1
|
Tian Y, Shao S, Feng H, Zeng R, Li S, Zhang Q. Targeting senescent cells in atherosclerosis: Pathways to novel therapies. Ageing Res Rev 2024; 101:102502. [PMID: 39278272 DOI: 10.1016/j.arr.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
Targeting senescent cells has recently emerged as a promising strategy for treating age-related diseases, such as atherosclerosis, which significantly contributes to global cardiovascular morbidity and mortality. This review elucidates the role of senescent cells in the development of atherosclerosis, including persistently damaging DNA, inducing oxidative stress and secreting pro-inflammatory factors known as the senescence-associated secretory phenotype. Therapeutic approaches targeting senescent cells to mitigate atherosclerosis are summarized in this review, which include the development of senotherapeutics and immunotherapies. These therapies are designed to either remove these cells or suppress their deleterious effects. These emerging therapies hold potential to decelerate or even alleviate the progression of AS, paving the way for new avenues in cardiovascular research and treatment.
Collapse
Affiliation(s)
- Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Sihang Shao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Pharmacy, Sichuan Provincial People's Hospital East Sichuan Hospital & Dazhou First People's Hospital, Dazhou 635000, China.
| |
Collapse
|
2
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Cimellaro A, Cavallo M, Mungo M, Suraci E, Spagnolo F, Addesi D, Pintaudi M, Pintaudi C. Cardiovascular Effectiveness and Safety of Antidiabetic Drugs in Patients with Type 2 Diabetes and Peripheral Artery Disease: Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1542. [PMID: 39336583 PMCID: PMC11434261 DOI: 10.3390/medicina60091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic condition commonly complicating type 2 diabetes (T2D), leading to poor quality of life and increased risk of major adverse lower-limb (MALE) and cardiovascular (CV) events (MACE). Therapeutic management of PAD in T2D patients is much more arduous, often due to bilateral, multi-vessel, and distal vascular involvement, in addition to increased systemic polyvascular atherosclerotic burden. On the other hand, the pathophysiological link between PAD and T2D is very complex, involving mechanisms such as endothelial dysfunction and increased subclinical inflammation in addition to chronic hyperglycemia. Therefore, the clinical approach should not ignore vascular protection with the aim of reducing limb and overall CV events besides a mere glucose-lowering effect. However, the choice of the best medications in this setting is challenging due to low-grade evidence or lacking targeted studies in PAD patients. The present review highlighted the strong relationship between T2D and PAD, focusing on the best treatment strategy to reduce CV risk and prevent PAD occurrence and worsening in patients with T2D. The Medline databases were searched for studies including T2D and PAD up to June 2024 and reporting the CV effectiveness and safety of the most used glucose-lowering agents, with no restriction on PAD definition, study design, or country. The main outcomes considered were MACE-including nonfatal acute myocardial infarction, nonfatal stroke, and CV death-and MALE-defined as lower-limb complications, amputations, or need for revascularization. To the best of our current knowledge, GLP-1 receptor agonists and SGLT2 inhibitors represent the best choice to reduce CV risk in T2D and PAD settings, but a personalized approach should be considered. GLP-1 receptor agonists should be preferred in subjects with prevalent atherosclerotic burden and a history of previous MALE, while SGLT2 inhibitors should be used in those with heart failure if overall CV benefits outweigh the risk of lower-limb complications.
Collapse
Affiliation(s)
- Antonio Cimellaro
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Michela Cavallo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Marialaura Mungo
- Internal Medicine Unit, Department of Medical and Surgical Sciences, ‘Magna Græcia’ University of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy;
| | - Edoardo Suraci
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Francesco Spagnolo
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Desirée Addesi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| | - Medea Pintaudi
- Unit of Plastic Surgery, Department of Surgery, Azienda Ospedaliero-Universitaria “Gaetano Martino”, 98124 Messina, Italy;
| | - Carmelo Pintaudi
- Internal Medicine Unit, Department of Medicine Specialties, “Pugliese-Ciaccio” Hospital of Catanzaro, Azienda Ospedaliero-Universitaria Renato Dulbecco, Via Pio X n.83, 88100 Catanzaro, Italy; (M.C.); (E.S.); (F.S.); (D.A.); (C.P.)
| |
Collapse
|
4
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Desai R, Vasavada A, Patel BA, Raval M, Mondal A, Mahajan K, Katukuri N, Varma Y, Jain A, Krishnamoorthy G. Association of Prediabetes and Recurrent Stroke in Atrial Fibrillation Patients: A Population-Based Analysis of Hospitalizations and Outcomes. J Clin Med 2024; 13:573. [PMID: 38276079 PMCID: PMC10816177 DOI: 10.3390/jcm13020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
Prediabetes is a risk factor for ischemic stroke in atrial fibrillation (AF) patients, yet, its impact on recurrent stroke in AF patients remains understudied. Using the 2018 National Inpatient Sample, we investigated the link between Prediabetes and recurrent stroke in AF patients with prior stroke or transient ischemic attack (TIA). Among 18,905 non-diabetic AF patients, 480 (2.5%) had prediabetes. The prediabetic group, with a median age of 78, exhibited a two-fold higher risk of recurrent stroke compared to the non-prediabetic cohort (median age 82), as evidenced by both unadjusted (OR 2.14, 95% CI 1.72-2.66) and adjusted (adjusted for socio-demographics/comorbidities, OR 2.09, 95% CI 1.65-2.64, p < 0.001). The prediabetes cohort, comprising more male and Black patients, demonstrated associations with higher Medicaid enrollment, admissions from certain regions, and higher rates of hyperlipidemia, smoking, peripheral vascular disease, obesity, and chronic obstructive pulmonary disease (all p < 0.05). Despite higher rates of home health care and increased hospital costs in the prediabetes group, the adjusted odds of all-cause mortality were not statistically significant (OR 0.55, 95% CI 0.19-1.56, p = 0.260). The findings of this study suggest that clinicians should be vigilant in managing prediabetes in AF patients, and strategies to prevent recurrent stroke in this high-risk population should be considered.
Collapse
Affiliation(s)
- Rupak Desai
- Independent Researcher, Atlanta, GA 30033, USA;
| | - Advait Vasavada
- Department of Family Medicine, University of Nebraska Medicine, Omaha, NE 68198, USA;
| | - Bhavin A. Patel
- Department of Internal Medicine, Graduate Medical Education, Trinity Health Oakland Hospital, Pontiac, MI 48341, USA; (B.A.P.); (K.M.); (G.K.)
| | - Maharshi Raval
- Department of Internal Medicine, Landmark Medical Center, Woonsocket, RI 02895, USA
| | - Avilash Mondal
- Department of Internal Medicine, Nazareth Hospital, Philadelphia, PA 19152, USA;
| | - Kshitij Mahajan
- Department of Internal Medicine, Graduate Medical Education, Trinity Health Oakland Hospital, Pontiac, MI 48341, USA; (B.A.P.); (K.M.); (G.K.)
| | - Nishanth Katukuri
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Yash Varma
- Division of Cardiovascular Medicine, Graduate Medical Education, Trinity Health Oakland Hospital, Wayne State University, Detroit, MI 48202, USA;
| | - Akhil Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Graduate Medical Education, Trinity Health Oakland Hospital, Pontiac, MI 48341, USA; (B.A.P.); (K.M.); (G.K.)
| |
Collapse
|
6
|
Soleimani AA, Shokri N, Elahimanesh M, Mohammadi P, Parvaz N, Bakhshandeh M, Najafi M. Beta arrestin-related signalling axes are influenced by dexamethasone and metformin in vascular smooth muscle cells cultured in high glucose condition. Endocrinol Diabetes Metab 2024; 7:e465. [PMID: 38102782 PMCID: PMC10782052 DOI: 10.1002/edm2.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Metformin (Met) and dexamethasone (Dexa) are known to reduce blood sugar levels and anti-inflammatory effects, respectively. Based on the acceleration of atherosclerosis process in diabetes, the β-arrestin 2 (BARR2) gene and protein expression levels were evaluated in vascular smooth muscle cells (VSMCs) treated with Met and Dexa in high glucose conditions in this study. METHODS AND MATERIALS Human VSMCs were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM-F12) medium and, were treated with different values of Met (1 mM, 5 mM and 7 mM) and Dexa (10-7 M, 10-6 M and 10-5 M) in 24- and 48-h periods. The BARR2 gene and protein expression levels were identified with RT-qPCR and western blotting techniques, respectively. The signalling axes were predicted from gene network made using Cytoscape software and, were annotated with Gene Ontology. RESULTS The BARR2 gene and protein expression levels reduced in VSMCs treated with Dexa and Met after 24- and 48-h periods. These results were more changed after 48 h. Furthermore, many BARR2-related signalling axes were found from the network genes. CONCLUSION Met and Dexa suppressed the BARR2 protein and gene expression levels in the VSMCs. Moreover, the gene network suggested some the cellular signalling axes related to BARR2 that may be affected by Met and Dexa.
Collapse
Affiliation(s)
- Ali Akbar Soleimani
- Department of Clinical Biochemistry, Faculty of MedicineTehran University of Medical SciencesTehranIran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Payam Mohammadi
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Najmeh Parvaz
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Masoomeh Bakhshandeh
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, Faculty of MedicineIran University of Medical SciencesTehranIran
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Microbial Biotechnology CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Nabeh OA, Saud AI, Amin B, Khedr AS, Amr A, Faoosa AM, Esmat E, Mahmoud YM, Hatem A, Mohamed M, Osama A, Soliman YMA, Elkorashy RI, Elmorsy SA. A Systematic Review of Novel Therapies of Pulmonary Arterial Hypertension. Am J Cardiovasc Drugs 2024; 24:39-54. [PMID: 37945977 PMCID: PMC10805839 DOI: 10.1007/s40256-023-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION This work was registered in PROSPERO (CDR42022340658).
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa I Saud
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Alaa Amr
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Aya Hatem
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Mohamed
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Reem Ibrahim Elkorashy
- Pulmonology, Pulmonary Medicine Department, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Soha Aly Elmorsy
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Phadwal K, Tan X, Koo E, Zhu D, MacRae VE. Metformin ameliorates valve interstitial cell calcification by promoting autophagic flux. Sci Rep 2023; 13:21435. [PMID: 38052777 PMCID: PMC10698150 DOI: 10.1038/s41598-023-47774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart disease of the developed world. It has previously been established that metformin administration reduces arterial calcification via autophagy; however, whether metformin directly regulates CAVD has yet to be elucidated. In the present study we investigated whether metformin alleviates valvular calcification through the autophagy-mediated recycling of Runx2. Calcification was reduced in rat valve interstitial cells (RVICs) by metformin treatment (0.5-1.5 mM) (P < 0.01), with a marked decrease in Runx2 protein expression compared to control cells (P < 0.05). Additionally, upregulated expression of Atg3 and Atg7 (key proteins required for autophagosome formation), was observed following metformin treatment (1 mM). Blocking autophagic flux using Bafilomycin-A1 revealed colocalisation of Runx2 with LC3 puncta in metformin treated RVICs (P < 0.001). Comparable Runx2 accumulation was seen in LC3 positive autolysosomes present within cells that had been treated with both metformin and hydroxychloroquine in combination (P < 0.001). Mechanistic studies employing three-way co-immunoprecipitation with Runx2, p62 and LC3 suggested that Runx2 binds to LC3-II upon metformin treatment in VICs. Together these studies suggest that the utilisation of metformin may represent a novel strategy for the treatment of CAVD.
Collapse
Affiliation(s)
- K Phadwal
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - X Tan
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Guangzhou Institute of Cardiovascular Diseases, Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - E Koo
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - D Zhu
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - V E MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
9
|
Citi V, Barresi E, Piragine E, Spezzini J, Testai L, Da Settimo F, Martelli A, Taliani S, Calderone V. Anti-Proliferative Properties of the Novel Hybrid Drug Met-ITC, Composed of the Native Drug Metformin with the Addition of an Isothiocyanate H 2S Donor Moiety, in Different Cancer Cell Lines. Int J Mol Sci 2023; 24:16131. [PMID: 38003321 PMCID: PMC10671447 DOI: 10.3390/ijms242216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Metformin (Met) is the first-line therapy in type 2 diabetes mellitus but, in last few years, it has also been evaluated as anti-cancer agent. Several pathways, such as AMPK or PI3K/Akt/mTOR, are likely to be involved in the anti-cancer Met activity. In addition, hydrogen sulfide (H2S) and H2S donors have been described as anti-cancer agents affecting cell-cycle and inducing apoptosis. Among H2S donors, isothiocyanates are endowed with a further anti-cancer mechanism: the inhibition of the histone deacetylase enzymes. On this basis, a hybrid molecule (Met-ITC) obtained through the addition of an isothiocyanate moiety to the Met molecule was designed and its ability to release Met has been demonstrated. Met-ITC exhibited more efficacy and potency than Met in inhibiting cancer cells (AsPC-1, MIA PaCa-2, MCF-7) viability and it was less effective on non-tumorigenic cells (MCF 10-A). The ability of Met-ITC to release H2S has been recorded both in cell-free and in cancer cells assays. Finally, its ability to affect the cell cycle and to induce both early and late apoptosis has been demonstrated on the most sensitive cell line (MCF-7). These results confirmed that Met-ITC is a new hybrid molecule endowed with potential anti-cancer properties derived both from Met and H2S.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (V.C.); (E.B.); (E.P.); (J.S.); (L.T.); (F.D.S.); (S.T.); (V.C.)
- Center for Instrument Sharing of the University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43/44, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Abdelazeem H, Tu L, Thuillet R, Ottaviani M, Boulfrad A, Beck T, Senbel A, Mani S, Castier Y, Guyard A, Tran-Dinh A, El-Benna J, Longrois D, Silverstein AM, Guignabert C, Norel X. AMPK activation by metformin protects against pulmonary hypertension in rats and relaxes isolated human pulmonary artery. Eur J Pharmacol 2023; 946:175579. [PMID: 36914083 DOI: 10.1016/j.ejphar.2023.175579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 03/13/2023]
Abstract
Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI2) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels. In this study, we examined the effect of metformin treatment on PH as well as on NO and PGI2 pathways in monocrotaline (MCT)-injected rats with established PH. Moreover, we investigated the anti-contractile effects of AMPK activators on endothelium-denuded human pulmonary arteries (HPA) from Non-PH and Group 3 PH patients (due to lung diseases and/or hypoxia). Furthermore, we explored the interaction between treprostinil and the AMPK/eNOS pathway. Our results showed that metformin protected against PH progression in MCT rats where it reduced the mean pulmonary artery pressure, pulmonary vascular remodeling and right ventricular hypertrophy and fibrosis compared to vehicle-treated MCT rats. The protective effects on rat lungs were mediated in part by increasing eNOS activity and protein kinase G-1 expression but not through the PGI2 pathway. In addition, incubation with AMPK activators reduced the phenylephrine-induced contraction of endothelium-denuded HPA from Non-PH and PH patients. Finally, treprostinil also augmented eNOS activity in HPA smooth muscle cells. In conclusion, we found that AMPK activation can enhance the NO pathway, attenuate vasoconstriction by direct effects on smooth muscles, and reverse established MCT-induced PH in rats.
Collapse
Affiliation(s)
- Heba Abdelazeem
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ly Tu
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Raphaël Thuillet
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Mina Ottaviani
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Achraf Boulfrad
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Thomas Beck
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Amira Senbel
- Arab Academy for Science, Technology & Maritime Transport, College of Pharmacy, Alexandria, Egypt
| | - Salma Mani
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Université de Monastir-Tunisia, Institut Supérieur de Biotechnologie de Monastir (ISBM), Tunisia
| | - Yves Castier
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Alice Guyard
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Alexy Tran-Dinh
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Jamel El-Benna
- Université Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Dan Longrois
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | | | - Christophe Guignabert
- INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, 92350, Le Plessis-Robinson, France; Université Paris-Saclay, Faculté de Médecine, 94270, Le Kremlin-Bicêtre, France
| | - Xavier Norel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
| |
Collapse
|
11
|
Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial Homeostasis in VSMCs as a Central Hub in Vascular Remodeling. Int J Mol Sci 2023; 24:ijms24043483. [PMID: 36834896 PMCID: PMC9961025 DOI: 10.3390/ijms24043483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Collapse
|
12
|
Liu L, Yang H, Kuang SJ, Zhang L, Zhou MY, Zeng P, Zhang MZ, Rao F, Zhou ZL, Deng CY. Contribution of calcium dysregulation to impaired coronary artery contraction in Zucker diabetic fatty rats. Clin Exp Pharmacol Physiol 2023; 50:158-168. [PMID: 36309970 DOI: 10.1111/1440-1681.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 01/05/2023]
Abstract
Diabetic coronary artery injury is closely associated with Ca2+ dysregulation, although the underlying mechanism remains unclear. This study explored the role and mechanism of Ca2+ handling in coronary artery dysfunction in type 2 diabetic rats. Zucker diabetic fatty (ZDF) rats were used as the type 2 diabetes mellitus model. The contractility of coronary artery rings induced by KCl, CaCl2 , 5-HT and U46619 was significantly lower in ZDF rats than in Zucker lean rats. Vasoconstriction induced by 5-HT and U46619 was greatly inhibited by nifedipine. However, in the presence of 1 μM nifedipine or in the Ca2+ -free KH solution containing 1 μM nifedipine, there was no difference in the vasoconstriction between Zucker lean and ZDF rats. Store-operated calcium channels (SOCs) were not involved in coronary vasoconstriction. The downregulation of contractile proteins and the upregulation of synthesized proteins were in coronary artery smooth muscle cells (CASMCs) from ZDF rats. Metformin reversed the reduction of vasoconstriction in ZDF rats. Taken together, L-type calcium channel is important for regulating the excitation-contraction coupling of VSMCs in coronary arteries, and dysregulation of this channel contributes to the decreased contractility of coronary arteries in T2DM.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Zhuhai hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of biological science and engineering, South China University of Technology, Guangzhou, China
| | - Meng-Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of biological science and engineering, South China University of Technology, Guangzhou, China
| | - Peng Zeng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meng-Zhen Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Ling Zhou
- Zhuhai hospital affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Chun-Yu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,School of biological science and engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Déglise S, Bechelli C, Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front Physiol 2023; 13:1081881. [PMID: 36685215 PMCID: PMC9845604 DOI: 10.3389/fphys.2022.1081881] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Arterial occlusive disease is the leading cause of death in Western countries. Core contemporary therapies for this disease include angioplasties, stents, endarterectomies and bypass surgery. However, these treatments suffer from high failure rates due to re-occlusive vascular wall adaptations and restenosis. Restenosis following vascular surgery is largely due to intimal hyperplasia. Intimal hyperplasia develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. In this review, we describe the current state of knowledge on the origin and mechanisms underlying the dysregulated proliferation of vascular smooth muscle cells in intimal hyperplasia, and we present the new avenues of research targeting VSMC phenotype and proliferation.
Collapse
Affiliation(s)
| | | | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Sahinturk S. Metformin relaxes rat thoracic aorta via nitric oxide, AMPK, potassium channels, and PKC. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1030-1040. [PMID: 37605728 PMCID: PMC10440136 DOI: 10.22038/ijbms.2023.69728.15179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/10/2023] [Indexed: 08/23/2023]
Abstract
Objectives The present research aimed to identify the functional effects and underlying mechanisms of metformin on the rat thoracic aorta. Materials and Methods Thoracic aorta segments of Wistar Albino rats were put in the chambers of an isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration time, potassium chloride or phenylephrine was used to contract the vascular segments. The vessel segments were cumulatively treated with metformin (10-7-10-3 M) when a steady contraction was achieved. The described experimental approach was repeated after incubations with signaling pathway inhibitors and selective blockers of potassium channels to identify the effect mechanisms of metformin. Results Metformin had a potent vasorelaxant effect in a concentration-dependent way (P<0.001). After the endothelium was removed, the vasorelaxant effect level of metformin was significantly reduced. The level of vasorelaxant effect of metformin was increased by the maintenance of perivascular adipose tissue. Following administrations of L-NAME, methylene blue, compound C, BIM-I, and potassium channel blockers, the level of vasodilatory action of metformin was significantly reduced (P<0.001). Conclusion According to the results of this investigation, metformin significantly relaxes the thoracic aorta segments of rats. Metformin-mediated vasorelaxation involves the activation of numerous subtypes of potassium channels, including BKCa, IKCa, Kv, Kir, and K2p channels, as well as endothelium-dependent processes, including AMPK and eNOS/NO/sGS signaling pathways. Moreover, metformin-induced vasorelaxation is mediated through PVAT activation and the PKC signaling pathway.
Collapse
Affiliation(s)
- Serdar Sahinturk
- Bursa Uludag University Medicine School, Physiology Department, Bursa, Turkey
| |
Collapse
|
16
|
Titus AS, Ushakumary MG, Venugopal H, Wang M, Lakatta EG, Kailasam S. Metformin Attenuates Hyperglycaemia-Stimulated Pro-Fibrotic Gene Expression in Adventitial Fibroblasts via Inhibition of Discoidin Domain Receptor 2. Int J Mol Sci 2022; 24:ijms24010585. [PMID: 36614028 PMCID: PMC9820506 DOI: 10.3390/ijms24010585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Molecular mechanisms underlying the diverse therapeutic effects of anti-diabetic metformin, beyond its anti-hyperglycaemic effects, remain largely unclear. Metformin is reported to reduce the long-term complications of diabetes, including cardiovascular fibrosis and remodelling. Our recent investigations show that Discoidin Domain Receptor 2 (DDR2), a Collagen receptor tyrosine kinase, has an obligate regulatory role in Collagen type I gene expression in cardiac and vascular adventitial fibroblasts, and that it may be a molecular link between arterial fibrosis and metabolic syndrome in rhesus monkeys. Using gene knockdown and overexpression approaches, the present study examined whether DDR2 is a target of metformin and whether, by targeting DDR2, it inhibits Fibronectin and Collagen type I expression in rat aortic adventitial fibroblasts exposed to hyperglycaemic conditions. Metformin was found to attenuate hyperglycaemia-induced increase in DDR2 mRNA and protein expression by inhibiting TGF-β1/SMAD2/3 signalling that mediates the stimulatory effect of hyperglycaemia on DDR2 expression. Metformin also inhibited DDR2-dependent expression of Fibronectin and Collagen type I, indicating that it regulates these matrix proteins via DDR2 inhibition. The findings identify DDR2, a mediator of cardiovascular remodelling, as a molecular target of metformin, thereby uncovering the molecular basis of its protective role in vascular fibrosis and possibly cardiac fibrosis associated with diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Allen Sam Titus
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Mereena George Ushakumary
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Harikrishnan Venugopal
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, Kerala, India
- Correspondence:
| |
Collapse
|
17
|
Phadwal K, Koo E, Jones RA, Forsythe RO, Tang K, Tang Q, Corcoran BM, Caporali A, MacRae VE. Metformin protects against vascular calcification through the selective degradation of Runx2 by the p62 autophagy receptor. J Cell Physiol 2022; 237:4303-4316. [PMID: 36166694 DOI: 10.1002/jcp.30887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Vascular calcification is associated with aging, type 2 diabetes, and atherosclerosis, and increases the risk of cardiovascular morbidity and mortality. It is an active, highly regulated process that resembles physiological bone formation. It has previously been established that pharmacological doses of metformin alleviate arterial calcification through adenosine monophosphate-activated protein kinase (AMPK)-activated autophagy, however the specific pathway remains elusive. In the present study we hypothesized that metformin protects against arterial calcification through the direct autophagic degradation of runt-related transcription factor 2 (Runx2). Calcification was blunted in vascular smooth muscle cells (VSMCs) by metformin in a dose-dependent manner (0.5-1.5 mM) compared to control cells (p < 0.01). VSMCs cultured under high-phosphate (Pi) conditions in the presence of metformin (1 mM) showed a significant increase in LC3 puncta following bafilomycin-A1 (Baf-A; 5 nM) treatment compared to control cells (p < 0.001). Furthermore, reduced expression of Runx2 was observed in the nuclei of metformin-treated calcifying VSMCs (p < 0.0001). Evaluation of the functional role of autophagy through Atg3 knockdown in VSMCs showed aggravated Pi-induced calcification (p < 0.0001), failure to induce autophagy (punctate LC3) (p < 0.001) and increased nuclear Runx2 expression (p < 0.0001) in VSMCs cultured under high Pi conditions in the presence of metformin (1 mM). Mechanistic studies employing three-way coimmunoprecipitation with Runx2, p62, and LC3 revealed that p62 binds to both LC3 and Runx2 upon metformin treatment in VSMCs. Furthermore, immunoblotting with LC3 revealed that Runx2 specifically binds with p62 and LC3-II in metformin-treated calcified VSMCs. Lastly, we investigated the importance of the autophagy pathway in vascular calcification in a clinical setting. Ex vivo clinical analyses of calcified diabetic lower limb artery tissues highlighted a negative association between Runx2 and LC3 in the vascular calcification process. These studies suggest that exploitation of metformin and its analogues may represent a novel therapeutic strategy for clinical intervention through the induction of AMPK/Autophagy Related 3 (Atg3)-dependent autophagy and the subsequent p62-mediated autophagic degradation of Runx2.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Eve Koo
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, UK
| | - Rachael O Forsythe
- Centre for Cardiovascular Science, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Vascular Surgery, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Keyi Tang
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Qiyu Tang
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Brendan M Corcoran
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5′ AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body’s response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5′ AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review’s objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin’s efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Ravinder Singh, ; Talha Bin Emran,
| |
Collapse
|
19
|
Xu S, Lyu QR, Ilyas I, Tian XY, Weng J. Vascular homeostasis in atherosclerosis: A holistic overview. Front Immunol 2022; 13:976722. [PMID: 36172381 PMCID: PMC9512393 DOI: 10.3389/fimmu.2022.976722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis refers to the deposition of lipids and the co-existence of inflammation and impaired inflammation resolution in pan-vasculature, which causes lumen narrowing, hardening, plaque formation, and the manifestation of acute cardiovascular events. Emerging evidence has suggested that vascular circulation can be viewed as a complex homeostatic system analogous to a mini-ecosystem which consists of the vascular microenvironment (niche) and the crosstalk among phenotypically and functionally diverse vascular cell types. Here, we elucidate how cell components in the vascular wall affect vascular homeostasis, structure, function, and atherosclerosis in a holistic perspective. Finally, we discuss the potential role of vascular-stabilizing strategies including pharmacotherapies, natural substances and lifestyle modifications, in preventing cardiovascular diseases by preserving vascular integrity and homeostasis.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| | - Qing Rex Lyu
- Medical Research Institute, Chongqing General Hospital, Chongqing, China
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China (USTC), Hefei, China
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
20
|
Remiszewski P, Pędzińska-Betiuk A, Mińczuk K, Schlicker E, Klimek J, Dzięcioł J, Malinowska B. Effects of the peripheral CB1 receptor antagonist JD5037 in mono— and polytherapy with the AMPK activator metformin in a monocrotaline-induced rat model of pulmonary hypertension. Front Pharmacol 2022; 13:965613. [PMID: 36120288 PMCID: PMC9479636 DOI: 10.3389/fphar.2022.965613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease leading to increased pressure in the pulmonary artery and right heart failure. The adenosine monophosphate-activated protein kinase (AMPK) activator, metformin, has a protective effect against PH. CB1 receptor blockade reduces the number of pathological alterations in experimental lung fibrosis. The current study evaluates the effect of the peripheral cannabinoid CB1 receptor antagonist JD5037 in mono- and polytherapy with metformin in rat monocrotaline-induced mild PH. Animals received metformin (100 mg/kg), JD5037 (3 mg/kg), or a combination of both once daily for 21 days. Monocrotaline (60 mg/kg) increased right ventricular (RV) systolic pressure (RVSP), led to RV and lung hypertrophy and remodeling, and decreased oxygen saturation. Metformin partially restored the monocrotaline-induced effects, i.e., decreased RVSP, increased oxygen saturation, and counteracted cardiac fibrotic, hypertrophic, and inflammatory changes. JD5037 modified parameters related to inflammation and/or fibrosis. Only polytherapy with metformin and JD5037 improved Fulton’s index and coronary artery hypertrophy and tended to be more effective than monotherapy against alterations in RVSP, oxygen saturation and coronary artery tunica media vacuolization. In conclusion, monotherapy with JD5037 does not markedly influence the PH-related changes. However, polytherapy with metformin tends to be more efficient than any of these compounds alone.
Collapse
Affiliation(s)
- Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Justyna Klimek
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Barbara Malinowska,
| |
Collapse
|
21
|
Soleimani AA, Ghasmpour G, Mohammadi A, Gholizadeh M, Abkenar BR, Najafi M. Focal adhesion kinase-related pathways may be suppressed by metformin in vascular smooth muscle cells in high glucose conditions. Endocrinol Diabetes Metab 2022; 5:e351. [PMID: 35633523 PMCID: PMC9258994 DOI: 10.1002/edm2.351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Cardiovascular diseases are known as one of the important causes of death in patients with diabetes mellitus. Metformin is used as an oral medication for reducing blood sugar. In this study, the effects of metformin were investigated on the FAK gene expression levels, pFAK protein values, cell viability and migration rate of VSMCs in high glucose conditions. Materials and methods The FAK gene expression levels and pFAK protein values were evaluated in VSMCs treated with different doses of metformin (1, 5 and 7 mM), based on cell viability using RT‐qPCR, western blotting and MTT techniques. The cellular migration was evaluated by scratch assay. Results The FAK gene expression levels reduced significantly in metformin‐treated VSMCs at 24 h and 48 h periods (p < .0008 and p < .0001, respectively). The pFAK protein values reduced significantly at 24 h (5 mM and 7 mM metformin doses) and 48 h periods (p < .001). In agreement with pFAK protein values, cellular migration reduced significantly at 24 h and 48 h periods (p < .001). Conclusion The results showed that metformin may suppress the proliferation and migration of VSMCs via FAK‐related pathways and may retard the progression of vessel stenosis in diabetes.
Collapse
Affiliation(s)
- Ali Akbar Soleimani
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasmpour
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Clinical Biochemistry Department, Faculty of Medicine, Tarbiat Mdares University, Tehran, Iran
| | - Masoomeh Gholizadeh
- Clinical Biochemistry Department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Borhan Rahimi Abkenar
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Merzel Šabović EK, Starbek Zorko M, Janić M. Killing Two Birds with One Stone: Potential Therapies Targeting Psoriasis and Atherosclerosis at the Same Time. Int J Mol Sci 2022; 23:ijms23126648. [PMID: 35743091 PMCID: PMC9224172 DOI: 10.3390/ijms23126648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/27/2023] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease. Due to systemic inflammation, it is associated with many comorbidities. Among them, cardiovascular diseases represent the most common causes of morbidity and mortality in this population. Therefore, physicians treating patients with psoriasis should keep in mind that, as important as the treatment of psoriasis, awareness of cardiovascular risk deserves additional attention. Thus, in parallel with psoriasis treatment, a cardiovascular risk assessment must also be performed and addressed accordingly. In addition to encouraging non-pharmacologic strategies for a healthy lifestyle, physicians should be familiar with different pharmacologic options that can target psoriasis and reduce cardiovascular risk. In the present article, we present the pathophysiological mechanisms of the psoriasis and cardiometabolic interplay, our view on the interaction of psoriasis and cardiovascular disease, review the atherosclerotic effect of therapeutic options used in psoriasis, and vice versa, i.e., what the effect of medications used in the prevention of atherosclerosis could be on psoriasis.
Collapse
Affiliation(s)
- Eva Klara Merzel Šabović
- Department of Dermatovenerology, University Medical Centre Ljubljana, Gradiškova Ulica 10, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia;
- Correspondence:
| | - Mateja Starbek Zorko
- Department of Dermatovenerology, University Medical Centre Ljubljana, Gradiškova Ulica 10, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia;
| | - Miodrag Janić
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia;
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Rehman R, Alam F, Abidi SH, Farooqi N, Jehan F. Oxidative stress and metformin: An in-vitro study on serum and primary human granulosa cell cultures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022. [DOI: 10.29333/ejgm/12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Karjee H, Ghosh S, Dhibar T. Association of mid-life cerebral small vessel disease with diabetic retinopathy in type 2 diabetes in an Indian population. J Diabetes Complications 2022; 36:108149. [PMID: 35172935 DOI: 10.1016/j.jdiacomp.2022.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Prevalence of cerebral small vessel disease (SVD) in elderly patients with diabetic retinopathy (DR) is higher than in those without DR. We determined the prevalence and severity of SVD in middle-aged patients with DR and compared it with those without DR (NODR) in a subset of the Indian population. We feel this information is critical with evolving trends of an increasing incidence of stroke at younger ages. METHOD Institution-based analytical cross-sectional study with 88 middle-aged type 2 diabetes patients; 44 in each group with <10 years diabetes duration, <8% HbA1C value, and with no history of cardiovascular disease. The presence and severity of SVD were determined by magnetic resonance imaging (MRI). RESULT Prevalence of SVD was 59.1% among study participants; 70.5% in DR and 47.7% in NODR (p = .03). Significantly increased SVD score (p = .008), high SVD score (p = .030), and white matter hyperintensity (WMH) load (p = .017) were observed in DR compared to NODR. There was no difference in the load of lacune and microbleed. SVD score did not differ according to the severity of DR (p = .395). The location-wise study of MRI revealed a significantly higher SVD load at the centrum semiovale in DR than in NODR (p = .014). We observed a 2.6 times greater chance of SVD (Odds ratio: 2.6, 95% CI 1.1-6.3) and a 9.6 times greater chance of high SVD score (Odds ratio: 9.6, 95% CI 1.1-80.0) in DR compared to NODR. CONCLUSION Significantly higher burden of SVD in DR was observed, particularly affecting the centrum semiovale suggesting an association of mid-life SVD with DR in this population.
Collapse
Affiliation(s)
- Himadri Karjee
- Department of Ophthalmology, Calcutta National Medical College, 32 Gorachand Road, Kolkata 700014, India
| | - Sambuddha Ghosh
- Department of Ophthalmology, Calcutta National Medical College, 32 Gorachand Road, Kolkata 700014, India.
| | - Tapan Dhibar
- Department of Radiology, Bangur Institue of Neurosciences, 52/1a, Sambhunath Pandit St, Gokhel Road, Bhowanipore, Kolkata 700020, India
| |
Collapse
|
26
|
Gan X, Cao C, He Y, Hu X, Peng X, Su Y. The metformin has no significant anticancer effect on patients with advanced or unresectable cancer: systematic review and meta-analysis. Curr Pharm Des 2022; 28:1351-1358. [PMID: 35352646 DOI: 10.2174/1381612828666220329113434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND At present, the antitumor effect of metformin is controversial. Previous meta-analyses included observational studies, of which the results can be influenced by many confounders, affecting the result of meta-analyses and weakening the strength of evidence. Therefore, we conducted a meta-analysis to confirm the effect of metformin use on patients with advanced or unresectable cancers, including randomized clinical trials (RCTs). METHODS We searched for RCTs in accordance with the inclusion and exclusion criteria. A meta-analysis was conducted to combine hazard ratios (HRs) or risk ratios (RRs) and their 95% confidence intervals (CIs), using a random-effects model. RESULTS Finally, 7 eligible RCTs were included in meta-analysis. Overall, the combined results revealed that treatment with metformin did not improve the overall survival (OS) of patients (HR, 1.12; 95%CI, 0.91-1.37, P>0.05), and there was no clear evidence that metformin use was related to improved progression-free survival (PFS) (HR,1.17; 95%CI, 0.97-1.40; P>0.05). The pooled RR for grade III or IV adverse events was 0.92 (95%CI, 0.52-1.60; P>0.05), indicating that the use of metformin was not significantly related to increased toxicity. CONCLUSION Metformin does not significantly improve the survival of patients with advanced or unresectable cancer, regardless of cancer type and region. Open Science Framework: DOI 10.17605/OSF.IO/SPKE8.
Collapse
Affiliation(s)
- Xinyan Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chang Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yonglin Su
- Rehabilitation Medicine Center and Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;
| |
Collapse
|
27
|
Metformin: Expanding the Scope of Application-Starting Earlier than Yesterday, Canceling Later. Int J Mol Sci 2022; 23:ijms23042363. [PMID: 35216477 PMCID: PMC8875586 DOI: 10.3390/ijms23042363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Today the area of application of metformin is expanding, and a wealth of data point to its benefits in people without carbohydrate metabolism disorders. Already in the population of people leading an unhealthy lifestyle, before the formation of obesity and prediabetes metformin smooths out the adverse effects of a high-fat diet. Being prescribed at this stage, metformin will probably be able to, if not prevent, then significantly reduce the progression of all subsequent metabolic changes. To a large extent, this review will discuss the proofs of the evidence for this. Another recent important change is a removal of a number of restrictions on its use in patients with heart failure, acute coronary syndrome and chronic kidney disease. We will discuss the reasons for these changes and present a new perspective on the role of increasing lactate in metformin therapy.
Collapse
|
28
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
29
|
Zhang Q, Wang L, Chen G, Wang M, Hu T. Cylindrospermopsin impairs vascular smooth muscle cells by P53-mediated apoptosis due to ROS overproduction. Toxicol Lett 2021; 353:83-92. [PMID: 34687773 DOI: 10.1016/j.toxlet.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Cylindrospermopsin (CYN) is a toxic secondary metabolite from cyanobacteria that can cause cardiovascular disease. However, the study of CYN-induced cardiovascular toxicity in vitro is very limited and the mechanism is remain to be clarified. Vascular smooth muscle cells (VMSCs) have an important function in maintaining the structural and functional integrity of the aortic wall, and are an important in vitro model for cardiovascular research. Thus, the effects of CYN exposure (2, 20, 200, and 2000 nM) on VMSCs were analyzed. In vitro study, results showed that CYN exposure decreased VMSCs viability, inhibited VMSCs migration, induced DNA damage, destroyed cytoskeleton, changed cell morphology, promoted VMSCs apoptosis, and increased intracellular reactive oxygen species (ROS) levels. In addition, CYN could induce the activities of SOD, CAT and GPX, and promote the expressions of SOD1, CAT, GPx1, p53 and Bax genes and inhibit the expression of Bcl-2 gene, leading to a higher ratio of Bax/Bcl-2. Taken together, CYN may induce ROS overproduction, leading to increased p53 expression and ultimately promoting VSMC apoptosis. Therefore, the present study demonstrates that CYN could impair VMSCs, leading to vascular developmental defects and angiocardiopathy.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
30
|
Zhang Y, Guo Q, Jiang G, Zhang C. Dysfunction of Cullin 3 RING E3 ubiquitin ligase causes vasoconstriction and increased sodium reabsorption in diabetes. Arch Biochem Biophys 2021; 710:109000. [PMID: 34343486 DOI: 10.1016/j.abb.2021.109000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Impaired endothelium-mediated vasodilation and/or increased sensitivity to vasoconstrictors lead to vascular smooth muscle cell (VSMC) dysfunction in individuals with diabetes. Diabetic nephropathy is associated with a considerably higher risk of cardiovascular disease and death than their nondiabetic counterparts. We studied the activity of Cullin 3 RING ubiquitin ligase (CRL3) and its substrates in mice using an intraperitoneal injection of streptozotocin (STZ) and db/db mice. The levels of CRL3 adaptors, including Kelch-like 2/3 (KLHL2/3) and Rho-related BTB domain-containing protein 1, were significantly decreased in the aortic tissues and heart of the STZ group, whereas the levels of Cullin 3 (CUL3) and its neddylated derivatives were substantially increased. Decreased KLHL3 expression and significantly increased expression of NEDD8 conjugates were observed in the kidneys of db/db mice. The neddylation inhibitor MLN4924 decreased the degradation of KLHL2/KLHL3 under high-glucose conditions with/without insulin, and transfection with KLHL2 promoted the degradation of its substrates with-no-lysine (WNK) kinases. Increased abundance of WNK3, RhoA/ROCK activity and phosphodiesterase 5 enhanced the sensibility to vasoconstrictors and impaired vasodilation. Moreover, WNK3 localized in VSMCs undergoing cell division, and high-glucose medium increased WNK3 signaling in VSMCs undergoing mitosis, which might explain the increased thickness of aortic tissues in subjects with diabetes. Increases in WNK4 abundance resulted in increased sodium reabsorption in the distal renal tubules. Thus, KLHL2/RhoBTB1/KLHL3 inactivation in the aortic tissues and kidney is a result of excessive activation of neddylation in hyperglycemia and hyperinsulinemia, which affects vascular tone and sodium reabsorption.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Guo
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Zhang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Su C, Menon NV, Xu X, Teo YR, Cao H, Dalan R, Tay CY, Hou HW. A novel human arterial wall-on-a-chip to study endothelial inflammation and vascular smooth muscle cell migration in early atherosclerosis. LAB ON A CHIP 2021; 21:2359-2371. [PMID: 33978037 DOI: 10.1039/d1lc00131k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mechanistic understanding of atherosclerosis is largely hampered by the lack of a suitable in vitro human arterial model that recapitulates the arterial wall structure, and the interplay between different cell types and the surrounding extracellular matrix (ECM). This work introduces a novel microfluidic endothelial cell (EC)-smooth muscle cell (SMC) 3D co-culture platform that replicates the structural and biological aspects of the human arterial wall for modeling early atherosclerosis. Using a modified surface tension-based ECM patterning method, we established a well-defined intima-media-like structure, and identified an ECM composition (collagen I and Matrigel mixture) that retains the SMCs in a quiescent and aligned state, characteristic of a healthy artery. Endothelial stimulation with cytokines (IL-1β and TNFα) and oxidized low-density lipoprotein (oxLDL) was performed on-chip to study various early atherogenic events including endothelial inflammation (ICAM-1 expression), EC/SMC oxLDL uptake, SMC migration, and monocyte-EC adhesion. As a proof-of-concept for drug screening applications, we demonstrated the atheroprotective effects of vitamin D (1,25(OH)2D3) and metformin in mitigating cytokine-induced monocyte-EC adhesion and SMC migration. Overall, the developed arterial wall model facilitates quantitative and multi-factorial studies of EC and SMC phenotype in an atherogenic environment, and can be readily used as a platform technology to reconstitute multi-layered ECM tissue biointerfaces.
Collapse
Affiliation(s)
- Chengxun Su
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore. and Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nishanth Venugopal Menon
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Xiaohan Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Yu Rong Teo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Huan Cao
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore and Endocrinology Department, Tan Tock Seng Hospital, Singapore, 308433, Singapore
| | - Chor Yong Tay
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore. and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
32
|
Feng X, Chen W, Ni X, Little PJ, Xu S, Tang L, Weng J. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol 2021; 12:682853. [PMID: 34163481 PMCID: PMC8215340 DOI: 10.3389/fimmu.2021.682853] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Metformin is one of the most widely prescribed hypoglycemic drugs and has the potential to treat many diseases. More and more evidence shows that metformin can regulate the function of macrophages in atherosclerosis, including reducing the differentiation of monocytes and inhibiting the inflammation, oxidative stress, polarization, foam cell formation and apoptosis of macrophages. The mechanisms by which metformin regulates the function of macrophages include AMPK, AMPK independent targets, NF-κB, ABCG5/8, Sirt1, FOXO1/FABP4 and HMGB1. On the basis of summarizing these studies, we further discussed the future research directions of metformin: single-cell RNA sequencing, neutrophil extracellular traps (NETs), epigenetic modification, and metformin-based combination drugs. In short, macrophages play an important role in a variety of diseases, and improving macrophage dysfunction may be an important mechanism for metformin to expand its pleiotropic pharmacological profile. In addition, the combination of metformin with other drugs that improve the function of macrophages (such as SGLT2 inhibitors, statins and IL-1β inhibitors/monoclonal antibodies) may further enhance the pleiotropic therapeutic potential of metformin in conditions such as atherosclerosis, obesity, cancer, dementia and aging.
Collapse
Affiliation(s)
- Xiaojun Feng
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Wenxu Chen
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Xiayun Ni
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Peter J. Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| | - Liqin Tang
- Department of Pharmacy, the First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China( USTC), Hefei, China
| |
Collapse
|
33
|
Chang JE, Choi MS. A Molecular Perspective on the Potential Benefits of Metformin for the Treatment of Inflammatory Skin Disorders. Int J Mol Sci 2020; 21:ijms21238960. [PMID: 33255783 PMCID: PMC7728327 DOI: 10.3390/ijms21238960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its anti-hyperglycemic effect, metformin is the first-line medication for the treatment of type 2 diabetes, particularly in people who are obese. However, metformin is a drug with a very wide range of pharmacological properties and reports of its therapeutic effect on diseases including inflammation and cancer are increasing. Numerous research groups have reported that metformin has beneficial effects on a variety of inflammatory skin disorders including psoriasis, acanthosis nigricans, acne, hidradenitis suppurativa, and allergic contact dermatitis. According to these reports, in addition to the well-known action of metformin, that is, its anti-hyperglycemic effect, NF-kB inhibition and the resulting alteration to the cytokine network may be the potential targets of metformin. Its anti-hyperandrogenism effect has also been confirmed as the major action of metformin in some inflammatory skin diseases. Moreover, novel regulatory mechanisms, including autophagy and antioxidant processes, have been suggested as promising mechanisms of action for metformin in inflammatory skin disorders.
Collapse
Affiliation(s)
- Ji-Eun Chang
- Lab of Pharmaceutics, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
- Correspondence:
| |
Collapse
|
34
|
Sun D, Xiang G, Wang J, Li Y, Mei S, Ding H, Yan J. miRNA 146b-5p protects against atherosclerosis by inhibiting vascular smooth muscle cell proliferation and migration. Epigenomics 2020; 12:2189-2204. [PMID: 33084403 DOI: 10.2217/epi-2020-0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To explore the potentially important role of miRNA 146b-5p (miR-146b) during the development of atherosclerosis. Materials & methods: Proliferation, migration and luciferase assays and mouse models were used to determine the functions of miR-146b. Results: miR-146b was identified as substantially upregulated in the aortic plaques of ApoE-/- mice as well as in response to inflammatory cytokines. Overexpression of miR-146b repressed proliferation and migration of vascular smooth muscle cells by downregulating Bag1 and Mmp16, respectively. Adeno-associated virus-mediated miR-146b overexpression inhibited neointima formation after carotid injury and suppressed atherosclerotic plaque formation in western diet-induced ApoE-/- mice. Conclusion: miR-146b is a novel regulator of vascular smooth muscle cell function induced by inflammatory response, specifically in neointima formation, and offers a novel therapeutic strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Dating Sun
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Gui Xiang
- Department of Physiology & Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, PR China
| | - Jing Wang
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Yuanyuan Li
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuai Mei
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Hu Ding
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Jiangtao Yan
- Department of Internal Medicine, Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| |
Collapse
|