1
|
Li Q, Zeng K, Chen Q, Han C, Wang X, Li B, Miao J, Zheng B, Liu J, Yuan X, Liu B. Atractylenolide I inhibits angiogenesis and reverses sunitinib resistance in clear cell renal cell carcinoma through ATP6V0D2-mediated autophagic degradation of EPAS1/HIF2α. Autophagy 2025; 21:619-638. [PMID: 39477683 PMCID: PMC11849937 DOI: 10.1080/15548627.2024.2421699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is tightly associated with VHL (von Hippel-Lindau tumor suppressor) mutation and dysregulated angiogenesis. Accumulating evidence indicates that antiangiogenic treatment abolishing tumor angiogenesis can achieve longer disease-free survival in patients with ccRCC. Atractylenolide I (ATL-I) is one of the main active compounds in Atractylodes macrocephala root extract and exhibits various pharmacological effects, including anti-inflammatory and antitumor effects. In this study, we revealed the potent antitumor activity of ATL-I in ccRCC. ATL-I exhibited robust antiangiogenic capacity by inhibiting EPAS1/HIF2α-mediated VEGFA production in VHL-deficient ccRCC, and it promoted autophagic degradation of EPAS1 by upregulating the ATPase subunit ATP6V0D2 (ATPase H+ transporting V0 subunit d2) to increase lysosomal function and facilitated fusion between autophagosomes and lysosomes. Mechanistically, ATP6V0D2 directly bound to RAB7 and VPS41 and promoted the RAB7-HOPS interaction, facilitating SNARE complex assembly and autophagosome-lysosome fusion. Moreover, ATP6V0D2 promoted autolysosome degradation by increasing the acidification and activity of lysosomes during the later stages of macroautophagy/autophagy. Additionally, we found that ATL-I could decrease the level of EPAS1, which was upregulated in sunitinib-resistant cells, thus reversing sunitinib resistance. Collectively, our findings demonstrate that ATL-I is a robust antiangiogenic and antitumor lead compound with potential clinical application for ccRCC therapy.Abbreviations: ATL-I: atractylenolide I; ATP6V0D2: ATPase H+ transporting V0 subunit d2; CAM: chick chorioallantoic membrane; ccRCC: clear cell renal cell carcinoma; CTSB: cathepsin B; CTSD: cathepsin D; GO: Gene Ontology; HIF-1: HIF1A-ARNT heterodimer; HOPS: homotypic fusion and protein sorting; KDR/VEGFR: kinase insert domain receptor; KEGG: Kyoto Encyclopedia of Genes and Genomes; RCC: renal cell carcinoma; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; TKI: tyrosine kinase inhibitor; V-ATPase: vacuolar-type H±translocating ATPase; VEGF: vascular endothelial growth factor; VHL: von Hippel-Lindau tumor suppressor.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Qian Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bolong Zheng
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Liu C, Zhou X. TREM2 Impairs Glycolysis to Interrupt Microglial M1 Polarization and Inflammation via JAK2/STAT3 Axis. Cell Biochem Biophys 2025; 83:879-891. [PMID: 39240442 DOI: 10.1007/s12013-024-01520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Chanyuan Liu
- Psychiatric Ward 1, Wuhan Wuchang Hospital, Wuhan, 430061, Hubei, China
| | - Xueying Zhou
- Department of Psychiatry, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
3
|
Liu S, Liu M, Wang J, Rong R, Gao Y, Li X, Liu X, Li S. A comprehensive study on the impact of Ligustrum vicaryi L. fruit polysaccharide on myocardial fibrosis through animal experiments, network pharmacology and molecular docking. Front Cardiovasc Med 2025; 12:1470761. [PMID: 40051434 PMCID: PMC11882575 DOI: 10.3389/fcvm.2025.1470761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Background Myocardial fibrosis (MF) is a prevalent pathological condition associated with various heart diseases, such as heart failure and arrhythmias, which disrupt electrical signals and reduce pumping efficiency. This research explored the therapeutic effects and potential mechanisms of Ligustrum vicaryi L. fruit polysaccharide (LVFP) on MF. Methods In vivo experiments, including fibrosis markers assay, echocardiography, HE staining, Sirius red staining, and Masson's trichrome staining, were performed to evaluate the therapeutic efficacy of LVFP in treating isoproterenol (ISO)-induced MF. We utilized the PharmMapper database to identify targets of LVFP, aiming to explore potential targets. Additionally, we obtained MF-related targets from the GeneCards database. We utilized Venny, a bioinformatics tool, to identify the intersection between the targets of LVFP and those related to MF. We utilized the STRING database to construct a protein interaction network for the overlapping targets and identified key targets for LVFP in treating MF through cytoHubba analysis. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the intersection targets. We also examined the interaction between LVFP and the key targets using molecular docking techniques. Results LVFP significantly inhibited fibrosis biomarker such as hydroxyproline (HYP) and decreased myocardial fibrosis level as shown by heart weight to tibia length (HW/TL) measurement when compared to ISO-treated mice. Additionally, it increased ejection fraction (EF) and fractional shortening (FS) levels. LVFP showed decreased collagen levels compared to the ISO-treated mice by histological quantification of cardiac fibrosis. Based on the monosaccharide structures of LVFP, 413 targets were identified, with 67 associated with MF. Analysis indicated that the 9 hub genes (AKT1, HSP90AA1, SRC, GSK3β, VEGFR2, RHOA, ENO1, PKM, and IL-2) play roles in MF treatment by participating in signaling pathways related to prostate cancer, lipid and atherosclerosis, and insulin resistance. Molecular docking results showed that LVFP exhibited strong binding potential to VEGFR2 (-8.65 kcal/mol), AKT1 (-7.36 kcal/mol) and GSK3β (-7.68 kcal/mol). Conclusion LVFP shows promise as a therapeutic agent for MF, primarily through the regulation of various signaling pathways and targets. These findings provide novel insights for the treatment of MF utilizing LVFP.
Collapse
Affiliation(s)
- Shuling Liu
- School of Pharmacy, Jining Medical University, Rizhao, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen S, Liu X, Zhou X, Lin W, Liu M, Ma H, Zhong K, Ma Q, Qin C. Atractylenolide-I prevents abdominal aortic aneurysm formation through inhibiting inflammation. Front Immunol 2025; 16:1486072. [PMID: 39958337 PMCID: PMC11825332 DOI: 10.3389/fimmu.2025.1486072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a degenerative disease with high mortality. Chronic inflammation plays a vital role in the formation of AAA. Atractylenolide-I (ATL-I) is a major bioactive component of Rhizoma Atractylodis Macrocephalae that exerts anti-inflammatory effects in various diseases. The purpose of this study is to investigate the role of ATL-I in the progression of AAA. Methods AAA was constructed in C57BL/6 mice by porcine pancreatic elastase (PPE)-incubation, and the diameter of the aorta was measured by ultrasound. ATL-I was administered by gavage on the second day after modeling to explore its significance in AAA. The pathological and molecular alteration was investigated by immunostaining, ELISA, qRT-PCR and Western blotting. Results ATL-I inhibited the dilatation of the abdominal aorta and decreased the incidence of AAA. ATL-I alleviated the infiltration of macrophages in the adventitia and reduced the levels of proinflammatory factor IL-1β and IL-6 in the aorta and circulatory system, while increasing the expression of anti-inflammatory factor IL-10. Moreover, ATL-I restrained loss of smooth muscle cells and elastic fiber degradation by suppressing MMP-2 and MMP-9 expression. Mechanistically, phospho-AMPK expression was elevated in AAA groups, and ATL-I administration suppressed its expression to improve the pathological damage of aorta. Conclusions ATL-I meliorated vascular inflammation by targeting AMPK signaling, ultimately inhibiting AAA formation, which provided an alternative agent for AAA treatment.
Collapse
Affiliation(s)
- Shuxiao Chen
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotian Liu
- Clinical Medicine, International College of Jinan University, Guangzhou, China
| | - Xincheng Zhou
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weixiao Lin
- School of Stomatology, Jinan University, Guangzhou, China
| | - Minting Liu
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haoran Ma
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Keli Zhong
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiming Ma
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chengjian Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi (Cultivation), Guangxi, China
| |
Collapse
|
5
|
Ni Z, Zhang H, Chen F, Yang M, Yang L, Zhou Y, Zhou X, Guo J, Rao X, Cen J, Lv Q, Wang J, Du L, Chen G, Liu S. The role and mechanism of "eight famous herbals in Zhejiang" in cancer via network pharmacology and experimental validation. Front Oncol 2024; 14:1475000. [PMID: 39628999 PMCID: PMC11612504 DOI: 10.3389/fonc.2024.1475000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
In recent years, some components and active ingredients from the herbal formula "eight famous herbals in Zhejiang" (Zhe-Ba-Wei) have been reported to possess antitumor properties. However, there is still no systemic study on the role and mechanism of Zhe-Ba-Wei in cancer. To systematically investigate the anticancer efficacy of Zhe-Ba-Wei, we first identified 17 reported active ingredients with gene targets associated with various types of tumors. Second, we screened these active ingredients and their responding multiple shared targets by analyzing the convergence of diverse and tumor-specific target sites and identified four crucial active ingredients (ferulic acid, quercetin, rutin, luteolin), which were characterized by 27 overlapping gene targets. Third, these 27 gene targets were subsequently mapped onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology term, and among the 27 total potential targets, 12 were involved in plasma membrane function. Fourth, we investigated the binding affinities between the four crucial active ingredients and their potential targets such as EGFR and MET, both of which are well-known oncogenes in various cancers. Subsequently, an investigation of the computational ADMET properties showed that most of these four ingredients exhibited good ADMET properties. Finally, we found that three active ingredients (ferulic acid, luteolin, and quercetin) could inhibit the proliferation of non-small cell lung cancer cells and decrease the protein expression of EGFR in a concentration-dependent manner. All these results shed light on the bioactive components, pharmacological effects, and drug development and utilization of Zhe-Ba-Wei, aiming to provide useful support for its further research and clinical application.
Collapse
Affiliation(s)
- Ziheng Ni
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fengyun Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengjie Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liting Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xianmin Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiayi Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinyu Rao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiaqi Cen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qun Lv
- Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianjun Wang
- Department of Respiratory Medicine of Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lailing Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Yang R, Wang Y, Wang J, Guo X, Zhao Y, Zhu K, Zhu X, Zou H, Yan Y. Geographical Origin Traceability of Atractylodis Macrocephalae Rhizoma Based on Chemical Composition, Chromaticity, and Electronic Nose. Molecules 2024; 29:4991. [PMID: 39519632 PMCID: PMC11547543 DOI: 10.3390/molecules29214991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Atractylodis Macrocephalae Rhizoma (AMR) is a traditional Chinese medicine used for gastrointestinal diseases. With increased demand, there are more and more places of cultivation for AMR. However, the quality of AMR varies from place to place, and there is no good way to distinguish AMR from different origins at present. In this paper, we determined the content of eight chemical components including 60% ethanol extracts, essential oil, polysaccharides, atractylenolides, and atractylone, obtained the color parameters of AMR powder by colorimetry, and odor information was captured by the electronic nose, all of which were combined with machine learning to establish a rapid origin traceability method. The results of the principal component analysis of the chemical components revealed that Zhejiang AMR has a high comprehensive score and overall better quality. The Kruskal-Wallis test demonstrated that there are varying degrees of differences in chemical composition and color parameters across the different origin. However, the accuracy of the classification model is low (less than 80%), making it difficult to distinguish between different origins of AMR. The electronic nose demonstrated excellent classification performance in the traceability of AMR from different origins, with accuracy reaching more than 90% (PLS-DA: 96.88%, BPNN: 96.88%, PSO-SVM: 100%). Overall, this study clarified the quality differences of AMR among different origins, and a rapid and precise method combining machine learning was developed to trace the origin of AMR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huiqin Zou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (R.Y.); (Y.W.); (J.W.); (X.G.); (Y.Z.); (K.Z.); (X.Z.)
| | - Yonghong Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (R.Y.); (Y.W.); (J.W.); (X.G.); (Y.Z.); (K.Z.); (X.Z.)
| |
Collapse
|
7
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
8
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Guo D, Xu K, Wan Q, Yu S, Ma C, Zhang B, Liu Y, Qu L. Different processing methods and pharmacological effects of Atractylodis Rhizoma. Chin J Nat Med 2024; 22:756-768. [PMID: 39197965 DOI: 10.1016/s1875-5364(24)60591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 09/01/2024]
Abstract
Atractylodis Rhizoma, a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases, undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions. However, a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking. This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma, including raw Atractylodis Rhizoma (SCZ), bran-fried Atractylodis Rhizoma (FCZ), deep-fried Atractylodis Rhizoma (JCZ), and rice water-processed Atractylodis Rhizoma (MCZ). It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.
Collapse
Affiliation(s)
- Dongmei Guo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Kang Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Qianyun Wan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Songyang Yu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chaoyang Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
10
|
Wang M, Zhang TH, Li Y, Chen X, Zhang Q, Zheng Y, Long D, Cheng X, Hong A, Yang X, Wang G. Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155698. [PMID: 38728919 DOI: 10.1016/j.phymed.2024.155698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.
Collapse
Affiliation(s)
- Mengwei Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Tong-Hua Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yunjin Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Chen
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Qiongyin Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Ying Zheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Denglu Long
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Clinical Research Center, Clifford Hospital, Guangzhou 511495, China.
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317.
| |
Collapse
|
11
|
Wu Y, Dai S, Zhang Y, Li Z, Zhu B, Liu Q, Wo L, Yu Z, Yuan X, Dou X. Atractylenolide II combined with Interferon-γ synergistically ameliorates colorectal cancer progression in vivo and in vitro by blocking the NF-kB p65/PD-L1 pathway. J Cancer 2024; 15:4328-4344. [PMID: 38947390 PMCID: PMC11212082 DOI: 10.7150/jca.96647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose: Atractylodes macrocephala Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells. Atractylenolides-II (AT-II) belongs to the lactone compound that is derived from Atractylodes macrocephala Koidz with anti-cancer activity. However, whether AT-II combined with IFN-γ modulates CRC progression and the underlying mechanisms remain unclear. The present study aimed to elucidate the efficacy and pharmaceutical mechanism of action of AT-II combined with IFN-γ synergistically against CRC by regulating the NF-kB p65/PD-L1 signaling pathway. Methods: HT29 and HCT15 cells were treated with AT-II and IFN-γ alone or in combination and cell viability, migration, and invasion were then analyzed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. Furthermore, the underlying mechanism was investigated through western blot assay. The role of AT-II combined with IFN-γ on tumor growth and lung metastases was estimated in vivo. Finally, the population of lymphocytes in tumor tissues of lung metastatic C57BL/6 mice and the plasma cytokine levels were confirmed by flow cytometry and enzyme-linked immunosorbent assay (ELISA). Results: AT-II or the combination IFN-γ significantly inhibited the growth and migration abilities of CRC cells in vitro and in vivo. The biological mechanisms behind the beneficial effects of AT-II combined with IFN-γ were also measured and inhibition of p38 MAPK, FAK, Wnt/β-catenin, Smad, and NF-kB p65/PD-L1 pathways was observed. Moreover, AT-II combined with IFN-γ significantly inhibited HCT15 xenograft tumor growth and lung metastases in C57BL/6 mice, which was accompanied by lymphocyte infiltration into the tumor tissues and inflammatory response inactivation. Conclusions: The results showed that the AT-II in combination with IFN-γ could be used as a potential strategy for tumor immunotherapy in CRC. More importantly, the mechanism by which AT-II suppressed CRC progressions was by inhibiting the NF-kB p65/PD-L1 signal pathway.
Collapse
Affiliation(s)
- Yangsheng Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shijie Dai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - YuJia Zhang
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zheming Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo Zhu
- College of pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qingsheng Liu
- Hangzhou Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Like Wo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Qian H, Ye Z, Hu Y, Wu M, Chen L, Li L, Hu Z, Zhao Q, Zhang C, Yang M, Xudong W, Ye Q, Qin K. Molecular targets associated with ulcerative colitis and the benefits of atractylenolides-based therapy. Front Pharmacol 2024; 15:1398294. [PMID: 38860174 PMCID: PMC11163078 DOI: 10.3389/fphar.2024.1398294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.
Collapse
Affiliation(s)
- Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhipeng Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xudong
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Sun J, Wei Y, Wang J, Hou M, Su L. Treatment of colorectal cancer by traditional Chinese medicine: prevention and treatment mechanisms. Front Pharmacol 2024; 15:1377592. [PMID: 38783955 PMCID: PMC11112518 DOI: 10.3389/fphar.2024.1377592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden, with high morbidity and mortality rates. It is often diagnosed at middle to advanced stage, affecting approximately 35% of patients at the time of diagnosis. Currently, chemotherapy has been used to improve patient prognosis and increase overall survival. However, chemotherapy can also have cytotoxic effects and lead to adverse reactions, such as inhibiting bone marrow hematopoiesis, causing digestive dysfunction, hand-foot syndrome, and even life-threatening conditions. In response to these adverse effects, researchers have proposed using Traditional Chinese Medicine (TCM) as an option to treat cancer. TCM research focuses on prescriptions, herbs, and components, which form essential components of the current research in Chinese medicine. The study and implementation of TCM prescriptions and herbs demonstrate its distinctive holistic approach to therapy, characterized by applying multi-component and multi-target treatment. TMC components have advantages in developing new drugs as they consist of single ingredients, require smaller medication dosages, have a precise measure of pharmacodynamic effects, and have a clear mechanism of action compared to TCM prescriptions and herbs. However, further research is still needed to determine whether TMC components can fully substitute the therapeutic efficacy of TCM prescriptions. This paper presents a comprehensive analysis of the research advancements made in TCM prescriptions, herbs, and components. The findings of this study can serve as a theoretical basis for researchers who are interested in exploring the potential of TCM for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Sun
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Jia Wang
- Department of Gynaecology, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Mingxing Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Liya Su
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| |
Collapse
|
14
|
Liu Y, Hou Y, Zhang F, Wang X. ENO1 deletion potentiates ferroptosis and decreases glycolysis in colorectal cancer cells via AKT/STAT3 signaling. Exp Ther Med 2024; 27:127. [PMID: 38414789 PMCID: PMC10895580 DOI: 10.3892/etm.2024.12415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 02/29/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevailing and lethal forms of cancer globally. α-enolase (ENO1) has been well documented to be involved in the progression and drug resistance of CRC. The present study was designed to specify the role of ENO1 in major events during the process of CRC and to introduce its latent functional mechanism. ENO1 expression was determined by western blot analysis. Extracellular acidification rates were assessed using an XF96 extracellular flux analyzer. Glucose uptake, lactic acid production, total iron levels and ferroptosis-related markers were examined with corresponding kits. A dichlorodihydrofluorescein diacetate probe measured intracellular reactive oxygen species content. Western blotting detected the expression of glycolysis- and ferroptosis-related proteins. CCK-8 and EdU staining assays assessed cell proliferation. In the current study, ENO1 was highly expressed in CRC cells. Knockdown of ENO1 markedly reduced the glycolysis and accelerated the ferroptosis in CRC cells. Moreover, the inhibitory effects of WZB117, a specific inhibitor of glycolysis-related glucose transporter type 1, on CRC cell proliferation were further enhanced by ENO1 interference. In addition, silencing of ENO1 inactivated the AKT/STAT3 signaling. The AKT activator SC79 partially reversed the effects of ENO1 deficiency on the AKT/STAT3 signaling, glycolysis, proliferation as well as ferroptosis in CRC cells. In summary, inactivation of AKT/STAT3 signaling mediated by ENO1 inhibition might boost the ferroptosis and suppress the glycolysis in CRC cells.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yinyin Hou
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Fan Zhang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xifang Wang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
15
|
Luo R, He C, He J, Li Z, Wang Y, Hou M, Li P, Yu W, Cheng S, Song Z. Acute toxicology on Danio rerio embryo and adult from Chinese traditional medicine preparation Danggui Shaoyao san. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117528. [PMID: 38043754 DOI: 10.1016/j.jep.2023.117528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.
Collapse
Affiliation(s)
- Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuke Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Mirong Hou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Ping Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shaowu Cheng
- Office of Science & Technology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
16
|
Tian S, Ren L, Liu C, Wang Z. Atractylenolide II Suppresses Glycolysis and Induces Apoptosis by Blocking the PADI3-ERK Signaling Pathway in Endometrial Cancer Cells. Molecules 2024; 29:939. [PMID: 38474453 PMCID: PMC10934053 DOI: 10.3390/molecules29050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Atractylenolide II (AT-II), the major bioactive compound of Atractylodes macrocephala, exhibits anti-cancer activity against many types of tumors, but the roles and the potential mechanisms in endometrial cancer remain unclear. In the present study, AT-II treatment was found to significantly suppress RL95-2 and AN3CA cell proliferation and glycolysis, and induced their apoptosis by inactivating the ERK signaling pathway, accompanied by the changing expression of the glycolytic key enzymes and apoptotic-related proteins. Peptidyl arginine deiminase 3 (PADI3), as the candidate target gene of AT-II, was highly expressed in the endometrial cancer tissues and associated with a poor prognosis according to bioinformatics analysis. PADI3 knockdown inhibited proliferation and glycolysis in endometrial cancer cells and induced cell apoptosis. Furthermore, AT-II negatively regulated the expression of PADI3, and PADI3 overexpression reversed the effects of AT-II on endometrial cancer cells. Our findings suggested that the anti-cancer function of AT-II is associated with the suppression of glycolysis and induction of apoptosis by blocking the PADI3-ERK signaling pathway. Thus, AT-II represents a novel therapeutic target for endometrial cancer and targeting AT-II may serve as a potential strategy for the clinical therapy of endometrial cancer.
Collapse
Affiliation(s)
- Shuang Tian
- Department of Pathology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
- Department of Cell Biology and Genetics, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lili Ren
- Department of Neurobiology, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China;
| | - Chao Liu
- Department of Cell Biology and Genetics, Basic Medical College, Jinzhou Medical University, Jinzhou 121001, China
| | - Zhe Wang
- Department of Pathology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China;
| |
Collapse
|
17
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Rajabi S, Tahmasvand Z, Maresca M, Hamzeloo-Moghadam M. Gaillardin inhibits autophagy and induces apoptosis in MCF-7 breast cancer cells by regulating JAK/STAT pathway. Mol Biol Rep 2024; 51:158. [PMID: 38252203 DOI: 10.1007/s11033-023-09131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Gaillardin is a potent anti-cancer sesquiterpene lactone found in Inula oculus-christi. AIM The present study examined the effects of gaillardin on apoptosis and autophagy in the MCF-7 breast cancer cell line. METHODS The MTT assay was used to unravel the antiproliferative effects of gaillardin on MCF-7 cells. The expression of apoptosis-related genes including CASP3, BAX, BCL2, STAT3, and JAK2, and key markers of autophagy such as ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were measured by real time-PCR method. The protein expression of Caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III was determined using western blotting. RESULTS Gaillardin treatment significantly decreased the proliferation of MCF-7 cells with a parallel upregulation of the level of pro-apoptotic caspase-3 enzyme with no effect on Bax and Bcl2 expression. The levels of phosphorylated and active forms of JAK2 and STAT3 proteins were reduced following the treatment of MCF-7 cells with gaillardin. This sesquiterpene lactone com-pound considerably downregulated the levels of six autophagy markers, including ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III in MCF-7 cells. CONCLUSION These data indicated the apoptosis-inducing activity of gaillardin in MCF-7 cells by a mechanism that inhibits the JAK/STAT signaling pathway. Further, autophagy inhibition was the other phenomenon caused by gaillardin in MCF-7 cells. These results can provide evidence to highlight the role of gaillardin as a novel therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1434875451, Iran
| | - Zahra Tahmasvand
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1434875451, Iran
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, 13397, France.
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1516745811, Iran.
| |
Collapse
|
19
|
Xia Y, Zhang L, Ocansey DKW, Tu Q, Mao F, Sheng X. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne) 2023; 14:1242991. [PMID: 37881499 PMCID: PMC10595037 DOI: 10.3389/fendo.2023.1242991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.
Collapse
Affiliation(s)
- Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Qiang Tu
- Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
21
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Xie Z, Lin M, He X, Dong Y, Chen Y, Li B, Chen S, Lv G. Chemical Constitution, Pharmacological Effects and the Underlying Mechanism of Atractylenolides: A Review. Molecules 2023; 28:molecules28103987. [PMID: 37241729 DOI: 10.3390/molecules28103987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yigong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
23
|
Qiu J, Shi M, Li S, Ying Q, Zhang X, Mao X, Shi S, Wu S. Artificial neural network model- and response surface methodology-based optimization of Atractylodis Macrocephalae Rhizoma polysaccharide extraction, kinetic modelling and structural characterization. ULTRASONICS SONOCHEMISTRY 2023; 95:106408. [PMID: 37088027 PMCID: PMC10457599 DOI: 10.1016/j.ultsonch.2023.106408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Atractylodis Macrocephalae Rhizoma (AMR) is the dried rhizome of Atractylodes macrocephala Koidz, which is widely used in the development of health products. AMR contains a large number of polysaccharides, but at present there are fewer applications for these polysaccharides. In this study, the effects of different extraction methods on the Atractylodis Macrocephalae Rhizoma polysaccharide (AMRP) yield were investigated, and the conditions for ultrasound-assisted extraction were optimized by response surface methodology (RSM) and three neural network models (BP neural network, GA-BP neural network and ACO-GA-BP neural network). The best conditions were a liquid-to-solid ratio of 17 mL/g, ultrasonic power of 400 W, extraction temperature of 72 °C, and extraction time of 40 min, which yielded 31.31% AMRP. The kinetic equation of AMRP was determined and compared with the results predicted by three neural network models. It was finally determined that the extraction conditions, kinetic processes and kinetic equation predicted by the GA-ACO-BP neural network were optimal. In addition, AMRP was characterized using SEM, FTIR, HPLC, UV, XRD, and NMR, and the structural study revealed that AMRP has a rough exterior and a porous interior; moreover, it contains high levels of glucose (5.07%), arabinose (0.80%), and galactose (0.74%). AMRP has three crystal structures, consisting of two β-type monosaccharides and one α-type monosaccharide. Additionally, the effectiveness of AMRP as an antioxidant was demonstrated in an in vitro experiment.
Collapse
Affiliation(s)
- Junjie Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Menglin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qianyi Ying
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinxin Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Senlin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Suxiang Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
24
|
Ni W, Liu T, Liu Y, Lu L, Zhou B, Dai Y, Zhao H, Xu H, Ji G. Sijunzi decoction granules in the prevention and treatment of recurrence of colorectal adenoma: Study protocol for a multicenter, randomized, double-blind, placebo-controlled trial. Front Pharmacol 2023; 14:1175811. [PMID: 37089947 PMCID: PMC10113428 DOI: 10.3389/fphar.2023.1175811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background: The recurrence of colorectal adenomas (CRAs) after endoscopy predisposes patients to a risk of colorectal cancer. Guided by the traditional Chinese medicine (TCM), patients with colorectal diseases usually manifest with spleen deficiency syndrome (SDS) and are treated with Sijunzi decoction (SJZD). Therefore, this trial aims to explore the efficacy and safety of SJZD in the prevention and treatment of CRAs recurrence.Methods: SJZD on prevention and treatment of CRAs recurrence after resection: a multicenter, randomized, double-blind, placebo-controlled trial was designed. Patients who undergo polypectomy of CRAs will be recruited and randomized into a SJZD group and a placebo group in a 1:1 ratio. The intervention phase will be 12 months. The follow-up period will last 24 months. The primary outcome is the CRA recurrence rate after intervention. The secondary outcomes include the CRA recurrence rate at the second year post-polypectomy, the pathological type of adenoma and the alterations in SDS scores after intervention.Discussion: Previous clinical practice has observed the sound effect of SJZD in the context of gastrointestinal diseases. A number of experiments have also validated the active components in SJZD. This trial aims to provide tangible evidence for the usage of SJZD, hoping to reduce the recurrence of CRAs.
Collapse
Affiliation(s)
- Wenjing Ni
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Tao Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Bingduo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
- *Correspondence: Hanchen Xu, ; Guang Ji,
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontier Research Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
- *Correspondence: Hanchen Xu, ; Guang Ji,
| |
Collapse
|
25
|
Xu H, Li L, Qu L, Tu J, Sun X, Liu X, Xu K. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytother Res 2023; 37:820-833. [PMID: 36420870 DOI: 10.1002/ptr.7661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyuan Tu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiongjie Sun
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
26
|
Han Y, Bai C, He XM, Ren QL. P2X7 receptor involved in antitumor activity of atractylenolide I in human cervical cancer cells. Purinergic Signal 2023; 19:145-153. [PMID: 35235139 PMCID: PMC9984620 DOI: 10.1007/s11302-022-09854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Atractylenolide I (Atr-I) was found to sensitize a variety of human cancer cells in previous studies. Purinergic P2X7R plays important role in different cancers. However, whether Atr-I could generate antitumor activity in human cervical cancer cells and P2X7R get involved in this effect remain unclear. In this study, Hela (HPV 18 +) and SiHa (HPV 16 +) cells were treated with different doses of Atr-I. The results indicated that agonist and antagonist of P2X7 receptors, BzATP and JNJ-47965567 (JNJ), could suppress the proliferation of Hela and SiHa cells. Atr-I demonstrated a considerable antitumor effect in both human cervical cancer cells in vitro. Atr-I combined with P2X7R agonist, BzATP, restored Atr-I-induced growth inhibition in Hela cells but not in SiHa cells. However, the combinatorial treatment of P2X7R antagonist JNJ and Atr-I has an additive effect on cell growth inhibition in SiHa cells rather than in Hela cells. It implied that P2X7R would get involved in the anti-human cervical cancer cells effect of Atr-I.
Collapse
Affiliation(s)
- Yue Han
- Department of Gynecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Can Bai
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xi-Meng He
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Qing-Ling Ren
- Department of Gynecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
27
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
28
|
Qian Y, Yin J, Ni J, Chen X, Shen Y. A Network Pharmacology Method Combined with Molecular Docking Verification to Explore the Therapeutic Mechanisms Underlying Simiao Pill Herbal Medicine against Hyperuricemia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2507683. [PMID: 36817858 PMCID: PMC9935928 DOI: 10.1155/2023/2507683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 02/11/2023]
Abstract
Objective Hyperuricemia (HUA) is a common metabolic disease caused by disordered purine metabolism. We aim to reveal the mechanisms underlying the anti-HUA function of Simiao pill and provide therapeutic targets. Methods Simiao pill-related targets were obtained using Herbal Ingredients' Targets (HIT), Traditional Chinese Medicine Systems Pharmacology (TCMSP), and Traditional Chinese Medicine Integrated Database (TCMID). HUA-associated targets were retrieved from GeneCards, DisGeNET, and Therapeutic Targets Database (TTD). Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, ggraph and igraph R packages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using ClusterProfiler. The top 10 core targets were identified through cytoHubba. Molecular docking was conducted using PyMOL and AutoDock high-performance liquid chromatograph (HPLC) analysis was performed to identify effective compounds of Simiao pill. Results Simiao pill-HUA target network contained 80 targets. The key targets were mainly involved in inflammatory responses. Insulin (INS), tumor necrosis factor (TNF), interleukin-6 (IL6), interleukin 1 beta (IL1B), vascular endothelial growth factor A (VEGFA), leptin (LEP), signal transducer and activator of transcription 3 (STAT3), C-C motif chemokine ligand 2 (CCL2), interleukin-10 (IL10), and toll like receptor 4 (TLR4) were the top 10 targets in the PPI network. GO analysis demonstrated the main implication of the targets in molecular responses, production, and metabolism. KEGG analysis revealed that Simiao pill might mitigate HUA through advanced glycation end-product- (AGE-) receptor for AGE- (RAGE-) and hypoxia-inducible factor-1- (HIF-1-) associated pathways. IL1B, IL6, IL10, TLR4, and TNF were finally determined as the promising targets of Simiao pill treating HUA. Through molecular docking and HPLC analysis, luteolin, quercetin, rutaecarpine, baicalin, and atractylenolide I were the main active compounds. Conclusions Simiao pill can mitigate HUA by restraining inflammation, mediating AGE-RAGE- and HIF-1-related pathways, and targeting IL1B, IL6, IL10, TLR4, and TNF.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Jiazhen Yin
- Department of Nephrology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, China
| | - Juemin Ni
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Xiaona Chen
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou 310000, China
| |
Collapse
|
29
|
Yin W, Fu X, Chang W, Han L, Meng J, Cao A, Ren X, Fan Z, Zhou S. Antiovarian cancer mechanism of esculetin: inducing G0/G1 arrest and apoptosis via JAK2/STAT3 signalling pathway. J Pharm Pharmacol 2023; 75:87-97. [PMID: 36332079 DOI: 10.1093/jpp/rgac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Esculetin is a coumarin derivative, which is extracted from the dried barks of fraxinus chinensis Roxb. Although it is reported esculetin possesses multiple pharmacological activities, its associated regulatory mechanism on ovarian cancer isn't well investigated. METHODS Cytotoxicity is evaluated by MTT, clonogenic and living/dead cells staining assays. Migration and invasion effects are investigated by wound healing, and transwell assays. The effect of cell cycle and apoptosis are analyzed by flow cytometry and western blotting. Mitochondrial membrane potential and intracellular reactive oxygen species (ROS) is assessed by fluorescence microscope. Analysis of animal experiments are carried out by various pathological section assays. KEY FINDINGS Esculetin exerts an anti- ovarian cancer effect. It is found that apoptosis induction is promoted by the accumulation of excessive ROS and inhibition of JAK2/STAT3 signalling pathway. In addition, exposure to esculetin leads to the cell viability reduction, migration and invasion capability decrease and G0/G1 phase cell cycle arrest induced by down-regulating downstream targets of STAT3. In vivo experimental results also indicate esculetin can inhibit tumour growth of mice. CONCLUSIONS Our study provides some strong evidences to support esculetin as a potential anti-cancer agent in ovarian cancer.
Collapse
Affiliation(s)
- Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenwen Chang
- Lanzhou University Second Clinical Medical College/Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Li Han
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiahao Meng
- Department of biomaterials, College of Materials, Xiamen University, Xiamen, China
| | - Aijia Cao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaomin Ren
- Lanzhou University Second Clinical Medical College/Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhongxiong Fan
- Department of biomaterials, College of Materials, Xiamen University, Xiamen, China.,Institute of Materia Medica, Xinjiang University, Urumqi, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
30
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
31
|
Fan M, Gu X, Zhang W, Shen Q, Zhang R, Fang Q, Wang Y, Guo X, Zhang X, Liu X. Atractylenolide I ameliorates cancer cachexia through inhibiting biogenesis of IL-6 and tumour-derived extracellular vesicles. J Cachexia Sarcopenia Muscle 2022; 13:2724-2739. [PMID: 36085573 PMCID: PMC9745491 DOI: 10.1002/jcsm.13079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Atractylenolide I (AI) is a natural sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, known as Baizhu in traditional Chinese medicine. AI has been found to ameliorate cancer cachexia in clinic cancer patients and in tumour-bearing mice. Here, we checked the influence of AI on biogenesis of IL-6 and extracellular vesicles (EVs) in cancer cachexia mice and then focused on studying mechanisms of AI in inhibiting the production of tumour-derived EVs, which contribute to the ameliorating effects of AI on cancer cachexia. METHODS C26 tumour-bearing BALB/c mice were applied as animal model to examine the effects of AI (25 mg/kg) in attenuating cachexia symptoms, serum IL-6 and EVs levels. IL-6 and EVs secretion of C26 tumour cells treated with AI (0.31-5 μM) was further observed in vitro. The in vitro cultured C2C12 myotubes and 3T3-L1 mature adipocytes were used to check the potency of conditioned medium of C26 cells treated with AI (0.625-5 μM) in inducing muscle atrophy and lipolysis. The glycolysis potency of C26 cells under AI (0.31-5 μM) treatment was evaluated by measuring the extracellular acidification rate using Seahorse XFe96 Analyser. Levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting to study the possible mechanisms. STAT3 overexpression or knockout C26 cells were also used to confirm the effects of AI (5 μM). RESULTS AI ameliorated cancer cachexia symptoms (P < 0.05), improved grip strength (P < 0.05) and decreased serum EVs (P < 0.05) and IL-6 (P < 0.05) levels of C26 tumour-bearing mice. AI directly inhibited EVs biogenesis (P < 0.001) and IL-6 secretion (P < 0.01) of cultured C26 cells. The potency of C26 medium in inducing C2C12 myotube atrophy (+59.54%, P < 0.001) and 3T3-L1 adipocyte lipolysis (+20.73%, P < 0.05) was significantly attenuated when C26 cells were treated with AI. AI treatment inhibited aerobic glycolysis and the pathway of STAT3/PKM2/SNAP23 in C26 cells. Furthermore, overexpression of STAT3 partly antagonized the effects of AI in suppressing STAT3/PKM2/SNAP23 pathway, EVs secretion, glycolysis and the potency of C26 medium in inducing muscle atrophy and lipolysis, whereas knockout of STAT3 enhanced the inhibitory effect of AI on these values. The inhibition of AI on STAT3/PKM2/SNAP23 pathway was also observed in C26 tumour tissues. CONCLUSIONS AI ameliorates cancer cachexia by decreasing the production of IL-6 and EVs of tumour cells. The decreasing effects of AI on EVs biogenesis are based on its inhibition on STAT3/PKM2/SNAP23 pathway.
Collapse
Affiliation(s)
- Meng Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wanli Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Shen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaoyu Fang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Angelica sinensis Polysaccharide and Astragalus membranaceus Polysaccharide Accelerate Liver Regeneration by Enhanced Glycolysis via Activation of JAK2/STAT3/HK2 Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227890. [PMID: 36431990 PMCID: PMC9695464 DOI: 10.3390/molecules27227890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
The promotion of liver regeneration is crucial to avoid liver failure after hepatectomy. Angelica sinensis polysaccharide (ASP) and Astragalus membranaceus polysaccharide (AMP) have been identified as being associated with hepatoprotective effects. However, their roles and specific mechanisms in liver regeneration remain to be elucidated. In the present study, it suggested that the respective use of ASP or AMP strikingly promoted hepatocyte proliferation in vitro with a wide range of concentrations (from 12.5 μg/mL to 3200 μg/mL), and a stronger promoting effect was observed in combined interventions. A significantly enhanced liver/body weight ratio (4.20%) on day 7 and reduced serum transaminase (ALT 243.53 IU/L and AST 423.74 IU/L) and total bilirubin (52.61 IU/L) levels on day 3 were achieved by means of ASP-AMP administration after partial hepatectomy in mice. Metabonomics showed that differential metabolites were enriched in glycolysis with high expression of beta-d-fructose 6-phosphate and lactate, followed by significantly strengthened lactate secretion in the supernatant (0.54) and serum (0.43) normalized to control. Upon ASP-AMP treatment, the knockdown of hexokinase 2 (HK2) or inhibited glycolysis caused by 2-deoxy-d-glucose decreased hepatocyte proliferation in vitro and in vivo. Furthermore, pathway analysis predicted the role of JAK2/STAT3 pathway in ASP-AMP-regulated liver regeneration, and phosphorylation of JAK2 and STAT3 was proven to be elevated in this promoting process. Finally, downregulated expression of HK2, an attenuated level of lactate secretion, and reduced hepatocyte proliferation were displayed when STAT3 was knocked out in vitro. Therefore, it can be concluded that ASP-AMP accelerated liver regeneration and exerted a hepatoprotective effect after hepatectomy, in which the JAK2/STAT3/HK2 pathway was actively involved in activating glycolysis.
Collapse
|
33
|
Sun Y, Liu Y, Cai Y, Han P, Hu S, Cao L. Atractylenolide I inhibited the development of malignant colorectal cancer cells and enhanced oxaliplatin sensitivity through the PDK1-FoxO1 axis. J Gastrointest Oncol 2022; 13:2382-2392. [PMID: 36388699 PMCID: PMC9660064 DOI: 10.21037/jgo-22-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a type of ordinary malignancy of the gastrointestinal tract. Atractylenolide I (AT-I) has been shown to inhibit the process of CRC. However, the specific mechanism by which AT-I inhibits CRC is not yet well understood. METHODS Cell Counting Kit-8 and colony formation assays were conducted to examine cell proliferation. The cell apoptosis was detected by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Cell invasion and migration were evaluated by wound-healing and Transwell assay. The angiogenesis capabilities of the cells were examined by tube formation experiments. Western blot was conducted to examine the apoptosis and angiogenesis-associated proteins, pyruvate dehydrogenase kinase 1 (PDK1), and Forkhead box protein O1 (FoxO1) expression. RESULTS We found that AT-I inhibited the proliferative, migratory and invasive abilities of Human colorectal cancer cell line HCT116 cells but stimulated cell death by promoting cell apoptosis via the PDK1/FoxO1 axis. In addition, the upregulation of PDK1 decreased the inhibitory effect of AT-I on HCT116 angiogenesis, and AT-I increased oxaliplatin sensitivity via the PDK1/FoxO1 axis. CONCLUSIONS Collectively, AT-I inhibited the malignant development of CRC cells and increased oxaliplatin sensitivity by decreasing PDK1 and inhibiting FoxO1 phosphorylation. Thus, AT-I has protective potential and could be a promising agent for CRC treatment.
Collapse
Affiliation(s)
- Ye Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Jiang Y, Guo K, Wang P, Zhu Y, Huang J, Ruan S. The antitumor properties of atractylenolides: Molecular mechanisms and signaling pathways. Biomed Pharmacother 2022; 155:113699. [PMID: 36116253 DOI: 10.1016/j.biopha.2022.113699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Drugs that exhibit a high degree of tumor cell selectivity while minimizing normal cell toxicity are an area of active research interest as a means of designing novel antitumor agents. The pharmacological benefits of Chinese herbal medicine-based treatments have been the focus of growing research interest in recent years. Sesquiterpenoids derived from the Atractylodes macrocephala volatile oil preparations exhibit in vitro and in vivo antitumor activity. Atracylenolides exhibit anti-proliferative, anti-metastatic, and immunomodulatory activity in a range of tumor cell lines in addition to being capable of regulating metabolic activity such that it is a promising candidate drug for the treatment of diverse cancers. The present review provides a summary of recent advances in Atractylenolide-focused antitumor research efforts.
Collapse
Affiliation(s)
- Yu Jiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Kaibo Guo
- Department of Oncology, Affilited Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Ying Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Jiaqi Huang
- Department of postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
35
|
Saghi H, Mirzavi F, Afshari AR, Jalili-Nik M, Mashkani B, Soukhtanloo M. Bee venom induces anti-tumor effects in HT-29 colon cancer cells through regulation of cell proliferation and apoptosis. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Jin L, Guo Y, Chen J, Wen Z, Jiang Y, Qian J. Lactate receptor HCAR1 regulates cell growth, metastasis and maintenance of cancer‑specific energy metabolism in breast cancer cells. Mol Med Rep 2022; 26:268. [PMID: 35775372 PMCID: PMC9260879 DOI: 10.3892/mmr.2022.12784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/30/2022] [Indexed: 11/06/2022] Open
Abstract
Under aerobic conditions, the preferential use of anaerobic glycolysis by tumour cells leads to a high level of lactate accumulation in tumour microenvironment. Lactate acts not only as a cellular energy source but also as a signalling molecule that regulates cancer cell growth, metastasis and metabolism. It has been reported that a G‑protein‑coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) is highly expressed in numerous types of cancer, but the detailed mechanism remains unclear. In the present study, it was reported that HCAR1 is highly expressed in breast cancer cells. Genetic deletion of HCAR1 in MCF7 cells leads to reduced cell proliferation and migration. Moreover, it was observed that knockout (KO) of HCAR1 attenuated the expression and activity of phosphofructokinase and hexokinase, key rate‑limiting enzymes in glycolysis. Using an extracellular flux analyzer, it was showed that KO of HCAR1 promoted a metabolic shift towards a decreased glycolysis state, as evidenced by a decreased extracellular acidification rate and increased oxygen consumption rate in MCF7 cells. Taken together, our results suggested that lactate acts through HCAR1 as a metabolic regulator in breast cancer cells that may be therapeutically exploited.
Collapse
Affiliation(s)
- Lili Jin
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang 313000, P.R. China
| | - Yanan Guo
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Jiawen Chen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Zhenzhen Wen
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Yibin Jiang
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Jing Qian
- Huzhou University Schools of Nursing and Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
37
|
IL4Rα and IL13Rα1 Are Involved in the Development of Human Gallbladder Cancer. J Pers Med 2022; 12:jpm12020249. [PMID: 35207737 PMCID: PMC8875933 DOI: 10.3390/jpm12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gallbladder cancer is commonly associated with inflammation, which indicates that inflammation-related cytokines and cytokine receptors are related to the progression of gallbladder cancers. Interleukin 4 (IL4) is a well-known cytokine that promotes the differentiation of naive helper T cells (Th0) to T helper type 2 cells (Th2). IL13 is a cytokine that is secreted by Th2 cells. IL4 and IL13 are closely related in immune responses. However, the role of IL4Rα and IL13Rα1 signaling pathway has not been fully understood in the development of gallbladder cancer. Methods: In human gallbladder carcinomas, the expression of IL4Rα and IL13Rα1 were evaluated with immunohistochemical staining in tissue microarray tissue sections. After knockdown of IL4Rα or IL13Rα1, cell assays to measure the proliferation and apoptosis and Western blotting analysis were conducted in SNU308 human gallbladder cancer cells. Since Janus kinases2 (JAK2) was considered as one of the down-stream kinases under IL4Rα and IL13Rα1 complex, the same kinds of experiments were performed in SNU308 cells treated with AZD1480, Janus-associated kinases2 (JAK2) inhibitor, to demonstrate the cytotoxic effect of AZD1480 in SNU308 cells. Results: Immunohistochemical expression of IL4Rα was significantly associated with the expression of IL13Rα1 in human carcinoma tissue. In univariate analysis, nuclear expression of IL4Rα, cytoplasmic expression of IL4Rα, nuclear expression of IL13Rα1, and cytoplasmic expression of IL13Rα1 were significantly associated with shorter overall survival and shorter relapse-free survival. Multivariate analysis revealed nuclear expression of IL4Rα as an independent poor prognostic indicator of overall survival and relapse-free survival. Then, we found that knockdown of IL4Rα or IL13Rα1 decreased viability and induced apoptosis in SNU308 cells via activation of FOXO3 and similarly, AZD1480 decreased viability and induced apoptosis in SNU308 cells with dose dependent manner. Conclusions: Taken together, our results suggest that IL4Rα and IL13Rα1 might be involved in the development of human gallbladder cancer cells and IL4Rα and IL13Rα1 complex/JAK2 signaling pathway could be efficient therapeutic targets for gallbladder cancer treatment.
Collapse
|
38
|
Fan M, Sun W, Gu X, Lu S, Shen Q, Liu X, Zhang X. The critical role of STAT3 in biogenesis of tumor-derived exosomes with potency of inducing cancer cachexia in vitro and in vivo. Oncogene 2022; 41:1050-1062. [PMID: 35034093 DOI: 10.1038/s41388-021-02151-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Tumor-derived exosomes are emerging mediators of cancer cachexia. Clarifying the regulation of exosome biogenesis and finding possible targets for cancer cachexia therapy are important and necessary. In the present study, systemic analysis of the roles of STAT3 in controlling exosome biogenesis of murine C26 colon tumor cells and its contribution to the development of cancer cachexia is conducted. The genetic manipulation of STAT3 expression, STAT3 knockout (KO) or overexpression (OE), significantly affected the exosome biogenesis and also the potency of C26 conditioned medium (CM) in inducing muscle atrophy and lipolysis in vitro. The genetic manipulation of STAT3 expression caused change in phosphorylation of PKM2 and glycolysis. PKM2/SNAP23 pathway was involved in regulation of exosome biogenesis by STAT3 genetic manipulation as well as by STAT3 inhibitors in C26 cells. Mice inoculated with STAT3 knockout or overexpression C26 cells exhibited ameliorated or aggravated cancer cachexia symptoms, with a positive correlation with the serum exosome and IL-6 levels. The STAT3/PKM2/SNAP23 pathway was affected in C26 tumor tissues with genetic manipulation of STAT3 expression. The capacity of exosome biogenesis of different human cancer cells also exhibited a positive correlation with the activation of STAT3/PKM2/SNAP23 pathway. The research presented here confirms that STAT3 plays a critical role in regulating biogenesis of tumor-derived exosomes which could contribute to cancer cachexia development.
Collapse
Affiliation(s)
- Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weikuan Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shanshan Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
39
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
41
|
Liu P, Zhao G, Zhang L, Gong Y, Gu Y. Atractylenolide I inhibits antibiotic-induced dysbiosis of the intestinal microbiome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1539. [PMID: 34790745 PMCID: PMC8576645 DOI: 10.21037/atm-21-4656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
Background Atractylenolide I (AT-I) is an active component that is isolated from Rhizoma Atractylodis macrocephalae and it exerts anti-apoptotic, anti-oxidant, and anti-coagulant properties, and has been widely applied in the treatment of cardiovascular and cerebrovascular diseases in China. This study aimed to investigate the effects and possible mechanism of AT-I on intestinal dysbacteriosis in a mouse model. Methods Mice dysbacteriosis models were established and treated with AT-I, and the intestinal microbiome of the mice were compared. Using antibiotics-induced bacterial elimination in an intestinal dysbacteriosis-associated xenograft model, the gut microbiota-mediated anti-tumor mechanism was investigated. Results The intestinal microbiome was changed in the dysbacteriosis mice compared to the control mice, and AT-I could affect the intestinal microbiome of the dysbacteriosis mice. Manipulation of gut bacteria in the intestines of the dysbacteriosis-associated xenograft model further confirmed that the inhibition of tumor progression by AT-I was mediated by the gut microbiota, and that the underlying mechanism involves down-regulation of TLR4/MyD88/NF-κB signaling. AT-I repressed the phosphorylation of p65-NF-κB as well as the downstream cytokines, IL-6 and IL-1β, in dysbacteriosis mice. Conclusions AT-I may inhibit dysbacteriosis by affecting the intestinal microbiome via the regulation of TLR4/MyD88/NF-κB signaling. The present study provides a basis for the application of AT-I as an alternative medication for treating gastrointestinal disorders.
Collapse
Affiliation(s)
- Penglin Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Gang Zhao
- Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lize Zhang
- Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxia Gong
- Department of Anorectal Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yunfei Gu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Offermans K, Jenniskens JC, Simons CC, Samarska I, Fazzi GE, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Expression of proteins associated with the Warburg-effect and survival in colorectal cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2021; 8:169-180. [PMID: 34791830 PMCID: PMC8822385 DOI: 10.1002/cjp2.250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Previous research has suggested that the expression of proteins related to the Warburg effect may have prognostic value in colorectal cancer (CRC), but results remain inconsistent. Our objective was to investigate the relationship between Warburg-subtypes and patient survival in a large population-based series of CRC patients. In the present study, we investigated the expression of six proteins related to the Warburg effect (LDHA, GLUT1, MCT4, PKM2, p53, PTEN) by immunohistochemistry on tissue microarrays (TMAs) from 2,399 incident CRC patients from the prospective Netherlands Cohort Study. Expression levels of the six proteins were combined into a pathway-based sum-score and patients were categorised into three Warburg-subtypes (low/moderate/high). The associations between Warburg-subtypes and CRC-specific and overall survival were investigated using Kaplan-Meier curves and Cox regression models. CRC patients were classified as Warburg-low (n = 695, 29.0%), Warburg-moderate (n = 858, 35.8%) or Warburg-high (n = 841, 35.1%). Patients with Warburg-high CRC had the poorest CRC-specific [hazard ratio (HR) 1.17; 95% CI 1.00-1.38] and overall survival (HR 1.19; 95% CI 1.05-1.35), independent of known prognostic factors. In stratified analyses, this was particularly true for patients with tumour-node-metastasis (TNM) stage III CRC (HRCRC-specific 1.45; 95% CI 1.10-1.92 and HRoverall 1.47; 95% CI 1.15-1.87), and cancers located in the rectum (HRoverall 1.56; 95% CI 1.15-2.13). To our knowledge, this is the first study to identify the prognostic value of immunohistochemistry-based Warburg-subtypes in CRC. Our data suggest that Warburg-subtypes are related to potentially important differences in CRC survival. Further research is required to validate our findings and to investigate the potential clinical utility of these Warburg-subtypes in CRC.
Collapse
Affiliation(s)
- Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Josien Ca Jenniskens
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Colinda Cjm Simons
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.,Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
43
|
Wang M, Li XZ, Zhang MX, Ye QY, Chen YX, Chang X. Atractylenolide-I Sensitizes Triple-Negative Breast Cancer Cells to Paclitaxel by Blocking CTGF Expression and Fibroblast Activation. Front Oncol 2021; 11:738534. [PMID: 34692516 PMCID: PMC8526898 DOI: 10.3389/fonc.2021.738534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
This investigation was conducted to elucidate whether atractylenolide-I (ATL-1), which is the main component of Atractylodes macrocephala Koidz, can sensitize triple-negative breast cancer (TNBC) cells to paclitaxel and investigate the possible mechanism involved. We discovered that ATL-1 could inhibit tumor cell migration and increase the sensitivity of tumor cells to paclitaxel. ATL-1 downregulated the expression and secretion of CTGF in TNBC cells. Apart from inhibiting TNBC cell migration via CTGF, ATL-1 downregulated the expression of CTGF in fibroblasts and decreased the ability of breast cancer cells to transform fibroblasts into cancer-associated fibroblasts (CAFs), which in turn increased the sensitivity of TNBC cells to paclitaxel. In a mouse model, we found that ATL-1 treatments could enhance the chemotherapeutic effect of paclitaxel on tumors and reduce tumor metastasis to the lungs and liver. Primary cultured fibroblasts derived from inoculated tumors in mice treated with ATL-1 combined with paclitaxel expressed relatively low levels of CAF markers. Collectively, our data indicate that ATL-1 can sensitize TNBC cells to paclitaxel by blocking CTGF expression and fibroblast activation and could be helpful in future research to determine the value of ATL-1 in the clinical setting.
Collapse
Affiliation(s)
- Meng Wang
- First Department of Surgery, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Xue-Zhen Li
- Department of Breast Surgery, Guangdong Second Hospital of Traditional Chinese Medicine, Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming-Xing Zhang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Qian-Yu Ye
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Ying-Xia Chen
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Xu Chang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
44
|
Protective Activity of Aspirin Eugenol Ester on Paraquat-Induced Cell Damage in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6697872. [PMID: 34394831 PMCID: PMC8360752 DOI: 10.1155/2021/6697872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. The aim of this study was to investigate the protective effect of AEE on paraquat- (PQ-) induced cell damage of SH-SY5Y human neuroblastoma cells and its potential molecular mechanism. There was no significant change in cell viability when AEE was used alone. PQ treatment reduced cell viability in a concentration-dependent manner. However, AEE reduced the PQ-induced loss of cell viability. Flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and 4′6-diamidino-2-phenylindole (DAPI) staining were used to evaluate cell apoptosis. Compared with the PQ group, AEE pretreatment could significantly inhibit PQ-induced cell damage. AEE pretreatment could reduce the cell damage of SH-SY5Y cells induced by PQ via reducing superoxide anion, intracellular reactive oxygen species (ROS), and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). At the same time, AEE could increase the activity of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) and decrease the activity of malondialdehyde (MDA). The results showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of caspase-3 and Bax was significantly increased in the PQ group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of caspase-3 and Bax in SH-SY5Y cells. PI3K inhibitor LY294002 and the silencing of PI3K by shRNA could weaken the protective effect of AEE on PQ-induced SH-SY5Y cells. Therefore, AEE has a protective effect on PQ-induced SH-SY5Y cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
45
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch Pharm Res 2021; 44:633-654. [PMID: 34269984 DOI: 10.1007/s12272-021-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
46
|
Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126434. [PMID: 34208601 PMCID: PMC8234711 DOI: 10.3390/ijms22126434] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-β1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.
Collapse
|
47
|
Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T. Atractylenolide-I Suppresses Tumorigenesis of Breast Cancer by Inhibiting Toll-Like Receptor 4-Mediated Nuclear Factor-κB Signaling Pathway. Front Pharmacol 2020; 11:598939. [PMID: 33363472 PMCID: PMC7753112 DOI: 10.3389/fphar.2020.598939] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is an essential sensor related to tumorigenesis, and overexpression of TLR4 in human tumors often correlates with poor prognosis. Atractylenolide-I (AT-I), a novel TLR4-antagonizing agent, is a major bioactive component from Rhizoma Atractylodes Macrocephalae. Emerging evidence suggests that AT-I exerts anti-tumor effects on various cancers such as colorectal cancer, bladder cancer and melanoma. Nevertheless, the effects of AT-I on mammary tumorigenesis remain unclear. Methods: In order to ascertain the correlation of TLR4/NF-κB pathway with breast cancer, the expression of TLR4 and NF-κB in normal breast tissues and cancer tissues with different TNM-stages was detected by human tissue microarray and immunohistochemistry technology. The effects of AT-I on tumorigenesis were investigated by cell viability, colony formation, apoptosis, migration and invasion assays in two breast cancer cells (MCF-7 and MDA-MB-231), and N-Nitroso-N-methylurea induced rat breast cancer models were developed to evaluate the anti-tumor effects of AT-I in vivo. The possible underlying mechanisms were further explored by western blot and ELISA assays after a series of LPS treatment and TLR4 knockdown experiments. Results: We found that TLR4 and NF-κB were significantly up-regulated in breast cancer tissues, and was correlated with advanced TNM-stages. AT-I could inhibit TLR4 mediated NF-κB signaling pathway and decrease NF-κB-regulated cytokines in breast cancer cells, thus inhibiting cell proliferation, migration and invasion, and inducing apoptosis of breast cancer cells. Furthermore, AT-I could inhibit N-Nitroso-N-methylurea-induced rat mammary tumor progression through TLR4/NF-κB pathway. Conclusion: Our findings demonstrated that TLR4 and NF-κB were over expressed in breast cancer, and AT-I could suppress tumorigenesis of breast cancer via inhibiting TLR4-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqian Zhang
- Department of Pharmacy, Chengdu Third People's Hospital and College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jianhui Zhang
- Department of Breast Cancer, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
48
|
Mechanism of Action of Bu-Fei-Yi-Shen Formula in Treating Chronic Obstructive Pulmonary Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9105972. [PMID: 33313323 PMCID: PMC7718855 DOI: 10.1155/2020/9105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Objective To explore the mechanism of action of Bu-Fei-Yi-Shen formula (BFYSF) in treating chronic obstructive pulmonary disease (COPD) based on network pharmacology analysis and molecular docking validation. Methods First of all, the pharmacologically active ingredients and corresponding targets in BFYSF were mined by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the analysis platform, and literature review. Subsequently, the COPD-related targets (including the pathogenic targets and known therapeutic targets) were identified through the TTD, CTD, DisGeNet, and GeneCards databases. Thereafter, Cytoscape was employed to construct the candidate component-target network of BFYSF in the treatment of COPD. Moreover, the cytoHubba plug-in was utilized to calculate the topological parameters of nodes in the network; then, the core components and core targets of BFYSF in the treatment of COPD were extracted according to the degree value (greater than or equal to the median degree values for all nodes in the network) to construct the core network. Further, the Autodock vina software was adopted for molecular docking study on the core active ingredients and core targets, so as to verify the above-mentioned network pharmacology analysis results. Finally, the Omicshare database was applied in enrichment analysis of the biological functions of core targets and the involved signaling pathways. Results In the core component-target network of BFYSF in treating COPD, there were 30 active ingredients and 37 core targets. Enrichment analysis suggested that these 37 core targets were mainly involved in the regulation of biological functions, such as response to biological and chemical stimuli, multiple cellular life processes, immunity, and metabolism. Besides, multiple pathways, including IL-17, Toll-like receptor (TLR), TNF, and HIF-1, played certain roles in the effect of BFYSF on treating COPD. Conclusion BFYSF can treat COPD through the multicomponent, multitarget, and multipathway synergistic network, which provides basic data for intensively exploring the mechanism of action of BFYSF in treating COPD.
Collapse
|
49
|
Guo Y, Xiao Y, Zhu H, Guo H, Zhou Y, Shentu Y, Zheng C, Chen C, Bai Y. Inhibition of proliferation-linked signaling cascades with atractylenolide I reduces myofibroblastic phenotype and renal fibrosis. Biochem Pharmacol 2020; 183:114344. [PMID: 33221275 DOI: 10.1016/j.bcp.2020.114344] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Renal fibrosis is a frequent axis contributing to the occurrence of end-stage nephropathy. Previously, it has been reported that atractylenolide Ⅰ (ATL-1), a natural compound extracted from Atractylodes macrocephala, has anti-cancer and antioxidant effects. However, the renal anti-fibrotic effects of action remain unclear. In this study, the anti-fibrotic effects of ATL-1 were examined in fibroblasts, tubular epithelial cells (TECs) triggered by TGF-β1 in vitro, and using a unilateral ureteral obstruction (UUO) mouse model in vivo. We found that ATL-1 represses the myofibroblastic phenotype and fibrosis development in UUO kidneys by targeting the fibroblast-myofibroblast differentiation (FMD), as well as epithelial-mesenchymal transition (EMT). The anti-fibrotic effects of ATL-1 were associated with reduced cell growth in the interstitium and tubules, leading to suppression of the proliferation-linked cascades activity consisting of JAK2/STAT3, PI3K/Akt, p38 MAPK, and Wnt/β-catenin pathways. Besides, ATL-1 treatment repressed TGF-β1-triggered FMD and the myofibroblastic phenotype in fibroblasts by antagonizing the activation of proliferation-linked cascades. Likewise, TGF-β1-triggered excessive activation of the proliferation-linked signaling in TECs triggered EMT. The myofibroblastic phenotype was repressed by ATL-1. The anti-fibrotic and anti-proliferative effects of ATL-1 were linked to the inactivation of Smad2/3 signaling, partially reversing FMD, as well as EMT and the repression of the myofibroblastic phenotype. Thus, the inhibition of myofibroblastic phenotype and fibrosis development in vivo and in vitro through proliferation-linked cascades of ATL-1 makes it a prospective therapeutic bio-agent to prevent renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanyi Xiao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China.
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Institute of Chronic Kidney Disease, Wenzhou Medical University, Wenzhou 325000, China; Center for Health Assessment, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
50
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|