoquinolines in leukemia cells, mediated by NF-κB inhibition, angiogenesis suppression, G2/M cell cycle arrest, and autophagy induction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155267. [PMID: 38368795 DOI: 10.1016/j.phymed.2023.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.
Collapse
Affiliation(s)
- Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Shaimaa Fayez
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Home address: Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| |
Collapse
|
4
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
5
|
Li P, Ma X, Gu X. LncRNA MAFG-AS1 is involved in human cancer progression. Eur J Med Res 2023; 28:497. [PMID: 37941063 PMCID: PMC10631199 DOI: 10.1186/s40001-023-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) refer to a type of non-protein-coding transcript of more than 200 nucleotides. LncRNAs play fundamental roles in disease development and progression, and lncRNAs are dysregulated in many pathophysiological processes. Thus, lncRNAs may have potential value in clinical applications. The lncRNA, MAF BZIP Transcription Factor G (MAFG)-AS1, is dysregulated in several cancer, including breast cancer, lung cancer, liver cancer, bladder cancer, colorectal cancer, gastric cancer, esophagus cancer, prostate cancer, pancreatic cancer, ovarian cancer, and glioma. Altered MAFG-AS1 levels are also associated with diverse clinical characteristics and patient outcomes. Mechanistically, MAFG-AS1 mediates a variety of cellular processes via the regulation of target gene expression. Therefore, the diagnostic, prognostic, and therapeutic aspects of MAFG-AS1 have been widely explored. In this review, we discuss the expression, major roles, and molecular mechanisms of MAFG-AS1, the relationship between MAFG-AS1 and clinical features of diseases, and the clinical applications of MAFG-AS1.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
6
|
Lapcik P, Sulc P, Janacova L, Jilkova K, Potesil D, Bouchalova P, Müller P, Bouchal P. Desmocollin-1 is associated with pro-metastatic phenotype of luminal A breast cancer cells and is modulated by parthenolide. Cell Mol Biol Lett 2023; 28:68. [PMID: 37620794 PMCID: PMC10464112 DOI: 10.1186/s11658-023-00481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Sulc
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Katerina Jilkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Petr Müller
- Masaryk Memorial Cancer Institute, RECAMO, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
8
|
Jin B, Chen Y, Wang J, Chen Y, Zhang M, Huang J, Wang Y. Costunolide alleviates hyperglycaemia-induced diabetic cardiomyopathy via inhibiting inflammatory responses and oxidative stress. J Cell Mol Med 2023; 27:831-845. [PMID: 36810875 PMCID: PMC10002915 DOI: 10.1111/jcmm.17686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
Hyperglycaemia-induced myocardial injury promotes the induction of heart failure in diabetic patients. Impaired antioxidant capability and sustained chronic inflammation play a vital role in the progression of diabetic cardiomyopathy (DCM). Costunolide (Cos), a natural compound with anti-inflammatory and antioxidant properties, has exhibited therapeutic effects in various inflammatory diseases. However, the role of Cos in diabetes-induced myocardial injury remains poorly understood. In this study, we investigated the effect of Cos on DCM and explored the potential mechanisms. C57BL/6 mice were administered intraperitoneal streptozotocin for DCM induction. Cos-mediated anti-inflammatory and antioxidation activities were examined in heart tissues of diabetic mice and high glucose (HG)-stimulated cardiomyocytes. Cos markedly inhibited HG-induced fibrotic responses in diabetic mice and H9c2 cells, respectively. The cardioprotective effects of Cos could be correlated to the reduced expression of inflammatory cytokines and decreased oxidative stress. Further investigations demonstrated Cos reversed diabetes-induced nuclear factor-κB (NF-κB) activation and alleviated impaired antioxidant defence system, principally via activation of nuclear factor-erythroid 2 p45-related factor-2 (Nrf-2). Cos alleviated cardiac damage and improved cardiac function in diabetic mice by inhibiting NF-κB-mediated inflammatory responses and activating the Nrf-2-mediated antioxidant effects. Therefore, Cos could be a potential candidate for the treatment of DCM.
Collapse
Affiliation(s)
- Bo Jin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengpei Zhang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Jianxiong Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yi Wang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Li Y, Xu H, Tan X, Cui Q, Gu W, Pan Z, Yang L, Wu S, Wang X, Li D. Parthenolide inhibits proliferation of cells infected with Kaposi's sarcoma-associated herpesvirus by suppression of the NF-κB signaling pathway. Arch Virol 2023; 168:39. [PMID: 36609933 DOI: 10.1007/s00705-022-05626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/19/2022] [Indexed: 01/09/2023]
Abstract
The disease caused by Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the major causes of death of individuals with acquired immunodeficiency syndrome (AIDS). Development of anti-KSHV drugs is thus crucial. In this study, we investigated the effect of parthenolide (PTL) on the proliferation and NF-κB signaling pathway of KSHV-infected cells. iSLK.219 and KSHV-infected SH-SY5Y cells (SK-RG) were treated with PTL, TaqMan real-time quantitative PCR was used to determine the number of copies of the KSHV genome, and mRNA and protein expression of KSHV genes were analyzed by real-time PCR and immunocytochemistry. A cell viability test was used to measure cell proliferation, and flow cytometry was used to examine the effect of the drug on the cell cycle. Cyclin D1, CDK6, CDK4, and NF-κB-related proteins, including IKKβ, P-p65, and P-IKB-α, were detected by Western blot. The results showed that PTL altered the morphology of the cells, reduced the KSHV copy number, and suppressed the production of ORF50, K8.1, and v-GPCR mRNA and the LANA, ORF50, and K8.1 proteins. It blocked the G1 phase in iSLK.219 cells and decreased the levels of cyclin D1, CDK6, and CDK4 as well as the levels of NF-κB signaling proteins, including IKKβ, P-p65, and P-IKB-α. Together, these results suggest that PTL is a candidate drug that can decrease KSHV pathogenicity by suppressing cell proliferation and inhibiting the NF-κB signaling pathway in KSHV-infected cells.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China
- School of Medicine, Tarim University, Alaer, 843300, Xinjiang, China
| | - Huiling Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, 100191, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), Corner College and Cooper Roads (Building 75), St Lucia, Brisbane, QLD, 4072, Australia
| | - Zemin Pan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China
| | - Shuyuan Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Xiaolu Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
10
|
Parthenolide Attenuates Sepsis-Induced Acute Kidney Injury in Rats by Reducing Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:8759766. [PMID: 36644442 PMCID: PMC9839407 DOI: 10.1155/2023/8759766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023]
Abstract
Background Sepsis is a common complication of severe trauma, burns, infection, or major surgery. This disease-related end-organ dysfunction results from systemic inflammatory response syndrome (SIRS). Acute kidney damage (AKI), also known as acute renal failure, is one of the most frequent and serious sequelae of sepsis. Nuclear transcription factor-κB (NF-κB) regulates the transcription of inflammation-related genes and operates as a mediator in the immune system. While parthenolide (PTL) has been reported to prevent harmful inflammatory reactions, its effects on sepsis-associated AKI are unknown. The current study investigates the effects of PTL in sepsis-associated AKI using cell and cecal ligation and puncture (CLP) models. Methods Lipopolysaccharide (LPS)-stimulated rat glomerular mesangial cells were treated with 10 μM PTL. Inflammatory mediators, including TNF-α, IL-6, and IL-1β, in the culture supernatants were measured by ELISA, and NF-κB levels were assessed by qPCR. After the generation of the septic CLP model, rats were intraperitoneally injected with 500 g/kg PTL and were euthanized after 72 h. Serum and kidney samples were analyzed. Results TNF-α, IL-1β, and IL-6 levels were elevated after LPS treatment of rat glomerular mesangial cells (p=0.004, p=0.002, and p=0.004, respectively) but were significantly reduced in the PTL treatment group (p ≤ 0.001, p=0.01, and p ≤ 0.001). NF-κB p65 levels were also increased after LPS treatment in this group and were reduced in the PTL treatment group. PTL treatment also reduced kidney damage after CLP induction, as shown by histological analysis and reductions in the levels of BUN, Cre, KIM-1, and NAGL. CLP-induced kidney inflammation together with increased levels of proinflammatory cytokines and inflammatory-related proteins. The elevated levels of renal TNF-α, IL-6, and IL-1β were downregulated after PTL treatment. The PTL treatment also reduced the CLP-induced activation of NF-κB p65 in the damaged kidneys. Conclusion PTL reduced inflammation induced by CLP-induced AKI in rat models and LPS-induced damage to glomerular mesangial cells by suppressing NF-κB signaling.
Collapse
|
11
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
12
|
Adham AN, Abdelfatah S, Naqishbandi A, Sugimoto Y, Fleischer E, Efferth T. Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154064. [PMID: 35344715 DOI: 10.1016/j.phymed.2022.154064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Edmond Fleischer
- Fischer Analytics, Department Fischer Organics, 55413 Weiler, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
13
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
14
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J. Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 2022; 17:e0268073. [PMID: 35512017 PMCID: PMC9071164 DOI: 10.1371/journal.pone.0268073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is responsible for the most cancer-related mortality worldwide and the mechanism of its development is poorly understood. Proteomics has become a powerful tool offering vital knowledge related to cancer development. Using a two-dimensional difference gel electrophoresis (2D-DIGE) approach, we sought to compare tissue samples from non-small-cell lung cancer (NSCLC) patients taken from the tumor center and tumor margin. Two subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) were compared. Data are available via ProteomeXchange with identifier PXD032736 and PXD032962 for ADC and SCC, respectively. For ADC proteins, 26 significant canonical pathways were identified, including Rho signaling pathways, a semaphorin neuronal repulsive signaling pathway, and epithelial adherens junction signaling. For SCC proteins, nine significant canonical pathways were identified, including hypoxia-inducible factor-1α signaling, thyroid hormone biosynthesis, and phagosome maturation. Proteins differentiating the tumor center and tumor margin were linked to cancer invasion and progression, including cell migration, adhesion and invasion, cytoskeletal structure, protein folding, anaerobic metabolism, tumor angiogenesis, EMC transition, epithelial adherens junctions, and inflammatory responses. In conclusion, we identified several proteins that are important for the better characterization of tumor development and molecular specificity of both lung cancer subtypes. We also identified proteins that may be important as biomarkers and/or targets for anticancer therapy.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika M. Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Majewska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
In Silico and In Vitro Screening of 50 Curcumin Compounds as EGFR and NF-κB Inhibitors. Int J Mol Sci 2022; 23:ijms23073966. [PMID: 35409325 PMCID: PMC9000198 DOI: 10.3390/ijms23073966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
The improvement of cancer chemotherapy remains a major challenge, and thus new drugs are urgently required to develop new treatment regimes. Curcumin, a polyphenolic antioxidant derived from the rhizome of turmeric (Curcuma longa L.), has undergone extensive preclinical investigations and, thereby, displayed remarkable efficacy in vitro and in vivo against cancer and other disorders. However, pharmacological limitations of curcumin stimulated the synthesis of numerous novel curcumin analogs, which need to be evaluated for their therapeutic potential. In the present study, we calculated the binding affinities of 50 curcumin derivatives to known cancer-related target proteins of curcumin, i.e., epidermal growth factor receptor (EGFR) and nuclear factor κB (NF-κB) by using a molecular docking approach. The binding energies for EGFR were in a range of −12.12 (±0.21) to −7.34 (±0.07) kcal/mol and those for NF-κB ranged from −12.97 (±0.47) to −6.24 (±0.06) kcal/mol, indicating similar binding affinities of the curcumin compounds for both target proteins. The predicted receptor-ligand binding constants for EGFR and curcumin derivatives were in a range of 0.00013 (±0.00006) to 3.45 (±0.10) µM and for NF-κB in a range of 0.0004 (±0.0003) to 10.05 (±4.03) µM, indicating that the receptor-ligand binding was more stable for EGFR than for NF-κB. Twenty out of 50 curcumin compounds showed binding energies to NF-κB smaller than −10 kcal/mol, while curcumin as a lead compound revealed free binding energies of >−10 kcal/mol. Comparable data were obtained for EGFR: 15 out of 50 curcumin compounds were bound to EGFR with free binding energies of <−10 kcal/mol, while the binding affinity of curcumin itself was >−10 kcal/mol. This indicates that the derivatization of curcumin may indeed be a promising strategy to improve targe specificity and to obtain more effective anticancer drug candidates. The in silico results have been exemplarily validated using microscale thermophoresis. The bioactivity has been further investigated by using resazurin cell viability assay, lactate dehydrogenase assay, flow cytometric measurement of reactive oxygen species, and annexin V/propidium iodide assay. In conclusion, molecular docking represents a valuable approach to facilitate and speed up the identification of novel targeted curcumin-based drugs to treat cancer.
Collapse
|
16
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
17
|
S L, A S, Dv S, Bs R, R S, Sharaf S, Sa A, G R. Comparative differential cytotoxicity of clinically used SERMs in human cancer lines of different origin and its predictive molecular docking studies of key target genes involved in cancer progression and treatment responses. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100080. [PMID: 35059624 PMCID: PMC8760488 DOI: 10.1016/j.crphar.2021.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
SERMS like Tamoxifene, 5-hydroxy tamoxifene, raloxifene and endoxifene has been used for the treatment of hormonal imbalances and dependent cancers owing to their action via Estrogen receptors as in the treatment of estrogen sensitive breast cancers. Due to the adverse side effects, modifications and development of the existing or newer SERMS has always been of immense interest. Ormeloxifene, a SERM molecule manufactured by HLL Lifecare Ltd, India as birth control under the trade names Saheli, Novex, and Novex-DS which is also investigated against mastalgia, fibro-adenoma and abnormal uterine bleeding. Anti-cancer effects have been reported in estrogen dependent and independent cancers which shows its wide scope to be implemented in cancer therapy. Current investigation is a comprehensive effort to find the cytotoxic potential of Ormeloxifene in comparison with clinically used four SERMS in twenty six cancer cell lines of different origin using Adriamycin as positive control. Also the computational studies pertaining to selected target/ligand with respect to tumor progression, development, treatment responses and apoptosis. The studies proved effective cytotoxicity of Ormeloxifene on cancer cell lines with lower TGI, GI50 and LC50 values which are significantly comparable. Also the in silico studies proved that the docking score of the compound suggests the interaction of the compound which could tightly regulate key target genes controlling cancer like ER, EGFR kinase, EGFR-cSRC, HDAC-2, PARP-1 and BRAF. This study brings out the superior efficacy of Ormeloxifene compared to other SERMS with proven safety profile to be repositioned as an anti-cancer drug to treat diverse cancer types.
Collapse
Affiliation(s)
- Lakshmi S
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Shanitha A
- Dept. of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Pincode-695581, India
| | - Shiny Dv
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Rahul Bs
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Saikant R
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Shehna Sharaf
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Abi Sa
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| | - Rajmohan G
- Corporate R&D Centre, HLL Lifecare Limited, Thiruvananthapuram, Pincode- 695 017, India
| |
Collapse
|
18
|
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers (Basel) 2021; 13:cancers13174363. [PMID: 34503172 PMCID: PMC8430856 DOI: 10.3390/cancers13174363] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. Abstract The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
Collapse
|
19
|
Lu X, Yan G, Dawood M, Klauck SM, Sugimoto Y, Klinger A, Fleischer E, Shan L, Efferth T. A novel moniliformin derivative as pan-inhibitor of histone deacetylases triggering apoptosis of leukemia cells. Biochem Pharmacol 2021; 194:114677. [PMID: 34265280 DOI: 10.1016/j.bcp.2021.114677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022]
Abstract
New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC1381 presented comparable affinity with HDAC1, 2, 3, 6, 8 and 11. Besides, the inhibition activity of HDACs was dose-dependently inhibited by MCC1381. Particularly, a strong binding affinity was observed between MCC1381 and HDAC6 by microscale thermophoresis analysis. MCC1381 decreased the expression of HDAC6, inversely correlated with the increase of acetylated HDAC6 substrates, acetylation p53 and α-tubulin. Furthermore, MCC1381 arrested the cell cycle at the G2/M phase, induced the generation of reactive oxygen species and collapse of the mitochondrial membrane potential. MCC1381 exhibited in vivo anti-cancer activity in xenografted zebrafish. Collectively, MCC1381 extended cytotoxicity towards P-gp-resistant leukemia cancer cells and may act as a pan-HDACs inhibitor, indicating that MCC1381 is a novel candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ge Yan
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | | | | | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Network pharmacology of triptolide in cancer cells: implications for transcription factor binding. Invest New Drugs 2021; 39:1523-1537. [PMID: 34213719 PMCID: PMC8541937 DOI: 10.1007/s10637-021-01137-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 01/29/2023]
Abstract
Background Triptolide is an active natural product, which inhibits cell proliferation, induces cell apoptosis, suppresses tumor metastasis and improves the effect of other therapeutic treatments in several cancer cell lines by affecting multiple molecules and signaling pathways, such as caspases, heat-shock proteins, DNA damage and NF-ĸB. Purpose We investigated the effect of triptolide towards NF-ĸB and GATA1. Methods We used cell viability assay, compare and cluster analyses of microarray-based mRNA transcriptome-wide expression data, gene promoter binding motif analysis, molecular docking, Ingenuity pathway analysis, NF-ĸB reporter cell assay, and electrophoretic mobility shift assay (EMSA) of GATA1. Results Triptolide inhibited the growth of drug-sensitive (CCRF-CEM, U87.MG) and drug-resistant cell lines (CEM/ADR5000, U87.MGΔEGFR). Hierarchical cluster analysis showed six major clusters in dendrogram. The sensitive and resistant cell lines were statistically significant (p = 0.65 × 10-2) distributed. The binding motifs of NF-κB (Rel) and of GATA1 proteins were significantly enriched in regions of 25 kb upstream promoter of all genes. IPA showed the networks, biological functions, and canonical pathways influencing the activity of triptolide towards tumor cells. Interestingly, upstream analysis for the 40 genes identified by compare analysis revealed ZFPM1 (friend of GATA protein 1) as top transcription regulator. However, we did not observe any effect of triptolide to the binding of GATA1 in vitro. We confirmed that triptolide inhibited NF-κB activity, and it strongly bound to the pharmacophores of IκB kinase β and NF-κB in silico. Conclusion Triptolide showed promising inhibitory effect toward NF-κB, making it a potential candidate for targeting NF-κB.
Collapse
|
21
|
Karam L, Abou Staiteieh S, Chaaban R, Hayar B, Ismail B, Neipel F, Darwiche N, Abou Merhi R. Anticancer activities of parthenolide in primary effusion lymphoma preclinical models. Mol Carcinog 2021; 60:567-581. [PMID: 34101920 DOI: 10.1002/mc.23324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022]
Abstract
The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.
Collapse
Affiliation(s)
- Louna Karam
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon.,Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Beirut, Lebanon
| | - Soumaiah Abou Staiteieh
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Rady Chaaban
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bassel Ismail
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Frank Neipel
- Virologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raghida Abou Merhi
- Faculty of Sciences, GSBT Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| |
Collapse
|
22
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
23
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
24
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
25
|
Karakurt S, AbuŞoĞlu G, Arituluk ZC. Comparison of anticarcinogenic properties of Viburnum opulus and its active compound p-coumaric acid on human colorectal carcinoma. ACTA ACUST UNITED AC 2020; 44:252-263. [PMID: 33110363 PMCID: PMC7585157 DOI: 10.3906/biy-2002-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Resistance to therapeutic agents and the highly toxic side effects of synthetic drugs has spurred new research in the treatment of colon cancer, which has high morbidity and mortality ratios. This study aims to clarify the molecular mechanisms of the anticarcinogenic properties of methanol extract of Viburnum opulus L. (EVO)and its main active compound, trans-p -coumaric acid ( p -CA), on human colon cancer cells (DLD-1, HT-29, SW-620, Caco-2) and healthy colon epithelial cells (CCD-18Co). The effects of EVO on controlled cell death (apoptosis) and the cell division cycle were determined by flow cytometry. Alteration in mRNA and protein expressions of switch genes in colorectal carcinoma (APC, MLH1, TP53, SMAD4, KRAS, and BRAF) were determined by qRT-PCR and Western blot, respectively. Our results show that EVO possesses a strong reducing capacity and free-radical scavenging activity. HPLC analyses prove that p -CAis the main compound of EVO. EVO and p -CA inhibit the proliferation of human colon cancer cells DLD-1 and HT-29 in a dose-dependent manner. EVO increases apoptosis of DLD-1 cells and halts the cell cycle in the G2 stage in HT-29 cells. mRNA and protein expressions of p53 and SMAD-4 are upregulated, while BRAFs are downregulated. The results were directly proportional to p -CA. EVO and p -CA up- and downregulate switch genes and protein expressions of DLD-1 cells, which alter the expression of 186 other genes. This is the first study of pharmacological exploration of V.opulus in human colon cancer. Its antiproliferative effects may be due to the presence of p -CA.
Collapse
Affiliation(s)
- Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya Turkey
| | - Gülsüm AbuŞoĞlu
- Department of Medical Laboratory Techniques, Vocational School of Health, Selçuk University, Konya Turkey
| | - Zekiye Ceren Arituluk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara Turkey
| |
Collapse
|
26
|
Özenver N, Abdelfatah S, Klinger A, Fleischer E, Efferth T. Identification and characterization of deschloro-chlorothricin obtained from a large natural product library targeting aurora A kinase in multiple myeloma. Invest New Drugs 2020; 39:348-361. [PMID: 32978717 PMCID: PMC8551148 DOI: 10.1007/s10637-020-01012-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 01/01/2023]
Abstract
Multiple myeloma (MM) is a devastating disease with low survival rates worldwide. The mean lifetime of patients may be extendable with new drug alternatives. Aurora A kinase (AURKA) is crucial in oncogenesis, because its overexpression or amplification may incline the development of various types of cancer, including MM. Therefore, inhibitors of AURKA are innovative and promising targets. Natural compounds always represented a valuable resource for anticancer drug development. In the present study, based on virtual drug screening of more than 48,000 natural compounds, the antibiotic deschloro-chlorotricin (DCCT) has been identified to bind to AURKA with even higher binding affinity (free bindung energy: −12.25 kcal/mol) than the known AURKA inhibitor, alisertib (free binding energy: −11.25 kcal/mol). The in silico studies have been verified in vitro by using microscale thermophoresis. DCCT inhibited MM cell lines (KMS-11, L-363, RPMI-8226, MOLP-8, OPM-2, NCI-H929) with IC50 values in a range from 0.01 to 0.12 μM. Furthermore, DCCT downregulated AURKA protein expression, induced G2/M cell cycle arrest and disturbed the cellular microtubule network as determined by Western blotting, flow cytometry, and fluorescence microscopy. Thus, DCCT may be a promising lead structure for further derivatization and the development of specific AURKA inhibitors in MM therapy.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.,Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | | | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
27
|
Dawood M, Hegazy MEF, Elbadawi M, Fleischer E, Klinger A, Bringmann G, Kuntner C, Shan L, Efferth T. Vitamin K 3 chloro derivative (VKT-2) inhibits HDAC6, activates autophagy and apoptosis, and inhibits aggresome formation in hepatocellular carcinoma cells. Biochem Pharmacol 2020; 180:114176. [PMID: 32721508 DOI: 10.1016/j.bcp.2020.114176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Epigenetics plays a vital role in regulating gene expression and determining the specific phenotypes of eukaryotic cells. Histone deacetylases (HDACs) are important epigenetic regulatory proteins effecting multiple biological functions. Particularly, HDAC6 has become a promising anti-cancer drug target because of its regulation of cell mobility, protein trafficking, degradation of misfolded proteins, cell growth, apoptosis, and metastasis. In this study, we identified one out of six vitamin K3 derivatives, VKT-2, as HDAC6 inhibitor using molecular docking and cell viability assays in HDAC6-overexpressing HuH-7 cancer cells. Microscale thermophoresis and HDAC6 enzymatic assays revealed that VKT-2 bound to HDAC6 and inhibited its function. We further identified its cytotoxic activity. VKT-2 hyperacetylated HDAC6 substrates and disturbed tubulin integrity leading to significant inhibition of tumor migration in both HuH-7 spheroids and U2OS-GFP-α-tubulin cells. Moreover, VKT-2 induced autophagic and apoptotic cell death in HuH-7, while aggresome formation was restrained after VKT-2 treatment. A HuH-7 cell-xenograft model in zebrafish larvae provided evidence that VKT-2 inhibited the tumor growth in vivo. To best of our knowledge, it is the first time to demonstrate that vitamin k3 derivatives (VKT-2) inhibits HDAC6 in solid tumor cells. These unique findings suggested that VKT-2 is a promising anti-cancer agent targeting HDAC6.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Science, Al-Neelain University, Khartoum, Sudan
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Kuntner
- AIT Austrian Institute of Technology GmbH, Preclinical Molecular Imaging, Seibersdorf, Austria
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
28
|
Lu X, Saeed MEM, Hegazy MEF, Kampf CJ, Efferth T. Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells. Biomolecules 2020; 10:E1000. [PMID: 32635587 PMCID: PMC7407630 DOI: 10.3390/biom10071000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
The popular beverage green tea possesses chemopreventive activity against various types of tumors. However, the effects of its chemopreventive effect on hematological malignancies have not been defined. In the present study, we evaluated antitumor efficacies of a specific green tea, sencha tea, on sensitive and multidrug-resistant leukemia and a panel of nine multiple myelomas (MM) cell lines. We found that sencha extracts induced cytotoxicity in leukemic cells and MM cells to different extents, yet its effect on normal cells was limited. Furthermore, sencha extracts caused G2/M and G0/G1 phase arrest during cell cycle progression in CCRF/CEM and KMS-12-BM cells, respectively. Specifically, sencha-MeOH/H2O extracts induced apoptosis, ROS, and MMP collapse on both CCRF/CEM and KMS-12-BM cells. The analysis with microarray and COMPARE in 53 cell lines of the NCI panel revealed diverse functional groups, including cell morphology, cellular growth and proliferation, cell cycle, cell death, and survival, which were closely associated with anti-tumor effects of sencha tea. It is important to note that PI3K/Akt and NF-κB pathways were the top two dominant networks by ingenuity pathway analysis. We demonstrate here the multifactorial modes of action of sencha tea leading to chemopreventive effects of sencha tea against cancer.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed E. M. Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| | - Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Christopher J. Kampf
- Department for Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (X.L.); (M.E.M.S.); (M.-E.F.H.)
| |
Collapse
|
29
|
Moreira-Silva F, Camilo V, Gaspar V, Mano JF, Henrique R, Jerónimo C. Repurposing Old Drugs into New Epigenetic Inhibitors: Promising Candidates for Cancer Treatment? Pharmaceutics 2020; 12:E410. [PMID: 32365701 PMCID: PMC7284583 DOI: 10.3390/pharmaceutics12050410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic alterations, as a cancer hallmark, are associated with cancer initiation, progression and aggressiveness. Considering, however, that these alterations are reversible, drugs that target epigenetic machinery may have an inhibitory effect upon cancer treatment. The traditional drug discovery pathway is time-consuming and expensive, and thus, new and more effective strategies are required. Drug Repurposing (DR) comprises the discovery of a new medical indication for a drug that is approved for another indication, which has been recalled, that was not accepted or failed to prove efficacy. DR presents several advantages, mainly reduced resources, absence of the initial target discovery process and the reduced time necessary for the drug to be commercially available. There are numerous old drugs that are under study as repurposed epigenetic inhibitors which have demonstrated promising results in in vitro tumor models. Herein, we summarize the DR process and explore several repurposed drugs with different epigenetic targets that constitute promising candidates for cancer treatment, highlighting their mechanisms of action.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| | - Vítor Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.G.); (J.F.M.)
| | - João F. Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (V.G.); (J.F.M.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP) and Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (F.M.-S.); (V.C.)
| |
Collapse
|