1
|
Kim S, Kim D, Lee J, Han JK, Um MY, Jung JH, Yoon M, Choi Y, Oh Y, Youn JH, Cho S. Novel neuropharmacological activity of citrus lime (Citrus aurantifolia): A standardized lime peel supplement enhances non-rapid eye movement sleep by activating the GABA type A receptor. Biomed Pharmacother 2024; 179:117410. [PMID: 39270541 DOI: 10.1016/j.biopha.2024.117410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Polyphenols have been well-established to exert sedative-hypnotic effects in psychopharmacology. Lime (Citrus aurantifolia) peel is rich in biologically active polyphenols; however, the effects of lime peel extract on sleep have not yet been demonstrated. A comparison was conducted in mice, between the sleep-promoting effects of a standardized lime peel supplement (SLPS) and a well-known hypnotic drug, zolpidem, and its hypnotic mechanism was investigated using in vivo and in vitro assays. The effects of SLPS on sleep were assessed using a pentobarbital-induced sleep test and sleep architecture analysis based on recording electroencephalograms and electromyograms. Additionally, a GABAA receptor binding assay, electrophysiological measurements, and in vivo animal models were used to elucidate the hypnotic mechanism. SLPS (200 and 400 mg/kg) was found to significantly decrease sleep latency and increase the amount of non-rapid eye movement sleep without altering delta activity. The hypnotic effects of SLPS were attributed to its flavonoid-rich ethyl acetate fraction. SLPS had a binding affinity to the GABA-binding site of the GABAA receptor and directly activated the GABAA receptors. The hypnotic effects and GABAA receptor activity of SLPS were completely blocked by bicuculline, a competitive antagonist of the GABAA receptor, in both in vitro and in vivo assays. To the best of our knowledge, this study is the first to demonstrate the hypnotic effects of SLPS, which acts via the GABA-binding site of the GABAA receptor. Our results suggest that lime peel, a by-product abundantly generated during juice processing, can potentially be used as a novel sedative-hypnotic.
Collapse
Affiliation(s)
- Seonghui Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea; Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea
| | - Duhyeon Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaekwang Lee
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jin-Kyu Han
- Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea; Seoul Sleep Center, Seoul 06041, Republic of Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jong Hoon Jung
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yunjin Choi
- Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea
| | - Youngtaek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA
| | - Jang H Youn
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA.
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea; Research & Development Center, Nutra-it Inc., Busan 48513, Republic of Korea; Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Pérez-Jiménez J, Agnant K, Lamuela-Raventós RM, St-Onge MP. Dietary polyphenols and sleep modulation: Current evidence and perspectives. Sleep Med Rev 2023; 72:101844. [PMID: 37659249 PMCID: PMC10872761 DOI: 10.1016/j.smrv.2023.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Polyphenols are plant compounds with several biological activities. This review aims to summarize current knowledge on the potential role of polyphenols in modulating sleep. A total of 28 preclinical studies, 12 intervention studies and four observational studies exploring the role of polyphenol intake on sleep were identified. From animal studies, 26 out of the 28 studies found beneficial effects of polyphenols on sleep architecture. Three out of four human observational studies found a beneficial association between polyphenol intake and sleep parameters. And, among clinical intervention studies, eight from a total of 12 studies found some beneficial effect of polyphenol intake on various sleep parameters, although some discrepancies between studies were found. Overall, emerging evidence suggests a benefit of polyphenol intake on sleep. Several mechanisms of action have been suggested, ranging from effects on neurotransmitters to an action through the gut-brain axis. However, more research in this field is needed, emphasizing the use of nutritional doses in mechanistic studies and interventions targeting participants with sleep problems. This would allow to elucidate whether an additional biological effect of polyphenols is modulation of sleep, a behavior associated with adverse health outcomes.
Collapse
Affiliation(s)
- Jara Pérez-Jiménez
- Dept. Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain; CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM), ISCIII, Madrid, Spain; Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kaitha Agnant
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rosa M Lamuela-Raventós
- Dept. Nutrition, Food Sciences and Gastronomy, XIA, INSA-UB, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), ISCIII, Madrid, Spain
| | - Marie-Pierre St-Onge
- Division of General Medicine and Center of Excellence for Sleep & Circadian Research, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
5
|
Um MY, Yoon M, Kim M, Jung J, Kim S, Kim DO, Cho S. Curcuminoids, a major turmeric component, have a sleep-enhancing effect by targeting the histamine H1 receptor. Food Funct 2022; 13:12697-12706. [PMID: 36408594 DOI: 10.1039/d2fo02087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Turmeric (Curcuma longa) had been considered as a universal panacea in functional foods and traditional medicines. In recent, the sedative-hypnotic effect of turmeric extract (TE) was reported. However, sleep-promoting compounds in TE have been not yet demonstrated. Curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) are the major constituents of turmeric being responsible for its various biological activities. Therefore, they can be first assumed to be sedative-hypnotic compounds of TE. In the present study, we aimed to investigate the effects and underlying mechanisms of curcuminoids and each constituent on the sleep-wake cycle of mice. Molecular docking studies, histamine H1 receptor (H1R) binding assays, and H1R knockout animal studies were used to investigate the molecular mechanisms underlying the sleep-promoting effects. Curcuminoids and their constituents reduced sleep latency and increased sleep duration in the pentobarbital-induced sleep test in mice. In addition, curcuminoids significantly increased the duration of NREMS and reduced sleep latency without altering the REMS and delta activity. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin were predicted to interact with H1R in the molecular model. In the binding affinity assay, we found that curcuminoids, as well as their constituents, significantly bind to H1R with the Ki value of 1.49 μg mL-1. Furthermore, sleep latency was reduced and NREMS frequency was increased following curcuminoid administration in wild-type mice but not in H1R knockout mice. Therefore, we conclude that curcuminoids reduce sleep latency and enhance the quantity of NREMS by acting as modulators of H1R, indicating their usefulness in treating insomnia.
Collapse
Affiliation(s)
- Min Young Um
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.,Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Minseok Yoon
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Minji Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea.,Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jonghoon Jung
- Food Functionality Research Division, Korea Food Research Institute, Wanju, 55364, Republic of Korea
| | - Seonghui Kim
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
6
|
Kim S, Kim D, Um MY, Yoon M, Choi JS, Choi YH, Cho S. Marine Polyphenol Phlorotannins as a Natural Sleep Aid for Treatment of Insomnia: A Review of Sedative-Hypnotic Effects and Mechanism of Action. Mar Drugs 2022; 20:774. [PMID: 36547921 PMCID: PMC9780786 DOI: 10.3390/md20120774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Insomnia is a common sleep disorder. Natural sleep aids are gaining worldwide popularity as alternatives to prescription drugs for improving sleep. Recently, numerous studies have investigated the sedative-hypnotic effects of the polyphenols of terrestrial plants. The hypnotic effects of marine polyphenols have also been studied in recent years. Phlorotannins are marine polyphenols that are found only in brown algae. Phlorotannins exert sedative-hypnotic effects via the gamma-aminobutyric acid type A-benzodiazepine receptor. In addition, the brown seaweed Ecklonia cava supplement containing phlorotannins has been approved by the Ministry of Food and Drug Safety as a health-functional ingredient that helps improve sleep quality. Currently, it is meaningful to deal with the sedative-hypnotic effects of phlorotannins as natural sleep aids. The current review comprehensively presents the sedative-hypnotic effects in animal models and human clinical trials as well as their mechanism of action, extraction, purification, and safety.
Collapse
Affiliation(s)
- Seonghui Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Duhyeon Kim
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jae-Suk Choi
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si 53064, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
- Anti-Aging Research Center and Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
7
|
Cheon J, Kim M. Comprehensive effects of various nutrients on sleep. Sleep Biol Rhythms 2022; 20:449-458. [PMID: 38468613 PMCID: PMC10899959 DOI: 10.1007/s41105-022-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Sleep problems have become common among people today. Sleep disorders are closely associated with physiological and psychological diseases. Among the ways of improving objective or subjective sleep quality, controlling elements associated with food intake can be more efficient than other methods in terms of time and cost. Therefore, the purpose of this study was to understand the effects of nutrients and natural products on sleep. An extensive literature search was conducted, and related articles were identified through online databases, such as Elsevier, Google Scholar, PubMed, Springer, and Web of Science. Expert opinion, conference abstracts, unpublished studies, and studies published in languages other than English were excluded from this review. The effects of macronutrients and diet adjustment on sleep differed. Although not all nutrients independently affect sleep, they comprehensively affect it through tryptophan metabolism. Furthermore, natural foods related to GABA have an effect on sleep similar to that of sleeping pills. Taken together, our results suggest that humans can control both their objective and subjective sleep quality based on their lifestyle and food consumption. However, until now, direct studies on the relationship between human sleep and nutrition, such as clinical trials, have been insufficient. As both objective and subjective sleep quality are the factors determining the quality of life of individuals, further studies on those are needed to improve it.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, BioScience Research Institute, Sahmyook University, Hwarangro 815, Nowongu, 01795 Seoul, Republic of Korea
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Hwarangro 815, Nowongu, Seoul, 01795 Republic of Korea
| |
Collapse
|
8
|
Rahman MM, Islam MR, Akash S, Mim SA, Rahaman MS, Emran TB, Akkol EK, Sharma R, Alhumaydhi FA, Sweilam SH, Hossain ME, Ray TK, Sultana S, Ahmed M, Sobarzo-Sánchez E, Wilairatana P. In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Front Cell Infect Microbiol 2022; 12:929430. [PMID: 36072227 PMCID: PMC9441699 DOI: 10.3389/fcimb.2022.929430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Nag M, Lahiri D, Dey A, Sarkar T, Pati S, Joshi S, Bunawan H, Mohammed A, Edinur HA, Ghosh S, Ray RR. Seafood Discards: A Potent Source of Enzymes and Biomacromolecules With Nutritional and Nutraceutical Significance. Front Nutr 2022; 9:879929. [PMID: 35464014 PMCID: PMC9024408 DOI: 10.3389/fnut.2022.879929] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Abstract
In recent times, the seafood industry is found to produce large volumes of waste products comprising shrimp shells, fish bones, fins, skins, intestines, and carcasses, along with the voluminous quantity of wastewater effluents. These seafood industry effluents contain large quantities of lipids, amino acids, proteins, polyunsaturated fatty acids, minerals, and carotenoids mixed with the garbage. This debris not only causes a huge wastage of various nutrients but also roots in severe environmental contamination. Hence, the problem of such seafood industry run-offs needs to be immediately managed with a commercial outlook. Microbiological treatment may lead to the valorization of seafood wastes, the trove of several useful compounds into value-added materials like enzymes, such as lipase, protease, chitinase, hyaluronidase, phosphatase, etc., and organic compounds like bioactive peptides, collagen, gelatin, chitosan, and mineral-based nutraceuticals. Such bioconversion in combination with a bio-refinery strategy possesses the potential for environment-friendly and inexpensive management of discards generated from seafood, which can sustainably maintain the production of seafood. The compounds that are being produced may act as nutritional sources or as nutraceuticals, foods with medicinal value. Determining utilization of seafood discard not only reduces the obnoxious deposition of waste but adds economy in the production of food with nutritional and medicinal importance, and, thereby meets up the long-lasting global demand of making nutrients and nutraceuticals available at a nominal cost.
Collapse
Affiliation(s)
- Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ankita Dey
- Department of Pathology, Belle Vue Clinic, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Sanket Joshi
- Central Analytical and Applied Research Unit, Oil & Gas Research Center, Sultan Qaboos University, Muscat, Oman
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Kampus Jeli, Jeli, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Hisham Atan Edinur,
| | - Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kolkata, India
- Rina Rani Ray,
| |
Collapse
|
10
|
Ríos JL, Schinella GR, Moragrega I. Phenolics as GABA A Receptor Ligands: An Updated Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061770. [PMID: 35335130 PMCID: PMC8953830 DOI: 10.3390/molecules27061770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Natural products can act as potential GABA modulators, avoiding the undesirable effects of traditional pharmacology used for the inhibition of the central nervous system such as benzodiazepines (BZD). Phenolics, especially flavonoids and phlorotannins, have been considered as modulators of the BZD-site of GABAA receptors (GABAARs), with sedative, anxiolytic or anticonvulsant effects. However, the wide chemical structural variability of flavonoids shows their potential action at more than one additional binding site on GABAARs, which may act either negatively, positively, by neutralizing GABAARs, or directly as allosteric agonists. Therefore, the aim of the present review is to compile and discuss an update of the role of phenolics, namely as pharmacological targets involving dysfunctions of the GABA system, analyzing both their different compounds and their mechanism as GABAergic modulators. We focus this review on articles written in English since the year 2010 until the present. Of course, although more research would be necessary to fully establish the type specificity of phenolics and their pharmacological activity, the evidence supports their potential as GABAAR modulators, thereby favoring their inclusion in the development of new therapeutic targets based on natural products. Specifically, the data compiled in this review allows for the directing of future research towards ortho-dihydroxy diterpene galdosol, the flavonoids isoliquiritigenin (chalcone), rhusflavone and agathisflavone (biflavonoids), as well as the phlorotannins, dieckol and triphlorethol A. Clinically, flavonoids are the most interesting phenolics due to their potential as anticonvulsant and anxiolytic drugs, and phlorotannins are also of interest as sedative agents.
Collapse
Affiliation(s)
- José-Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
- Correspondence:
| | - Guillermo R. Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata BA1900, Argentina;
- Instituto de Ciencias de la Salud, UNAJ-CICPBA, Florencio Varela BA1888, Argentina
| | - Inés Moragrega
- Departament de Psicobiologia, Facultat de Psicologia, Universitat de València, Av. Blasco Ibáñez 21, 46010 Valencia, Spain;
| |
Collapse
|
11
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|
12
|
Mutalipassi M, Esposito R, Ruocco N, Viel T, Costantini M, Zupo V. Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards. Foods 2021; 10:foods10071495. [PMID: 34203174 PMCID: PMC8303620 DOI: 10.3390/foods10071495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
| | - Thomas Viel
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (R.E.); (N.R.)
- Correspondence: (M.C.); (V.Z.)
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy; (M.M.); (T.V.)
- Correspondence: (M.C.); (V.Z.)
| |
Collapse
|
13
|
Shi Y, Qi H. Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
14
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|