1
|
Zhang FX, Chen X, Niu DC, Cheng L, Huang CS, Liao M, Xue Y, Shi XL, Mo ZN. Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma. Asian J Androl 2025; 27:101-112. [PMID: 39119639 DOI: 10.4103/aja202434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Fang-Xing Zhang
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xi Chen
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - De-Cao Niu
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Lang Cheng
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Cai-Sheng Huang
- Department of Urology, The Second Nanning People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ming Liao
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yu Xue
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao-Lei Shi
- Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Zeng-Nan Mo
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Rejas-González R, Montero-Calle A, Pastora Salvador N, Crespo Carballés MJ, Ausín-González E, Sánchez-Naves J, Pardo Calderón S, Barderas R, Guzman-Aranguez A. Unraveling the nexus of oxidative stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-depth proteomics. Redox Biol 2024; 77:103368. [PMID: 39326071 PMCID: PMC11462071 DOI: 10.1016/j.redox.2024.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic ocular pathologies such as cataracts and glaucoma are emerging as an important problem for public health due to the changes in lifestyle and longevity. These age-related ocular diseases are largely mediated by oxidative stress. Small extracellular vesicles (sEVs) are involved in cell-to-cell communication and transport. There is an increasing interest about the function of small extracellular vesicles (sEVs) in the eye. However, the proteome content and characterization of sEVs released by ocular cells under pathological conditions are not yet well known. Here, we aimed to analyze the protein profile of sEVs and the intracellular protein content from two ocular cell lines (lens epithelial cells and retinal ganglion cells) exposed to oxidative stress to identify altered proteins that could serve as potential diagnostic biomarkers. The protein content was analyzed by quantitative mass spectrometry-based proteomics. Validation was performed by WB and ELISA using cell extracts and aqueous humor from cataract and glaucoma patients. After data analysis, 176 and 7 dysregulated proteins with an expression ratio≥1.5 were identified in lens epithelial cells' protein extract and sEVs, respectively, upon oxidative stress induction. In retinal ganglion cells, oxidative stress induction resulted in the dysregulation of 1033 proteins in cell extracts and 9 proteins in sEVs. In addition, by WB and ELISA, the dysregulation of proteins was mostly confirmed in aqueous humor samples from cataract or glaucoma patients in comparison to ICL individuals, with RAD23B showing high glaucoma diagnostic ability. Importantly, this work expands the knowledge of the proteome characterization of cataracts and glaucoma and provides new potential diagnostic glaucoma biomarkers.
Collapse
Affiliation(s)
- Raquel Rejas-González
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | | | - Emma Ausín-González
- Opthalmology Service, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | | | - Sara Pardo Calderón
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), 28029, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| |
Collapse
|
3
|
Xu J, Zhou K, Fu C, Chen CB, Sun Y, Wen X, Yang L, Ng TK, Liu Q, Zhang M. Oxylipins in Aqueous Humor of Primary Open-Angle Glaucoma Patients. Biomolecules 2024; 14:1127. [PMID: 39334893 PMCID: PMC11430124 DOI: 10.3390/biom14091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE Investigate the oxylipin profiles in the aqueous humor of primary open-angle glaucoma (POAG) patients. METHODS Aqueous humor samples were collected from 17 POAG patients and 15 cataract subjects and subjected to a liquid chromatography/mass spectrometry (LC-MS) analysis to detect the oxylipins. The prediction potential of the differential abundant oxylipins was assessed by the receiver operating characteristic (ROC) curves. Pathway and correlation analyses on the oxylipins and clinical and biochemical parameters were also conducted. RESULTS The LC-MS analysis detected a total of 76 oxylipins, of which 29 oxylipins reached the detection limit. The multivariate analysis identified five differential abundant oxylipins, 15-keto-prostaglandin F2 alpha (15-kPGF2α), Leukotriene B4 (LTB4), 12,13-Epoxyoctadecenoic acid (12,13-Epome), 15-Hydroxyeicosatetraenoic acid (15-HETE) and 11-Hydroxyeicosatetraenoic acid (11-HETE). The five oxylipins are enriched in the arachidonic acid metabolism and linoleic acid metabolism pathways. Pearson correlation analysis showed that 11-HETE was positively correlated with intraocular pressure and central corneal thickness and negatively with cup/disk area ratio in the POAG patients. In addition, 15-kPGF2α was moderately and positively correlated with the mean deviation (MD) of visual field defect, and LTB4 was moderately and negatively correlated with macular thickness. CONCLUSIONS This study revealed the oxylipin profile in the aqueous humor of POAG patients. Oxylipins involved in the arachidonic acid metabolism pathway could play a role in POAG, and anti-inflammatory therapies could be potential treatment strategies for POAG.
Collapse
Affiliation(s)
- Jianming Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Shantou University Medical College, Shantou 515041, China
| | - Kewen Zhou
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Shantou University Medical College, Shantou 515041, China
| | - Changzhen Fu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Chong-Bo Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Yaru Sun
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Shantou University Medical College, Shantou 515041, China
| | - Xin Wen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Shantou University Medical College, Shantou 515041, China
| | - Luxi Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Shantou University Medical College, Shantou 515041, China
| | - Tsz-Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Guangdong-Hong Kong-Macao University Joint Research Laboratory of Precision Prevention and Treatment on Ocular Diseases, Shantou 515041, China
- Guangdong Provincial Engineering Technology Research Center for Precision Diagnosis and Treatment on Ocular Diseases of Guangdong Province, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Guangdong-Hong Kong-Macao University Joint Research Laboratory of Precision Prevention and Treatment on Ocular Diseases, Shantou 515041, China
- Guangdong Provincial Engineering Technology Research Center for Precision Diagnosis and Treatment on Ocular Diseases of Guangdong Province, Shantou 515041, China
| |
Collapse
|
4
|
Belete GT, Zhou L, Li KK, So PK, Do CW, Lam TC. Metabolomics studies in common multifactorial eye disorders: a review of biomarker discovery for age-related macular degeneration, glaucoma, diabetic retinopathy and myopia. Front Mol Biosci 2024; 11:1403844. [PMID: 39193222 PMCID: PMC11347317 DOI: 10.3389/fmolb.2024.1403844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Multifactorial Eye disorders are a significant public health concern and have a huge impact on quality of life. The pathophysiological mechanisms underlying these eye disorders were not completely understood since functional and low-throughput biological tests were used. By identifying biomarkers linked to eye disorders, metabolomics enables early identification, tracking of the course of the disease, and personalized treatment. Methods The electronic databases of PubMed, Scopus, PsycINFO, and Web of Science were searched for research related to Age-Related macular degeneration (AMD), glaucoma, myopia, and diabetic retinopathy (DR). The search was conducted in August 2023. The number of cases and controls, the study's design, the analytical methods used, and the results of the metabolomics analysis were all extracted. Using the QUADOMICS tool, the quality of the studies included was evaluated, and metabolic pathways were examined for distinct metabolic profiles. We used MetaboAnalyst 5.0 to undertake pathway analysis of differential metabolites. Results Metabolomics studies included in this review consisted of 36 human studies (5 Age-related macular degeneration, 10 Glaucoma, 13 Diabetic retinopathy, and 8 Myopia). The most networked metabolites in AMD include glycine and adenosine monophosphate, while methionine, lysine, alanine, glyoxylic acid, and cysteine were identified in glaucoma. Furthermore, in myopia, glycerol, glutamic acid, pyruvic acid, glycine, cysteine, and oxoglutaric acid constituted significant metabolites, while glycerol, glutamic acid, lysine, citric acid, alanine, and serotonin are highly networked metabolites in cases of diabetic retinopathy. The common top metabolic pathways significantly enriched and associated with AMD, glaucoma, DR, and myopia were arginine and proline metabolism, methionine metabolism, glycine and serine metabolism, urea cycle metabolism, and purine metabolism. Conclusion This review recapitulates potential metabolic biomarkers, networks and pathways in AMD, glaucoma, DR, and myopia, providing new clues to elucidate disease mechanisms and therapeutic targets. The emergence of advanced metabolomics techniques has significantly enhanced the capability of metabolic profiling and provides novel perspectives on the metabolism and underlying pathogenesis of these multifactorial eye conditions. The advancement of metabolomics is anticipated to foster a deeper comprehension of disease etiology, facilitate the identification of novel therapeutic targets, and usher in an era of personalized medicine in eye research.
Collapse
Affiliation(s)
- Gizachew Tilahun Belete
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chi-Wai Do
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
He M, Xia M, Yang Q, Chen X, Li H, Xia X. P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish. Neural Regen Res 2024; 19:1849-1856. [PMID: 38103253 PMCID: PMC10960302 DOI: 10.4103/1673-5374.389646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00040/figure1/v/2023-12-16T180322Z/r/image-tiff The retina of zebrafish can regenerate completely after injury. Multiple studies have demonstrated that metabolic alterations occur during retinal damage; however to date no study has identified a link between metabolites and retinal regeneration of zebrafish. Here, we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration. Among the differentially-expressed metabolites, we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish. Then, we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish. Importantly, p-aminobenzoic acid activated Achaetescute complex-like 1a expression, thereby promoting Müller glia reprogramming and division, as well as Müller glia-derived progenitor cell proliferation. Finally, we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution. Taken together, these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mingfang Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Fucito M, Spedicato M, Felletti S, Yu AC, Busin M, Pasti L, Franchina FA, Cavazzini A, De Luca C, Catani M. A Look into Ocular Diseases: The Pivotal Role of Omics Sciences in Ophthalmology Research. ACS MEASUREMENT SCIENCE AU 2024; 4:247-259. [PMID: 38910860 PMCID: PMC11191728 DOI: 10.1021/acsmeasuresciau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 06/25/2024]
Abstract
Precision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.
Collapse
Affiliation(s)
- Maurine Fucito
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Matteo Spedicato
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Angeli Christy Yu
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Massimo Busin
- Department
of Translational Medicine and for Romagna, University of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy
| | - Luisa Pasti
- Department
of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Flavio A. Franchina
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
- Council
for Agricultural Research and Economics, via della Navicella 2/4, Rome 00184, Italy
| | - Chiara De Luca
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Pucchio A, Krance SH, Pur DR, Bhatti J, Bassi A, Manichavagan K, Brahmbhatt S, Aggarwal I, Singh P, Virani A, Stanley M, Miranda RN, Felfeli T. Applications of artificial intelligence and bioinformatics methodologies in the analysis of ocular biofluid markers: a scoping review. Graefes Arch Clin Exp Ophthalmol 2024; 262:1041-1091. [PMID: 37421481 DOI: 10.1007/s00417-023-06100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE This scoping review summarizes the applications of artificial intelligence (AI) and bioinformatics methodologies in analysis of ocular biofluid markers. The secondary objective was to explore supervised and unsupervised AI techniques and their predictive accuracies. We also evaluate the integration of bioinformatics with AI tools. METHODS This scoping review was conducted across five electronic databases including EMBASE, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science from inception to July 14, 2021. Studies pertaining to biofluid marker analysis using AI or bioinformatics were included. RESULTS A total of 10,262 articles were retrieved from all databases and 177 studies met the inclusion criteria. The most commonly studied ocular diseases were diabetic eye diseases, with 50 papers (28%), while glaucoma was explored in 25 studies (14%), age-related macular degeneration in 20 (11%), dry eye disease in 10 (6%), and uveitis in 9 (5%). Supervised learning was used in 91 papers (51%), unsupervised AI in 83 (46%), and bioinformatics in 85 (48%). Ninety-eight papers (55%) used more than one class of AI (e.g. > 1 of supervised, unsupervised, bioinformatics, or statistical techniques), while 79 (45%) used only one. Supervised learning techniques were often used to predict disease status or prognosis, and demonstrated strong accuracy. Unsupervised AI algorithms were used to bolster the accuracy of other algorithms, identify molecularly distinct subgroups, or cluster cases into distinct subgroups that are useful for prediction of the disease course. Finally, bioinformatic tools were used to translate complex biomarker profiles or findings into interpretable data. CONCLUSION AI analysis of biofluid markers displayed diagnostic accuracy, provided insight into mechanisms of molecular etiologies, and had the ability to provide individualized targeted therapeutic treatment for patients. Given the progression of AI towards use in both research and the clinic, ophthalmologists should be broadly aware of the commonly used algorithms and their applications. Future research may be aimed at validating algorithms and integrating them in clinical practice.
Collapse
Affiliation(s)
- Aidan Pucchio
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Queens School of Medicine, Kingston, ON, Canada
| | - Saffire H Krance
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daiana R Pur
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jasmine Bhatti
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arshpreet Bassi
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Shaily Brahmbhatt
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Priyanka Singh
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aleena Virani
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Rafael N Miranda
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Tina Felfeli
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON, M5T 3A9, Canada.
| |
Collapse
|
8
|
Li S, Ren J, Jiang Z, Qiu Y, Shao M, Li Y, Wu J, Song Y, Sun X, Gao S, Cao W. Metabolomics identifies and validates serum androstenedione as novel biomarker for diagnosing primary angle closure glaucoma and predicting the visual field progression. eLife 2024; 12:RP91407. [PMID: 38358793 PMCID: PMC10942597 DOI: 10.7554/elife.91407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Background Primary angle closure glaucoma (PACG) is the leading cause of irreversible blindness in Asia, and no reliable, effective diagnostic, and predictive biomarkers are used in clinical routines. A growing body of evidence shows metabolic alterations in patients with glaucoma. We aimed to develop and validate potential metabolite biomarkers to diagnose and predict the visual field progression of PACG. Methods Here, we used a five-phase (discovery phase, validation phase 1, validation phase 2, supplementary phase, and cohort phase) multicenter (EENT hospital, Shanghai Xuhui Central Hospital), cross-sectional, prospective cohort study designed to perform widely targeted metabolomics and chemiluminescence immunoassay to determine candidate biomarkers. Five machine learning (random forest, support vector machine, lasso, K-nearest neighbor, and GaussianNaive Bayes [NB]) approaches were used to identify an optimal algorithm. The discrimination ability was evaluated using the area under the receiver operating characteristic curve (AUC). Calibration was assessed by Hosmer-Lemeshow tests and calibration plots. Results Studied serum samples were collected from 616 participants, and 1464 metabolites were identified. Machine learning algorithm determines that androstenedione exhibited excellent discrimination and acceptable calibration in discriminating PACG across the discovery phase (discovery set 1, AUCs=1.0 [95% CI, 1.00-1.00]; discovery set 2, AUCs = 0.85 [95% CI, 0.80-0.90]) and validation phases (internal validation, AUCs = 0.86 [95% CI, 0.81-0.91]; external validation, AUCs = 0.87 [95% CI, 0.80-0.95]). Androstenedione also exhibited a higher AUC (0.92-0.98) to discriminate the severity of PACG. In the supplemental phase, serum androstenedione levels were consistent with those in aqueous humor (r=0.82, p=0.038) and significantly (p=0.021) decreased after treatment. Further, cohort phase demonstrates that higher baseline androstenedione levels (hazard ratio = 2.71 [95% CI: 1.199-6.104], p=0.017) were associated with faster visual field progression. Conclusions Our study identifies serum androstenedione as a potential biomarker for diagnosing PACG and indicating visual field progression. Funding This work was supported by Youth Medical Talents - Clinical Laboratory Practitioner Program (2022-65), the National Natural Science Foundation of China (82302582), Shanghai Municipal Health Commission Project (20224Y0317), and Higher Education Industry-Academic-Research Innovation Fund of China (2023JQ006).
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| | - Jun Ren
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhendong Jiang
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Jianing Wu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yunxiao Song
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Fudan UniversityShanghaiChina
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and PhotomedicineShanghaiChina
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan UniversityShanghaiChina
- Key Laboratory of Myopia, Chinese Academy of Medical SciencesShanghaiChina
- NHC Key Laboratory of Myopia, Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
10
|
Langbøl M, Rovelt J, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Bocca C, Vohra R, Cvenkel B, Lenaers G, Kolko M. Distinct Metabolic Profiles of Ocular Hypertensives in Response to Hypoxia. Int J Mol Sci 2023; 25:195. [PMID: 38203366 PMCID: PMC10779258 DOI: 10.3390/ijms25010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Glaucoma is a neurodegenerative disease that affects the retinal ganglion cells (RGCs). The main risk factor is elevated intraocular pressure (IOP), but the actual cause of the disease remains unknown. Emerging evidence indicates that metabolic dysfunction plays a central role. The aim of the current study was to determine and compare the effect of universal hypoxia on the metabolomic signature in plasma samples from healthy controls (n = 10), patients with normal-tension glaucoma (NTG, n = 10), and ocular hypertension (OHT, n = 10). By subjecting humans to universal hypoxia, we aim to mimic a state in which the mitochondria in the body are universally stressed. Participants were exposed to normobaric hypoxia for two hours, followed by a 30 min recovery period in normobaric normoxia. Blood samples were collected at baseline, during hypoxia, and in recovery. Plasma samples were analyzed using a non-targeted metabolomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Multivariate analyses were conducted using principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), and univariate analysis using the Wilcoxon signed-rank test and false discovery rate (FDR) correction. Unique metabolites involved in fatty acid biosynthesis and ketone body metabolism were upregulated, while metabolites of the kynurenine pathway were downregulated in OHT patients exposed to universal hypoxia. Differential affection of metabolic pathways may explain why patients with OHT initially do not suffer or are more resilient from optic nerve degeneration. The metabolomes of NTG and OHT patients are regulated differently from control subjects and show dysregulation of metabolites important for energy production. These dysregulated processes may potentially contribute to the elevation of IOP and, ultimately, cell death of the RGCs.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Veterinary & Animal Sciences, University of Copenhagen, 2000 Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
| | - Cinzia Bocca
- Faculté de Santé, Institut MITOVASC, UMR CNRS 6015, INSERM U1083, Université d’Angers, 49933 Angers, France; (C.B.); (G.L.)
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire (CHU), 49933 Angers, France
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Guy Lenaers
- Faculté de Santé, Institut MITOVASC, UMR CNRS 6015, INSERM U1083, Université d’Angers, 49933 Angers, France; (C.B.); (G.L.)
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark; (M.L.); (J.R.); (A.S.); (S.S.); (D.T.); (T.B.); (R.V.)
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
11
|
Pucchio A, Krance S, Pur DR, Bassi A, Miranda R, Felfeli T. The role of artificial intelligence in analysis of biofluid markers for diagnosis and management of glaucoma: A systematic review. Eur J Ophthalmol 2023; 33:1816-1833. [PMID: 36426575 PMCID: PMC10469503 DOI: 10.1177/11206721221140948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/01/2022] [Indexed: 08/31/2023]
Abstract
PURPOSE This review focuses on utility of artificial intelligence (AI) in analysis of biofluid markers in glaucoma. We detail the accuracy and validity of AI in the exploration of biomarkers to provide insight into glaucoma pathogenesis. METHODS A comprehensive search was conducted across five electronic databases including Embase, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science. Studies pertaining to biofluid marker analysis using AI or bioinformatics in glaucoma were included. Identified studies were critically appraised and assessed for risk of bias using the Joanna Briggs Institute Critical Appraisal tools. RESULTS A total of 10,258 studies were screened and 39 studies met the inclusion criteria, including 23 cross-sectional studies (59%), nine prospective cohort studies (23%), six retrospective cohort studies (15%), and one case-control study (3%). Primary open angle glaucoma (POAG) was the most commonly studied subtype (55% of included studies). Twenty-four studies examined disease characteristics, 10 explored treatment decisions, and 5 provided diagnostic clarification. While studies examined at entire metabolomic or proteomic profiles to determine changes in POAG, there was heterogeneity in the data with over 175 unique, differentially expressed biomarkers reported. Discriminant analysis and artificial neural network predictive models displayed strong differentiating ability between glaucoma patients and controls, although these tools were untested in a clinical context. CONCLUSION The use of AI models could inform glaucoma diagnosis with high sensitivity and specificity. While insight into differentially expressed biomarkers is valuable in pathogenic exploration, no clear pathogenic mechanism in glaucoma has emerged.
Collapse
Affiliation(s)
- Aidan Pucchio
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Saffire Krance
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Daiana R Pur
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Arshpreet Bassi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rafael Miranda
- Toronto Health Economics and Technology Assessment Collaborative, University of Toronto, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Tina Felfeli
- Toronto Health Economics and Technology Assessment Collaborative, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Gowtham L, Halder N, Angmo D, Singh SB, Jayasundar R, Dada T, Velpandian T. Untargeted metabolomics in the aqueous humor reveals the involvement of TAAR pathway in glaucoma. Exp Eye Res 2023; 234:109592. [PMID: 37474016 DOI: 10.1016/j.exer.2023.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Understanding the metabolic dysfunctions and underlying complex pathological mechanisms of neurodegeneration in glaucoma could help discover disease pathways, identify novel biomarkers, and rationalize newer therapeutics. Therefore, we aimed to investigate the local metabolomic alterations in the aqueous humor and plasma of primary glaucomatous patients. This study cohort comprised primary open-angle glaucoma (POAG), primary angle-closure glaucoma (PACG), and cataract control groups. Aqueous humor and plasma samples were collected from patients undergoing trabeculectomy or cataract surgery and subjected to high-resolution mass spectrometry (HRMS) analysis. Spectral information was processed, and the acquired data were subjected to uni-variate as well as multi-variate statistical analyses using MetaboAnalyst ver5.0. To further understand the localized metabolic abnormalities in glaucoma, metabolites affected in aqueous humor were distinguished from metabolites altered in plasma in this study. Nine and twelve metabolites were found to be significantly altered (p < 0.05, variable importance of projection >1 and log2 fold change ≥0.58/≤ -0.58) in the aqueous humor of PACG and POAG patients, respectively. The galactose and amino acid metabolic pathways were locally affected in the PACG and POAG groups, respectively. Based on the observation of the previous findings, gene expression profiles of trace amine-associated receptor-1 (TAAR-1) were studied in rat ocular tissues. The pharmacodynamics of TAAR-1 were explored in rabbits using topical administration of its agonist, β-phenyl-ethylamine (β-PEA). TAAR-1 was expressed in the rat's iris-ciliary body, optic nerve, lens, and cornea. β-PEA elicited a mydriatic response in rabbit eyes, without altering intraocular pressure. Targeted analysis of β-PEA levels in the aqueous humor of POAG patients showed an insignificant elevation. This study provides new insights regarding alterations in both localized and systemic metabolites in primary glaucomatous patients. This study also demonstrated the propensity of β-PEA to cause an adrenergic response through the TAAR-1 pathway.
Collapse
Affiliation(s)
- Lakshminarayanan Gowtham
- Department of Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nabanita Halder
- Department of Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Dewang Angmo
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rama Jayasundar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Tanuj Dada
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Zeleznik OA, Kang JH, Lasky-Su J, Eliassen AH, Frueh L, Clish CB, Rosner BA, Elze T, Hysi P, Khawaja A, Wiggs JL, Pasquale LR. Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank. Nat Commun 2023; 14:2860. [PMID: 37208353 PMCID: PMC10199010 DOI: 10.1038/s41467-023-38466-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma is the most common form, and yet the etiology of this multifactorial disease is poorly understood. We aimed to identify plasma metabolites associated with the risk of developing POAG in a case-control study (599 cases and 599 matched controls) nested within the Nurses' Health Studies, and Health Professionals' Follow-Up Study. Plasma metabolites were measured with LC-MS/MS at the Broad Institute (Cambridge, MA, USA); 369 metabolites from 18 metabolite classes passed quality control analyses. For comparison, in a cross-sectional study in the UK Biobank, 168 metabolites were measured in plasma samples from 2,238 prevalent glaucoma cases and 44,723 controls using NMR spectroscopy (Nightingale, Finland; version 2020). Here we show higher levels of diglycerides and triglycerides are adversely associated with glaucoma in all four cohorts, suggesting that they play an important role in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisa Frueh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tobias Elze
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Schepens Research Eye Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- St. Thomas' Hospital, London, UK
| | - Anthony Khawaja
- National Institute for Health and Care Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
- National Institute for Health and Care Research Biomedical Research Centre, Institute of Ophthalmology, University College London, London, UK
| | - Janey L Wiggs
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Lian W, Hu X, Zhang J, Wu Y, Zhao N, Ma H, He H, Lu Q. Fucoxanthin protects retinal ganglion cells and promotes parkin-mediated mitophagy against glutamate excitotoxicity. Neuroreport 2023; 34:385-394. [PMID: 37096783 PMCID: PMC10097491 DOI: 10.1097/wnr.0000000000001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE To clarify whether fucoxanthin plays a protective role and regulates parkin-mediated mitophagy on retinal ganglion cells (RGCs) against glutamate excitotoxicity. METHODS The excitotoxicity model of primary RGCs was carried out with glutamate. Mitochondrial membrane potential was measured by JC-1 kit (Abcam, USA). The apoptotic rate and cytotoxicity were detected by Hoechst staining and lactate dehydrogenase (LDH) kit (Takara, Japan). Mitochondria was assessed by MitoTracker staining and confocal microscopy. The mRNA levels and protein expression levels of Bax, Bcl-2, parkin, optineurin, LC3, and LAMP1 in RGCs were analyzed by quantitative PCR and immunoblotting. Finally, the mitochondrial health score and mitophagy were assessed by transmission electron microscopy. RESULTS Fucoxanthin increased the mitochondrial membrane potential of RGCs, reduced cytotoxicity, and decreased apoptosis in RGCs under glutamate excitotoxicity. It also enhanced expression levels of parkin, optineurin, and LAMP1, and upgraded the ratio of LC3-II to LC3-I. Meanwhile, fucoxanthin increased LC3 and MitoTracker co-localization staining. In addition, up-regulated mitochondrial health score, and the number of autophagosomes and mitophagosomes were observed in fucoxanthin-treated RGCs under glutamate excitotoxicity. CONCLUSION Fucoxanthin may exert its neuroprotective effect on RGCs via promoting parkin-mediated mitophagy under glutamate excitotoxicity. The neuroprotective effect of fucoxanthin in glaucomatous neurodegeneration and ocular diseases characterized by impaired mitophagy warrants further investigation.
Collapse
Affiliation(s)
- Wei Lian
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Health Science Center, The Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Xinxin Hu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Yufei Wu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Na Zhao
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Haixia Ma
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Health Science Center, The Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Hengqian He
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University
- Ningbo Clinical Research Center for Ophthalmology
- The Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo
- The Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023; 294:121997. [PMID: 36638554 DOI: 10.1016/j.biomaterials.2023.121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Early discovery and prioritized intervention significantly impact its prognosis. Precise monitoring of the biomarker GDF15 contributes towards effective diagnosis and assessment of glaucoma. In this study, we demonstrate that GDF15 monitoring can also aid screening for glaucoma risk and early diagnosis. We obtained an aptamer (APT2TM) with high affinity, high specificity, and high stability for binding to both human-derived and rat-derived GDF15. Simulation results showed that the binding capabilities of APT2TM are mainly affected by the interplay between van der Waals forces and polar solvation energy, and that salt bridges and hydrogen bonds play critical roles. We then integrated an enzyme-linked aptamer sandwich assay (ELASA) into a biolayer interferometry (BLI) system to develop an automated, high-throughput, real-time monitoring BLI-ELASA biosensing platform. This platform exhibited a wide linear detection window (10-810 pg/mL range) and high sensitivity for GDF15 (detection limit of 5-6 pg/mL). Moreover, we confirmed its excellent performance when applied to GDF15 quantification in real samples from glaucomatous rats and clinical patients. We believe that this technology represents a robust, convenient, and cost-effective approach for risk screening, early diagnosis, and animal modeling evaluation of glaucoma in the near future.
Collapse
|
16
|
New insight of metabolomics in ocular diseases in the context of 3P medicine. EPMA J 2023; 14:53-71. [PMID: 36866159 PMCID: PMC9971428 DOI: 10.1007/s13167-023-00313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Metabolomics refers to the high-through untargeted or targeted screening of metabolites in biofluids, cells, and tissues. Metabolome reflects the functional states of cells and organs of an individual, influenced by genes, RNA, proteins, and environment. Metabolomic analyses help to understand the interaction between metabolism and phenotype and reveal biomarkers for diseases. Advanced ocular diseases can lead to vision loss and blindness, reducing patients' quality of life and aggravating socio-economic burden. Contextually, the transition from reactive medicine to the predictive, preventive, and personalized (PPPM / 3P) medicine is needed. Clinicians and researchers dedicate a lot of efforts to explore effective ways for disease prevention, biomarkers for disease prediction, and personalized treatments, by taking advantages of metabolomics. In this way, metabolomics has great clinical utility in the primary and secondary care. In this review, we summarized much progress achieved by applying metabolomics to ocular diseases and pointed out potential biomarkers and metabolic pathways involved to promote 3P medicine approach in healthcare.
Collapse
|
17
|
Relationship between plasma amino acid and carnitine levels and primary angle-closure glaucoma based on mass spectrometry metabolomics. Exp Eye Res 2023; 227:109366. [PMID: 36592680 DOI: 10.1016/j.exer.2022.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.
Collapse
|
18
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|
19
|
Chienwichai P, Nogrado K, Tipthara P, Tarning J, Limpanont Y, Chusongsang P, Chusongsang Y, Tanasarnprasert K, Adisakwattana P, Reamtong O. Untargeted serum metabolomic profiling for early detection of Schistosoma mekongi infection in mouse model. Front Cell Infect Microbiol 2022; 12:910177. [PMID: 36061860 PMCID: PMC9433908 DOI: 10.3389/fcimb.2022.910177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Mekong schistosomiasis is a parasitic disease caused by blood flukes in the Lao People’s Democratic Republic and in Cambodia. The standard method for diagnosis of schistosomiasis is detection of parasite eggs from patient samples. However, this method is not sufficient to detect asymptomatic patients, low egg numbers, or early infection. Therefore, diagnostic methods with higher sensitivity at the early stage of the disease are needed to fill this gap. The aim of this study was to identify potential biomarkers of early schistosomiasis using an untargeted metabolomics approach. Serum of uninfected and S. mekongi-infected mice was collected at 2, 4, and 8 weeks post-infection. Samples were extracted for metabolites and analyzed with a liquid chromatography-tandem mass spectrometer. Metabolites were annotated with the MS-DIAL platform and analyzed with Metaboanalyst bioinformatic tools. Multivariate analysis distinguished between metabolites from the different experimental conditions. Biomarker screening was performed using three methods: correlation coefficient analysis; feature important detection with a random forest algorithm; and receiver operating characteristic (ROC) curve analysis. Three compounds were identified as potential biomarkers at the early stage of the disease: heptadecanoyl ethanolamide; picrotin; and theophylline. The levels of these three compounds changed significantly during early-stage infection, and therefore these molecules may be promising schistosomiasis markers. These findings may help to improve early diagnosis of schistosomiasis, thus reducing the burden on patients and limiting spread of the disease in endemic areas.
Collapse
Affiliation(s)
- Peerut Chienwichai
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kathyleen Nogrado
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanthi Tanasarnprasert
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Onrapak Reamtong,
| |
Collapse
|
20
|
Lillo A, Marin S, Serrano-Marín J, Binetti N, Navarro G, Cascante M, Sánchez-Navés J, Franco R. Targeted Metabolomics Shows That the Level of Glutamine, Kynurenine, Acyl-Carnitines and Lysophosphatidylcholines Is Significantly Increased in the Aqueous Humor of Glaucoma Patients. Front Med (Lausanne) 2022; 9:935084. [PMID: 35935793 PMCID: PMC9354463 DOI: 10.3389/fmed.2022.935084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 01/17/2023] Open
Abstract
The composition of the aqueous humor of patients with glaucoma is relevant to understand the underlying causes of the pathology. Information on the concentration of metabolites and small molecules in the aqueous humor of healthy subjects is limited. Among the causes of the limitations is the lack of healthy controls since, until recently, they were not surgically intervened; therefore, the aqueous humor of patients operated for cataract was used as a reference. Sixteen aqueous humor samples from healthy subjects undergoing refractive surgery and eight samples from glaucoma patients were used to assess the concentration of 188 compounds using chromatography and mass spectrometry. The concentration of 80 of the 188 was found to be reliable, allowing comparison of data from the two groups (glaucoma and control). The pattern found in the controls is similar to, but not the same as, that reported using samples from “controls” undergoing cataract surgery. Comparing data from glaucoma patients and healthy subjects, 57 of the 80 compounds were significantly (p < 0.05) altered in the aqueous humor. Kynurenine and glutamine, but not glutamate, were significantly increased in the glaucoma samples. Furthermore, 10 compounds were selected considering a statistical score of p < 0.0001 and the degree of change of more than double or less than half. The level of C10 (decanoyl)-carnitine decreased, while the concentration of spermidine and various acyl-carnitines and lysophosphatidylcholines increased in glaucoma. Principal component analysis showed complete segregation of controls and cases using the data for the 10 selected compounds. The receiver operating characteristic curve these 10 compounds and for glutamine allowed finding cut-off values and significant sensitivity and specificity scores. The concentration of small metabolites in the aqueous humor of glaucoma patients is altered even when they take medication and are well controlled. The imbalance affects membrane components, especially those of the mitochondria, suggesting that mitochondrial abnormalities are a cause or consequence of glaucoma. The increase in glutamine in glaucoma is also relevant because it could be a means of keeping the concentration of glutamate under control, thus avoiding its potential to induce the death of neurons and retinal cells. Equally notable was the increase in kynurenine, which is essential in the metabolism of nicotine adenine dinucleotides.
Collapse
Affiliation(s)
- Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
- CIBEREHD, Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nicolas Binetti
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
- CIBEREHD, Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Juan Sánchez-Navés
- Department of Ophtalmology, Oftalmedic and I.P.O. Institute of Ophthalmology, Palma de Mallorca, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rafael Franco ;
| |
Collapse
|
21
|
Yu Z, Zhou M, Liu J, Zhao W. Underlying antihypertensive mechanism of egg white-derived peptide QIGLF using renal metabolomics analysis. Food Res Int 2022; 157:111457. [PMID: 35761693 DOI: 10.1016/j.foodres.2022.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The kidney is an important target organ in the treatment of hypertension, but the effect of peptide QIGLF with antihypertensive activity on kidneys remains unknown. In the work, we aimed to further understand the hypotensive effects of QIGLF in spontaneously hypertensive rats (SHRs) using widely targeted metabolomics technology to investigate the kidney metabolic profiling variations. After four weeks of oral administration, the results showed different renal metabolomics profiles between QIGLF and model groups. Besides, a total of 10 potential biomarkers were identified, that is, 3-hydroxybutanoate, 20-hydroxyeicosatetraenoic acid, 19(S)-hydroxyeicosatetraenoic acid, 15-oxoETE, L-ornithine, malonate, uridine, uridine 5'-monophosphate, argininosuccinic acid, and N-carbamoyl-L-aspartate. These metabolites might exhibit antihypertensive activity of QIGLF by regulating synthesis and degradation of ketone bodies, arachidonic acid metabolism, pyrimidine metabolism, and arginine biosynthesis. These findings suggest that QIGLF might alleviate hypertension by inhibiting renal inflammation, promoting natriuresis, and regulating renal nitric oxide production.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China; School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mingjie Zhou
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
22
|
Lambuk L, Ahmad S, Sadikan MZ, Nordin NA, Kadir R, Nasir NAA, Chen X, Boer J, Plebanski M, Mohamud R. Targeting Differential Roles of Tumor Necrosis Factor Receptors as a Therapeutic Strategy for Glaucoma. Front Immunol 2022; 13:857812. [PMID: 35651608 PMCID: PMC9149562 DOI: 10.3389/fimmu.2022.857812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is an irreversible sight-threatening disorder primarily due to elevated intraocular pressure (IOP), leading to retinal ganglion cell (RGC) death by apoptosis with subsequent loss of optic nerve fibers. A considerable amount of empirical evidence has shown the significant association between tumor necrosis factor cytokine (TNF; TNFα) and glaucoma; however, the exact role of TNF in glaucoma progression remains unclear. Total inhibition of TNF against its receptors can cause side effects, although this is not the case when using selective inhibitors. In addition, TNF exerts its antithetic roles via stimulation of two receptors, TNF receptor I (TNFR1) and TNF receptor II (TNFR2). The pro-inflammatory responses and proapoptotic signaling pathways predominantly mediated through TNFR1, while neuroprotective and anti-apoptotic signals induced by TNFR2. In this review, we attempt to discuss the involvement of TNF receptors (TNFRs) and their signaling pathway in ocular tissues with focus on RGC and glial cells in glaucoma. This review also outlines the potential application TNFRs agonist and/or antagonists as neuroprotective strategy from a therapeutic standpoint. Taken together, a better understanding of the function of TNFRs may lead to the development of a treatment for glaucoma.
Collapse
Affiliation(s)
- Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Zulfiqah Sadikan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jennifer Boer
- School of Health and Biomedical Sciences, Royal Melbourne Institute Technology (RMIT) University, Bundoora, VIC, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, Royal Melbourne Institute Technology (RMIT) University, Bundoora, VIC, Australia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
23
|
Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in Primary Open Angle Glaucoma: A Systematic Review and Meta-Analysis. Front Neurosci 2022; 16:835736. [PMID: 35645711 PMCID: PMC9135181 DOI: 10.3389/fnins.2022.835736] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 01/01/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.
Collapse
Affiliation(s)
- Yizhen Tang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Simran Shah
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xinghuai Sun
- Department of Ophthalmology, Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen,
| |
Collapse
|
24
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|