1
|
Chen J, Chen Q, Xiao P, Jin W, Yu L. A novel framework for uncovering the coordinative spectrum-effect correlation of the effective components of Yangyin Tongnao Granules on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118844. [PMID: 39303966 DOI: 10.1016/j.jep.2024.118844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is currently a major public health hazard.Yangyin Tongnao Granules (YYTN), a traditional Chinese medicinal prescription, exerts potential therapeutic effects on subsequent cerebral ischemia-reperfusion injury (CIRI) after ischemic stroke. However, further studies are required to comprehend the underlying mechanism of YYTN for treating CIRI and the associated spectrum-effect mechanisms. AIM OF THE STUDY To investigate the coordinated correlation between the fingerprint and the pharmacodynamic indexes of the effective components (total flavonoids, total saponins, total alkaloids, and total phenolic acids) in YYTN for treating CIRI in rats. METHODS The fingerprints of five specific components (ligustrazine, puerarin, ferulic acid, calycosin, and formononetin) of YYTN in rats with middle cerebral artery occlusion (MCAO) were established using high-performance liquid chromatography (HPLC), and their peak areas were quantified in plasma samples. The pharmacodynamic indexes of tumor necrosis factor-alpha (TNF-α), cytochrome c (Cyt-C), and total superoxide dismutase (T-SOD) were integrated using the Criteria Importance Through Intercriteria Correlation (CRITIC) method to create a comprehensive evaluation index. Spectrum-effect correlation was analyzed by performing gray relation analysis (GRA), correlation analysis (CA), and partial least squares regression (PLSR). The Borda method was then applied to integrate the obtained results. RESULTS In MCAO rats, the effective components of YYTN reduced TNF-α and Cyt-C and increased T-SOD, which indicates their anti-inflammatory, antiapoptotic, and antioxidant effects. Spectrum-effect CA revealed certain associations between the chromatographic peaks of the five main components and the comprehensive pharmacodynamic evaluation index. Of these components, formononetin displayed the highest correlation, whereas ferulic acid exhibited the lowest correlation. All components showed a positive correlation. Using the Borda method, the components were ranked as follows based on correlation: formononetin > calycosin > ligustrazine > puerarin > ferulic acid. CONCLUSIONS The effective components of YYTN exhibited synergistic effects in the treatment of MCAO rats, which could potentially be attributed to their multitarget and multipathway mechanisms. The Borda method-based spectrum-effect correlation analysis provides a coordinated approach to investigate the relationship between fingerprint and pharmacodynamics of traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qianqian Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Peng Xiao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Shang J, Wen Y, Zhang X, Huang G, Chen W, Wang B, Wu K, Xiang Q, Liu X. Naoxintong capsule accelerates mitophagy in cerebral ischemia-reperfusion injury via TP53/PINK1/PRKN pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118721. [PMID: 39173723 DOI: 10.1016/j.jep.2024.118721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.
Collapse
Affiliation(s)
- Jinfeng Shang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yinlian Wen
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiaolu Zhang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | | | - Wenbin Chen
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Bohong Wang
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kai Wu
- Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Quan Xiang
- Gansu University of Chinese Medicine, Gansu 730101, China.
| | - Xin Liu
- Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Zhang Y, Fan X, Pang K, Liu D. The clinical effect of Huoxue Huayu Recipe combined with ibuprofen in patients with postoperative pain after ankle fracture. Biotechnol Genet Eng Rev 2024; 40:2613-2627. [PMID: 37042058 DOI: 10.1080/02648725.2023.2200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 04/13/2023]
Abstract
The curative effect of Huoxue Huayu Recipe combined with ibuprofen in the postoperative pain in patients with ankle fractures was analyzed. 68 patients with ankle fractures were divided into study group (n = 34, Huoxue Huayu Decoction combined with ibuprofen) and control group (n = 34, ibuprofen). The levels of inflammatory factors, ankle joint function, VAS score and bone metabolism indexes were compared. Complications, isokinetic muscle strength and clinical related index levels were compared after treatment. High AOFAS score and low VAS score were identified in the study group compared with the control group at 1 week, 1 month and 2 months after operation. Compared to the control group, the incidence of postoperative complications was declined in the study group. After treatment, IL-6 and TNF-α levels in both groups were significantly decreased, and the study group had lower IL-6 and TNF-α levels. After treatment, the torque acceleration energy, relative peak torque value and endurance in the study group were obviously improved. The disappearance time of swelling and pain, fracture healing time, and complete weight-bearing time in the study group were reduced compared to the control group. After treatment, BGP and BALP levels in study group were higher than control group. Huoxue Huayu Recipe combined with ibuprofen can reduce inflammatory factors levels in patients with ankle fracture, improve isokinetic muscle strength and ankle function, and accelerate the recovery of patients.
Collapse
Affiliation(s)
- Yaojun Zhang
- Department of Trauma Surgery, Fushan District People's Hospital, Yantai, China
| | - Xiaolin Fan
- Pain Department, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital Qingdao, China
| | - Kunfang Pang
- Anesthesia Operating Room, Hiser Medical Center of Qingdao, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Deheng Liu
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Liu Y, Cui W, Liu H, Yao M, Shen W, Miao L, Wei J, Liang X, Zhang Y. Exploring the "gene-metabolite" network of ischemic stroke with blood stasis and toxin syndrome by integrated transcriptomics and metabolomics strategy. Sci Rep 2024; 14:11947. [PMID: 38789486 PMCID: PMC11126742 DOI: 10.1038/s41598-024-61633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mingjiang Yao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Shen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lina Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jingjing Wei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
6
|
SHI X, WANG L, HU J, ZHANG L, WANG J. Effect of Naoluoxintong formula and its split prescriptions on cerebral vascular regeneration in rats with the cerebral ischemia-reperfusion. J TRADIT CHIN MED 2023; 43:1140-1149. [PMID: 37946476 PMCID: PMC10623265 DOI: 10.19852/j.cnki.jtcm.20221230.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe regulatory effect of Naoluoxintong formula (, NLXT) and its split prescriptions on vascular regeneration of rats suffering from cerebral ischemia-reperfusion (IR) syndrome of Qi deficiency with blood stasis (QDBS). METHODS NLXT is the representative prescription of Yiqi Huoxue Tongluo decoction, and NLXT is divided into Yiqi herbs and Huoxue Tongluo herbs according to their efficacies. One hundred and eight specific-pathogen-free, clean-grade, Sprague-Dawley male rats were selected to prepare the classical rat model with QDBS due to middle artery ischemia-reperfusion using the multi-factor compound simulation approach. The animals were classified into sham operation (S), model (M), Nimodping (NMDP), NLXT, YQ and HXTL groups, each having 18 rats. Cerebral ischemia was reperfused after 2 h, and 24 h later, they were administered traditional Chinese medicine treatment for 14 d twice a day. Angiogenesis changes after NLXT administration to middle cerebral artery occlusion-reperfusion (MCAO/R) rats with QDBS were analyzed using the neurological deficit score and hematoxylin-eosin staining. Cerebral infarct area by 2,3,5-Triphenyltetrazolium chloride was detected, and the ultrastructure of the blood vessel in the ischemic frontoparietal cortex was observed by transmission electron microscopy. Angiopoietin 1 (Ang1), angiopoietin 2 (Ang2), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), platelet endothelial cell adhesion molecule-1 (CD31), angiopoietin receptor 2 (Tie2), and P38 mitogen-activated protein kinase (MAPK) protein levels in the frontal and parietal cortex were quantified by immunofluorescence, reverse transcription-polymerase chain reaction, and Western blotting assays. RESULTS Relative to the S group, VEGFA and VEGFR2 levels in the frontal and parietal cortex of group M were increased, and Ang1, Ang2, Tie2, CD31, and p38 MAPK levels remarkably increased (P < 0.05); cerebral infarct area was significant and pathological morphology and ultrastructure damage was obvious. Relative to the group M, VEGFA, VEGFR2, CD31, Ang1, Ang2, and Tie2 expression of group NLXT and NMDP remarkably elevated (P < 0.05) and infarct focus, pathological morphology and ultrastructure were significantly improved; VEGFA and VEGFR2 levels in the groups YQ and HXTL increased, and Ang1, Ang2, CD31, and Tie2 levels remarkably increased (P < 0.05); p38 MAPK levels in the three treatment groups decreased (P < 0.05). Relative to the group NLXT, the expression levels of p38 MAPK in group YQ and group HXTL were significantly increased, and the expression levels of other indicators were significantly decreased (P < 0.05). CONCLUSION NLXT can promote the angiogenesis of the rat model of MCAO/R with QDBS by activating VEGFA and inhibiting P38 MAPK, and the effect is better than that of split prescription groups.
Collapse
Affiliation(s)
- Xiao SHI
- 1 Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lina WANG
- 2 Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianpeng HU
- 1 Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Limiao ZHANG
- 1 Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jin WANG
- 1 Graduate School, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
7
|
CAO W, LIAO S, ZHANG Y, ZHOU L, LI G, OUYANG W, WEN Z. Effectiveness and safety of Xuefu Zhuyu oral liquid on -stagnation and blood-stasis pattern in patients with stable angina, tension-type headache and primary dysmenorrhea: rationale and design of a master protocol. J TRADIT CHIN MED 2023; 43:815-823. [PMID: 37454268 PMCID: PMC10320441 DOI: 10.19852/j.cnki.jtcm.20230517.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 07/18/2023]
Abstract
We present the rationale and design of a master protocol study that clarifies the effectiveness and safety of Chinese herbal formulas on -stagnation and blood-stasis pattern (QBP). Three randomized controlled trials (RCTs) and real-world observational studies. Based on three registry cohorts of stable angina, tension-type headache and primary dysmenorrhea, patients with QBP will be enrolled in RCTs to receive either Xuefu Zhuyu (, XFZY) oral liquid or a placebo, while patients with non-QBP will be enrolled in the observational studies and experience follow-up. 1414 patients (RCTs: 574; observational studies: 840) will be recruited at seven centers in China over a 3-year period. The primary outcome is the visual analog scale of pain intensity. Adverse events will also be reported. The analysis will be undertaken separately in each sub-study, and then an overall analysis combining multiple subgroups will be performed to comprehensively investigate the effect of XFZY oral liquid. This study will provide high-quality evidence of XFZY oral liquid for QBP patients and show a paradigm of post-marketing evaluation of the effectiveness and safety for Chinese medicine following the notion of the pattern dominating different disease research models.
Collapse
Affiliation(s)
- Wencong CAO
- 1 Second Clinical Medical College (Second Affiliated Hospital), Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shaojun LIAO
- 1 Second Clinical Medical College (Second Affiliated Hospital), Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanwen ZHANG
- 2 First Clinical Medical College (First Affiliated Hospital), Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Li ZHOU
- 3 Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 4 State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Geng LI
- 3 Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 4 State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wenwei OUYANG
- 3 Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 4 State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zehuai WEN
- 3 Key Unit of Methodology in Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- 4 State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- 5 Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
8
|
Liu T, Bai M, Liu M, Li T, Liao Y, Zhao C, Yao M, Wang J, Wen A, Ding Y. Novel synergistic mechanism of 11-keto-β-boswellic acid and Z-Guggulsterone on ischemic stroke revealed by single-cell transcriptomics. Pharmacol Res 2023:106803. [PMID: 37230158 DOI: 10.1016/j.phrs.2023.106803] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Although strides have been made, the challenge of preventing and treating ischemic stroke continues to persist globally. For thousands of years, the natural substances Frankincense and Myrrh have been employed in Chinese and Indian medicine to address cerebrovascular diseases, with the key components of 11-keto-β-boswellic acid (KBA) and Z-Guggulsterone (Z-GS) being the active agents. In this study, the synergistic effect and underlying mechanism of KBA and Z-GS on ischemic stroke were examined using single-cell transcriptomics. Fourteen cell types were identified in KBA-Z-GS-treated ischemic penumbra, and microglia and astrocytes account for the largest proportion. They were further re-clustered into six and seven subtypes, respectively. GSVA analysis reflected the distinct roles of each subtype. Pseudo-time trajectory indicated that Slc1a2 and Timp1 were core fate transition genes regulated by KBA-Z-GS. In addition, KBA-Z-GS synergistically regulated inflammatory reactions in microglia and cellular metabolism and ferroptosis in astrocytes. Most notably, we established an innovative drug-gene synergistic regulation pattern, and genes regulated by KBA-Z-GS were divided into four categories based on this pattern. Finally, Spp1 was demonstrated as the hub target of KBA-Z-GS. Taken together, this study reveals the synergistic mechanism of KBA and Z-GS on cerebral ischemia, and Spp1 may be the synergistic target for that. Precise drug development targeting Spp1 may offer a potential therapeutic approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, 730050, China
| | - Min Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, 730050, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yucheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Yu L, Jin Z, Li M, Liu H, Tao J, Xu C, Wang L, Zhang Q. Protective potential of hydroxysafflor yellow A in cerebral ischemia and reperfusion injury: An overview of evidence from experimental studies. Front Pharmacol 2022; 13:1063035. [PMID: 36588739 PMCID: PMC9797593 DOI: 10.3389/fphar.2022.1063035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke, mostly caused by thromboembolic or thrombotic arterial occlusions, is a primary leading cause of death worldwide with high morbidity and disability. Unfortunately, no specific medicine is available for the treatment of cerebral I/R injury due to its limitation of therapeutic window. Hydroxysafflor yellow A, a natural product extracted from Carthamus tinctorius, has been extensively investigated on its pharmacological properties in cerebrovascular diseases. However, review focusing on the beneficial role of HSYA against cerebral I/R injury is still lacking. In this paper, we reviewed the neuroprotective effect of HSYA in preclinical studies and the underlying mechanisms involved, as well as clinical data that support the pharmacological activities. Additionally, the sources, physicochemical properties, biosynthesis, safety and limitations of HSYA were also reviewed. As a result, HSYA possesses a wide range of beneficial effects against cerebral I/R injury, and its action mechanisms include anti-excitotoxicity, anti-oxidant stress, anti-apoptosis, anti-inflammation, attenuating BBB leakage and regulating autophagy. Collectively, HSYA might be applied as one of the promising alternatives in ischemic stroke treatment.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Zhe Jin
- Department of Neurology, Renji Hospital Baoshan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mincheng Li
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huifang Liu
- Department of Neurology, Shanghai Jinshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liwei Wang
- Comprehensive Department of Traditional Chinese Medicine, First Department of Integration, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Lu Yu, ; Qiujuan Zhang, ; Liwei Wang,
| |
Collapse
|
10
|
Zhang Y, Liu Q, Zhang T, Wang H, Fu Y, Wang W, Li D. The therapeutic role of Jingchuan tablet on ischaemic cerebral stroke via the HIF-1α/EPO/VEGFA signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2110-2123. [PMID: 36269045 PMCID: PMC9590438 DOI: 10.1080/13880209.2022.2134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Jingchuan tablet (JCT) is a Chinese medicine prescription for treating ischaemic cerebral stroke (ICS). However, its relevant mechanisms remain unclear. OBJECTIVE To unravel the intrinsic mechanisms of JCT anti-ICS. MATERIALS AND METHODS 'Hongjingtian', 'chuanxiong', 'yanhusuo', 'bingpian', 'cerebral infarction', 'cerebral ischemia' or 'stroke' were used as keywords, and then components, targets and underlying mechanisms of JCT anti-ICS were analysed in TCMSP, TTD, DrugBank, STRING and Metascape databases up to June 2020. Male Sprague-Dawley rats under permanent middle cerebral artery occlusion (pMCAO) model, randomly assigned as: model, sham, nimodipine (0.012 g/kg/d) and JCT (0.78, 1.56 and 3.12 g/kg/d) groups, received oral gavage administration for a week. Therapeutic effects were evaluated by detecting the proportion of cerebral infarction, neuronal apoptosis and neurological deficits. Bioactive components were detected by HPLC-MS. Molecular biology and computational docking were used to verify the underlying mechanisms. RESULTS Eighty-one components, 166 targets and HIF-1α/EPO/VEGFA pathway contributed to the anti-ICS effect of JCT. JCT treatment effectively reduced the proportion of cerebral infarction (33.13%), apoptosis rate (14.80%) and neurobehavioural score (2.00). JCT increased the protein levels of HIF-1α (0.84), EPO (0.64) and VEGFA (0.69), respectively (p < 0.05). Gallic acid, salidroside, chlorogenic acid, ethyl gallate, ferulic acid and tetrahydropalmatine detected by HPLC-MS showed good interaction and binding with HIF-1α/EPO/VEGFA. CONCLUSIONS Our study demonstrated the mechanisms of JCT anti-ICS associated with the activation of the HIF-1α/EPO/VEGFA pathway, which provided a pharmacological basis for expanding the clinical application and some scientific ideas for further research into the material basis JCT anti-ICS.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Qinghuan Liu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Ting Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Hong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Wentong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| |
Collapse
|
11
|
Li L, Shao C, Liu Z, Wu X, Yang J, Wan H. Comparative efficacy of Honghua class injections for treating acute ischemic stroke: A Bayesian network meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:1010533. [PMID: 36249799 PMCID: PMC9554475 DOI: 10.3389/fphar.2022.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acute ischemic stroke (AIS) is associated with high morbidity, mortality, and disability. Clinical trials have shown that Honghua class injections (HCIs) combined with WM achieve better clinical efficacy than WM alone. In this study, we performed a Bayesian network meta-analysis (NMA) of randomized controlled trials (RCTs) to evaluate the efficacy of different HCIs combined with WM in treating AIS. Methods: First, the inclusion and exclusion criteria were established. From inception to 1 June 2022, a systematic literature search was conducted in multiple databases for the treatment of AIS with HCIs, including Honghua injection (HI), Safflower Yellow injection (SYI), Guhong injection (GHI), and Danhong injection (DHI). Subsequently, OpenBUGS 3.2.3 was applied to conduct a Bayesian algorithm, and Stata 16.0 was used to prepare the graphs. Multidimensional cluster analysis was performed using the “scatterplot3d” package in R 3.6.1 software. Results: In this NMA, a total of 120 eligible RCTs were included, involving 12,658 patients, and evaluating the clinical effectiveness rates, activities of daily living (ADL), hemorheological indexes, and adverse reactions (ADRs). DHI + WM was the best intervention for improving the clinical effectiveness rate. Moreover, cluster analysis demonstrated that DHI + WM and SYI + WM had better comprehensive therapeutic effects. As most of the included RCTs did not monitor ADRs, the safety of the HCIs remains to be further explored. Conclusion: DHI + WM and SYI + WM probably have a better clinical efficacy on AIS patients. Nevertheless, due to the limitation of this NMA, this conclusion may be biased. High-quality RCTs should be performed to validate our findings. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42021229599
Collapse
Affiliation(s)
- Lan Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheting Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Sciences, Hangzhou, China
- *Correspondence: Jiehong Yang, ; Haitong Wan,
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Jiehong Yang, ; Haitong Wan,
| |
Collapse
|
12
|
Experimental Evidence of Buyang Huanwu Decoction and Related Modern Preparations (Naoxintong Capsule and Yangyin Tongnao Granule) in Treating Cerebral Ischemia: Intestinal Microorganisms and Transcriptomics in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4016935. [PMID: 36185082 PMCID: PMC9519341 DOI: 10.1155/2022/4016935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Background The traditional Chinese medicines of Buyang Huanwu decoction (BYHW), Naoxintong capsule (NXT), and Yangyin Tongnao granules (YYTN) have excellent effects in preventing and treating cerebrovascular disease and are widely tolerated by patients. However, their effects on middle cerebral artery occlusion (MCAO) remain unknown. Methods We evaluated gut microbiota alterations, the brain transcriptome, and nerve cell responses in rats with MCAO. Results Our results showed that BYHW, NXT, and YYTN not only effectively improved the damaged state of blood vessels in rats and restored nerve function, but also improved survival. Additional experiments showed that treatment with BYHW, NXT, and YYTN regulated the intestinal microflora. Transcriptome analyses showed that BYHW, NXT, and YYTN modulated the transcriptome of rats with MCAO. The common mechanism of the three prescriptions for the treatment of cerebral ischemia may be related to the intestinal flora regulation of 60S ribosomal protein L18 (Rpl18), eukaryotic translation initiation factor 3 subunit, Ras homolog family member C, G protein subunit gamma 13 (Gng13), and Gng10 genes, among which Rpl18 is the most important. In addition, the three prescriptions had great specificity as anticerebral ischemia targets. Moreover, BYHW, NXT, and YYTN mitigated MCAO-induced hyperactivation of microglia and astrocytes. Conclusion This study provides a foundation for further research on the mechanisms and treatment of IS. The results strongly suggest that key gut microbiota can be used to study functional genomics of brain, leading to novel discoveries about key genes involved in important biological processes.
Collapse
|
13
|
Efficacy and Safety of Modified Yupingfeng Nasal Spray in Controlling the Recurrence of Persistent and Moderate-Severe Allergic Rhinitis: Study Protocol for a Multicenter, Open-Label, Randomized, and Parallel-Arm Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4666332. [PMID: 35990824 PMCID: PMC9385272 DOI: 10.1155/2022/4666332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
Background. Recurrent episode of allergic rhinitis (AR) is one of the leading illnesses that affects patients. However, there is little research evidence to support pharmacotherapy for AR recurrence. Therefore, this study was designed to explore the efficacy of pharmacotherapy in the control of the recurrence of AR. Methods. In this study, a multicenter, open-label, randomized, and parallel-arm trial will be conducted at three study centers. A total of 190 subjects aged 18–65 with persistent and moderate-severe AR (Qi deficiency and blood stasis syndrome) will be randomly assigned to receive the modified Yupingfeng nasal spray or mometasone furoate aqueous nasal spray. When subjects’ rhinitis control assessment test (RCAT) score is >21 for two weeks, they will stop taking the medication and enter the follow-up. Once a relapse occurs, the time point will be recorded, and the follow-up stops. The primary outcome is the six-month recurrence rate of AR after intervention withdrawal. The secondary outcomes are the one-month recurrence rate of AR, the RCAT score, the duration of follow-up, the duration of medication, the nasal endoscopic results, and questionnaires to evaluate symptoms, signs, and quality of life. The mechanism outcomes include some indicators that may be associated with AR recurrence. In addition, electrocardiograms and other safety indicators will be applied to evaluate the drug’s safety. Discussion. This is the first study to explore the efficacy of traditional Chinese medicine nasal spray on AR from the perspective of controlling recurrence. The results of this trial may provide valuable clinical evidence for controlling the recurrence of this disease by pharmacotherapy. Trial Registration. This study was registered with registration number ChiCTR2100047053 (Chinese Clinical Trial Registry, https://www.chictr.org.cn/showproj.aspx?proj=127432 on June 7, 2021).
Collapse
|
14
|
Zhang Q, Zhang A, Wu F, Wang X. UPLC-G2Si-HDMS Untargeted Metabolomics for Identification of Yunnan Baiyao's Metabolic Target in Promoting Blood Circulation and Removing Blood Stasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103208. [PMID: 35630682 PMCID: PMC9143197 DOI: 10.3390/molecules27103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese patent medicine in Yunnan Province. However, its mechanism for promoting blood circulation and removing blood stasis is not fully explained. Our study used metabonomics technology to reveal the regulatory effect of Yunnan Baiyao on small molecular metabolites in promoting blood circulation and removing blood stasis, and exploring the related urine biomarkers. The coagulation function, blood rheology, and pathological results demonstrated that after Yunnan Baiyao treatment, the pathological indexes in rats with epinephrine hydrochloride-induced blood stasis syndrome improved and returned to normal levels. This is the basis for the effectiveness of Yunnan Baiyao. UPLC-G2Si-HDMS was used in combination with multivariate statistical analysis to conduct metabonomic analysis of urine samples. Finally, using mass spectrometry technology, 28 urine biomarkers were identified, clarifying the relevant metabolic pathways that play a vital role in the Yunnan Baiyao treatment. These were used as the target for Yunnan Baiyao to promote blood circulation and remove blood stasis. This study showed that metabolomics strategies provide opportunities and conditions for a deep and systematic understanding of the mechanism of action of prescriptions.
Collapse
Affiliation(s)
- Qingyu Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
- Correspondence: ; Tel.: +86-0451-82110818
| |
Collapse
|
15
|
Zhao L, Ding LD, Xia ZH, Sheng P, Shen MM, Cai ZM, Yan BC. A Network-Based Approach to Investigate the Neuroprotective Effects and Mechanisms of Action of Huangqi-Chuanxiong and Sanleng-Ezhu Herb Pairs in the Treatment of Cerebral Ischemic Stroke. Front Pharmacol 2022; 13:844186. [PMID: 35401166 PMCID: PMC8984614 DOI: 10.3389/fphar.2022.844186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/18/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: We aimed to investigate the effect and mechanisms of action of two drug pairs [Huangqi-Chuanxiong and Sanleng-Ezhu Herb (HCSE)] on the treatment of ischemic stroke. Materials and methods: We mined the current literature related to ischemic stroke and formulated a new formulation of Chinese herbs. Then, we identified the main candidate target genes of the new formulation by network pharmacology. Next, we performed enrichment analysis of the target genes to identify the potential mechanism of action of the new formulation in the treatment of ischemic stroke. Next, we experimentally validated the mechanism of action of the new formulation against ischemic stroke. Infarct volume and neurological deficits were evaluated by 2,3,5-triphenyltetrazolium (TTC) staining and Longa’s score, respectively. The predicted pathways of signal-related proteins were detected by western blotting. Results: We mined the current literature and identified a new formulation of Chinese herbs for the treatment of ischemic stroke. The formulation included Huangqi, Chuanxiong, Sanleng and Ezhu. Next, we used network pharmacological analysis to identify 23 active compounds and 327 target genes for the new formulation. The key target genes were MAPK3, MAPK1, HSP90AA1, STAT3, PIK3R1, PIK3CA and AKT1. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant enrichment of the PI3K/AKT and MAPK/ERK signaling pathways. By performing experiments, we found that the new formulation reduced the infarct volume of middle cerebral artery occlusion (MCAO) induced mice and activated the PI3K/AKT and MAPK/ERK signaling pathways. These findings confirmed that the new formulation has a significant protective effect against ischemic stroke injury by activating the PI3K/AKT and MAPK/ERK signaling pathways. Conclusion: We identified a new treatment formulation for ischemic stroke by data mining and network pharmacological target prediction. The beneficial effects of the new formulation act by regulating multiple target genes and pathways. The mechanism of action of the new formulation may be related to the AKT and ERK signaling pathways. Our findings provide a theoretical basis for the effects of the new formulation on ischemic stroke injury.
Collapse
Affiliation(s)
- Lin Zhao
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Li Dong Ding
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, China
| | - Zi Hao Xia
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Peng Sheng
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Meng Meng Shen
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Zhong Ming Cai
- Department of Neurology, Yangzhou Hospital of Chinese Medicine, Yangzhou, China
| | - Bing Chun Yan
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Guo Q, Ni C, Li L, Li M, Jiang X, Gao L, Zhu H, Song J. Integrated Traditional Chinese Medicine Improves Functional Outcome in Acute Ischemic Stroke: From Clinic to Mechanism Exploration With Gut Microbiota. Front Cell Infect Microbiol 2022; 12:827129. [PMID: 35223549 PMCID: PMC8877419 DOI: 10.3389/fcimb.2022.827129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
As a life-threatening disease, stroke is the leading cause of death and also induces adult disability worldwide. To investigate the efficacy of the integrated traditional Chinese medicine (ITCM) on the therapeutic effects of acute ischemic stroke (AIS) patients, we enrolled 26 patients in the ITCM [Tanhuo decoction (THD) + Western medicine (WM)] group and 23 in the WM group. Thirty healthy people were also included in the healthy control (HC) group. ITCM achieved better functional outcomes than WM, including significant reduction of the phlegm-heat syndrome and neurological impairment, and improvement of ability. These facts were observed in different pretreatment gut enterotypes. In this paper, we collected the stool samples of all participants and analyzed the 16S rRNA sequence data of the gut microbiota. We identified two enterotypes (Type-A and Type-B) of the gut microbial community in AIS samples before treatment. Compared to Type-B, Type-A was characterized by a high proportion of Bacteroides, relatively high diversity, and severe functional damage. In the ITCM treatment group, we observed better clinical efficacy and positive alterations in microbial diversity and beneficial bacterial abundance, and the effect of approaching healthy people’s gut microbiota, regardless of gut enterotypes identified in pretreatment. Furthermore, we detected several gut microbiota as potential therapeutic targets of ITCM treatment by analyzing the correlations between bacterial abundance alterations and functional outcomes, where Dorea with the strongest correlation was known to produce anti-inflammatory metabolite and negatively linked to trimethylamine-N-oxide (TMAO), a biomarker of AIS. This study analyzed clinical and gut microbial data and revealed the possibility of a broad application independent of the enterotypes, as well as the therapeutic targets of the ITCM in treating AIS patients with phlegm-heat syndrome.
Collapse
Affiliation(s)
- Qian Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Future Technology and Center for Quantitative Biology, Peking University, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Can Ni
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Future Technology and Center for Quantitative Biology, Peking University, Beijing, China
| | - Linjing Li
- Department of Neurology, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Mo Li
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Future Technology and Center for Quantitative Biology, Peking University, Beijing, China
| | - Xiaoqing Jiang
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Future Technology and Center for Quantitative Biology, Peking University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huaiqiu Zhu
- State Key Laboratory for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Future Technology and Center for Quantitative Biology, Peking University, Beijing, China
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Juexian Song, ; Huaiqiu Zhu,
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Juexian Song, ; Huaiqiu Zhu,
| |
Collapse
|
17
|
Huangqi-Honghua Combination Prevents Cerebral Infarction with Qi Deficiency and Blood Stasis Syndrome in Rats by the Autophagy Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9496926. [PMID: 35111232 PMCID: PMC8803436 DOI: 10.1155/2022/9496926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 12/07/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CI/RI) contributes to the process of autophagy. Huangqi-Honghua combination (HQ-HH) is a traditional Chinese medicine (TCM) combination that has been widely used in the treatment of cerebrovascular diseases in China. The role of autophagy in HQ-HH-mediated treatment of CI/RI is unclear. METHODS Sprague-Dawley (SD) rats were used to establish the middle cerebral artery occlusion (MCAO) with QDBS syndrome model and evaluate the function of HQ-HH in protecting against CI/RI. RESULTS HQ-HH significantly improved the neuronal pathology and reduced infarct volume, neurological deficits, and whole blood viscosity in rats with CI/RI. Western blot results showed that the expression of autophagy marker proteins LC3II/LC3I and Beclin1 in the HQ-HH group was significantly lower than that in the model group, while the expression of p62 was significantly higher in the HQ-HH group as compared with the model group. There were no significant differences in PI3K, Akt, and mTOR levels between the HQ-HH group and the model group; however, p-PI3K, p-Akt, and p-mTOR were significantly upregulated. In addition, HQ-HH also changed the composition and function of intestinal flora in MCAO + QDBS model rats. CONCLUSION HQ-HH protects from CI/RI, and its underlying mechanism may involve the activation of the PI3K-Akt-mTOR signaling pathway, relating to the changes in the composition of intestinal flora.
Collapse
|
18
|
Wang Y, Xu Y, Zhang L, Huang S, Dou L, Yang J, Fu W, Zhou P, Wan H. Comparison of Buyang Huanwu granules and Naoxintong capsules in the treatment of stable angina pectoris: rationale and design of a randomized, blinded, multicentre clinical trial. Trials 2022; 23:65. [PMID: 35062988 PMCID: PMC8780317 DOI: 10.1186/s13063-021-05914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stable angina pectoris (SAP) currently seriously threatens the health of humans, and mortality is continuously rising. Current treatment strategies mainly include pharmaceutical therapy and revascularization. In China, Buyang Huanwu granules (BYHW) and Naoxintong capsules (NXT) have been used in the treatment of SAP, but it is not clear which agent is better in terms of relieving symptoms and improving quality of life. Therefore, we designed a clinical trial to compare the efficacy and safety of NXT and BYHW in the treatment of SAP. METHODS This is a randomized, blinded, parallel controlled, multicentre clinical trial protocol. On the basis of standardized Western medicine treatment, a total of 128 SAP patients will be randomly divided into intervention group 1 (NXT group), intervention group 2 (BYHW group), and a control group (placebo group) at a 2:1:1 ratio. A 2-week run-in period is required prior to randomization, and a 1-week baseline period and 4-week treatment period are included in this study. The primary outcome is the efficacy rate of stable angina symptom score improvement; the secondary outcomes include the effect on electrocardiograms, Seattle Angina Questionnaire scores, and nitroglycerine consumption. DISCUSSION This study will evaluate the efficacy and safety of NXT and BYHW in the treatment of SAP. The results will provide critical evidence for using Chinese herbal medicines to treat SAP. TRIAL REGISTRATION Chinese Clinical Trials Registry ChiCTR1800015191. Registered on 13 March 2018. http://www.chictr.org.cn/showproj.aspx?proj=25818 . All the registration items can be found within the protocol.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuhan Xu
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Dou
- Department of Cardiology, Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Fu
- Department of Cardiac-Cerebral Diseases, Yinchuan Cardiac-Cerebral Treatment Internet Hospital, Yinchuan, China
| | - Peng Zhou
- Institute of Brain and Heart CO Treatment, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Institute of Cardio-cerebrovascular Disease, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
19
|
Lyu Z, Li Q, Yu Z, Chan Y, Fu L, Li Y, Zhang C. Yi-Zhi-Fang-Dai Formula Exerts Neuroprotective Effects Against Pyroptosis and Blood-Brain Barrier-Glymphatic Dysfunctions to Prevent Amyloid-Beta Acute Accumulation After Cerebral Ischemia and Reperfusion in Rats. Front Pharmacol 2022; 12:791059. [PMID: 34975487 PMCID: PMC8714930 DOI: 10.3389/fphar.2021.791059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The dysfunctional blood–brain barrier (BBB)–glymphatic system is responsible for triggering intracerebral amyloid-beta peptide (Aβ) accumulation and acts as the key link between ischemic stroke and dementia dominated by Alzheimer’s disease (AD). Recently, pyroptosis in cerebral ischemia and reperfusion (I/R) injury is demonstrated as a considerable mechanism causing BBB–glymphatic dysfunctions and Aβ acute accumulation in the brain. Targeting glial pyroptosis to protect BBB–glymphatic functions after cerebral I/R could offer a new viewpoint to prevent Aβ accumulation and poststroke dementia. Yi-Zhi-Fang-Dai formula (YZFDF) is an herbal prescription used to cure dementia with multiple effects of regulating inflammatory responses and protecting the BBB against toxic Aβ-induced damage. Hence, YZFDF potentially possesses neuroprotective effects against cerebral I/R injury and the early pathology of poststroke dementia, which evokes our current study. Objectives: The present study was designed to confirm the potential efficacy of YZFDF against cerebral I/R injury and explore the possible mechanism associated with alleviating Aβ acute accumulation. Methods: The models of cerebral I/R injury in rats were built by the method of middle cerebral artery occlusion/reperfusion (MCAO/R). First, neurological function assessment and cerebral infarct measurement were used for confirming the efficacy of YZFDF on cerebral I/R injury, and the optimal dosage (YZFDF-H) was selected to conduct the experiments, which included Western blotting detections of pyroptosis, Aβ1-42 oligomers, and NeuN, immunofluorescence observations of glial pyroptosis, aquaporin-4 (AQP-4), and Aβ locations, brain water content measurement, SMI 71 (a specific marker for BBB)/AQP-4 immunohistochemistry, and Nissl staining to further evaluate BBB–glymphatic functions and neuronal damage. Results: YZFDF obviously alleviated neurological deficits and cerebral infarct after cerebral I/R in rats. Furthermore, YZFDF could inactivate pyroptosis signaling via inhibiting caspase-1/11 activation and gasdermin D cleavage, ameliorate glial pyroptosis and neuroinflammation, protect against BBB collapse and AQP-4 depolarization, prevent Aβ acute accumulation and Aβ1-42 oligomers formation, and reduce neuronal damage and increase neurons survival after reperfusion. Conclusion: Our study indicated that YZFDF could exert neuroprotective effects on cerebral I/R injury and prevent Aβ acute accumulation in the brain after cerebral I/R associated with inhibiting neuroinflammation-related pyroptosis and BBB–glymphatic dysfunctions.
Collapse
Affiliation(s)
- Zhongkuan Lyu
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiyue Li
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanjin Chan
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lei Fu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yaming Li
- Geriatrics Department of Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chunyan Zhang
- International Medical Center of Traditional Chinese Medicine, Haikou Hospital of Traditional Chinese Medicine, Haikou, China
| |
Collapse
|
20
|
Chen X, Wang Y, Ma Y, Wang R, Zhao D. To explore the Radix Paeoniae Rubra-Flos Carthami herb pair's potential mechanism in the treatment of ischemic stroke by network pharmacology and molecular docking technology. Medicine (Baltimore) 2021; 100:e27752. [PMID: 34889224 PMCID: PMC8663872 DOI: 10.1097/md.0000000000027752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
To explore the Radix Paeoniae Rubra-Flos Carthami herb pair's (RPR-FC) potential mechanism in treating ischemic stroke (IS) by network pharmacology and molecular docking technology.The Traditional Chinese Medicine Systems Pharmacology Database was used to screen the active components of the RPR-FC, and Cytoscape 3.8 software was used to construct a network map of its active components and targets of action. The GeneCards and OMIM databases were used to identify disease targets of IS, and the common targets were chosen as research targets and imported into the STRING database to construct a protein-protein interaction network map of these targets. R language software was used to analyze the enrichment of GO terms and KEGG pathways, and explore the mechanisms of these targets. Molecular docking technology was used to verify that the RPR-FC components had a good bonding activity with their potential targets.A total of 44 active components, which corresponded to 197 targets, were identified in the RPR-FC. There were 139 common targets between the herb pair and IS. GO functional enrichment analysis revealed 2253 biological process entries, 72 cellular components entries, and 183 molecular functions entries. KEGG pathway enrichment analysis was mainly related to the NF-kappa B signaling pathway, the TNF signaling pathway, apoptosis, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF signaling pathway, etc. The molecular docking results showed the components that docked well with key targets were quercetin, luteolin, kaempferol, and baicalein.The active components (quercetin, luteolin, kaempferol, and baicalein) of the RPR-FC and their targets act on proteins such as MAPK1, AKT1, VEGFA, and CASP3, which are closely related to IS.1 These targets are closely related to the NF-kappa B signaling pathway, the MAPK signaling pathway, the PI3K-Akt signaling pathway, the VEGF signaling pathway, and other signaling pathways. These pathways are involved in the recovery of nerve function, angiogenesis, and neuronal apoptosis and the regulation of inflammatory factors, which may have a therapeutic effect on IS.
Collapse
Affiliation(s)
- Xingyu Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ying Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dexi Zhao
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
21
|
Qi H, Wu YE, Liu YL, Kou C, Wang ZM, Peng XX, Chen L, Cui H, Wang YJ, Li JQ, Zhao W, Shen AD. Latamoxef for Neonates With Early-Onset Neonatal Sepsis: A Study Protocol for a Randomized Controlled Trial. Front Pharmacol 2021; 12:635517. [PMID: 34177569 PMCID: PMC8220210 DOI: 10.3389/fphar.2021.635517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Early-onset neonatal sepsis (EONS), a bacterial infection that occurs within 72 h after birth, is associated with high likelihood of neonatal mortality. Latamoxef, a semi-synthetic oxacephem antibiotic developed in 1980s, has been brought back into empirical EONS treatment in recent years. In the preliminary work, we established a population pharmacokinetics (PPK) model for latamoxef in Chinese neonates. Moreover, in order to better guide clinical treatment, we conducted dose simulation and found that ascending administration frequency could improve the target rate of 70% of patients having a free antimicrobial drug concentration exceeding the MIC during 70% of the dosing interval (70% fT > MIC). Accordingly, this study is aimed to compare the 70% fT > MIC, efficacy and safety between conventional regimen and PPK model regimen for rational use of latamoxef in EONS treatment. A single-blind, multicenter randomized controlled trial (RCT) for latamoxef will be conducted in Chinese EONS patients. Neonates (≤3 days of age, expected number = 114) admitted to the hospital with the diagnosis of EONS and fulfilling inclusion and exclusion criteria will be randomized (ratio of 1:1) to either a conventional regimen (30 mg/kg q12h) or model regimen (20 mg/kg q8h) latamoxef treatment group for at least 3 days. Primary outcome measure will be 70% fT > MIC and secondary outcome indicators will be the latamoxef treatment failure, duration of antibiotic therapy, changes of white blood cell count (WBC), C-reactive protein (CRP) and procalcitonin (PCT), blood culture results during administration and incidence of adverse event (AE)s. Assessments will be made at baseline, initial stage of latamoxef treatment (18-72 h) and before the end of latamoxef treatment. Ethical approval of our clinical trial has been granted by the ethics committee of the Beijing Children's Hospital (ID: 2020-13-1). Written informed consent will be obtained from the parents of the participants. This trial is registered in the Chinese Clinical Trial Registry (ChiCTR 2000040064).It is hoped that our study will provide a clinical basis for the rational clinical use of latamoxef in EONS treatment.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya-Li Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chen Kou
- Department of Neonatology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ze-Ming Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Xia Peng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liang Chen
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ya-Juan Wang
- Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Jie-Qiong Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - A-Dong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Beijing, China
| |
Collapse
|