1
|
John S, Khan E, Jain A, Devi P, Gupta S. Correlation of Immunohistochemical Biomarkers and Differential Staining Techniques to Investigate the Role of Subepithelial Hyalinization in the Aggressiveness of Odontogenic Keratocyst. Indian J Otolaryngol Head Neck Surg 2024; 76:5610-5617. [PMID: 39559161 PMCID: PMC11569315 DOI: 10.1007/s12070-024-05044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/04/2024] [Indexed: 11/20/2024] Open
Abstract
Odontogenic Keratocysts (OKCs) are known for their aggressive behavior along with rapid expansion. Subepithelial hyalinization (SEH) is one of the causes of recurrence. The ability to predict this biological behavior histologically may help medical experts choose the best course of action. To investigate the aggressiveness of odontogenic keratocyst caused by SEH and its recurrence tendency in the north Indian population, this study will link differential staining methods with immunohistochemistry biomarkers that can be used in routine investigative procedures. Consequently, the evaluation and grading of SEH were established by measuring from the basement membrane to the extent of connective tissue. The levels were correlated to Ki67, Alcian blue, and O -safranine for validation. Forty OKCs were examined for the histological investigation of SEH using the immunohistochemical marker Ki67 and differential staining with O-safranine and Alcian Blue. The histological trait of separation of epithelium from the connective tissue interface due to SEH was noted. SEH-positive cases that were evaluated with Ki67, had increased proliferative activity. The differential staining techniques were validated with Ki67, cross-tabulations in SPSS, and kappa statistic value was given to analyze the results. Spearman's rank correlation was done between Ki67 vs Alcian blue and O-Safranine. A p value of less than < 0.05 was considered statistically significant. In SEH-positive cases, a higher proliferative index was observed. Additionally, histological metrics were statistically significantly higher in SEH-positive cases. Consequently, SEH is a reliable histopathological indicator in OKC for predicting recurrence. The presence of SEH indicates that OKCs are more likely to recur.
Collapse
Affiliation(s)
- Sharon John
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, King George’s Medical University, Lucknow, India
| | - Eram Khan
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Ayushi Jain
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Priya Devi
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Shalini Gupta
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| |
Collapse
|
2
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Bogdanović B, Fagret D, Ghezzi C, Montemagno C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine-Glycine-Aspartate) Strategies. Pharmaceuticals (Basel) 2024; 17:1556. [PMID: 39598465 PMCID: PMC11597078 DOI: 10.3390/ph17111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Integrins, an important superfamily of cell adhesion receptors, play an essential role in cancer progression, metastasis, and angiogenesis, establishing them as prime targets for both diagnostic and therapeutic applications. Despite their significant potential, integrin-targeted therapies have faced substantial challenges in clinical trials, including variable efficacy and unmet high expectations. Nevertheless, the consistent expression of integrins on tumor and stromal cells underscores their ongoing relevance and potential. Traditional RGD-based imaging and therapeutic agents have faced limitations, such as inconsistent target expression and rapid systemic clearance, which have reduced their effectiveness. To overcome these challenges, recent research has focused on advancing RGD-based strategies and exploring innovative solutions. This review offers a thorough analysis of the latest developments in the RGD-integrin field, with a particular focus on addressing previous limitations. It delves into new dual-targeting approaches and cutting-edge RGD-based agents designed to improve both tumor diagnosis and therapeutic outcomes. By examining these advancements, this review illuminates new pathways for enhancing the specificity and efficacy of integrin-targeted therapies, paving the way for more effective cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Bojana Bogdanović
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Daniel Fagret
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Catherine Ghezzi
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | | |
Collapse
|
4
|
Dalpati N, Rai SK, Dash SP, Kumar P, Singh D, Sarangi PP. Integrins α5β1 and αvβ3 Differentially Participate in the Recruitment and Reprogramming of Tumor-associated Macrophages in the In Vitro and In Vivo Models of Breast Tumor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1553-1568. [PMID: 39330703 DOI: 10.4049/jimmunol.2400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Tumor-associated macrophages (TAMs) drive the protumorigenic responses and facilitate tumor progression via matrix remodeling, angiogenesis, and immunosuppression by interacting with extracellular matrix proteins via integrins. However, the expression dynamics of integrin and its correlation with TAM functional programming in the tumors remain unexplored. In this study, we examined surface integrins' role in TAM recruitment and phenotypic programming in a 4T1-induced murine breast tumor model. Our findings show that integrin α5β1 is upregulated in CD11b+Ly6Chi monocytes in the bone marrow and blood by day 10 after tumor induction. Subsequent analysis revealed elevated integrin α5β1 expression on tumor-infiltrating monocytes (Ly6ChiMHC class II [MHCII]low) and M1 TAMs (F4/80+Ly6ClowMHCIIhi), whereas integrin αvβ3 was predominantly expressed on M2 TAMs (F4/80+Ly6ClowMHCIIlow), correlating with higher CD206 and MERTK expression. Gene profiling of cells sorted from murine tumors showed that CD11b+Ly6G-F4/80+α5+ TAMs had elevated inflammatory genes (IL-6, TNF-α, and STAT1/2), whereas CD11b+Ly6G-F4/80+αv+ TAMs exhibited a protumorigenic phenotype (IL-10, Arg1, TGF-β, and STAT3/6). In vitro studies demonstrated that blocking integrin α5 and αv during macrophage differentiation from human peripheral blood monocytes reduced cell spreading and expression of CD206 and CD163 in the presence of specific matrix proteins, fibronectin, and vitronectin. Furthermore, RNA sequencing data analysis (GEO dataset: GSE195857) from bone marrow-derived monocytes and TAMs in 4T1 mammary tumors revealed differential integrin α5 and αv expression and their association with FAK and SRC kinase. In line with this, FAK inhibition during TAM polarization reduced SRC, STAT1, and STAT6 phosphorylation. In conclusion, these findings underscore the crucial role of integrins in TAM recruitment, polarization, and reprogramming in tumors.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Puneet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
5
|
Dirheimer L, Pons T, François A, Lamy L, Marchal F, Dolivet G, Cortese S, Bezdetnaya L. Peptide-mediated targeting of Quantum Dots in a 3D model of head and neck cancer. Photodiagnosis Photodyn Ther 2024; 49:104337. [PMID: 39332607 DOI: 10.1016/j.pdpdt.2024.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) treatment mainly relies on surgery. The status of surgical margin is a major prognostic factor for patients as positive margins are associated with lower survival. However, the anatomical particularities of this area complicate margin establishment. Fluorescence guided surgery (FGS) could be employed as an intraoperative technique to improve tumor resection and margin investigation. Quantum dots (QDs) serve as ideal contrast agents in this technique due to their brightness and stability. Since αVβ6 integrin is overexpressed in OSCC, coupling QDs with A20FMDV2 peptide (QDs-A20) targeting the αVβ6 integrin constitute a real opportunity. This study investigates the accumulation of QDs-A20 in 2D and 3D tongue cancer models, as well as QDs coupled to a scrambled version of this peptide (QDs-Scr) or without peptide (QDs-SPP), for imaging purposes. METHODS CdSeCdS/ZnS quantum dots were coated with sulfobetaine polymers (QDs-SPP) and conjugated to A20FMDV2 peptide (QDs-A20) or its scrambled version (QDs-Scr). Two-dimensional (2D) and three-dimensional (3D) tongue cancer cells HSC-3 were employed to test the effectiveness of intracellular accumulation of all types of QDs. Targeting ability of each QDs was assessed by flow cytometry, while the depth of penetration into cancerous spheroids was assessed by fluorescence microscopy. RESULTS QDs coating with sulfobetaines polymers (QDs-SPP) completely prevented their internalization by HSC-3 cells in 2D and 3D models, making QDs stealthy and preventing their non-specific accumulation. Conversely, peptides conjugated QDs (QDs-A20 & QDs-Scr) labeled HSC-3 monolayers and managed to label spheroid periphery up to 23 µm deep. However, no difference in accumulation was found between these two QDs whereas only A20 peptide could potentially target αVβ6 integrin. It appears that peptide conjugation increased QDs zeta potential, promoting their adsorption and subsequent endocytosis by cells, independently from αVβ6 integrin. CONCLUSIONS The present study highlighted the impact of peptide conjugation on QDs internalization in 2D and 3D tongue cancer cell models. QDs-SPP were stealthy and did not accumulate in cells. Peptides conjugated QDs could be used as contrast agents, but in a passive targeting approach. Modifications to surface chemistry are required to target αVβ6 integrin through active targeting. This study also highlights the need for controls such as scrambled peptides, the absence of which can lead to misinterpretation of results.
Collapse
Affiliation(s)
- Luca Dirheimer
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Thomas Pons
- LPEM UMR 8213, ESPCI Paris, PSL University, CNRS, Sorbonne University, Paris, France
| | - Aurélie François
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Laureline Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Frédéric Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Gilles Dolivet
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Sophie Cortese
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandœuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
6
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Casali BC, Baptista MP, Pachane BC, Cortez AA, Altei WF, Selistre-de-Araújo HS. Blockage of αvβ3 integrin in 3D culture of triple-negative breast cancer and endothelial cells inhibits migration and discourages endothelial-to-mesenchymal plasticity. Biochem Biophys Rep 2024; 38:101686. [PMID: 38524278 PMCID: PMC10957371 DOI: 10.1016/j.bbrep.2024.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Breast cancer is a relevant cause of mortality in women and its triple-negative subtype (TNBC) is usually associated with poor prognosis. During tumor progression to metastasis, angiogenesis is triggered by the sprouting of endothelial cells from pre-existing vessels by a dynamic chain of events including VE-cadherin downregulation, actin protrusion, and integrin-mediated adhesion, allowing for migration and proliferation. The binding of tumoral and tumor-associated stromal cells with the extracellular matrix through integrins mediates angiogenic processes and certain integrin subtypes, such as the αvβ3 integrin, are upregulated in hypoxic TNBC models. Integrin αvβ3 inhibition by the high-affinity binding disintegrin DisBa-01 was previously demonstrated to induce anti-tumoral and anti-angiogenic responses in traditional 2D cell assays. Here, we investigate the effects of integrin αvβ3 blockage in endothelial and TNBC cells by DisBa-01 in 3D cultures under two oxygen conditions (1% and 20%). 3D cultures created using non-adhesive micromolds with Matrigel were submitted to migration assay in Boyden chambers and fluorescence analysis. DisBa-01 inhibited cell migration in normoxia and hypoxia in both MDA-MB-231 and HUVEC spheroids. Protein levels of integrin αvβ3 were overexpressed in HUVEC spheroids compared to MDA-MB-231 spheroids. In HUVEC 3D cultures, sprouting assays in collagen type I were decreased in normoxia upon DisBa-01 treatment, and VE-cadherin levels were diminished in HUVEC spheroids in hypoxia and upon DisBa-01 treatment. In conclusion, the blockage of integrin αvβ3 by DisBa-01 inhibits cell migration in 3D culture and interferes with tumor-derived responses in different oxygen settings, implicating its crucial role in angiogenesis and tumor progression.
Collapse
Affiliation(s)
- Bruna Carla Casali
- Biochemistry and Molecular Biology Laboratory, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Matheus Pintor Baptista
- Biochemistry and Molecular Biology Laboratory, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Bianca Cruz Pachane
- Biochemistry and Molecular Biology Laboratory, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil
| | - Anelise Abreu Cortez
- Biochemistry and Molecular Biology Laboratory, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil
| | - Wanessa Fernanda Altei
- Biochemistry and Molecular Biology Laboratory, Universidade Federal de São Carlos - UFSCar, São Carlos, SP, Brazil
- Radiation Oncology Department, Barretos Cancer Hospital, Barretos, SP, Brazil
- Center of Molecular Oncology Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | |
Collapse
|
8
|
Dirheimer L, Pons T, François A, Lamy L, Cortese S, Marchal F, Bezdetnaya L. Targeting of 3D oral cancer spheroids by αVβ6 integrin using near-infrared peptide-conjugated IRDye 680. Cancer Cell Int 2024; 24:228. [PMID: 38951897 PMCID: PMC11218202 DOI: 10.1186/s12935-024-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVβ6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVβ6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS αVβ6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS αVβ6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 μm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVβ6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.
Collapse
Affiliation(s)
- L Dirheimer
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - T Pons
- ESPCI Paris, LPEM UMR 8213, PSL University, CNRS, Sorbonne University, Paris, France
| | - A François
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - S Cortese
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - F Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France.
| |
Collapse
|
9
|
Solomatina ES, Kovaleva AV, Tvorogova AV, Vorobjev IA, Saidova AA. Effect of Focal Adhesion Kinase and Vinculin Expression on Migration Parameters of Normal and Tumor Epitheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:474-486. [PMID: 38648767 DOI: 10.1134/s0006297924030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.
Collapse
Affiliation(s)
- Evgenia S Solomatina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia V Kovaleva
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Tvorogova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Ivan A Vorobjev
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
| | - Aleena A Saidova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
10
|
You Q, Li R, Yao J, Zhang YC, Sui X, Xiao CC, Zhang JB, Xiao JQ, Chen HT, Li H, Zhang J, Zheng J, Yang Y. Insights into lenvatinib resistance: mechanisms, potential biomarkers, and strategies to enhance sensitivity. Med Oncol 2024; 41:75. [PMID: 38381181 DOI: 10.1007/s12032-023-02295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Lenvatinib is a multitargeted tyrosine kinase inhibitor capable of promoting apoptosis, suppressing angiogenesis, inhibiting tumor cell proliferation, and modulating the immune response. In multiple cancer types, lenvatinib has presented manageable safety and is currently approved as an effective first-line therapy. However, with the gradual increase in lenvatinib application, the inevitable progression of resistance to lenvatinib is becoming more prevalent. A series of recent researches have reported the mechanisms underlying the development of lenvatinib resistance in tumor therapy, which are related to the regulation of cell death or proliferation, histological transformation, metabolism, transport processes, and epigenetics. In this review, we aim to outline recent discoveries achieved in terms of the mechanisms and potential predictive biomarkers of lenvatinib resistance as well as to summarize untapped approaches available for improving the therapeutic efficacy of lenvatinib in patients with various types of cancers.
Collapse
Affiliation(s)
- Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Rong Li
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying-Cai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin Sui
- Surgical ICU of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cui-Cui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie-Bin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Qi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Tian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University; Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
12
|
Grigoryeva E, Tashireva L, Alifanov V, Savelieva O, Zavyalova M, Menyailo M, Khozyainova A, Denisov EV, Bragina O, Popova N, Cherdyntseva NV, Perelmuter V. Integrin-associated transcriptional characteristics of circulating tumor cells in breast cancer patients. PeerJ 2024; 12:e16678. [PMID: 38250718 PMCID: PMC10800097 DOI: 10.7717/peerj.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Background Integrins enable cell communication with the basal membrane and extracellular matrix, activating signaling pathways and facilitating intracellular changes. Integrins in circulating tumor cells (CTCs) play a significant role in apoptosis evasion and anchor-independent survival. However, the link between CTCs expressing different integrin subunits, their transcriptional profile and, therefore, their functional activity with respect to metastatic potential remains unclear. Methods Single-cell RNA sequencing of CD45-negative cell fraction of breast cancer patients was performed. All CTCs were divided into nine groups according to their integrin profile. Results СTCs without the gene expression of integrins or with the expression of non-complementary α and β subunits that cannot form heterodimers prevailed. Only about 15% of CTCs expressed integrin subunits which can form heterodimers. The transcriptional profile of CTCs appeared to be associated with the spectrum of expressed integrins. The lowest potential activity was observed in CTCs without integrin expression, while the highest frequency of expression of tumor progression-related genes, namely genes of stemness, epithelial-mesenchymal transition (EMT), invasion, proinflammatory chemokines and cytokines as well as laminin subunits, were observed in CTCs co-expressing ITGA6 and ITGB4. Validation on the protein level revealed that the median of integrin β4+ CTCs was higher in patients with more aggressive molecular subtypes as well as in metastatic breast cancer patients. One can expect that CTCs with ITGA6 and ITGB4 expression will have pronounced metastatic potencies manifesting in expression of EMT and stemness-related genes, as well as potential ability to produce chemokine/proinflammatory cytokines and laminins.
Collapse
Affiliation(s)
- Evgeniya Grigoryeva
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Liubov Tashireva
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir Alifanov
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga Savelieva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Zavyalova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Maxim Menyailo
- The Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Khozyainova
- The Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgeny V. Denisov
- The Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga Bragina
- The Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nataliya Popova
- The Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda V. Cherdyntseva
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir Perelmuter
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
13
|
Allert C, Müller-Tidow C, Blank MF. The relevance of the hematopoietic niche for therapy resistance in acute myeloid leukemia. Int J Cancer 2024; 154:197-209. [PMID: 37565773 DOI: 10.1002/ijc.34684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The expansion of acute myeloid leukemia (AML) blasts not only suppresses normal hematopoiesis, but also alters the microenvironment. The interplay of different components of the bone marrow gives rise to altered metabolic states and activates signaling pathways which lead to resistance and impede effective therapy. Therefore, the underlying processes and mechanisms represent attractive therapeutic leverage points for overcoming therapy resistance in AML. Here, we briefly discuss resistance mechanisms based on cell interactions and secreted soluble factors in the hematopoietic niche and provide an overview of niche-related therapeutic targets currently undergoing preclinical and clinical investigation which may help improve the outcome in AML therapy.
Collapse
Affiliation(s)
- Catana Allert
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maximilian Felix Blank
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Guo Z, Han S. Targeting cancer stem cell plasticity in triple-negative breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1165-1181. [PMID: 38213533 PMCID: PMC10776602 DOI: 10.37349/etat.2023.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/15/2023] [Indexed: 01/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Cancer stem cells (CSCs) are thought to play a crucial role in TNBC progression and resistance to therapy. CSCs are a small subpopulation of cells within tumors that possess self-renewal and differentiation capabilities and are responsible for tumor initiation, maintenance, and metastasis. CSCs exhibit plasticity, allowing them to switch between states and adapt to changing microenvironments. Targeting CSC plasticity has emerged as a promising strategy for TNBC treatment. This review summarizes recent advances in understanding the molecular mechanisms underlying CSC plasticity in TNBC and discusses potential therapeutic approaches targeting CSC plasticity.
Collapse
Affiliation(s)
- Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuyan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
15
|
Li W, Zhang Q, Gu R, Zeng L, Liu H. Platelet factor 4 induces bone loss by inhibiting the integrin α5-FAK-ERK pathway. Animal Model Exp Med 2023; 6:573-584. [PMID: 37565509 PMCID: PMC10757219 DOI: 10.1002/ame2.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The effect of platelet factor 4 (PF4) on bone marrow mesenchymal stem cells (BMMSCs) and osteoporosis is poorly understood. Therefore, this study aimed to evaluate the effects of PF4-triggered bone destruction in mice and determine the underlying mechanism. METHODS First, in vitro cell proliferation and cell cycle of BMMSCs were assessed using a CCK8 assay and flow cytometry, respectively. Osteogenic differentiation was confirmed using staining and quantification of alkaline phosphatase and Alizarin Red S. Next, an osteoporotic mouse model was established by performing bilateral ovariectomy (OVX). Furthermore, the PF4 concentrations were obtained using enzyme-linked immunosorbent assay. The bone microarchitecture of the femur was evaluated using microCT and histological analyses. Finally, the key regulators of osteogenesis and pathways were investigated using quantitative real-time polymerase chain reaction and Western blotting. RESULTS Human PF4 widely and moderately decreased the cell proliferation and osteogenic differentiation ability of BMMSCs. Furthermore, the levels of PF4 in the serum and bone marrow were generally increased, whereas bone microarchitecture deteriorated due to OVX. Moreover, in vivo mouse PF4 supplementation triggered bone deterioration of the femur. In addition, several key regulators of osteogenesis were downregulated, and the integrin α5-focal adhesion kinase-extracellular signal-regulated kinase (ITGA5-FAK-ERK) pathway was inhibited due to PF4 supplementation. CONCLUSIONS PF4 may be attributed to OVX-induced bone loss triggered by the suppression of bone formation in vivo and alleviate BMMSC osteogenic differentiation by inhibiting the ITGA5-FAK-ERK pathway.
Collapse
Affiliation(s)
- Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial RegionsChinese Academy of Medical SciencesBeijingChina
| | - Qiwei Zhang
- Department of Orthopedics, Beijing Hospital and National Center of Gerontology and Institute of Geriatrics MedicineChinese Academy of Medical SciencesBeijingChina
- Department of OrthopedicsBeijing Eden HospitalBeijingChina
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| | - Lijun Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of StomatologyPeking UniversityBeijingChina
| |
Collapse
|
16
|
Martínez-Abarca Millán A, Martín-Bermudo MD. Integrins Can Act as Suppressors of Ras-Mediated Oncogenesis in the Drosophila Wing Disc Epithelium. Cancers (Basel) 2023; 15:5432. [PMID: 38001693 PMCID: PMC10670217 DOI: 10.3390/cancers15225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Key to cancer initiation and progression is the crosstalk between cancer cells and their microenvironment. The extracellular matrix (ECM) is a major component of the tumour microenvironment and integrins, main cell-ECM adhesion receptors, are involved in every step of cancer progression. However, accumulating evidence has shown that integrins can act as tumour promoters but also as tumour suppressor factors, revealing that the biological roles of integrins in cancer are complex. This incites a better understating of integrin function in cancer progression. To achieve this goal, simple model organisms, such as Drosophila, offer great potential to unravel underlying conceptual principles. Here, we find that in the Drosophila wing disc epithelium the βPS integrins act as suppressors of tumours induced by a gain of function of the oncogenic form of Ras, RasV12. We show that βPS integrin depletion enhances the growth, delamination and invasive behaviour of RasV12 tumour cells, as well as their ability to affect the tumour microenvironment. These results strongly suggest that integrin function as tumour suppressors might be evolutionarily conserved. Drosophila can be used to understand the complex tumour modulating activities conferred by integrins, thus facilitating drug development.
Collapse
Affiliation(s)
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
17
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
18
|
Galicka A, Szoka Ł, Radziejewska I, Marcinkiewicz C. Effect of Dimeric Disintegrins Isolated from Vipera lebetina obtusa Venom on Glioblastoma Cellular Responses. Cancers (Basel) 2023; 15:4805. [PMID: 37835499 PMCID: PMC10572073 DOI: 10.3390/cancers15194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Integrins play a fundamental role in the migration and invasiveness of glioblastoma (GBM) cells, making them suitable targets for innovative cancer therapy. The aim of this study was to evaluate the effect of the RGD homodimeric disintegrin VLO4, isolated from Vipera lebetina obtusa venom, on the adhesion, spreading, migration, and survival of LBC3, LN18, and LN229 cell lines. This disintegrin, as a potent antagonist for α5β1 integrin, showed pro-adhesive properties for these cell lines, the highest for LN229 and the lowest for LBC3. Glioblastoma cells displayed significant differences in the spreading on the immobilized VLO4 and the natural α5β1 integrin ligand, fibronectin. Solubilized VLO4 showed different cytotoxicity and pro-apoptotic properties among tested cell lines, with the highest against LN18 and none against LN229. Moreover, VLO4 revealed an inhibitory effect on the migration of LBC3 and LN18 cell lines, in contrast to LN229 cells, which were not sensitive to this disintegrin. However, LN229 migration was impaired by VLO5, a disintegrin antagonistic to integrin α9β1, used in combination with VLO4. A possible mechanism of action of VLO4 may be related to the downregulation of α5β1 integrin subunit expression, as revealed by Western blot. VLO4 also inhibited cell proliferation and induced caspase-dependent apoptosis in LBC3 and LN18 cell lines. These results indicate that targeting α5β1 integrin by related VLO4 compounds may be useful in the development of integrin-targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Cezary Marcinkiewicz
- Department of Bioengineering, Temple University CoE, Philadelphia, PA 19406, USA
| |
Collapse
|
19
|
Brown CR, Foster JD. Palmitoylation Regulates Human Serotonin Transporter Activity, Trafficking, and Expression and Is Modulated by Escitalopram. ACS Chem Neurosci 2023; 14:3431-3443. [PMID: 37644775 DOI: 10.1021/acschemneuro.3c00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During serotonergic transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of this process is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective serotonin reuptake inhibitors (SSRIs). S-Palmitoylation, the reversible addition of a 16-carbon fatty acid to proteins, is an increasingly recognized dynamic post-translational modification responsible for modulating protein kinetics, trafficking, and localization patterns in response to physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT Vmax, without changes in Km or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal that palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and ultimately decreased cellular SERT protein levels.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
20
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
21
|
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R, Villa-Diaz LG. Regulation and Functions of α6-Integrin (CD49f) in Cancer Biology. Cancers (Basel) 2023; 15:3466. [PMID: 37444576 DOI: 10.3390/cancers15133466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Over the past decades, our knowledge of integrins has evolved from being understood as simple cell surface adhesion molecules to receptors that have a complex range of intracellular and extracellular functions, such as delivering chemical and mechanical signals to cells. Consequently, they actively control cellular proliferation, differentiation, and apoptosis. Dysregulation of integrin signaling is a major factor in the development and progression of many tumors. Many reviews have covered the broader integrin family in molecular and cellular studies and its roles in diseases. Nevertheless, further understanding of the mechanisms specific to an individual subunit of different heterodimers is more useful. Thus, we describe the current understanding of and exploratory investigations on the α6-integrin subunit (CD49f, VLA6; encoded by the gene itga6) in normal and cancer cells. The roles of ITGA6 in cell adhesion, stemness, metastasis, angiogenesis, and drug resistance, and as a diagnosis biomarker, are discussed. The role of ITGA6 differs based on several features, such as cell background, cancer type, and post-transcriptional alterations. In addition, exosomal ITGA6 also implies metastatic organotropism. The importance of ITGA6 in the progression of a number of cancers, including hematological malignancies, suggests its potential usage as a novel prognostic or diagnostic marker and useful therapeutic target for better clinical outcomes.
Collapse
Affiliation(s)
- Rahele Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Hossein Malekzadeh
- Department of Oral Medicine, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sara Bahrami
- Resident of Restorative Dentistry, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Reyhane Khademi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno_TACT), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Medical Laboratory Sciences, School of Para-Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
22
|
Antonelli F. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. Int J Mol Sci 2023; 24:10620. [PMID: 37445795 DOI: 10.3390/ijms241310620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is intrinsically complex, comprising both heterogeneous cellular composition and extracellular matrix. In vitro cancer research models have been widely used in the past to model and study cancer. Although two-dimensional (2D) cell culture models have traditionally been used for cancer research, they have many limitations, such as the disturbance of interactions between cellular and extracellular environments and changes in cell morphology, polarity, division mechanism, differentiation and cell motion. Moreover, 2D cell models are usually monotypic. This implies that 2D tumor models are ineffective at accurately recapitulating complex aspects of tumor cell growth, as well as their radiation responses. Over the past decade there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers, highlighting a complementary model for studies of radiation effects on tumors, especially in conjunction with chemotherapy. The introduction of 3D cell culture approaches aims to model in vivo tissue interactions with radiation by positioning itself halfway between 2D cell and animal models, and thus opening up new possibilities in the study of radiation response mechanisms of healthy and tumor tissues.
Collapse
Affiliation(s)
- Francesca Antonelli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| |
Collapse
|
23
|
Brown CR, Foster JD. Palmitoylation regulates human serotonin transporter activity, trafficking, and expression and is modulated by escitalopram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540092. [PMID: 37214849 PMCID: PMC10197645 DOI: 10.1101/2023.05.09.540092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V max , without changes in K m or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.
Collapse
|
24
|
Zhang Y, Li T, Liu H, Wang L. Function and prognostic value of basement membrane -related genes in lung adenocarcinoma. Front Pharmacol 2023; 14:1185380. [PMID: 37214471 PMCID: PMC10196008 DOI: 10.3389/fphar.2023.1185380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) has become a common cause of cancer-related death. Many studies have shown that the basement membrane (BM) is associated with the development of cancer. However, BM-related gene expression and its relationship to LUAD prognosis remains unclear. Methods: BM-related genes from previous studies were used. Clinical and mRNA expression information were obtained from TCGA database. Cox, minimum absolute contraction, and selection operator regression were applied to analyze the selected genes affecting LUAD prognosis. A prognostic-risk model was then established. Furthermore, this study applied Kaplan-Meier analysis to assess the outcomes of high- and low-risk groups, then explored their differences in drug sensitivity. The DSigDB database was used to screen for therapeutic small-molecule drugs. Results: Fourteen prognostic models based on BM-related genes were successfully constructed and validated in patients with LUAD. We also found that independence was a prognostic factor in all 14 BM-based models. Functional analysis showed that the enrichment of BM-related genes mainly originated from signaling pathways related to cancer. The BM-based model also suggested that immune cell infiltration is associated with checkpoints. The low-risk patients may benefit from cyclopamine and docetaxel treatments. Conclusion: This study identified a reliable biomarker to predict survival in patients with LUAD and offered new insights into the function of BM-related genes in LUAD.
Collapse
Affiliation(s)
- Yurong Zhang
- Department of Scientific Research, The First Affiliated Hospital, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Tingting Li
- Department of Pharmacy, Xi’an Chest Hospital, Xi’an, Shaanxi, China
| | - Huanqing Liu
- Information Construction and Management Office, Northwest Polytechnical University, Xi’an, Shaanxi, China
| | - Li Wang
- Department of Scientific Research, The First Affiliated Hospital, Xi’an Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
25
|
Guo QR, Zhou WM, Zhang GB, Deng ZF, Chen XZ, Sun FY, Lei XP, Yan YY, Zhang JY. Jaceosidin inhibits the progression and metastasis of NSCLC by regulating miR-34c-3p/Integrin α2β1 axis. Heliyon 2023; 9:e16158. [PMID: 37215793 PMCID: PMC10199265 DOI: 10.1016/j.heliyon.2023.e16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Non-coding RNAs are crucial for cancer progression, among which miR-34c-3p has been demonstrated to be a tumor suppressor in non-small cell lung cancer (NSCLC). In this study, we attempt to identify flavonoids that can up-regulate miR-34c-3p expression, evaluate the anticancer activity of the flavonoids and explore its underlying mechanism in NSCLC cells. Six flavonoids were screened by RT-qPCR and we found that jaceosidin significantly increased miR-34c-3p expression in A549 cells. We found that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner, indicated by cell counting kit (CCK-8) assay, wound healing assay, transwell assay and EdU assay, we observed that jaceosidin inhibited the proliferation, migration and invasion of A549 and H1975 cells in a dose-relevant manner. Further research suggested that miR-34c-3p bound to the transcriptome of integrin α2β1 and then inhibited its expression, leading to the inhibitory effect on the migration and invasion of NSCLC. Our study sheds some light on anti-tumor of jaceosidin and provides a potential lead compound for NSCLC therapy.
Collapse
Affiliation(s)
- Qiao-ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guo-bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhuo-fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fang-yun Sun
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, 712082, China
| | - Xue-ping Lei
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yan-yan Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- School of Medicine, Shanxi Datong University, Datong, 037009, PR China
| | - Jian-ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
26
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
27
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
28
|
Verhoeff TJ, Holloway AF, Dickinson JL. Non-coding RNA regulation of integrins and their potential as therapeutic targets in cancer. Cell Oncol (Dordr) 2023; 46:239-250. [PMID: 36512308 PMCID: PMC10060301 DOI: 10.1007/s13402-022-00752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Integrins are integral to cell signalling and management of the extracellular matrix, and exquisite regulation of their expression is essential for a variety of cell signalling pathways, whilst disordered regulation is a key driver of tumour progression and metastasis. Most recently non-coding RNAs in the form of micro-RNA (miRNA) and long non-coding RNA (lncRNA) have emerged as a key mechanism by which tissue dependent gene expression is controlled. Whilst historically these molecules have been poorly understood, advances in 'omic' technologies and a greater understanding of non-coding regions of the genome have revealed that non-coding RNAs make up a large proportion of the transcriptome. CONCLUSIONS AND PERSPECTIVES This review examines the regulation of integrin genes by ncRNAs, provides and overview of their mechanism of action and highlights how exploitation of these discoveries is informing the development of novel chemotherapeutic agents in the treatment of cancer. MiRNA molecules have been the most extensively characterised and negatively regulate most integrin genes, classically regulating genes through binding to recognition sequences in the mRNA 3'-untranslated regions of gene transcripts. LncRNA mechanisms of action are now being elucidated and appear to be more varied and complex, and may counter miRNA molecules, directly engage integrin mRNA transcripts, and guide or block both transcription factors and epigenetic machinery at integrin promoters or at other points in integrin regulation. Integrins as therapeutic targets are of enormous interest given their roles as oncogenes in a variety of tumours, and emerging therapeutics mimicking ncRNA mechanisms of action are already being trialled.
Collapse
Affiliation(s)
- Tristan Joseph Verhoeff
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Adele F Holloway
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart (Tasmania), Australia.
| |
Collapse
|
29
|
Paulus J, Nachtigall B, Meyer P, Sewald N. RGD Peptidomimetic MMAE-Conjugate Addressing Integrin αVβ3-Expressing Cells with High Targeting Index. Chemistry 2023; 29:e202203476. [PMID: 36454662 DOI: 10.1002/chem.202203476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Small molecule-drug conjugates (SMDCs) mimicking the RGD sequence (-Arg-Gly-Asp-) with a non-peptide moiety require a pharmacophore-independent attachment site. A library of 36 sulfonamide-modified RGD mimetics with nM to pM affinity for integrin αV β3 was synthesized and analysed via DAD mapping. The best structure of the conjugable RGD mimetic was used and a linker was attached to an aromatic ring by Negishi cross-coupling. The product retained high affinity and selectivity for integrin αV β3 . The conjugable RGD mimetic was then attached to an enzymatically cleavable GKGEVA linker equipped with a self-immolative PABC and the antimitotic drug monomethyl auristatin E (MMAE). The resulting SMDC preferred binding to integrin αV β3 over α5 β1 in a ratio of 1 : 4519 (ELISA) and showed selectivity for αV β3 -positive WM115 cells over αV β3 -negative M21-L cells in the in vitro cell adhesion assay as well as in cell viability assays with a targeting index of 134 (M21-L/WM115).
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Nachtigall
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Peter Meyer
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
30
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
31
|
Abstract
Sex differences play a large role in oncology. It has long been discussed that the incidence of different types of tumors varies by sex, and this holds in neuro-oncology. There are also profound survival sex differences, biologic factors, and treatment effects. This review aims to summarize some of the main sex differences observed in primary brain tumors and goes on to focus specifically on gliomas and meningiomas, as these are two commonly encountered primary brain tumors in clinical practice. Additionally, considerations unique to female individuals, including pregnancy and breastfeeding, are explored. This review sheds light on many of the unique attributes that must be considered when diagnosing and treating female patients with primary brain tumors in clinical practice.
Collapse
Affiliation(s)
- Lauren Singer
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA.
| | - Ditte Primdahl
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| | - Priya Kumthekar
- Department of Neurology, Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine/Northwestern University, 675 North Saint Clair Street, Suite 20-100, Chicago, IL 60611, USA
| |
Collapse
|
32
|
Wu Q, Chen P, Li J, Lin Z, Zhang Q, Kwok HF. Inhibition of bladder cancer growth with homoharringtonine by inactivating integrin α5/β1-FAK/Src axis: A novel strategy for drug application. Pharmacol Res 2023; 188:106654. [PMID: 36640858 DOI: 10.1016/j.phrs.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
The application of immune checkpoint inhibitors and FGFR protein tyrosine kinase inhibitors have made a tremendous breakthrough in bladder cancer therapy. However, inadequate drug responses and drug resistance interfere with successful treatment outcomes. For a new drug to enter the market, there is a long development cycle with high costs and low success rates. Repurposing previously Food and Drug Administration (FDA)-approved medications and using novel drug discovery strategies may be an optimal approach. Homoharringtonine (HHT) has been used for hematologic malignancies for over 40 years in China and was approved by the FDA approximately 10 years ago. Many studies have demonstrated that HHT effectively inhibits the development of several types of solid tumors, although the underlying mechanisms of action are unclear. In this study, we investigated the mechanisms underlying HHT activity against bladder cancer growth. We first compared HTT with the drugs currently used clinically for bladder cancer treatment. HHT showed stronger inhibitory activity than cisplatin, carboplatin, and doxorubicin. Our in vitro and in vivo data demonstrated that HHT inhibited proliferation, colony formation, migration, and cell adhesion of bladder cancer cells and induced apoptosis and cell cycle arrest in the nanomolar concentration range. Furthermore, we revealed that HHT treatment could downregulate the MAPK/Erk and PI3k/Akt signaling pathways by inactivating the integrin α5/β1-FAK/Src axis. HHT-induced activity reduced cell-ECM interactions and cell migration, thus suppressing tumor metastasis progression. Altogether, HHT shows enormous potential as an anticancer agent and may be applied as a combination treatment strategy for bladder cancer.
Collapse
Affiliation(s)
- Qiushuang Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Pengchen Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau SAR
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
33
|
Farc O, Budisan L, Berindan-Neagoe I, Braicu C, Zanoaga O, Zaharie F, Cristea V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr Issues Mol Biol 2023; 45:975-989. [PMID: 36826008 PMCID: PMC9955927 DOI: 10.3390/cimb45020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are molecules with a role in the post-transcriptional regulation of messenger RNA, being involved in a wide range of biological and pathological processes. In the present study, we aim to characterize the behavior of a few miRNAs with roles in the cell cycle and differentiation of colon cancer (CC) cells. The present work considers miRNAs as reflections of the complex cellular processes in which they are generated, their observed variations being used to characterize the molecular networks in which they are part and through which cell proliferation is achieved. Tumoral and adjacent normal tissue samples were obtained from 40 CC patients, and the expression of miR-29a, miR-146a, miR-215 and miR-449 were determined by qRT-PCR analysis. Subsequent bioinformatic analysis was performed to highlight the transcription factors (TFs) network that regulate the miRNAs and functionally characterizes this network. There was a significant decrease in the expression of all miRNAs in tumor tissue. All miRNAs were positively correlated with each other. The analysis of the TF network showed tightly connected functional modules related to the cell cycle and associated processes. The four miRNAs are downregulated in CC; they are strongly correlated, showing coherence within the cellular network that regulates them and highlighting possible approach strategies.
Collapse
Affiliation(s)
- Ovidiu Farc
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Zaharie
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Victor Cristea
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
35
|
Scarini JF, de Lima-Souza RA, Lavareze L, Ribeiro de Assis MCF, Damas II, Altemani A, Egal ESA, dos Santos JN, Bello IO, Mariano FV. Heterogeneity and versatility of the extracellular matrix during the transition from pleomorphic adenoma to carcinoma ex pleomorphic adenoma: cumulative findings from basic research and new insights. FRONTIERS IN ORAL HEALTH 2023; 4:942604. [PMID: 37138857 PMCID: PMC10149834 DOI: 10.3389/froh.2023.942604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Pleomorphic adenoma (PA) is the most common salivary gland tumor, accounting for 50%-60% of these neoplasms. If untreated, 6.2% of PA may undergo malignant transformation to carcinoma ex-pleomorphic adenoma (CXPA). CXPA is a rare and aggressive malignant tumor, whose prevalence represents approximately 3%-6% of all salivary gland tumors. Although the pathogenesis of the PA-CXPA transition remains unclear, CXPA development requires the participation of cellular components and the tumor microenvironment for its progression. The extracellular matrix (ECM) comprises a heterogeneous and versatile network of macromolecules synthesized and secreted by embryonic cells. In the PA-CXPA sequence, ECM is formed by a variety of components including collagen, elastin, fibronectin, laminins, glycosaminoglycans, proteoglycans, and other glycoproteins, mainly secreted by epithelial cells, myoepithelial cells, cancer-associated fibroblasts, immune cells, and endothelial cells. Like in other tumors including breast cancer, ECM changes play an important role in the PA-CXPA sequence. This review summarizes what is currently known about the role of ECM during CXPA development.
Collapse
Affiliation(s)
- João Figueira Scarini
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Luccas Lavareze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Maria Clara Falcão Ribeiro de Assis
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas (FOP/UNICAMP), Piracicaba, Brazil
| | - Albina Altemani
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Jean Nunes dos Santos
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Ibrahim Olajide Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Correspondence: Fernanda Viviane Mariano
| |
Collapse
|
36
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
37
|
Sun M, Huang D, Liu Y, Chen H, Yu H, Zhang G, Chen Q, Chen H, Zhang J. Effects of Cinobufagin on the Proliferation, Migration, and Invasion of H1299 Lung Cancer Cells. Chem Biodivers 2023; 20:e202200961. [PMID: 36522286 DOI: 10.1002/cbdv.202200961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 μM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, β-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, β-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dongyu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guobin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
38
|
Benesch MGK, Wu R, Menon G, Takabe K. High beta integrin expression is differentially associated with worsened pancreatic ductal adenocarcinoma outcomes. Am J Cancer Res 2022; 12:5403-5424. [PMID: 36628277 PMCID: PMC9827087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Outcomes in pancreatic ductal adenocarcinoma (PDAC) are known to be worse in tumors with high integrin β1 expression, but targeted monotherapy against this integrin has not been effective. Seven other beta integrins are expressed in mammalian biology and they are known to have overlapping and compensatory signaling in biological systems. However, their roles in PDAC are poorly understood and have not been systematically compared to integrin β1 biology. In this study, we analyzed the clinical outcomes against beta integrin 1-8 (ITGB1-8) expression in PDAC samples from two large independent cohorts, The Cancer Genome Atlas (TCGA) and GSE21501. Biological function and tumor microenvironment composition were studied using Gene Set Enrichment Analysis and xCell. Expression of all eight beta integrins is significantly increased in PDACs relative to normal pancreatic tissues (all P<0.001). ITGB1, 2, 5, and 6 have similarly enriched gene patterns related to transforming growth factor (TGF)-β, epithelial mesenchymal transition, inflammation, stemness, and angiogenesis pathways. Homologous recombination defects and neoantigens are increased in high-ITGB4, 5, and 6 tumors, with decreased overall survival in high-ITGB1, 5, and 6 tumors compared to low expression tumors (hazard ratios 1.5-2.0). High-ITGB1, 2, and 5 tumors have increased fibroblast infiltration (all P<0.01) while endothelial cells are increased in high-ITGB2 and 3 tumors (all P<0.05). Overall, beta integrin expression does not correlate to immune cell populations in PDACs. Therefore, while all beta integrins are overexpressed in PDACs, they exert differential effects on PDAC biology. ITGB2, 5, and 6 have a similar profile to ITGB1, suggesting that future research in PDAC integrin therapy needs to consider the complementary signaling profiles mediated by these integrins.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Gopal Menon
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA,Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan,Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
39
|
Hargadon KM, Goodloe TB, Lloyd ND. Oncogenic functions of the FOXC2 transcription factor: a hallmarks of cancer perspective. Cancer Metastasis Rev 2022; 41:833-852. [PMID: 35701636 DOI: 10.1007/s10555-022-10045-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
Epigenetic regulation of gene expression is a fundamental determinant of molecular and cellular function, and epigenetic reprogramming in the context of cancer has emerged as one of the key enabling characteristics associated with acquisition of the core hallmarks of this disease. As such, there has been renewed interest in studying the role of transcription factors as epigenetic regulators of gene expression in cancer. In this review, we discuss the current state of knowledge surrounding the oncogenic functions of FOXC2, a transcription factor that frequently becomes dysregulated in a variety of cancer types. In addition to highlighting the clinical impact of aberrant FOXC2 activity in cancer, we discuss mechanisms by which this transcription factor becomes dysregulated in both tumor and tumor-associated cells, placing particular emphasis on the ways in which FOXC2 promotes key hallmarks of cancer progression. Finally, we bring attention to important issues related to the oncogenic dysregulation of FOXC2 that must be addressed going forward in order to improve our understanding of FOXC2-mediated cancer progression and to guide prognostic and therapeutic applications of this knowledge in clinical settings.
Collapse
Affiliation(s)
- Kristian M Hargadon
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA.
| | - Travis B Goodloe
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| | - Nathaniel D Lloyd
- Hargadon Laboratory, Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA, 23943, USA
| |
Collapse
|
40
|
Quaglia F, Krishn SR, Sossey-Alaoui K, Rana PS, Pluskota E, Park PH, Shields CD, Lin S, McCue P, Kossenkov AV, Wang Y, Goodrich DW, Ku SY, Beltran H, Kelly WK, Corey E, Klose M, Bandtlow C, Liu Q, Altieri DC, Plow EF, Languino LR. The NOGO receptor NgR2, a novel αVβ3 integrin effector, induces neuroendocrine differentiation in prostate cancer. Sci Rep 2022; 12:18879. [PMID: 36344556 PMCID: PMC9640716 DOI: 10.1038/s41598-022-21711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVβ3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVβ3 that promotes NE differentiation (NED). This novel pathway requires the expression of a GPI-linked surface molecule, NgR2, also known as Nogo-66 receptor homolog 1. We show here that NgR2 is upregulated by αVβ3, to which it associates; we also show that it promotes NED and anchorage-independent growth, as well as a motile phenotype of PrCa cells. Given our observations that high levels of αVβ3 and, as shown here, of NgR2 are detected in human and mouse NEPrCa, our findings appear to be highly relevant to this aggressive and metastatic subtype of PrCa. This study is novel because NgR2 role has only minimally been investigated in cancer and has instead predominantly been analyzed in neurons. These data thus pave new avenues toward a comprehensive mechanistic understanding of integrin-directed signaling during PrCa progression toward a NE phenotype.
Collapse
Affiliation(s)
- Fabio Quaglia
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, School of Medicine, MetroHealth Medical Center, Rammelkamp Center for Research, Case Western Reserve University, Cleveland, OH, USA
| | - Priyanka Shailendra Rana
- Department of Medicine, School of Medicine, MetroHealth Medical Center, Rammelkamp Center for Research, Case Western Reserve University, Cleveland, OH, USA
| | - Elzbieta Pluskota
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pyung Hun Park
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher D Shields
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Lin
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Yanqing Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - William K Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Maja Klose
- Institute of Neurochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christine Bandtlow
- Institute of Neurochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Dario C Altieri
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Edward F Plow
- Cardiovascular and Metabolic Sciences Department, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Touihri-Barakati I, Kallech-Ziri O, Morjen M, Marrakchi N, Luis J, Hosni K. Inhibitory effect of phenolic extract from squirting cucumber ( Ecballium elaterium (L.) A. Rich) seed oil on integrin-mediated cell adhesion, migration and angiogenesis. RSC Adv 2022; 12:31747-31756. [PMID: 36380921 PMCID: PMC9638996 DOI: 10.1039/d2ra02593k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/01/2022] [Indexed: 03/10/2024] Open
Abstract
Integrin targeted therapies by natural bioactive compounds have attracted attention in the field of oncology and cancer treatment. This study evaluates the potential of phenolic extract from the medicinal herb Ecballium elaterium L. seed oil (PEO) to inhibit the adhesion and migration of the highly invasive human fibrosarcoma cell line HT1080. At safe concentrations (up to 40 μg mL-1), results show that PEO dose-dependently inhibits adhesion and migration of HT1080 to fibronectin (IC50 = 18 μg mL-1) and fibrinogen (IC50 = 12.86 μg mL-1). These observations were associated with the reduction of cell motility and migration velocity as revealed in the Boyden chamber and random motility using two-dimensional assays, respectively. Additional experiments using integrin blocking antibodies showed that PEO at the highest safe concentration (40 μg mL-1) competitively inhibited the attachment of HT1080 cell to anti-αvβ3 (>98%), anti-α5β1 (>86%), and to a lesser extent anti-α2 (>50%) immobilized antibodies, suggesting that αvβ3 and α5β1 integrins were selectively targeted by PEO. Moreover, PEO specifically targeted these integrins in human microvascular endothelial cells (HMEC-1) and dose-dependently blocked the in vitro tubulogenesis. In the CAM model, PEO inhibited the VEGF-induced neoangiogenesis confirming its anti-angiogenic effect. Collectively, these results indicate that PEO holds promise for the development of natural integrin-targeted therapies against fibrosarcoma.
Collapse
Affiliation(s)
- Imen Touihri-Barakati
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Olfa Kallech-Ziri
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| | - Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Pasteur Institute of Tunis, University of Tunis El Manar Tunis 1002 Tunisia
| | - José Luis
- CNRS-UMR 7051, Institut de Neuro Physiopathologie (INP), Université Aix-Marseille 27 Bd Jean Moulin 13385 Marseille France
| | - Karim Hosni
- Laboratoire des Substances Naturelles (LR10INRAP02), Institut National de Recherche et d'Analyse Physico-chimique Sidi Thabet 2020 Ariana Tunisia
| |
Collapse
|
42
|
Polymer Thin Film Promotes Tumor Spheroid Formation via JAK2-STAT3 Signaling Primed by Fibronectin-Integrin α5 and Sustained by LMO2-LDB1 Complex. Biomedicines 2022; 10:biomedicines10112684. [DOI: 10.3390/biomedicines10112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.
Collapse
|
43
|
Gusmão LA, Matsuo FS, Barbosa HFG, Tedesco AC. Advances in nano-based materials for glioblastoma multiforme diagnosis: A mini-review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of nano-based materials for diagnosis enables a more precise prognosis and results. Inorganic, organic, or hybrid nanoparticles using nanomaterials, such as quantum dots, extracellular vesicle systems, and others, with different molecular compositions, have been extensively explored as a better strategy to overcome the blood-brain barrier and target brain tissue and tumors. Glioblastoma multiforme (GBM) is the most common and aggressive primary tumor of the central nervous system, with a short, established prognosis. The delay in early detection is considered a key challenge in designing a precise and efficient treatment with the most encouraging prognosis. Therefore, the present mini-review focuses on discussing distinct strategies presented recently in the literature regarding nanostructures’ use, design, and application for GBM diagnosis.
Collapse
|
44
|
Cuypers A, Truong ACK, Becker LM, Saavedra-García P, Carmeliet P. Tumor vessel co-option: The past & the future. Front Oncol 2022; 12:965277. [PMID: 36119528 PMCID: PMC9472251 DOI: 10.3389/fonc.2022.965277] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor vessel co-option (VCO) is a non-angiogenic vascularization mechanism that is a possible cause of resistance to anti-angiogenic therapy (AAT). Multiple tumors are hypothesized to primarily rely on growth factor signaling-induced sprouting angiogenesis, which is often inhibited during AAT. During VCO however, tumors invade healthy tissues by hijacking pre-existing blood vessels of the host organ to secure their blood and nutrient supply. Although VCO has been described in the context of AAT resistance, the molecular mechanisms underlying this process and the profile and characteristics of co-opted vascular cell types (endothelial cells (ECs) and pericytes) remain poorly understood, resulting in the lack of therapeutic strategies to inhibit VCO (and to overcome AAT resistance). In the past few years, novel next-generation technologies (such as single-cell RNA sequencing) have emerged and revolutionized the way of analyzing and understanding cancer biology. While most studies utilizing single-cell RNA sequencing with focus on cancer vascularization have centered around ECs during sprouting angiogenesis, we propose that this and other novel technologies can be used in future investigations to shed light on tumor EC biology during VCO. In this review, we summarize the molecular mechanisms driving VCO known to date and introduce the models used to study this phenomenon to date. We highlight VCO studies that recently emerged using sequencing approaches and propose how these and other novel state-of-the-art methods can be used in the future to further explore ECs and other cell types in the VCO process and to identify potential vulnerabilities in tumors relying on VCO. A better understanding of VCO by using novel approaches could provide new answers to the many open questions, and thus pave the way to develop new strategies to control and target tumor vascularization.
Collapse
Affiliation(s)
- Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co Khanh Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Lisa M. Becker
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Paula Saavedra-García
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), Vlaams Instituut voor Biotechnologie (VIB) and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
45
|
Teixeira SA, Burim RV, Viapiano MS, Bidinotto LT, Nagashi Marie SK, Fleury Malheiros SM, Oba-Shinjo SM, Andrade AF, Carlotti CG. Alpha2beta1 Integrin Polymorphism in Diffuse Astrocytoma Patients. Front Oncol 2022; 12:914156. [PMID: 35936750 PMCID: PMC9353741 DOI: 10.3389/fonc.2022.914156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins are heterodimeric transmembrane glycoproteins resulting from the non-covalent association of an α and β chain. The major integrin receptor for collagen/laminin, α2β1 is expressed on a wide variety of cell types and plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Integrin-triggered signaling pathways promote the invasion and survival of glioma cells by modifying the brain microenvironment. In this study, we investigated the association of a specific genetic polymorphism of integrin α2β1 with the incidence of diffusely infiltrating astrocytoma and the progression of these tumors. Single-nucleotide polymorphism in intron 7 of the integrin ITGA2 gene was examined in 158 patients and 162 controls using polymerase chain reaction and restriction enzyme analysis. The ITGA2 genotype +/+ (with a BglII restriction site in both alleles) exhibited higher frequency in grade II astrocytoma compared to control (P = 0.02) whereas the genotype -/- (lacking the BglII site) correlated with the poorest survival rate (P = 0.04). In addition, in silico analyses of ITGA2 expression from low-grade gliomas (LGG, n = 515) and glioblastomas (GBM, n = 159) indicated that the higher expression of ITGA2 in LGG was associated with poor overall survival (P < 0.0001). However, the distribution of integrin ITGA2 BglII genotypes (+/+, +/-, -/-) was not significantly different between astrocytoma subgroups III and IV (P = 0.65, 0.24 and 0.33; 0.29, 0.48, 0.25, respectively) compared to control. These results suggest a narrow association between the presence of this SNP and indicate that further studies with larger samples are warranted to analyze the relation between tumor grade and overall survival, highlighting the importance of determining these polymorphisms for prognosis of astrocytomas.
Collapse
Affiliation(s)
- Silvia A Teixeira
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Regislaine V Burim
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lucas T Bidinotto
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Pathology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Suely K Nagashi Marie
- Department of Neurology, Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Suzana M Fleury Malheiros
- Department of Neurology, Faculty of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Internal Medicine, Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Augusto F Andrade
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Carlos G Carlotti
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
46
|
Hou W, Bridgeman B, Malnassy G, Ding X, Cotler S, Dhanarajan A, Qiu W. Integrin subunit beta 8 contributes to lenvatinib resistance in HCC. Hepatol Commun 2022; 6:1786-1802. [PMID: 35238496 PMCID: PMC9234648 DOI: 10.1002/hep4.1928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022] Open
Abstract
Lenvatinib is a multikinase inhibitor approved as a first-line therapy for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common, and the underlying mechanisms governing this resistance are largely unknown. In this study, we established two lenvatinib-resistant (LR) HCC cell lines and identified integrin subunit beta 8 (ITGB8) as a critical contributor to lenvatinib resistance in HCC. The elevated expression of ITGB8 was observed in LR HCC cells. Furthermore, silencing of ITGB8 reversed lenvatinib resistance in vitro and in vivo, whereas ectopic expression of ITGB8 in lenvatinib-sensitive parental HCC cells exhibited increased resistance to lenvatinib. Mechanistically, ITGB8 regulated lenvatinib resistance through an HSP90-mediated stabilization of AKT and enhanced AKT signaling. In support of this model, either an AKT inhibitor MK-2206 or an HSP90 inhibitor 17-AAG resensitized LR HCC cells to lenvatinib treatment. Conclusion: Collectively, our results establish a crucial role of ITGB8 in lenvatinib resistance, and suggest that targeting the ITGB8/HSP90/AKT axis is a promising therapeutic strategy in patients with HCC exhibiting lenvatinib resistance.
Collapse
Affiliation(s)
- Wei Hou
- Department of SurgeryLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
- Department of Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Bryan Bridgeman
- Department of SurgeryLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
- Department of Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Greg Malnassy
- Department of SurgeryLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
- Department of Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Xianzhong Ding
- Department of PathologyLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Scott J. Cotler
- Department of MedicineLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Asha Dhanarajan
- Department of MedicineLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| | - Wei Qiu
- Department of SurgeryLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
- Department of Cancer BiologyLoyola University Chicago Stritch School of MedicineMaywoodIllinoisUSA
| |
Collapse
|
47
|
Ucaryilmaz Metin C, Ozcan G. Comprehensive bioinformatic analysis reveals a cancer-associated fibroblast gene signature as a poor prognostic factor and potential therapeutic target in gastric cancer. BMC Cancer 2022; 22:692. [PMID: 35739492 PMCID: PMC9229147 DOI: 10.1186/s12885-022-09736-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the deadliest cancers, currently available therapies have limited success. Cancer-associated fibroblasts (CAFs) are pivotal cells in the stroma of gastric tumors posing a great risk for progression and chemoresistance. The poor prognostic signature for CAFs is not clear in gastric cancer, and drugs that target CAFs are lacking in the clinic. In this study, we aim to identify a poor prognostic gene signature for CAFs, targeting which may increase the therapeutic success in gastric cancer. METHODS We analyzed four GEO datasets with a network-based approach and validated key CAF markers in The Cancer Genome Atlas (TCGA) and The Asian Cancer Research Group (ACRG) cohorts. We implemented stepwise multivariate Cox regression guided by a pan-cancer analysis in TCGA to identify a poor prognostic gene signature for CAF infiltration in gastric cancer. Lastly, we conducted a database search for drugs targeting the signature genes. RESULTS Our study revealed the COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC as the key CAF markers in gastric cancer. Analysis of the TCGA and ACRG cohorts validated their upregulation and poor prognostic significance. The stepwise multivariate Cox regression elucidated COL1A1 and COL5A1, together with ITGA4, Emilin1, and TSPAN9 as poor prognostic signature genes for CAF infiltration. The search on drug databases revealed collagenase clostridium histolyticum, ocriplasmin, halofuginone, natalizumab, firategrast, and BIO-1211 as the potential drugs for further investigation. CONCLUSIONS Our study demonstrated the central role of extracellular matrix components secreted and remodeled by CAFs in gastric cancer. The gene signature we identified in this study carries high potential as a predictive tool for poor prognosis in gastric cancer patients. Elucidating the mechanisms by which the signature genes contribute to poor patient outcomes can lead to the discovery of more potent molecular-targeted agents and increase the therapeutic success in gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, Koc University School of Medicine, 34450, Istanbul, Turkey.
| |
Collapse
|
48
|
Lin X, Kong D, Chen ZS. Editorial: Chemo-Radiation-Resistance in Cancer Therapy. Front Pharmacol 2022; 13:904063. [PMID: 35662703 PMCID: PMC9159921 DOI: 10.3389/fphar.2022.904063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xiaoping Lin
- State Key Laboratory of Oncology in South China, Department of Nuclear Medicine, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, Queens, New York, NY, United States
| |
Collapse
|
49
|
Proteomic Analysis of Lung Cancer Types—A Pilot Study. Cancers (Basel) 2022; 14:cancers14112629. [PMID: 35681609 PMCID: PMC9179298 DOI: 10.3390/cancers14112629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of tumor-related mortality, therefore significant effort is directed towards understanding molecular alterations occurring at the origin of the disease to improve current treatment options. The aim of our pilot-scale study was to carry out a detailed proteomic analysis of formalin-fixed paraffin-embedded tissue sections from patients with small cell or non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Tissue surface digestion was performed on relatively small cancerous and tumor-adjacent normal regions and differentially expressed proteins were identified using label-free quantitative mass spectrometry and subsequent statistical analysis. Principal component analysis clearly distinguished cancerous and cancer adjacent normal samples, while the four lung cancer types investigated had distinct molecular profiles and gene set enrichment analysis revealed specific dysregulated biological processes as well. Furthermore, proteins with altered expression unique to a specific lung cancer type were identified and could be the targets of future studies.
Collapse
|
50
|
Ripamonti M, Wehrle-Haller B, de Curtis I. Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 2022; 10:852016. [PMID: 35450290 PMCID: PMC9016114 DOI: 10.3389/fcell.2022.852016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
Focal adhesions are specialized integrin-dependent adhesion complexes, which ensure cell anchoring to the extracellular matrix. Focal adhesions also function as mechano-signaling platforms by perceiving and integrating diverse physical and (bio)chemical cues of their microenvironment, and by transducing them into intracellular signaling for the control of cell behavior. The fundamental biological mechanism of creating intracellular signaling in response to changes in tensional forces appears to be tightly linked to paxillin recruitment and binding to focal adhesions. Interestingly, the tension-dependent nature of the paxillin binding to adhesions, combined with its scaffolding function, suggests a major role of this protein in integrating multiple signals from the microenvironment, and accordingly activating diverse molecular responses. This minireview offers an overview of the molecular bases of the mechano-sensitivity and mechano-signaling capacity of core focal adhesion proteins, and highlights the role of paxillin as a key component of the mechano-transducing machinery based on the interaction of cells to substrates activating the β3 integrin-talin1-kindlin.
Collapse
Affiliation(s)
- Marta Ripamonti
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- *Correspondence: Ivan de Curtis,
| |
Collapse
|