1
|
Arzuk E. Investigation of the role of NLRP3 inflammasome activation in new-generation BCR-ABL1 tyrosine kinase inhibitors-induced hepatotoxicity. Toxicol Lett 2024; 400:71-80. [PMID: 39134127 DOI: 10.1016/j.toxlet.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
New generation BCR-ABL1 TKIs raised attention regarding their adverse effects, including hepatotoxicity. Indeed, bosutinib and nilotinib were associated with severe hepatotoxicity compared with imatinib. Moreover, ponatinib has a boxed warning due to its potential to cause inflammatory liver damage, even death. However, the underlying mechanisms remain unclear. This study aimed to investigate the role of NLRP3 inflammasome activation in the underlying mechanism of ponatinib and bosutinib-induced hepatotoxicity. Furthermore, we determined the initiating event of this adverse outcome pathway by measuring the levels of reactive oxygen species as well as mitochondrial membrane potential in AML12 cells. The results demonstrated that ponatinib or bosutinib markedly inhibited cell viability and caused cytosolic membrane damage in cells. Moreover, drugs (IC50) dramatically induced oxidative stress and mitochondrial membrane potential disruption, which led to upregulation in the expression levels of NLRP3 inflammasome-related genes and proteins, activation of NLRP3 inflammasomes, cleavage of gasdermin-D and caspase-1, secretion of IL-1β, and cytosolic membrane damage. Furthermore, MCC950, a well-known specific inhibitor of NLRP3 inflammasome, and antioxidant N-acetyl-l-cysteine reversed the effects of drugs on the NLRP3 signaling pathway and cytosolic membranes. In summary, NLRP3 inflammasome activation is involved in new-generation BCR-ABL1 TKIs-triggered hepatotoxicity. Mitochondrial damage and reactive oxygen species accumulation were significant upstream signaling events in this signaling pathway.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| |
Collapse
|
2
|
Burda P, Hlavackova A, Polivkova V, Curik N, Laznicka A, Krizkova J, Suttnar J, Klener P, Polakova KM. Imatinib therapy of chronic myeloid leukemia significantly reduces carnitine cell intake, resulting in adverse events. Mol Metab 2024; 88:102016. [PMID: 39182842 PMCID: PMC11403060 DOI: 10.1016/j.molmet.2024.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE A prominent, safe and efficient therapy for patients with chronic myeloid leukemia (CML) is inhibiting oncogenic protein BCR::ABL1 in a targeted manner with imatinib, a tyrosine kinase inhibitor. A substantial part of patients treated with imatinib report skeletomuscular adverse events affecting their quality of life. OCTN2 membrane transporter is involved in imatinib transportation into the cells. At the same time, the crucial physiological role of OCTN2 is cellular uptake of carnitine which is an essential co-factor for the mitochondrial β-oxidation pathway. This work investigates the impact of imatinib treatment on carnitine intake and energy metabolism of muscle cells. METHODS HTB-153 (human rhabdomyosarcoma) cell line and KCL-22 (CML cell line) were used to study the impact of imatinib treatment on intracellular levels of carnitine and vice versa. The energy metabolism changes in cells treated by imatinib were quantified and compared to changes in cells exposed to highly specific OCTN2 inhibitor vinorelbine. Mouse models were used to test whether in vitro observations are also achieved in vivo in thigh muscle tissue. The analytes of interest were quantified using a Prominence HPLC system coupled with a tandem mass spectrometer. RESULTS This work showed that through the carnitine-specific transporter OCTN2, imatinib and carnitine intake competed unequally and intracellular carnitine concentrations were significantly reduced. In contrast, carnitine preincubation did not influence imatinib cell intake or interfere with leukemia cell targeting. Blocking the intracellular supply of carnitine with imatinib significantly reduced the production of most Krebs cycle metabolites and ATP. However, subsequent carnitine supplementation rescued mitochondrial energy production. Due to specific inhibition of OCTN2 activity, the influx of carnitine was blocked and mitochondrial energy metabolism was impaired in muscle cells in vitro and in thigh muscle tissue in a mouse model. CONCLUSIONS This preclinical experimental study revealed detrimental effect of imatinib on carnitine-mediated energy metabolism of muscle cells providing a possible molecular background of the frequently occurred side effects during imatinib therapy such as fatigue, muscle pain and cramps.
Collapse
Affiliation(s)
- Pavel Burda
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Vendula Polivkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Laznicka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Krizkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiri Suttnar
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic; First Medical Department- Dept. of Hematology, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Katerina Machova Polakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
4
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
5
|
Abegg VF, Panajatovic MV, Mancuso RV, Allard JA, Duthaler U, Odermatt A, Krähenbühl S, Bouitbir J. Mechanisms of hepatocellular toxicity associated with the components of St. John's Wort extract hypericin and hyperforin in HepG2 and HepaRG cells. Toxicol Lett 2024; 393:1-13. [PMID: 38219807 DOI: 10.1016/j.toxlet.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.
Collapse
Affiliation(s)
- Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | | | | - Julien Arthur Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland.
| |
Collapse
|
6
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
7
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
9
|
Klassen P, Schiessel DL, Baracos VE. Adverse effects of systemic cancer therapy on skeletal muscle: myotoxicity comes out of the closet. Curr Opin Clin Nutr Metab Care 2023; 26:210-218. [PMID: 36942895 DOI: 10.1097/mco.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Systemic cancer therapy-associated skeletal muscle wasting is emerging as a powerful impetus to the overall loss of skeletal muscle experienced by patients with cancer. This review explores the clinical magnitude and biological mechanisms of muscle wasting during systemic cancer therapy to illuminate this adverse effect. Emerging strategies for mitigation are also discussed. RECENT FINDINGS Clinical findings include precise, specific measures of muscle loss over the course of chemotherapy, targeted therapy and immunotherapy. All these therapeutic classes associate with quantitatively important muscle loss, independent of tumor response. Parallel experimental studies provide understanding of the specific molecular basis of wasting, which can include inhibition of protein synthesis, proliferation and differentiation, and activation of inflammation, reactive oxygen species, autophagy, mitophagy, apoptosis, protein catabolism, fibrosis and steatosis in muscle. Strategies to mitigate these muscle-specific adverse effects of cancer therapy remain in the earliest stages of development. SUMMARY The adverse side effect of cancer therapy on skeletal muscle has been largely ignored in the development of cancer therapeutics. Given the extent to which loss of muscle mass and function can bear on patients' function and quality of life, protection/mitigation of these side effects is a research priority.
Collapse
Affiliation(s)
- Pamela Klassen
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Canada
| | - Dalton L Schiessel
- Department of Nutrition, Health Science Center, Campus CEDETEG, Midwest State University - UNICENTRO, Guarapuava, Parana State, Brazil
| | - Vickie E Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Huang J, Chen Y, Peng X, Gong Z, Wang Y, Li Y, Xu M, Ma Y, Yu C, Cai S, Zhao W, Zhao H. Mitoquinone ameliorated airway inflammation by stabilizing β-catenin destruction complex in a steroid-insensitive asthma model. Biomed Pharmacother 2023; 162:114680. [PMID: 37060658 DOI: 10.1016/j.biopha.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial β-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of β-catenin in TDI-induced asthma. METHOD Mice were sensitized and challenged with TDI to generate a steroid-insensitive asthma model. Human bronchial epithelial cells (16HBE) were exposed to TDI-human serum albumin (HSA) and ethidium bromide(EB) to simulate the TDI-induced asthma model and mitochondrial dysfunction. RESULTS MitoQ dramatically attenuated TDI-induced AHR, airway inflammation, airway goblet cell metaplasia, and collagen deposition and markedly protected epithelial mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species (ROS). MitoQ administration stabilized β-catenin destruction complex from disintegration and inhibited the activation of β-catenin. Similarly, YAP1, an important constituent of β-catenin destruction complex, was inhibited by Dasatinib, which alleviated airway inflammation and the activation of β-catenin, and restored mitochondrial mass. In vitro, treating 16HBE cells with EB led to the activation of YAP1 and β-catenin signaling, decreased the expression of glucocorticoid receptors and up-regulated interleukin (IL)-1β, IL6 and IL-8 expression. CONCLUSION Our results indicated that mitochondria mediates airway inflammation by regulating the stability of the β-catenin destruction complex and MitoQ might be a promising therapeutic approach to improve airway inflammation and severe asthma. AVAILABILITY OF DATA AND MATERIALS The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.
Collapse
Affiliation(s)
- Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ying Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yuemao Li
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nangfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Boran T, Zengin OS, Seker Z, Akyildiz AG, Oztas E, Özhan G. Ripretinib induced skeletal muscle toxicity through mitochondrial impairment in C2C12 myotubes. Toxicology 2023; 489:153489. [PMID: 36933644 DOI: 10.1016/j.tox.2023.153489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Ripretinib is a multikinase inhibitor drug approved in 2020 by the FDA and in 2021 by EMA for use in the treatment of advanced gastrointestinal stromal tumors (GIST) which have not adequately responded to previous treatments with kinase inhibitors. The most common side effects of the drug are myalgia and fatigue, which likely causes interruption of the treatment or reduction of the dose. Skeletal muscle cells highly depend on ATP to perform their functions and mitochondrial damage may play a role in skeletal muscle toxicity induced by kinase inhibitors. However, the molecular mechanism has not been clearly identified in the literature yet. In this study, it has been aimed to elucidate the role of mitochondria in the toxic effect of ripretinib on skeletal muscle using the mouse C2C12 myoblast-derived myotubes. The myotubes were exposed to ripretinib at the range of 1-20 μM concentrations for 24 h. To determine the potential role of mitochondrial impairment in ripretinib-induced skeletal muscle toxicity, intracellular ATP level, mitochondrial membrane potential (MMP), mitochondrial ROS production (mtROS), mitochondrial DNA (mtDNA) copy number, and mitochondrial mass were examined after ripretinib treatment. Furthermore, changes in PGC 1α/NRF 1/NRF 2 expression levels that play a role in mitochondrial biogenesis and mitophagy were investigated. Additionally, the mitochondrial electron transport chain (ETC) enzyme activities were evaluated. Lastly, a molecular docking study was done to see ripretinib's possible interaction with DNA polymerase gamma (POLG) which is important for DNA replication in the mitochondria. According to the findings, ripretinib decreases the ATP level and mtDNA copy number, induces loss of MMP, and reduces mitochondrial mass. The activities of the ETC complexes were inhibited with ripretinib exposure which is in line with the observed ATP depletion and MMP loss. The molecular docking study revealed that ripretinib has inhibitory potential against POLG which supports the observed inhibition of mtDNA. The expression of PGC 1α was reduced in the nuclear fraction indicating that PGC-1α was not activated since the NRF 1 expression was reduced and NRF 2 level did not show significant change. Consequently, mtROS production increased in all treatment groups and mitophagy-related gene expressions and Parkin protein expression level were up-regulated at high doses. In conclusion, mitochondrial damage/loss can be one of the underlying causes of ripretinib-induced skeletal muscle toxicity. However, further studies are needed to confirm the results in vivo.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Istanbul University-Cerrahpaşa, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34500 Istanbul, Turkey
| | - Ozge Sultan Zengin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Ezgi Oztas
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey.
| |
Collapse
|
12
|
Srivastava A, Singla DK. PTEN-AKT pathway attenuates apoptosis and adverse remodeling in ponatinib-induced skeletal muscle toxicity following BMP-7 treatment. Physiol Rep 2023; 11:e15629. [PMID: 36945866 PMCID: PMC10031244 DOI: 10.14814/phy2.15629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) including ponatinib are commonly used to treat cancer patients. Unfortunately, TKIs induce cardiac as well as skeletal muscle dysfunction as a side effect. Therefore, detailed mechanistic studies are required to understand its pathogenesis and to develop a therapeutic treatment. The current study was undertaken to examine whether ponatinib induces apoptosis and apoptotic mechanisms both in vitro and in vivo models and furthermore to test the potential of bone morphogenetic protein 7 (BMP-7) as a possible treatment option for its attenuation. Sol8 cells, a mouse myogenic cell line was exposed to ponatinib to generate an apoptotic cell culture model and were subsequently treated with BMP-7 to understand its protective effects. For the in vivo model, C57BL/6J mice were administered with ponatinib to understand apoptosis, cell signaling apoptotic mechanisms, and adverse muscle remodeling and its attenuation with BMP-7. TUNEL staining, immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) methods were used. Our data show significantly (p < 0.05) increased TUNEL staining, caspase-3, BAX/Bcl2 ratio in the in vitro model. Furthermore, our in vivo muscle data show ponatinib-induced muscle myopathy, and loss in muscle function. The observed muscle myopathy was associated with increased apoptosis, caspase-3 staining, and BAX/Bcl-2 ratio as confirmed with IHC and RT-PCR. Furthermore, our data show a significant (p < 0.05) increase in the involvement of cell signaling apoptotic regulator protein PTEN and a decrease in cell survival protein AKT. These results suggest that increased apoptosis following ponatinib treatment showed an increase in skeletal muscle remodeling, sarcopenia, and fibrosis. Furthermore, BMP-7 treatment significantly (p < 0.05) attenuated ponatinib-induced apoptosis, BAX/Bcl2 ratio, decreased PTEN, and increased cell survival protein AKT, decreased adverse muscle remodeling, and improved muscle function. Overall, we provide evidence that ponatinib-induces apoptosis leading to sarcopenia and muscle myopathy with decreased function which was attenuated by BMP-7.
Collapse
Affiliation(s)
- Ayushi Srivastava
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
13
|
Targeted-Lymphoma Drug Delivery System Based on the Sgc8-c Aptamer. Cancers (Basel) 2023; 15:cancers15030922. [PMID: 36765879 PMCID: PMC9913644 DOI: 10.3390/cancers15030922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Aptamers are emerging as a promising new class of functional nucleic acids because they can specifically bind to any target with high affinity and be easily modified chemically with different pharmacophoric subunits for therapy. The truncated aptamer, Sgc8-c, binds to tyrosine-protein kinase-like 7 receptor, a promising cancer therapeutic target, allowing the recognition of haemato-oncological malignancies, among others. We have previously developed aptamer-drug conjugates by chemical synthesis, hybridizing Sgc8-c and dasatinib, a drug proposed for lymphoma chemotherapy. One of the best-characterised Sgc8-c-dasatinib hybrids, namely Sgc8-c-carb-da, was capable of releasing dasatinib at an endosomal-pH. Herein, we probed the therapeutic potential of this aptamer-drug conjugate. Sgc8-c-carb-da specifically inhibited murine A20 B lymphocyte growth and produced cell death, mainly by late apoptosis and necrosis. In addition, Sgc8-c-carb-da generated an arrest in cell proliferation, with a cell cycle arrest in the Sub-G1-peak. The mitochondrial potential was altered accordingly to these pathways. Moreover, using an in vitro cell-targeting assay that mimics in vivo conditions, we showed that Sgc8-c-carb-da displayed higher (2.5-fold) cytotoxic effects than dasatinib. These findings provide proof-of-concept of the therapeutic value of Sgc8-c-carb-da for lymphoma, creating new opportunities for the chemical synthesis of targeted biotherapeutics.
Collapse
|
14
|
Src inhibitor dasatinib sensitized gastric cancer cells to cisplatin. Med Oncol 2022; 40:49. [DOI: 10.1007/s12032-022-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022]
|
15
|
Li C, Wen L, Dong J, Li L, Huang J, Yang J, Liang T, Li T, Xia Z, Chen C. Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review. Front Oncol 2022; 12:1072806. [PMID: 36561525 PMCID: PMC9766352 DOI: 10.3389/fonc.2022.1072806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Incidence rates of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) are lower but more aggressive in children than in adults due to different biological and host factors. After the clinical application of tyrosine kinase inhibitor (TKI) blocking BCR/ABL kinase activity, the prognosis of children with CML and Ph+ ALL has improved dramatically. Yet, off-target effects and drug tolerance will occur during the TKI treatments, contributing to treatment failure. In addition, compared to adults, children may need a longer course of TKIs therapy, causing detrimental effects on growth and development. In recent years, accumulating evidence indicates that drug resistance and side effects during TKI treatment may result from the cellular metabolism alterations. In this review, we provide a detailed summary of the current knowledge on alterations in metabolic pathways including glucose metabolism, lipid metabolism, amino acid metabolism, and other metabolic processes. In order to obtain better TKI treatment outcomes and avoid side effects, it is essential to understand how the TKIs affect cellular metabolism. Hence, we also discuss the relevance of cellular metabolism in TKIs therapy to provide ideas for better use of TKIs in clinical practice.
Collapse
Affiliation(s)
- Chunmou Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Luping Wen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Junchao Dong
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Lindi Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Junbin Huang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jing Yang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianqi Liang
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianwen Li
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhigang Xia
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China,*Correspondence: Chun Chen,
| |
Collapse
|
16
|
Bhullar KS, Ashkar F, Wu J. Peptides GWN and GW protect kidney cells against Dasatinib induced mitochondrial injury in a SIRT1 dependent manner. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100069. [PMID: 35415678 PMCID: PMC8991994 DOI: 10.1016/j.fochms.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023]
Abstract
Dasatinib, a small-molecule drug used as a treatment for chronic myeloid leukemia induces mitochondrial damage in embryonic kidney (293 T) cells (p < 0.05). This dasatinib induced mitochondrial injury in kidney cells was mitigated by H3K36me3 activating ovotransferrin-derived peptides GWN and GW. Pre-treatment of kidney cells with GWN and GW lead to elevation of cytoprotective sirtuins, SIRT1 and SIRT3, in response to dasatinib injury (p < 0.01) in vitro. Both peptides, GWN and GW, also reversed dasatinib induced the loss of mitochondria in kidney cells and promoted the protein expression of COX4 (p < 0.01). Mechanistically, loss of SIRT1 in kidney cells abolished the ability of GWN and GW to protect embryonic kidney cells against dasatinib injury in vitro. Overall, we provide cell based evidence showing that GWN and GW exhibit the ability to protect mitochondria against dasatinib-induced mitochondrial damage in a SIRT1 dependent manner.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Fatemeh Ashkar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Kumar V, Singh P, Gupta SK, Ali V, Jyotirmayee, Verma M. Alterations in cellular metabolisms after Imatinib therapy: a review. Med Oncol 2022; 39:95. [DOI: 10.1007/s12032-022-01699-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
|
18
|
Mendes S, Sá R, Magalhães M, Marques F, Sousa M, Silva E. The Role of ROS as a Double-Edged Sword in (In)Fertility: The Impact of Cancer Treatment. Cancers (Basel) 2022; 14:cancers14061585. [PMID: 35326736 PMCID: PMC8946252 DOI: 10.3390/cancers14061585] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Tumor cells are highly resistant to oxidative stress, but beyond a certain threshold, it may lead to apoptosis/necrosis. Thus, induced loss of redox balance can be a strategy used in anticancer therapies. However, the effectiveness of drugs contrasts with unknown mechanisms involved in the loss of fertility. Considering that cancer patients’ life expectancy is increasing, it raises concerns about the unknown adverse effects. Therefore, new strategies should be pursued alongside explaining to the patients their options regarding the reproduction side effects. Abstract Tumor cells are highly resistant to oxidative stress resulting from the imbalance between high reactive oxygen species (ROS) production and insufficient antioxidant defenses. However, when intracellular levels of ROS rise beyond a certain threshold, largely above cancer cells’ capacity to reduce it, they may ultimately lead to apoptosis or necrosis. This is, in fact, one of the molecular mechanisms of anticancer drugs, as most chemotherapeutic treatments alter redox homeostasis by further elevation of intracellular ROS levels or inhibition of antioxidant pathways. In traditional chemotherapy, it is widely accepted that most therapeutic effects are due to ROS-mediated cell damage, but in targeted therapies, ROS-mediated effects are mostly unknown and data are still emerging. The increasing effectiveness of anticancer treatments has raised new challenges, especially in the field of reproduction. With cancer patients’ life expectancy increasing, many aiming to become parents will be confronted with the adverse effects of treatments. Consequently, concerns about the impact of anticancer therapies on reproductive capacity are of particular interest. In this review, we begin with a short introduction on anticancer therapies, then address ROS physiological/pathophysiological roles in both male and female reproductive systems, and finish with ROS-mediated adverse effects of anticancer treatments in reproduction.
Collapse
Affiliation(s)
- Sara Mendes
- Department of Physical Education and Sports, University Institute of Maia (ISMAI), 4475-690 Maia, Portugal;
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.S.); (M.S.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
| | - Manuel Magalhães
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
- Department of Oncology, University Hospital Center of Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal;
| | - Franklim Marques
- Department of Oncology, University Hospital Center of Porto (CHUP), Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal;
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.S.); (M.S.)
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal;
| | - Elisabete Silva
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), Institute for Research & Innovation in Health (I3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
19
|
Huang FR, Fang WT, Cheng ZP, Shen Y, Wang DJ, Wang YQ, Sun LN. Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol 2022; 96:1075-1087. [PMID: 35190838 DOI: 10.1007/s00204-022-03245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Imatinib (IM), a milestone drug used in the field of molecular targeted therapy, has been reported to cause serious adverse liver effects, including liver failure and even death. Immune-mediated injury and mitochondrial dysfunction are involved in drug-induced liver injury. However, the mechanism of IM-induced hepatotoxicity remains unclear and warrants further study. In our study, Sprague Dawley rats were administered IM by gavage with 50 mg/kg body weight (BW) once daily for 10 days. Drug-induced liver injury accompanied by inflammatory infiltration was observed in rats following IM exposure, and the expression of NOD-like receptor protein 3 (NLRP3) inflammasome-related proteins was significantly increased compared with that of the control. HepG2 cells were exposed to 0-100 μM IM for 24 h. The results showed that IM decreased cell viability in a dose-dependent manner. Moreover, IM induced a state of obvious oxidative stress and activation of nuclear factor kappa B (NF-κB) in cells, which resulted in the activation of NLRP3 inflammasomes, including caspase 1 cleavage and IL-1β release. These results were significantly reduced after the use of the antioxidants N-acetyl-l-cysteine or the NF-κB inhibitor pyrrolidine di-thio-carbamate. Furthermore, NLRP3 knockdown significantly reduced the release of inflammatory cytokines and improved cell viability. In summary, our data demonstrated that oxidative stress and NLRP3 inflammasome activation are involved in the process of IM-induced hepatotoxicity. The results of this study provide a reference for the prevention and treatment of IM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China.,School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen-Tong Fang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Dun-Jian Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Bouitbir J, Panajatovic MV, Krähenbühl S. Mitochondrial Toxicity Associated with Imatinib and Sorafenib in Isolated Rat Heart Fibers and the Cardiomyoblast H9c2 Cell Line. Int J Mol Sci 2022; 23:ijms23042282. [PMID: 35216404 PMCID: PMC8878993 DOI: 10.3390/ijms23042282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.
Collapse
Affiliation(s)
- Jamal Bouitbir
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
- Correspondence: ; Tel.: +41-61-207-6290
| | - Miljenko V. Panajatovic
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital, Basel, Switzerland; (M.V.P.); (S.K.)
| |
Collapse
|
21
|
Welsh N. Are off-target effects of imatinib the key to improving beta-cell function in diabetes? Ups J Med Sci 2022; 127:8841. [PMID: 36187072 PMCID: PMC9487420 DOI: 10.48101/ujms.v127.8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The small tyrosine kinase (TK) inhibitor imatinib mesylate (Gleevec, STI571) protects against both type 1 and type 2 diabetes, but as it inhibits many TKs and other proteins, it is not clear by which mechanisms it acts. This present review will focus on the possibility that imatinib acts, at least in part, by improving beta-cell function and survival via off-target effects on beta-cell signaling/metabolic flow events. Particular attention will be given to the possibility that imatinib and other TK inhibitors function as inhibitors of mitochondrial respiration. A better understanding of how imatinib counteracts diabetes will possibly help to clarify the pathogenic role of beta-cell signaling events and mitochondrial function, and hopefully leading to improved treatment of the disease.
Collapse
Affiliation(s)
- Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules 2021; 11:1742. [PMID: 34827740 PMCID: PMC8615430 DOI: 10.3390/biom11111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of β-dystroglycan (β-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle β-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-β-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of β-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-β-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-β-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing β-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing β-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Santa Cirmi
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ilaria Arduino
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annalisa Cutrignelli
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Angela Assunta Lopedota
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Nunzio Denora
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| |
Collapse
|
23
|
Gunaydin Akyildiz A, Boran T, Jannuzzi AT, Alpertunga B. Mitochondrial dynamics imbalance and mitochondrial dysfunction contribute to the molecular cardiotoxic effects of lenvatinib. Toxicol Appl Pharmacol 2021; 423:115577. [PMID: 34019861 DOI: 10.1016/j.taap.2021.115577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022]
Abstract
Lenvatinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of resistant differentiated thyroid cancer, advanced renal cell carcinoma, unresectable hepatocellular carcinoma, and endometrial carcinoma. Although it is successful in cancer treatment, it can cause life-threatening side effects such as cardiotoxicity. The molecular mechanism of cardiotoxicity caused by lenvatinib is not fully known. In this study, the molecular mechanism of lenvatinib's cardiotoxicity was investigated focusing on mitochondrial toxicity in the H9c2 cardiomyoblastic cell line. Lenvatinib inhibited cell viability at 48 and 72 h exposure with three selected concentrations (1.25 μM, 5 μM and 10 μM); and inhibited intracellular ATP after 72 h exposure compared to the control group. Mitochondrial membrane potential was decreased after 48 h and did not show significant changes after 72 h exposure. Evaluated with real-time PCR, mitochondrial dynamics (Mfn1, Mfn2, OPA1, DRP1, Fis1) expression levels after lenvatinib treatment significantly changed. Lenvatinib triggered the tendency from fusion to fission in mitochondria after 48 h exposure, and increased both fusion and fission after 72 h. The mtDNA ratio increased after 48 h and decreased after 72 h. ASK1, JNK and AMPKα2 increased. UCP2 showed downregulation, SOD2 level showed upregulation and Cat levels decreased after drug treatment. Nrf1 and Nrf2 also changed concentration-dependently. Protein carbonyl levels increased significantly after lenvatinib treatments indicating oxidative stress. The protein levels of the electron transport chain complexes, LONP1, UCP2, and P21 showed significant differences after lenvatinib treatment. The outcome of our study is expected to be a contribution to the understanding of the molecular mechanisms of TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
- Aysenur Gunaydin Akyildiz
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Vatan Street, 34093 Fatih, Istanbul, Turkey
| | - Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey
| | - Buket Alpertunga
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Beyazit, Istanbul, Turkey.
| |
Collapse
|
24
|
Shamaa MM. Sulfasalazine synergistically enhances the inhibitory effects of imatinib against hepatocellular carcinoma (HCC) cells by targeting NFκB, BCR/ABL, and PI3K/AKT signaling pathway-related proteins. FEBS Open Bio 2021; 11:588-597. [PMID: 33289342 PMCID: PMC7931239 DOI: 10.1002/2211-5463.13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related fatalities worldwide. Identification of second-line therapies for patients with progressive HCC is urgently required as the use of sorafenib and/or regorafenib remains unsatisfactory. Imatinib, a small-molecule kinase inhibitor, is used to treat certain types of cancer, and nuclear factor κB (NFκB) is a positive regulator of cancer cell expansion. The combined use of tyrosine kinase and NFκB inhibitors may have potential for treating HCC. The aim of this work was to assess the potential anticarcinogenic effects of imatinib and sulfasalazine alone or in combination on the human HCC cell lines HEPG2 and Huh-7. Both drugs were shown to affect the phosphoinositide 3-kinase/protein kinase B, phosphorylated signal transducer and activator of translation (p-STAT-3), breakpoint cluster region protein/Abelson proto-oncogene and NFκB pathways. At the transcriptional level, imatinib and sulfasalazine were found to synergistically down-regulate c-MET gene expression. When compared with the activities of either medication alone, combined use of imatinib and sulfasalazine enhanced inhibition of HCC cell proliferation and extended induction of apoptosis. In summary, the presented data suggest that sulfasalazine synergistically potentiates the antitumor effects of imatinib.
Collapse
Affiliation(s)
- Marium M. Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of PharmacyArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
| |
Collapse
|
25
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
26
|
Morawietz CM, Houhou H, Puckelwaldt O, Hehr L, Dreisbach D, Mokosch A, Roeb E, Roderfeld M, Spengler B, Haeberlein S. Targeting Kinases in Fasciola hepatica: Anthelminthic Effects and Tissue Distribution of Selected Kinase Inhibitors. Front Vet Sci 2020; 7:611270. [PMID: 33409299 PMCID: PMC7779637 DOI: 10.3389/fvets.2020.611270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Protein kinases have been discussed as promising druggable targets in various parasitic helminths. New drugs are also needed for control of fascioliasis, a food-borne trematode infection and worldwide spread zoonosis, caused by the liver fluke Fasciola hepatica and related species. In this study, we intended to move protein kinases more into the spotlight of Fasciola drug research and characterized the fasciolicidal activity of two small-molecule inhibitors from human cancer research: the Abelson tyrosine kinase (ABL-TK) inhibitor imatinib and the polo-like 1 (PLK1) inhibitor BI2536. BI2536 reduced viability of 4-week-old immature flukes in vitro, while adult worms showed a blockade of egg production. Together with a significantly higher transcriptional expression of PLK1 in adult compared to immature worms, this argues for a role of PLK1 in fluke reproduction. Both fluke stages expressed ABL1-TK transcripts at similar high levels and were affected by imatinib. To study the uptake kinetic and tissue distribution of imatinib in F. hepatica, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for the first time in this parasite. Drug imaging revealed the accumulation of imatinib in different fluke tissues from 20 min to 12 h of exposure. Furthermore, we show that imatinib is metabolized to N-desmethyl imatinib by F. hepatica, a bioactive metabolite also found in humans. Besides the vitellarium, gastrodermal tissue showed strong signal intensities. In situ hybridization demonstrated the gastrodermal presence of abl1 transcripts. Finally, we assessed transcriptional changes of physiologically important genes in imatinib-treated flukes. Moderately increased transcript levels of a gene encoding a multidrug resistance protein were detected, which may reflect an attempt to defend against imatinib. Increased expression levels of the cell cycle dependently expressed histone h2b and of two genes encoding superoxide dismutases (SODs) were also observed. In summary, our pilot study demonstrated cross-stage activity of imatinib but not BI2536 against immature and adult F. hepatica in vitro; a fast incorporation of imatinib within minutes, probably via the oral route; and imatinib-induced expression changes of physiologically relevant genes. We conclude that kinases are worth analyzing in more detail to evaluate the potential as therapeutic targets in F. hepatica.
Collapse
Affiliation(s)
- Carolin M Morawietz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Hicham Houhou
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Domenic Dreisbach
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Annika Mokosch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Simone Haeberlein
- Biomedical Research Center Seltersberg (BFS), Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Mostazo MGC, Kurrle N, Casado M, Fuhrmann D, Alshamleh I, Häupl B, Martín-Sanz P, Brüne B, Serve H, Schwalbe H, Schnütgen F, Marin S, Cascante M. Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12113443. [PMID: 33228196 PMCID: PMC7699488 DOI: 10.3390/cancers12113443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Tyrosine kinase inhibitors (TKIs), such as imatinib, have become the standard initial treatment of choice for chronic myeloid leukemia (CML) patients. However, one obstacle to face is that a significant proportion of patients presents poor response to TKIs, or acquires resistance resulting in disease relapses. Mutations in BCR-ABL1 protein are a well described mechanism of resistance but other not well established mechanisms outside BCR-ABL1 mutations are emerging as important in the acquisition of resistance. Abnormal metabolism of CML cells that acquire resistance to imatinib has been pointed out as a putative downstream key event, but deep studies aimed to unveil metabolic adaptations associated with acquired resistance are still lacking. Here, we perform an exhaustive study on metabolic reprogramming associated with acquired imatinib resistance and we identify metabolic vulnerabilities of CML imatinib resistant cells that could pave the way for new therapies targeting TKI failure. Abstract Tyrosine kinase inhibitors (TKIs) are currently the standard chemotherapeutic agents for the treatment of chronic myeloid leukemia (CML). However, due to TKI resistance acquisition in CML patients, identification of new vulnerabilities is urgently required for a sustained response to therapy. In this study, we have investigated metabolic reprogramming induced by TKIs independent of BCR-ABL1 alterations. Proteomics and metabolomics profiling of imatinib-resistant CML cells (ImaR) was performed. KU812 ImaR cells enhanced pentose phosphate pathway, glycogen synthesis, serine-glycine-one-carbon metabolism, proline synthesis and mitochondrial respiration compared with their respective syngeneic parental counterparts. Moreover, the fact that only 36% of the main carbon sources were utilized for mitochondrial respiration pointed to glycerol-phosphate shuttle as mainly contributors to mitochondrial respiration. In conclusion, CML cells that acquire TKIs resistance present a severe metabolic reprogramming associated with an increase in metabolic plasticity needed to overcome TKI-induced cell death. Moreover, this study unveils that KU812 Parental and ImaR cells viability can be targeted with metabolic inhibitors paving the way to propose novel and promising therapeutic opportunities to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Miriam G. Contreras Mostazo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Marta Casado
- Biomedicine Institute of Valencia, IBV-CSIC, 46010 Valencia, Spain;
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Islam Alshamleh
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Björn Häupl
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Paloma Martín-Sanz
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- “Alberto Sols” Biomedical Research Institute, CSIC-UAM, 28029 Madrid, Spain
| | - Bernhard Brüne
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany;
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Harald Schwalbe
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; (N.K.); (B.H.); (H.S.); (F.S.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (I.A.); (H.S.)
- Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany;
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain;
- Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES- ELIXIR), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (S.M.); (M.C.); Tel.: +34-934021217 (S.M.); +34-934021593 (M.C.)
| |
Collapse
|